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Inferring network topologies from the time series of individual units is of paramount importance in
the study of biological and social networks. Despite considerable progress, our success in network
inference is largely limited to static networks and autonomous node dynamics, which are often inad-
equate to describe complex systems. Here, we explore the possibility of reconstructing time-varying
weighted topologies through the information-theoretic notion of transfer entropy. We focus on a
Boolean network model in which the weight of the links and the spontaneous activity periodically
vary in time. For slowly-varying dynamics, we establish closed-form expressions for the stationary
periodic distribution and transfer entropy between each pair of nodes. Our results indicate that the
instantaneous weight of each link is mapped into a corresponding transfer entropy value, thereby
affording the possibility of pinpointing the dominant weights at each time. However, comparing
transfer entropy readings at different times may provide erroneous estimates of the strength of the
links in time, due to a counterintuitive modulation of the information flow by the non-autonomous
dynamics. In fact, this time variation should be used to scale transfer entropy values toward the cor-
rect inference of the time evolution of the network weights. This study constitutes a necessary step
toward a mathematically-principled use of transfer entropy to reconstruct time-varying networks.
Published by AIP Publishing. https://doi.org/10.1063/1.5047429

From ecology to political science, complex systems find in
networks a viable framework for modeling and analysis.
Yet, seldom do researchers have precise knowledge of the
topology of these networks. Which predator is challenging
the survival of an endangered species? Which legal orga-
nization is influencing the adoption of a policy in a given
community? These questions exemplify the chief objective
of the field of network inference, that is, to establish effica-
cious techniques to reconstruct the links of a network from
knowledge about the times series of the individual units.
Here, we investigate an information-theoretic approach to
deal with seasonal effects, eliciting the time evolution of
the links and non-autonomous dynamics of the network.
We focus on a Boolean network model, in which the spon-
taneous activity of each node is stimulated by the influence
of neighboring network nodes. Through perturbation the-
ory and computer simulations, we demonstrate the feasi-
bility of accurately inferring each link in the network as
a function of time. This effort offers a unique mathemati-
cal basis for addressing network inference in the presence
of seasonal effects, laying the foundations for data-driven
modeling of time-varying networked dynamical systems.

I. INTRODUCTION

The problem of inferring the topology of a network from
the time series of its units is central to our understanding

a)Author to whom correspondence should be addressed: mporfiri@nyu.edu

of biological and social networks. For example, our under-
standing of food webs in ecological systems demands the
inference of interactions among species from observations of
their abundances1. Similarly, elucidating the determining fac-
tors of leadership in animal collective behavior and political
science requires objective methods to estimate social influ-
ence from individual responses, be it the locomotory pattern
of an animal2 or the legal activity of a state.3,4

Information theory offers a mathematically-principled
framework for model-free inference of networks from raw
time series. In an information-theoretic sense, the information
encoded in a random variable can be interpreted as “a measure
of how much choice is involved in the selection of the event
or of how uncertain we are of the outcome”5 such that high
uncertainty is associated with more information. Through
the lens of information theory, a network is seen as the
medium that supports the propagation of information among
its units. In this vein, one attempts at discovering potential
links between nodes from the information flow between them.

Recently, we have witnessed a surge of new information-
theoretic methods to enable network inference,6–11 supported
by efficacious computational suites and rigorous statisti-
cal methods.12–16 Within this field of investigation, transfer
entropy, originally introduced in Ref. 17, has emerged as
a promising tool for network inference in the presence of
nonlinear interactions and multiple time delays. Put simply,
given two time series, transfer entropy scores the reduction
in predicting the future of a time series from its past, given
additional knowledge about the past of the other time series.

1054-1500/2018/28(10)/103123/12/$30.00 28, 103123-1 Published by AIP Publishing.
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An excellent review on the theory, application, and imple-
mentation of transfer entropy can be found in Ref. 18. For
example, through transfer entropy, researchers have recon-
structed climate and financial networks, shedding light on
the critical role of oceanic surface circulation on global
temperature19 and pinpointing the most vulnerable financial
companies in countries suffering from credit crisis.20 Despite
significant progress, our ability to perform network inference
through transfer entropy is vastly limited to units with time-
invariant, autonomous, dynamics that are connected by static
networks.

In many biological and social systems, neither of these
assumptions should be considered valid.21–23 For example,
the abundance of species in ecological settings is often con-
trolled by seasonal effects, which determine the availability
of resources in the environment, and, in turn, the interactions
among the species.24 Similarly, policies can only be discussed
or passed at certain times of the year, thereby introducing
seasonal effects in the process of policy diffusion, which
act together with time-varying interactions due to changes in
political climate.25

Here, we propose a first study on the use of transfer
entropy to reconstruct time-varying networks, in the pres-
ence of time-varying dynamics. Toward a mathematically-
principled treatment of the problem, we focus on a variant
of the Boolean network model proposed in Ref. 26. This
model affords a minimalistic representation of the process of
policy diffusion, while allowing for the derivation of closed-
form analytical results on transfer entropy. In the model,
each node is assigned to a Boolean variable, whose prob-
ability to activate at a given time step depends on (i) the
activity of its neighboring nodes at the previous time step,
weighted by a constant parameter quantifying social influence
and (ii) its internal dynamics, encoded by a constant parameter
measuring the spontaneous activity rate.

Different from Ref. 26, we hypothesize that both the net-
work and the individual dynamics vary in time, with a known
periodicity. More specifically, the weight of the links in the
network evolves in time—potentially causing links to switch
on and off—together with the spontaneous activity of each
node. Taken in toto, the extended model represents a first-
order Markov chain with periodic transition matrix that is
amenable to a thorough mathematical treatment. For slowly-
varying dynamics where nodes are sporadically active, we
employ Floquet theory to calculate the unique periodic sta-
tionary distribution of the Boolean network model. At the
leading order, such a distribution evolves in time with the
spontaneous activity such that the probability that a node is
active depends exclusively on the value of the spontaneous
activity rate at the previous time step. By combining the
periodic stationary distribution with the transition matrix, we
demonstrate a closed-form periodic expression for transfer
entropy between each pair of nodes.

In agreement with our intuition, transfer entropy depends
on the instantaneous value of the weight of the link between
the nodes, and, to a first degree of approximation, it is inde-
pendent of any other link in the network and any weight that
was attained at previous time steps. Therefore, at a given time
step, we can utilize transfer entropy to guide the process of

network inference, pinpointing the strongest links at that par-
ticular time step. However, comparing mere transfer entropy
values across time steps does not assist in the process of esti-
mating the evolution of a link over time. In fact, our results
indicate that transfer entropy is modulated by past values of
the spontaneous activity of the network, which must be taken
into account to estimate the evolution of links through transfer
entropy.

The rest of the paper is organized as follows. In Sec. II,
we summarize preliminary results on the ergodic behavior of
periodic Markov chains and briefly introduce the notion of
transfer entropy for periodic stochastic processes. In Sec. III,
we present the Boolean network model that is used in the anal-
ysis. In Sec. IV, we present our analytical treatment of the
problem toward a closed-form expression for transfer entropy.
In Sec. V, we illustrate a series of examples that demonstrate
the feasibility of network inference from transfer entropy
estimates based on raw time series of the Boolean network
model. The examples are purposefully designed to highlight
the key steps of our approach to network inference and warn
against naive solutions that may lead to inaccurate or erro-
neous claims. Finally, Sec. VI summarized the key findings of
our study and outlines potential avenues for further research.

II. MATHEMATICAL PRELIMINARIES

A. Periodic Markov chains

Throughout this paper, we are concerned with the study
of a first-order Markov chain with a periodic transition matrix
of period τ ∈ Z+. The framework and notation we employ is
based on Ref. 27, although we consider a discrete- rather than
a continuous-time setting.

More specifically, we consider a finite-state Markov chain
Z(t), t ∈ N, evolving in the sample space Z whose generic
element is denoted as zi, i = 1, . . . , |Z|, where |Z| is the car-
dinality of the set; here and henceforth, we use lower case
letters to denote realizations of random variables. The tran-
sition matrix of the Markov chain is the τ -periodic matrix
function P(t) ∈ R

|Z|×|Z|
+ , whose ij-th entry at time step t,

Pij(t), represents the probability that the Markov chain will
transition from state zi to zj at t. In formulas, we write

Pij(t) = Pr[Z(t + 1) = zj|Z(t) = zi], (1)

where Pr(·) indicates probability. Starting from an initial dis-
tribution ν0 at t = 0, the time evolution of the distribution of
the Markov chain is given by

ν(t + 1) = PT(t)ν(t), (2)

with ν(0) = ν0, t ∈ N, and T indicating matrix transposition.
By construction, the recursion in (2) guarantees that

starting from a probability distribution, we always obtain a
probability distribution. In other words, if the entries of ν0

sum to one and all its entries are non-negative, then the same
holds true for ν(t) at any value of t. However, depending
on the choice of the initial distribution, one will obtain dif-
ferent evolutions for the probability distribution. Following
Ref. 27, under mild conditions, we can show that there is a
unique periodic stationary distribution and that, in the long
run, the distribution of the Markov chain converges to that
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exponentially fast. In particular, we can state the following
theorem.

Theorem 1. Given a Markov chain Z(t), t ∈ N, with
τ -periodic probability transition matrix P(t) of all nonzero
entries, there is a unique stationary periodic distribution π(t).
For any choice of the initial distribution ν0, the probability
distribution ν(t) converges to π(t) at an exponential rate.

Proof. For completeness, we briefly sketch the proof,
adapted from the arguments in the continuous-time case in
Theorem 1.2 of Ref. 27. To demonstrate the existence and
uniqueness of the periodic stationary distribution, we consider
τ consecutive iterations of (2) such that

π(τ) = �π(0), (3)

where � is the so-called monodromy matrix used in the study
of periodic systems28 and defined as

� = PT(τ − 1) . . .PT(0). (4)

To ensure that π(t) is τ -periodic, we must enforce
π(τ) = π(0), which implies that π(0) is an eigenvector of
� with unitary eigenvalue. By applying the Perron-Frobenius
theorem,29 the largest eigenvalue of � is simple and equal to
one; in addition, the entries of the corresponding eigenvec-
tor are all nonzero. Hence, there exists a unique distribution
π(0) = π(τ) that satisfies (3), and the associated periodic sta-
tionary distribution is simply constructed by iterating (2) with
ν0 = π(0).

Following the line of argument in Ref. 27, we decompose
R

|Z| as the direct sum of Span[π(0)] and the (|Z| − 1)-
dimensional vector space V = Im(� − I|Z|), where Span(·),
Im(·), and I|Z| refer to the span of a set of vectors, range
of a linear mapping, and identity matrix in R

|Z|×|Z|. By
construction, V is stable under � such that ∀v ∈ V , �v ∈
V . In fact, since v ∈ Im(� − I|Z|), there exists u ∈ R

|Z|

for which v = (� − I|Z|)u; therefore, �v = �(� − I|Z|)u =
(� − I|Z|)�u, which is an element of V . Given any initial
distribution ν0, we can write30 ν0 = π(0)+ v for some v ∈ V
such that after nτ time steps with n ∈ N, ν(nτ)− π(0) =
�nv. In V , the largest eigenvalue of � is always less than one
by the Perron-Frobenius theorem,29 which implies that ν(nτ)
converges to π(0) exponentially fast at a rate given by the sec-
ond largest eigenvalue of �. Notably, the eigenvalues of such
a matrix are termed the Floquet exponents associated with (2).
By simply offsetting the initial time of the chain, the same rea-
soning can be pursued to show that ν(nτ + k) converges to
π(k) exponentially fast for any k = 0, . . . , τ − 1. The conver-
gence is, again, at the rate given by the second largest Floquet
exponent. �

B. Elements of information theory

Within the field of information theory, the amount of
uncertainty of a discrete random variable X is quantified
through the entropy H(X ) defined as31

H(X ) = −
∑
x∈X

Pr(X = x) log Pr(X = x), (5)

where X is the sample space of X and we use natural loga-
rithm so that entropy is measured in “nats.” Equation (5) is

the expectation of − log Pr(X ), from which the notion of joint
and conditional entropies of two random variables X and Y
follows31

H(X , Y) =
−

∑
x∈X ,y∈Y

Pr(X = x, Y = y) log Pr(X = x, Y = y), (6a)

H(X |Y) =
−

∑
x∈X ,y∈Y

Pr(X = x, Y = y) log Pr(X = x|Y = y), (6b)

where Y is the sample space of Y .
In its original incarnation, the information-theoretic

notion of transfer entropy is defined for stationary processes,17

but its extension to stationary periodic processes, often called
cyclostationary processes,32 is straightforward.33 Toward this
aim, consider two cyclostationary processes X (t) and Y(t),
t ∈ N, with period τ ∈ Z+, taking values in X and Y , respec-
tively. Transfer entropy, TEY→X (t), is defined as

TEY→X (t) = H[X (t + 1)|X (t)] − H[X (t + 1)|X (t), Y(t)]

=
∑

x+∈X
x∈X
y∈Y

{
Pr [X (t + 1) = x+, X (t) = x, Y(t) = y]

× log
Pr [X (t + 1) = x+|X (t) = x, Y(t) = y]

Pr [X (t + 1) = x+|X (t) = x]

}
. (7)

Transfer entropy (7) measures the reduction in the uncertainty
of predicting X (t + 1) from X (t), due to the additional knowl-
edge about Y(t), that is, the conditional mutual information31

of X (t + 1) and Y(t) given X (t). By construction, transfer
entropy is τ -periodic and non-negative.

For classical stationary processes, that is, τ = 1, transfer
entropy is often estimated from time series by using bin-
ning methods or kernel density estimators, see, for example,
Refs. 17, 34, and 35. Similar approaches can be leveraged
to estimate transfer entropy from time series in the more
general case of τ > 1 , although care should be placed in
implementing the estimation using triplets (x+, x, y) that are
downsampled from the original time series according to the
underlying periodicity of the two processes. Notably, the
open source MATLAB toolbox TRENTOOL features the
possibility of computing transfer entropy for cyclostationary
processes.33

III. MODEL FORMULATION

To demonstrate the use of transfer entropy (7) to assist
in the inference of time-varying networks, we focus on a
generalized form of the Boolean network model proposed
in Ref. 26. The model was originally put forward as a min-
imalistic representation of the process of policy diffusion
among N legal entities, constituting the nodes of a network.
In this sense, the legal activity of node i, with i = 1, . . . , N ,
is modeled as a binary stochastic process X i(t), t ∈ N that
takes values in {0, 1}. If a law is implemented, repealed, or
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substantively changed at time t, then X i(t) = 1, otherwise
X i(t) = 0.

The activity of node i is the result of the interplay between
spontaneous activity and interactions among states such that
the probability that a node is active at t + 1 is

Pr[X i(t + 1) = 1|X 1(t) = x1, . . . , X N (t) = xN ]

= �f (t)

⎡
⎣1 +

N∑
j=1

Wij(t)x
j

⎤
⎦ . (8)

Here, � > 0 measures the spontaneous activity of a node,
f (t) ≥ 0 is a τ -periodic function modulating spontaneous
activity, and Wij(t) is the generic τ -periodic, non-negative,
weight of the link from the j-th to the i-th node, encapsulating
political, geographical, and ideological relationships between
legal entities.3 We contemplate the possibility of having self-
loops in the network such that Wii(t) > 0. These quantities
might be associated with inherent variations in the inter-
nal dynamics of each of the nodes, which differentially use
their present state to activate. When self-loops are absent, a
node entirely relies on the present state of its neighbors as in
Ref. 26. To ensure that the right hand side of (8) is less than 1,
we should enforce that for every node at all times, the sum of
the weights is less than 1

�f (t) − 1.
Compared to Ref. 26, the model is expanded along three

different directions. First, the network is assumed to be time-
varying so that interactions between nodes can change over
time to reflect political and ideological changes. Second, the
spontaneous activity is assumed to also be time-varying to
encapsulate seasonal effects in law making, where legal enti-
ties may favor particular times to enact changes. Elucidating
the consequences of these two extensions on the information
flow in the network constitutes the chief technical challenge of
this endeavor. Finally, we expand the model to allow for self-
loops and weighted interactions between the nodes. While
the inclusion of self-loops and weights does not pose con-
siderable technical challenges, it allows for strengthening the
mathematical rigor of Ref. 26 and opens the door for the pro-
posed model to transition to other technical domains, such as
in theoretical neuroscience.36

We close the section by commenting on the value of
Boolean network models versus higher-order discrete or con-
tinuous models. Working with a Boolean network model
offers a vantage point toward the development of closed-form
results, which may be difficult to derive for more general
dynamics. Within a Boolean network model, we can establish
closed-form results for the long-run probability distribution
and the associated transfer entropy between any pairs of
nodes. The availability of closed-form predictions allows for a
transparent assessment of the key factors that shape informa-
tion transfer in time-varying networks, without confounding
effects associated with computational analyses, such as sta-
tistical power of simulations and incomplete exploration of
model parameters. With the exception of linear autoregression
processes, similar closed-form analyses would be difficult
to pursue.37 At the same time, Boolean network models are
ubiquitous in the study of real-world phenomena,38–40 and

symbolic dynamics is often used to create Boolean represen-
tations of continuous processes.41–43

IV. ANALYSIS

To cast the proposed mathematical model within
the framework of τ -periodic Markov chains in Sec. II,
we assemble all the nodes in the N-dimensional vector
Z(t) = [

X 1(t), . . . , X N (t)
]T

. Thus, the transition probability in
(8) can be written as

Pr[X i(t + 1) = 1|Z(t) = z] = �f (t)
[
1 + eT

i W(t)z
]

, (9)

where z is a generic 2N -dimensional Boolean vector and ei is
the i-th element of the natural basis in N dimensions (ei is
equal to zero everywhere except the i-th entry that is equal to
one). For both realizations of X i(t + 1), we can write

Pr[X i(t + 1) = xi
+|Z(t) = z]

= (1 − xi
+)+�f (t)(2xi

+ − 1)
[
1 + eT

i W(t)z
]

.
(10)

At any time step, a fraction of the nodes will be active, while
the others will remain inactive such that the sample space
Z of Z(t) comprises |Z| = 2N Boolean vectors z1, . . . , z|Z|.
From (10), we can use a counting argument to construct the
τ -periodic transition matrix of the first order Markov chain
underlying the evolution of Z(t), that is,

Pij(t) = Pr[Z(t + 1) = zj|Z(t) = zi]

=
N∏

k=1

{(
1 − eT

k zj
) +�f (t)

(
2eT

k zj − 1
) [

1 + eT
k W(t)zi

]}
.

(11)

For convenience, we order the states with the standard con-
vention of Boolean strings such that z1 is the vector of all
zeros.

In principle, we could use (11) to calculate the station-
ary periodic distribution, which according to Theorem 1 exists
and is unique, and then tackle the computation of transfer
entropy. With the exception of dyadic interactions (N = 2)
and binary switching (τ = 2), these calculations are opaque
to interpretation or even unfeasible. To address this issue, we
focus on the case of slowly-varying dynamics, � � 1, for
which we establish a closed-form solution for the stationary
periodic distribution, along with a closed-form expression for
the transfer entropy between any pair of nodes.

A. Stationary periodic distribution for slowly-varying
dynamics

By factoring powers � in (11), the transition matrix can
be written as follows:

P(t) = P(0) +�P(1)(t)+�2P(2)(t)+ O(�3), (12)

where O is the Landau symbol. Through rather lengthy
and cumbersome computations, the three summands can be
written in compact forms, as explained below.
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The first term has a very simple expression such that

P(0)ij =
N∏

k=1

[(
1 − eT

k zj
)] =

{
1 ‖zj‖ = 0,

0 ‖zj‖ > 0,
(13)

where we use ‖ · ‖ for the infinity norm, which, for Boolean
vectors simply count the number of ones. Note that P(0) is
a constant idempotent matrix of rank one, which is all zero,
except for the first column that corresponds to the state z1

where none of the nodes is activated at the next time step.
The second term in (12) has a slightly lengthier expres-

sion, that is,

P(1)ij (t) = f (t)
N∑

r=1

{ (
2eT

r zj − 1
) [

1 + eT
r W(t)zi

] N∏
k=1
k �=r

(
1 − eT

k zj
) }

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−f (t)
[
N + 1T

N W(t)zi
] ‖zj‖ = 0,

f (t)
[
1 + zT

j W(t)zi

]
‖zj‖ = 1,

0 ‖zj‖ > 1,

(14)

where 1N is the N-dimensional vector of all ones. Different
from (13), P(1)(t) is a function of time, and it has in general
N + 1 columns that are different from zero, those associated
with the states in which at most one node is activated at the
next time step. Interestingly, P(1)(t) is a zero row-sum matrix
and its first row is independent of the weights of the network,
since z1 contains only zeros.

The third term in (12) has a richer structure such that

P(2)ij (t) = f 2(t)
N∑

r,s=1
r �=s

{ (
2eT

r zj − 1
) [

1 + eT
r W(t)zi

] (
2eT

s zj − 1
) [

1 + eT
s W(t)zi

] N∏
k=1

k �=r,s

(
1 − eT

k zj
) }

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f 2(t)
∑N

r,s=1
r>s

{[
1 + eT

r W(t)zi
] [

1 + eT
s W(t)zi

]} ‖zj‖ = 0,

−f 2(t)
[
1 + zT

j W(t)zi

] [
N − 1 +

(
1T

N − zT
j

)
W(t)zi

]
‖zj‖ = 1,

f 2(t)
{

1 + zT
j W(t)zi +

[
eT
I1(zj)

W(t)zi

] [
eT
I2(zj)

W(t)zi

]}
‖zj‖ = 2,

0 ‖zj‖ > 2,

(15)

where I1(zj) and I2(zj) are used to identify the two entries
of zj that are different from zero for the case ‖zj‖ = 2.
This instance describes the possibility of activating two
nodes simultaneously, which is not present in either (13)
or (14). Similar to (14), P(2)(t) is also a zero row-sum
matrix and its first row is independent of the weights of the
network.

Within the second-order expansion in (12), the entries of
P(t) corresponding to the simultaneous activation of three or
more nodes at the next time step are neglected. In the con-
text of policy diffusion, slow dynamics (� � 1) pertains to
policies that address specific local problems that occur only
seldom or policies that have a high start-up cost and only long-
term benefits.44,45

Based on the second-order approximation in (12), we
can compute a closed-form expression for the unique sta-
tionary periodic distribution π(t). From (4) and (12), we
establish

�ij = �
(0)
ij +��

(1)
ij +�2�

(2)
ij + O(�3), (16)

where

�(0) =
[(

P(0)
)T

]τ
, (17a)

�(1) = [
P(1)(τ − 1)

]T
[(

P(0)
)T

]τ−1
+ · · ·

+
[(

P(0)
)T

]τ−1 [
P(1)(0)

]T
, (17b)

�(2) = [
P(2)(τ − 1)

]T
[(

P(0)
)T

]τ−1
+ · · ·

+
[(

P(0)
)T

]τ−1 [
P(2)(0)

]T

+ [
P(1)(τ − 1)

]T [
P(1)(τ − 2)

]T
[(

P(0)
)T

]τ−2
+ · · ·

+
[(

P(0)
)T

]τ−2 [
P(1)(1)

]T [
P(1)(0)

]T
. (17c)

These matrices can be considerably simplified by recall-
ing that P(0) is idempotent, P(0) is zero everywhere except the
first column that has all ones, and both P(1) and P(2) have
zero row-sum. The latter claim implies that premultiplying(
P(1)

)T
or

(
P(2)

)T
by

(
P(0)

)T
will yield the null matrix. Thus,

we obtain the following compact expressions:

�(0) = (
P(0)

)T
, (18a)

�(1) = [
P(1)(τ − 1)

]T (
P(0)

)T
, (18b)

�(2) = [
P(2)(τ − 1)

]T (
P(0)

)T

+ [
P(1)(τ − 1)

]T [
P(1)(τ − 2)

]T (
P(0)

)T
. (18c)

Now, we are ready to calculate a closed-form expression
for the unique stationary periodic distribution π(t) at t = 0.
Toward this aim, we write

π(0) = π(0)(0)+�π(1)(0)+�2π(2)(0)+ O(�3) (19)

and replace this expression into (3), with the monodromy
matrix given by (16). By equating powers of the same order,
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we obtain

π(0)(0) = �(0)π(0)(0), (20a)

π(1)(0) = �(1)π(0)(0)+�(0)π(1)(0), (20b)

π(2)(0) = �(2)π(0)(0)+�(1)π(1)(0)+�(0)π(2)(0). (20c)

To describe a probability distribution, we must enforce that
the sum of the entries of π(0)(0) sum to one, while the other
vectors, π(1)(0) and π(2)(0), must have entries that sum to
zero. Given (19), ensuring that the sum of the entries of
π(1)(0) and π(2)(0) is zero corresponds to setting to zero the
last summands on the right-hand sides of (20b) and (20c).

From (20a), we directly find

π
(0)
i (0) =

{
1 ‖zi‖ = 0,

0 ‖zi‖ > 0,
(21)

which identifies a vector with all zeros except the first entry
that is equal to one. Should we change the time from 0 to
an arbitrary time t, such a vector will not change; therefore,
we drop the dependence on time and just write π(0)i . Next,
we substitute (21) in (20b) to determine that π(1)(0) is simply
equal to the first row of P(1)(τ − 1), that is,

π
(1)
i (0) =

⎧⎪⎨
⎪⎩

−f (τ − 1)N ‖zi‖ = 0,

f (τ − 1) ‖zi‖ = 1,

0 ‖zi‖ > 1.

(22)

Note that, by construction, the sum of the entries of π(1)i is
equal to zero. Should we change the time from 0 (correspond-
ing to t = τ due to periodicity) to t, we would simply evaluate
the function that modulates the spontaneous activity at t − 1,
that is, we would replace f (τ − 1) with f (t − 1).

Finally, we can evaluate the last term of the expansion in
(20c) from (21) and (22). On account of the structure of the
terms of the monodromy matrix in (18), we determine

π(2)(0) = [
P(2)(τ − 1)

]T
π(0) + [

P(1)(τ − 1)
]T

×
{[

P(1)(τ − 2)
]T
π(0) + (

P(0)
)T
π(1)(0)

}
. (23)

By recalling the periodicity of the problem, we note that
the term in curly brackets is simply π(1)(τ − 1) from (19)
adapted at τ − 1. Thus, using (21) and (20c) and carrying out
the lengthy algebra associated with (14) and (15), we ulti-
mately retrieve the following expression for the last term in
the expansion of the stationary periodic distribution:

π
(2)
i (0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f 2(τ − 1)N(N−1)
2

−f (τ − 1)f (τ − 2)1T
N W(τ − 1)1N ‖zi‖ = 0,

−f 2(τ − 1)(N − 1)

+f (τ − 1)f (τ − 2)zT
i W(τ − 1)1N ‖zi‖ = 1,

f 2(τ − 1) ‖zi‖ = 2,

0 ‖zi‖ > 2.
(24)

The same argument could be replicated by offsetting the ini-
tial time of the Markov chain such that the stationary periodic
distribution is equal to46

πi(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 −�f (t − 1)N +�2f 2(t − 1)N(N−1)
2 −�2f (t − 1)f (t − 2)1T

N W(t − 1)1N + O(�3) ‖zi‖ = 0,

�f (t − 1)−�2f 2(t − 1)(N − 1)+�2f (t − 1)f (t − 2)zT
i W(t − 1)1N + O(�3) ‖zi‖ = 1,

�2f 2(t − 1)+ O(�3) ‖zi‖ = 2,

O(�3) ‖zi‖ > 2.

(25)

By marginalizing (25), we can compute the stationary periodic
distribution of each node, which simply reads

Pr[Xi(t) = xi] = (1 − xi)+�f (t − 1)(2xi − 1)

+�2f (t − 1)f (t − 2)eT
i W(t − 1)1N (2xi − 1)+ O(�3).

(26)

A few comments are warranted on (25) and (26). First, at
the first order in �, the stationary periodic distribution is
independent of the network, in that every node has the same
probability of being active, irrespective of its topological
properties. Only accounting for the second order power in �,
we register a dependence on topological properties. Second,
the probability of being active at a given time step depends on
the spontaneous activity and weights at previous time steps.
Third, up to the third power in�, the nodes are mutually inde-
pendent, since it is easy to show that for any state z, (25) can
be written as the products of all the marginals in (26) up to
O(�3).

B. Transfer entropy for slowly-varying dynamics

From the established closed-form expression for (25) and
the underlying Markov model (8), we establish a leading order
expression for the transfer entropy between any pairs of nodes
in the network. Without lack of generality, we focus on nodes
1 and 2 to evaluate transfer entropy from node 2 to node 1
from (7),

TE2→1(t)

=
∑

x1+,x1,x2

{
Pr[X 1(t + 1) = x1

+, X 1(t) = x1, X 2(t) = x2]

× log
Pr[X 1(t + 1) = x1

+|X 1(t) = x1, X 2(t) = x2]

Pr[X 1(t + 1) = x1+|X 1(t) = x1]

}
,

(27)

where probabilities are computed with respect to the station-
ary periodic distribution of the Markov chain π(t). In contrast
to Ref. 26, (27) has an explicit dependence on time through
the underlying model (8) and the stationary distribution (25).
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From (10) and (25), along with the mutual independence
of the nodes up the third power in �, we can derive the fol-
lowing expression for the conditional probability of the future
state of node 1 given its present and the present of node 2:

Pr[X 1(t + 1) = x1
+|X 1(t) = x1, X 2(t) = x2]

= (1 − x1
+)+�f (t)(2x1

+ − 1)
[
1 + W11(t)x

1 + W12(t)x
2
]

+�2f (t)f (t − 1)(2x1
+ − 1)

N∑
j=3

W1j(t)+ O(�3). (28)

Through similar steps, we can derive a compact expression for
the conditional probability of the future state of node 1 given
its present, namely,

Pr[X 1(t + 1) = x1
+|X 1(t) = x1]

= (1 − x1
+)+�f (t)(2x1

+ − 1)
[
1 + W11(t)x

1
]

+�2f (t)f (t − 1)(2x1
+ − 1)

N∑
j=2

W1j(t)+ O(�3). (29)

If self-loops are absent, then up to the third power in �,
X 1(t + 1) and X 1(t) are marginally independent and condi-
tionally independent given X 2(t). In this case, the expression
for transfer entropy in (27) can be approximated by the mutual
information31 between X 1(t + 1) and X 2(t),

I[X 1(t + 1); X 2(t)] = H[X 1(t + 1)] − H[X 1(t + 1)|X 2(t)]

=
∑
x1+,x2

{
Pr[X 1(t + 1) = x1

+, X 2(t) = x2]

× log
Pr[X 1(t + 1) = x1

+|X 2(t) = x2]

Pr[X 1(t + 1) = x1+]

}
. (30)

More specifically, we can write47

TE2→1(t) = I[X 1(t + 1); X 2(t)] + O(�3). (31)

In the general case when self-loops are present, the present
state of node 1 enters the transition probabilities (28) and (29)
with the first power in � and, therefore, cannot be neglected.
Thus, we should resort to the complete expression for transfer
entropy in (27). Therein, we replace the joint probability with

Pr[X 1(t + 1) = x1
+, X 1(t) = x1, X 2(t) = x2]

= Pr[X 1(t + 1) = x1
+|X 1(t) = x1, X 2(t) = x2]

× Pr[X 1(t) = x1]Pr[X 2(t) = x2] + O(�3),
(32)

where the marginal probabilities are given in (26) and the
conditional probability is in (28).

Now, we can compute a leading order expansion for
transfer entropy by substituting in (27), the above expressions
for conditional, (28) and (29), and joint, (32), distributions.
Carrying out the expansion in � and using i and j rather than
1 and 2, we establish the following compact expression for
transfer entropy

TEj→i(t) = �2f (t)f (t − 1)G
[
Wij(t)

] + O(�3), (33)

where the function

G(x) = −x + (1 + x) log(1 + x) (34)

measures the dependence of transfer entropy on the weight
of the link between i and j. For τ = 1 and unweighted links,
this expression is equivalent to the one we derived in Ref.
26. We can formalize the entire analysis in the following
proposition.

Proposition 1. Consider the Boolean network model (8),
describing the dynamics of N Boolean units with τ -periodic
spontaneous activity, coupled through a weighted τ -periodic
network. For any pair of distinct nodes i and j at time t,
transfer entropy (27) is given by (33).

Predictably, at the leading order in �, transfer entropy at
time t depends on the instantaneous of the weight between
nodes i and j at the same time t. In fact, (33) measures the
reduction in the uncertainty in the prediction of the future of
node i at time t + 1 from its present at time t, due to addi-
tional knowledge about the present of node j. Based on the
model in (8), useful information about X i(t + 1) that are con-
tained in X j(t)must be mediated by Wij(t), thus explaining the
observed dependence. For slowly-varying dynamics, spurious
connections between the nodes, passing through other nodes
and involving past values of the weights of the network, will
have a secondary effect.

In partial disagreement with our expectations, transfer
entropy does not depend only on the instantaneous value of
the function modulating the individual activity but also on the
previous one. This phenomenon is related to the periodicity
of the stationary distribution in (25), which depends on the
past value of the spontaneous activity, rather than the present.
This surprising dependence of transfer entropy on time war-
rants care in comparing the strengths of links across different
time steps. More specifically, values of transfer entropy must
be scaled by f (t)f (t − 1) to infer the weight of links in the
network, through

Wij(t) 	 G−1

[
TEj→i(t)

�2f (t)f (t − 1)

]
. (35)

If the argument in (35) is less than 0.1, then G−1(y) can
be approximated as

√
2y within a 10% error, otherwise a

numerical inversion is needed for the computation.
Another counterintuitive implication of Proposition 1

lies in the effect of self-loops, which at the leading order
have no effect on transfer entropy between two nodes.
Thus, although X i(t + 1) cannot be assumed to be indepen-
dent of X i(t) or conditionally independent of X i(t) given
X j(t), mutual information between X i(t + 1) and X j(t) is
equal to transfer entropy between the two nodes at the
leading order in �. From an information-theoretic point
of view,31 this indicates that mutual information of the
triplet X i(t + 1), X i(t), and X j(t) is negligible, to a first
degree of approximation. This insight could not have been
achieved by extending the first-order perturbation argument in
Ref. 26.

Obviously, transfer entropy from a node to itself is zero
since no additional information is provided to improve the
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prediction of future of a node from its present. However,
should one be interested in recovering the weights of the
self-loops, then it would be sufficient to compute mutual
information between X i(t + 1) and X i(t),

I[X i(t + 1); X i(t)] =
∑
xi+,xi

{
Pr[X i(t + 1) = xi

+, X i(t) = xi]

× log
Pr[X i(t + 1)= xi

+|X i(t)= xi]

Pr[X i(t + 1) = xi+]

}
.

(36)

Following analogous steps as those that led to (33), this
quantity can be expanded as

I[X i(t + 1); X i(t)] = �2f (t)f (t − 1)G [Wii(t)] + O(�3).
(37)

This claim can be proved by replacing for (26) and (29) and
computing the leading order expansion.

A potential line of further inquiry is the extension of the
approach to general time-varying dynamics, beyond periodic
systems. Prior work9,11 may help steering research along this
line of research. In fact, the notions of local9 and relative11

transfer entropies are similar to (33), in that local transfer
entropy also accounts for previous time steps in the sys-
tem dynamics and relative transfer entropy is normalized
by a metric of the system dynamics across multiple time
steps.

V. NETWORK RECONSTRUCTION: NUMERICAL
ILLUSTRATION

Here, we illustrate the possibility of accurately recon-
structing the time-varying weights between each pair of nodes
from the time series of the individual nodes. We concentrate
on three cases of growing complexity: dyadic interactions in
pairs of nodes, small networks (N = 5), and large networks
(N = 100). Self-loops are not considered in Examples 1 and
2 such that nodes are equivalently driven by their neighbors,
without a propensity to spontaneously activate based on their
present state. Instead, in Example 3, we consider self-loops to
account for variations among the nodes.

For each exemplary problem, we run the model in (8)
for a total of T time steps starting from a homogenous ini-
tial condition and store the time series of all the N nodes, that
is, {xi

t}T−1
t=0 with i = 1, . . . , N . These time series, along with

known values of the period, τ , and the spontaneous activity,
� and f (1), . . . , f (τ ), are used as the input to our approach to
network reconstruction, which outputs the time evolution of
the weight of every link in the network.

From the time series of each pair of nodes i, j = 1, . . . , N ,
we estimate τ values of the joint probability distribution
Pr

[
X i(t + 1) = xi

+, X i(t) = xi, X j(t) = xj
]
, t = 0, . . . , τ − 1

by simply counting symbols every τ time steps. For example,
to estimate Pr

[
X i(1) = xi

+, X i(0) = xi, X j(0) = xj
]
, we will

count triplets in the sequence {(xi
1, xi

0, xj
0), (x

i
1+τ , xi

τ , xj
τ ), . . .}.

From Eq. (7), transfer entropy for each pair of distinct nodes i
and j is then estimated as

T̃E
j→i
(t) =

∑
xi+,xj

P̃r[X i(t + 1) = xi
+(t), X i(t) = xi, X j(t) = xj] log

P̃r[X (t + 1)i = xi, X i(t) = xi, X j(t) = xj]P̃r[X i(t) = xi]

P̃r[X i(t) = xi, X j(t) = xj]P̃r[X i(t + 1) = xi+, X i(t) = xi]
,

(38)

where we have used superimposed tilde to identify quanti-
ties that are estimated from raw data, all of which can be
derived by marginalizing the probability of triplets. From the
numerical values of transfer entropy, we infer the weights of
any potential link between two distinct nodes through (35).
Consistent with (38), we use a superimposed tilde to iden-
tify our inferences of the network weights. When inferring
the weights of self-loops, we adopt an equivalent approach,
by estimating mutual information in (36) from the time
series, similar to (38), and then using (37) to estimate the
weight.

A. Dyadic interactions

1. Example 1

We begin with the case of two nodes coupled by an
unweighted network that periodically switches with τ = 2
such that only one link is active at each time, namely,
W12(0) = W21(1) = 1 and W21(0) = W12(1) = 0. We further
assume that the spontaneous activity is constant in time
such that � = 0.1 and f (0) = f (1) = 1. We consider time
series of length T = 100 000 samples to estimate trans-
fer entropy. From (38), we determine T̃E

2→1
(0) = 4.48 ×

10−3, T̃E
2→1

(1) = 4.21 × 10−5, T̃E
1→2

(0) = 2.04 × 10−5,

and T̃E
1→2

(1) = 3.93 × 10−3, which indicate the ability of
transfer entropy to pick up the periodic rewiring of the link.

From the estimates of transfer entropy, we can use (35)
to infer the time evolution of the weights in the network. By
performing the computation, we determine W̃12(0) = 1.08,
W̃12(1) = 0.09, W̃21(0) = 0.06, W̃21(1) = 1.01, which con-
firm that the approach is successful in quantifying the dom-
inant links and help isolating the secondary ones across the
entire period of the dynamics.

Should one ignore the periodicity of the dynamics and
opt for a crude computation of transfer entropy using the
entire time series, then T̃E

2→1 = 1.13 × 10−3 and T̃E
1→2 =

1.23 × 10−3, which would mask the existence of a directional
interaction between the nodes. In this case, one would likely
conclude that the two nodes are bidirectionally coupled, which
could be considered a valid statement in an average sense,
although inaccurate at any instant in time.

2. Example 2

Here, we consider the case in which the nodes are stati-
cally coupled by a constant bidirectional unweighted link, but
the spontaneous activity changes in time with a period τ = 4.
We maintain� = 0.1 and T = 100 000, and we list the values
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TABLE I. Model parameters and transfer-entropy based inferences for
Example 2.

t = 0 t = 1 t = 2 t = 3

f (t) 0.5 1 0.5 2
W12(t) 1 1 1 1
W21(t) 1 1 1 1

T̃E
1→2

(t) 3.09 × 10−3 4.22 × 10−3 2.75 × 10−3 4.79 × 10−3

T̃E
2→1

(t) 3.18 × 10−3 2.36 × 10−3 1.61 × 10−3 6.11 × 10−3

W̃12(t) 0.90 1.12 0.90 1.29
W̃21(t) 0.88 1.56 1.21 1.13

of the function f (t) in Table I. From the numerical computa-
tion of transfer entropy in Table I, we confirm that transfer
entropy from node 1 to 2 is highly comparable with transfer
entropy from node 2 to 1 for any time t, in agreement with
the underlying bidirectional interaction. However, comparing
transfer entropy readings in time, we evince a remarkable
time dependence, whereby at t = 3 we register a twofold to
fourfold increase with respect to t = 2.

Should one opt for using directly the transfer entropy
values for inferring the weight of the link would probably
lead to the erroneous prediction that the weight is chang-
ing in time. On the other hand, taking into consideration the
time variation of f (t) through (35) in Table I, we predict that
the weights are approximately constant in time, with statisti-
cal variations associated with the finiteness of the time series
and inherent discrepancies associated with the assumption of
slowly-varying dynamics.48

3. Example 3

Now, we consider a more general case than Exam-
ples 1 and 2, featuring weighted, switching links and non-
autonomous dynamics with a period τ = 4. We maintain
� = 0.1 and T = 100 000, and we employ the model parame-
ters listed in Table II. Transfer entropy readings demonstrate a
wide variation of the information flow between the nodes as a
function of time, in agreement with our expectations based on
the two prior examples. By applying our approach for network
reconstruction, we successfully infer the time evolution of
both the weights, although we acknowledge numerical differ-
ences in Table II. Again, these differences are the combination
of statistical uncertainty and the assumption of slowly-varying
dynamics.49

TABLE II. Model parameters and transfer-entropy based inferences for
Example 3.

t = 0 t = 1 t = 2 t = 3

f (t) 0.5 1 0.5 2
W12(t) 1 0 2 1
W21(t) 1 1 0 2

T̃E
1→2

(t) 2.17 × 10−3 2.73 × 10−3 4.82 × 10−6 2.09 × 10−2

T̃E
2→1

(t) 3.31 × 10−3 1.31 × 10−4 6.00 × 10−3 5.56 × 10−3

W̃12(t) 0.92 0.24 1.91 1.23
W̃21(t) 0.73 1.21 0.04 2.66

FIG. 1. Switching topology for an example with five nodes and period τ = 4:
t = 0 (top left); t = 1 (top right); t = 2 (bottom left); and t = 3 (bottom right).
In red, we show the nodes belonging to group A, and in gray those in group B.

Interestingly, if we were to perform the inference by dis-
counting the periodicity of the dynamics, as we illustrated
in Example 1, we would discover T̃E

2→1 = 1.09 × 10−3 and
T̃E

1→2 = 2.11 × 10−3, which would lead to the erroneous
prediction that on average the two weights are different, with
W21(t) exceeding W12(t). In this example, the two weights’
patterns only differ by a permutation, but the function f (t)

FIG. 2. Inferred weight matrices for an example with five nodes and period
τ = 4: t = 0 (top left); t = 1 (top right); t = 2 (bottom left); and t = 3 (bot-
tom right). Colors vary from blue to red, with blue being zero weight and red
the largest weight inferred throughout the entire data set, which is 1.21. The
diagonal is colored in black, as no inference on self-loops is attempted.
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FIG. 3. Inferred weights between distinct nodes versus true weights for an
example with five nodes and period τ = 4: t = 0 (blue dots); t = 1 (light
orange squares); t = 2 (green diamond); and t = 3 (dark orange triangles).
The dashed line is the best linear fit W̃ = 0.13 + 0.84W computed using the
τN(N − 1) = 80 samples.

differentially modulates the information transfer in the two
directions. While W21(t) attains its largest value at t = 3 such
that f (t)f (t − 1) = 1, W12(t) has its largest peak at t = 2 such
that f (t)f (t − 1) = 0.5.

B. Small network

Now, we consider the case of a small network of N = 5
nodes, in which nodes 1 and 2 are assigned to group A and
nodes 3, 4, and 5 are assigned to group B. The switching topol-
ogy of the network is shown in Fig. 1, where we alternate
between cases in which nodes in one of the groups bidirec-
tionally interact with each other and instances in which every

node in a group unidirectionally connects with all the nodes in
the other group. To differentiate the two groups, we hypoth-
esize that group A is more active such that f (0) = f (3) = 1
and f (1) = f (2) = 0.5. Also, to distinguish between cases
in which nodes communicate only within their group versus
those in which interactions occur across groups, we use a uni-
tary weight for the former and 0.5 for the latter. Similar to the
previous examples, we set � = 0.1 and T = 100 000.

By applying our approach to network inference, we pre-
dict the weight matrices shown in Fig. 2, which compares
very well with the real weights of the underlying model. More
specifically, in the top left panel, we note the presence of
the six, weak, links from group A to group B. In the top
right panel, we evidence the six, strong, links within group
B. In the bottom left panel, we see the six, weak, links from
group B to A. Finally, the bottom right panel shows the strong
bidirectional interaction within group A.

A more quantitative measure of the quality of the infer-
ence can be garnered by aggregating all the predictions on
the weights between the nodes with the true values of the
weights between them, as shown in Fig. 3. Therein, we use
four different markers to label the time steps within the period.
The coefficient of determination of the least square fit is 0.90,
indicating an excellent correlation between true values and
transfer-entropy based inferences. Notably, this remarkable
correlation is accompanied by the absence of outliers, thereby
offering support to the robustness of the proposed approach.

C. Large network

Here, we attempt at demonstrating the feasibility of net-
work inference on a network of N = 100 nodes. Again,
we focus on τ = 4 and consider time series of length
T = 100 000. The parameter� is kept at 0.1 and the four val-
ues of f (t) are drawn from a uniform distribution between

FIG. 4. Inferred weights versus true weights for an example with five nodes and period τ = 4: t = 0 (blue dots); t = 1 (light orange squares); t = 2 (green
diamond); and t = 3 (dark orange triangles). Panel (a): transfer entropy-based inference of weights of links between distinct nodes; the dashed line is the best
linear fit W̃ = 0.09 + 0.88W computed using τN(N − 1) = 39 600 samples. Panel (b): mutual information-based inference of weights of self-loops; the dashed
line is the best linear fit W̃ = 0.06 + 0.94W computed using τN = 400 samples.
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0 and 1 as f (0) = 0.810, f (1) = 0.953, f (2) = 0.845, and
f (3) = 0.772. Each of the four sets of weights is generated
as follows. Given t = 0, . . . , τ − 1, a link between two dis-
tinct nodes or a self-loop has probability 0.05 to be present;
if present, it is assigned a weight that is drawn uniformly
between 0 and 1.

Mirroring the previous analysis, in Fig. 4(a), we display
the inferred weights between any pair of distinct nodes as
functions of their true values for the entire period. For the con-
sidered large network, the coefficient of determination slightly
drops to 0.81, which is still excellent, especially considering
that the network can attain an in-degree above ten. Increasing
the connectivity of the nodes is, in fact, expected to challenge
the accuracy of the leading order approximation for transfer
entropy such that indirect connections will play a tangible
role in the information flow between two nodes. This is more
visible for the links with the smallest weight which may be
incorrectly identified due to indirect connections through the
other nodes in the network.

For completeness, we also demonstrate the possibility of
inferring self-loops from mutual information, computed on
individual time series. Figure 4(b) illustrates the accuracy of
the prediction, by showing the inferred weights of all the self-
loops as a function of their true values for the whole period.
The coefficient of determination is 0.87, consistent with the
accuracy of the weights of links between distinct nodes.

VI. CONCLUSIONS

Transfer entropy is opening the door to a new, data-
driven, model-free approach to the inference of networks from
the time series of their constituting nodes. Despite significant
progress, our approach to network inference has been hin-
dered by the lack of a methodology to systematically tackle
time-varying interactions and seasonal effects. Tackling these
phenomena is expected to contribute new tools that could help
ongoing research in a number of technical domains where
knowledge about social and biological networks is needed.
For example, such tools could help refine methods to measure
interactions between multiple species in real ecological set-
tings, dominated by seasonal effects,50 or study the diffusion
of policies among legal entities,44,45 obeying prescribed time
lines and affected by the political climate.

In this paper, we attempted at bridging this gap through
the mathematical analysis of a Boolean network model, where
the spontaneous activity of each node is mediated by its neigh-
bors, which stimulate the node dynamics depending on the
instantaneous value of the corresponding weight. The spon-
taneous activity of each node is, in turn, controlled by a
time-varying dynamics, common to the entire network. Both
the evolution of the network and the spontaneous activity are
assumed to be periodic functions, resulting into a periodic
Markov chain with a unique periodic stationary distribution.

For slowly-varying dynamics, we have established
closed-form expressions for the stationary periodic distribu-
tion of the Markov chain and the instantaneous value of
transfer entropy between any pairs of nodes. In this sense,
transfer entropy is also a periodic function, whose compu-
tation requires the use of the periodic stationary distribution

and the underlying periodic Markov model. Our results indi-
cate that transfer entropy can be used to reconstruct the time
evolution of each weight in the network. Such a reconstruc-
tion should, however, take into consideration the spontaneous
activity, which, in fact, modulates the instantaneous value
of the transfer entropies in a counterintuitive manner. While
transfer entropy only depends on the instantaneous value of
the weight of the corresponding link, it depends on both the
present and past values of the spontaneous activity.

Through a number of case studies, spanning dyadic inter-
actions, small networks, and large networks, we have demon-
strated the feasibility of reconstructing time-varying weighted
networks for the selected Boolean model. To simulate a real-
world setting in which one has limited to no knowledge of
a model for the system, we numerically computed transfer
entropy from the Boolean time series of their nodes. The
computation uses the periodicity of the dynamics such that
the time series are cogently downsampled to evaluate transfer
entropy during an entire period. Predictably, a naive approach,
in which one computes a single value of transfer entropy
for each pair on nodes from their entire time series, leads to
insufficient and, sometimes, erroneous inferences.

In its current incarnation, our approach to network infer-
ence assumes complete knowledge about the period of the
dynamics and the spontaneous activity function. In many
applications, the period is known in advance, such as in ecol-
ogy and political science, where seasonality effects should
follow yearly cycles. The time history of the spontaneous
activity is more difficult to access, although one may attempt
at estimating from local or global activities in the network.

Another limitation of the work is the lack of delays in the
interactions between the nodes. It is tenable that these delays
could further exacerbate the complexity of the time depen-
dence of transfer entropy, thereby challenging our approach
to network inference. Future work could attempt at extend-
ing the Boolean network model to account for time delays
and establishing leading order solutions for transfer entropy.
The model could also be extended to account for negative
weights, associated with inhibitory interactions. In this case, it
is likely that transfer entropy should be completed with some
other information-theoretic measure, since the leading order
expansion of transfer entropy might contemplate negative and
positive solutions for the same value of transfer entropy.

Overall, this study constitutes a first, necessary, step
toward the systematic inference of time-varying networks
through transfer entropy. Focusing on a minimalistic model
for the dynamics of the network has allowed for a rigorous,
transparent, mathematical treatment, which lays the founda-
tion for the analysis of real data sets from social and biological
networks.

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation under Grant Nos. CMMI 1433670, CMMI 1561134,
and CBET 1547864, the US Army Research Office under
Grant No. W911NF-15-1-0267 with Dr. Samuel C. Stanton
and Dr. Alfredo Garcia as the program managers, and Minis-
terio de Economía y Competitividad de Espana and FEDER

 24 January 2024 12:58:51



103123-12 M. Porfiri and M. Ruiz Marín Chaos 28, 103123 (2018)

funds under Grant No. ECO2015-65637-P. This study is part
of the collaborative activities carried out under the program
Groups of Excellence of the Region of Murcia, the Fundacion
Seneca, Science and Technology Agency of the Region of
Murcia Project No. 19884/GERM/15. The authors are thank-
ful to Drs. Shinnosuke Nakayama and Rifat Sipahi for useful
discussions on seasonal effects and Mr. Alain Boldini for help
in checking the calculations. The authors want to express
their gratitude to one anonymous reviewer whose construc-
tive feedback has greatly contributed to improve the technical
rigor of the paper.

1A. Ives, B. Dennis, K. Cottingham, and S. Carpenter, Ecol. Monogr. 73,
301 (2003).

2A. Strandburg-Peshkin, D. Papageorgiou, M. C. Crofoot, and D. R. Farine,
Philos. Trans. R. Soc. B Biol. Sci. 373, 20170006 (2018).

3N. Abaid, J. Macinko, D. Silver, and M. Porfiri, PLoS ONE 10, e0123339
(2015).

4S. Roy and N. Abaid, R. Soc. Open Sci. 4, 170130 (2017).
5C. E. Shannon, ACM SIGMOBILE Mobile Comput. Commun. Rev. 5, 3
(2001).

6C. Ma, H.-S. Chen, Y.-C. Lai, and H.-F. Zhang, Phys. Rev. E 97, 022301
(2018).

7O. Stetter, D. Battaglia, J. Soriano, and T. Geisel, PLoS Comput. Biol. 8,
e1002653 (2012).

8M. Lungarella, T. Pegors, D. Bulwinkle, and O. Sporns, Neuroinformatics
3, 243 (2005).

9J. T. Lizier, M. Prokopenko, and A. Y. Zomaya, Phys. Rev. E 77, 026110
(2008).

10A.-K. Seghouane and S.-i. Amari, Neural Comput. 24, 1722 (2012).
11C. Wang, H. Yu, R. W. Grout, K.-L. Ma, and J. H. Chen, in Visualization

Symposium (PacificVis), 2011 IEEE Pacific (IEEE, 2011), pp. 99–106.
12M. Lindner, R. Vicente, V. Priesemann, and M. Wibral, BMC Neurosci. 12,

119 (2011).
13D. G. Moore, G. Valentini, S. I. Walker, and M. Levin, Front. Rob. AI 5, 60

(2018).
14J. T. Lizier, Front. Robot. AI 1, 11 (2014).
15A. Montalto, L. Faes, and D. Marinazzo, PLoS ONE 9, e109462

(2014).
16B. L. Ruddell, and P. Kumar, Water Resour. Res. 45, (2009).
17T. Schreiber, Phys. Rev. Lett. 85, 461 (2000).
18T. Bossomaier, L. Barnett, M. Harré, and J. T. Lizier, An Introduction to

Transfer Entropy: Information Flow in Complex Systems (Springer, Berlin,
2016).

19J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, Europhys. Lett. 87, 48007
(2009).

20L. Sandoval, Entropy 16, 4443 (2014).
21P. Holme and J. Saramäki, Phys. Rep. 519, 97 (2012).
22I. Belykh, M. Di Bernardo, J. Kurths, and M. Porfiri, Physica D 267, 1

(2014).
23N. Masuda and P. Holme, Temporal Network Epidemiology (Springer,

2017).
24G. A. Polis and K. O. Winemiller, Food Webs: Integration of Patterns &

Dynamics (Springer Science & Business Media, 2013).

25W. D. Berry, E. J. Ringquist, R. C. Fording, and R. L. Hanson, Am. J. Pol.
Sci. 42, 327–348 (1998).

26M. Porfiri and M. R. Marín, IEEE Trans. Netw. Sci. Eng. 5, 42 (2018).
27S. Herrmann and D. Landon, Stoch. Dyn. 15, 1550022 (2015).
28W. J. Rugh, Linear System Theory (Prentice Hall, Upper Saddle River, NJ,

1996), Vol. 2
29R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University

Press, Cambridge, 1985).
30We have used the fact that ν0 is a probability distribution to set the

coefficient of ψ(0) on the right hand side to one.
31T. M. Cover and J. A. Thomas, Elements of Information Theory (John

Wiley & Sons, 2012).
32W. A. Gardner, A. Napolitano, and L. Paura, Signal Process. 86, 639

(2006).
33P. Wollstadt, M. Martínez-Zarzuela, R. Vicente, F. J. Díaz-Pernas, and

M. Wibral, PLoS ONE 9, e102833 (2014).
34J. Lee, S. Nemati, I. Silva, B. A. Edwards, J. P. Butler, and A. Malhotra,

Biomed. Eng. Online 11, 19 (2012).
35M. Vejmelka and M. Paluš, Phys. Rev. E 77, 026214 (2008).
36A. Roxin, V. Hakim, and N. Brunel, J. Neurosci. 28, 10734 (2008).
37D. A. Smirnov, Phys. Rev. E 87, 042917 (2013).
38E. Ackermann, T. P. Peixoto, and B. Drossel, New J. Phys. 14, 123029

(2012).
39A. T. Hartnett, E. Schertzer, S. A. Levin, and I. D. Couzin, Phys. Rev. Lett.

116, 038701 (2016).
40J. T. Lizier, M. Prokopenko, and A. Y. Zomaya, “The Information Dynam-

ics of Phase Transitions in Random Boolean Networks,” in Proc. Eleventh
International Conference on the Simulation and Synthesis of Living Sys-
tems, I (MIT Press, Cambridge, MA, 2008), pp. 374–381, available at
http://lizier.me/joseph/publications/2008-Lizier-InfoDynamicsInRbns.pdf.

41H. Dickten and K. Lehnertz, Phys. Rev. E 90, 062706 (2014).
42M. Porfiri and M. R. Marín, J. Theor. Biol. 435, 145 (2017).
43M. Staniek and K. Lehnertz, Phys. Rev. Lett. 100, 158101 (2008).
44C. Grabow, J. Macinko, D. Silver, and M. Porfiri, Chaos Interdiscip. J.

Nonlin. Sci. 26, 083113 (2016).
45R. P. Anderson, G. Jimenez, J. Y. Bae, D. Silver, J. Macinko, and M. Porfiri,

SIAM J. Appl. Dyn. Syst. 15, 1384 (2016).
46In agreement with our intuition, (25) indicates that at the leading order

the probability of k nodes activating at the same time is proportional to
�k f k(τ − 1) – this claim can be readily shown from (3) upon solving for a
generic entry with k ones.

47For stationary processes, this expression was also used in Ref. 26, although
inaccurately presented as an exact result for any network size. While for
dyadic interactions, without self-loops, mutual information coincides with
transfer entropy, their equivalence is only valid asymptotically in � for
arbitrary network sizes.

48Should the inference be performed by utilizing the exact probability mass
functions computed from the study of the Markov chain, the two weights
will be equal and they will attain the following values as t goes from 0 to
3: 0.91, 1.15, 0.99, and 1.21.

49Should the inference be performed by utilizing the exact probability mass
functions computed from the study of the Markov chain, W12(t) would be
inferred to be 0.93, 0.00, 1.97, and 1.15, while for W21(t), we would obtain
0.91, 1.16, 0.00, and 2.70, as t goes from 0 to 3.

50L. Moniz, E. Cooch, S. Ellner, J. Nichols, and J. Nichols, Ecol. Modell.
208, 145 (2007).

 24 January 2024 12:58:51

https://doi.org/10.1890/0012-9615(2003)073[0301:ECSAEI]2.0.CO;2
https://doi.org/10.1098/rstb.2017.0006
https://doi.org/10.1371/journal.pone.0123339
https://doi.org/10.1098/rsos.170130
https://doi.org/10.1145/584091.584093
https://doi.org/10.1103/PhysRevE.97.022301
https://doi.org/10.1371/journal.pcbi.1002653
https://doi.org/10.1385/NI:3:3:243
https://doi.org/10.1103/PhysRevE.77.026110
https://doi.org/10.1162/NECO_a_00291
https://doi.org/10.1186/1471-2202-12-119
https://doi.org/10.3389/frobt.2018.00060
https://doi.org/10.3389/frobt.2014.00011
https://doi.org/10.1371/journal.pone.0109462
https://doi.org/10.1029/2008WR007279
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1209/0295-5075/87/48007
https://doi.org/10.3390/e16084443
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physd.2013.10.008
https://doi.org/10.2307/2991759
https://doi.org/10.1109/TNSE.2017.2731212
https://doi.org/10.1142/S0219493715500227
https://doi.org/10.1016/j.sigpro.2005.06.016
https://doi.org/10.1371/journal.pone.0102833
https://doi.org/10.1186/1475-925X-11-19
https://doi.org/10.1103/PhysRevE.77.026214
https://doi.org/10.1523/JNEUROSCI.1016-08.2008
https://doi.org/10.1103/PhysRevE.87.042917
https://doi.org/10.1088/1367-2630/14/12/123029
https://doi.org/10.1103/PhysRevLett.116.038701
http://lizier.me/joseph/publications/2008-Lizier-InfoDynamicsInRbns.pdf
https://doi.org/10.1103/PhysRevE.90.062706
https://doi.org/10.1016/j.jtbi.2017.09.005
https://doi.org/10.1103/PhysRevLett.100.158101
https://doi.org/10.1063/1.4961067
https://doi.org/10.1137/15M1041584
https://doi.org/10.1016/j.ecolmodel.2007.05.016

