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Abstract

Intelligent Buildings comprise a key part within the Smart Spaces field,
providing users with seamless, invisible and proactive services adapted to
their preferences and needs. Provided services in Intelligent Buildings can be
offered intelligently if one considers the static and dynamical status of the
building and the location of users. To face all of these issues, it is necessary
to acquire contextual information, both from users and the environment, in
a nonintrusive and natural way. Gathering data about the identity and lo-
cation of occupants enables more personalized services, while wasted energy
in overuse is reduced. In this work we propose a low-cost and nonintrusive
solution to solve the indoor localization problem, focused on satisfying the
requirements in terms of accuracy in localization data needed to provide cus-
tomized comfort services in buildings, such as climate and lighting control
or security, with the goal of getting saving energy while ensuring comfort.
The proposed localization system is based on RFID (Radio-Frequency Iden-
tification) and IR (Infra-Red) data. The solution implements a Radial Basis
Function Network to estimate the location of occupants and a Particle Filter
to track their next positions. This mechanism has been tested in a reference
building where an automation system for collecting data and controlling de-
vices has been setup. Results obtained from experimental assessments reveal



that, despite our localization system uses a relative low number of sensors,
positions obtained are really accurate considering the requirements in terms
of precision in localization data to provide pervasive services to occupants in
buildings.
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1. Introduction

In the last years, the research on Smart Spaces has evolved in real solu-
tions that improve the indoor life thanks to innovations on sensors/actuator
integration and control processes, among others, but more recently, thanks
to information and communication technologies.

A smart space aims to provide seamless, invisible and proactive services
adapted to our preferences and needs. A great contributor for all these
changes has been the Internet of Things (IoT) [1] field, which considers per-
vasive infrastructures of fixed and mobile heterogeneous nodes designed to
obtain a greater integration and accessibility.

Smart Buildings is considered a research field within smart spaces, which
is growing in interest due to whole time people spent indoors daily. Accord-
ing to experts in this field [2], an intelligent building is one that provides
us with a productive and cost-effective environment, through optimizations
based on three basic elements: people (considering owners, occupants, visi-
tors, etc); products (standing for materials, fabrication, structure, facilities,
equipments and services); and processes (composed of automation, control
systems, maintenance and performance evaluation).

Moreover, it is important to consider that buildings are one of the most
important energy consumption points, both residential and commercial [3].
Improving energy efficiency is the cornerstone of many administrations around
the world nowadays. It implies improving the interaction between building
systems and users, reducing energy consumption, and therefore, CO2 emis-
sions. Automation Systems are essential for this issue, as it is remarked in [4].
These systems take input data from sensors deployed in corridors and rooms
(presence, light, temperature, etc) [5] and use this information to control cer-
tain subsystems, such as heating, ventilation and air conditioning (HVAC)
or security. In order to control these subsystems, an intelligent management
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must provide the proper adaptability to both the environment and users, to
cope with the most important comfort and energy efficiency requirements [6].

As it can be noted, location plays an important role in this kind of context-
aware applications, since for a vast number services offered in a smart build-
ing, it is necessary information about the presence and location of users.
Their identities could be also needed to deploy customized services. How-
ever, depending on service requirements in terms of accuracy in the location
data about users, a different localization scheme could be applicable, varying
the number of needed sensors and the algorithms used.

There has been a great technological progress on indoor localization sys-
tems in recent years. But most of the proposals do not solve fully problems
such as the time required in the calibration process, poor robustness or high
installation and equipment costs [7].

The work presented in this paper proposes a low-cost and nonintrusive
solution for the localization data needs of the most important subsystems of
a smart building, i.e. lighting and HVAC, with the goal of achieving offer
personalized and environment friendly services.

The proposed location mechanism integrates RFID (Radio-Frequency
Identification) and IR (Infra-Red) data for computing the user position. The
RSSI values are used for estimating inter-tag distance, and a Radial Basis
Function Network has been developed to carry out the estimation of user
locations. On the other hand, a tracking method based on a Particle Filter
algorithm has been developed to infer the next positions of the user. This
localization system meets the accuracy, cost and complexity requirements of
our indoor services, while the number of devices used by the location mech-
anism is optimized.

The structure of this paper is as follows: in Section 2 background infor-
mation about intelligent buildings, energy efficiency and indoor positioning
is reviewed. Section 3 presents the proposed indoor localization system based
on artificial neural networks and particle filters. The experience deploying
and the tests performed of the system are discussed in Section 4. And, finally,
the conclusions are collected in Section 5.

2. Background

As has been said, the framework of the indoor localization system pre-
sented in this work is in the context of building. Given that the final purpose
of our work is coming up with an intelligent and energy efficient building, the
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proposed localization mechanism must meet certain requirements in terms
of position data accuracy, cost, flexibility and scalability. In the first point
of this section we present the context of our problem and the location data
requirements of our system, given the most important energy performance
features in a building. Finally, in the last part of this section we review the
most relevant localization technologies treated in the literature and present
our location solution.

2.1. Building Management Systems for Energy Efficiency

An indoor intelligent management system must be able to provide mon-
itoring and automation capabilities to cope with most important comfort
and energy efficiency requirements [6]. In addition, a suitable comfort level
is desired for guaranteeing thermal, air quality and luminance requirements
of occupants. Therefore, energy savings should be addressed establishing
a trade-off between comfort measures and the energy resources required.
The aim of these systems is, first, offering a real solution to monitor energy
consumption of the most important subsystems of a reference building, i.e.
lighting, HVAC and most energy consuming appliances; second, assess en-
ergy efficiency by computing significant parameters based on the collected
monitoring data; and, third, achieving a comfort level committed to energy
efficiency requirements. This last part is essential, and it is carried out by
taking intelligent decisions to save energy and considering different comfort
levels for occupants.

During these phases it is necessary to continuously re-engineer in real time
the index that measures energy efficiency to adapt the model to the build-
ing conditions. However, the optimization of these parameters comprises a
complex task, full of variables and constraints. For instance, a multi-criteria
decision model to evaluate the whole lifecycle of a building is presented in [8].
This problem is tackled from a multi-objective optimization viewpoint in [9],
and it concludes that finding an optimal solution is unreal, being only feasible
an approximation of it.

Although there are many works related to Building Management Systems
(BMSs), a lot of them have failed to fully optimize energy consumption in real
time, and when the BMS is not working adequately, a great amount of energy
could be wasted due to excessive heating or cooling, for instance. In [10], an
examination of the main issues in adaptive BMSs is carried out, however, as
it is stated, there are few works dealing with this problem completely.
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The long-term goal of all energy efficiency measures in the literature is
reaching a net-zero/positive energy building (NZEB/PEB) [11], where the
power consumption will be null or even negative, thus generating energy that
can be stored or sold to energy providers. In this kind of systems the avail-
ability of alternative (and green) energy sources is essential. Nevertheless,
there is a number of parameters that cannot be a priori ascertained during
operational conditions: unpredictable user actions, opening and closing of
windows, weather conditions, fluctuations in energy price, etc. Therefore,
although there are many investments in smart building technology, the re-
search area of using real-time information is in a relatively immature state,
since static and dynamic information, as long as energy saving and user
comfort objectives, should be considered together to accomplish a successful
design [10].

The impact of the HVAC consumption in the total energy used in build-
ings is extremely important, comprising 50% of the building energy consump-
tion, and in many developed countries it represents 20% of the total energy
consumption [12]. The European Commission has recently issued a recast
of the Directive about Energy Performance of Buildings (2010/31/EU) [13],
which pushes for the adoption of measures to improve the performance of the
energy used in building appliances, lighting and, above all, HVAC systems.
The CEN’s standard EN 15251 [14] specifies the design criteria to be used
for dimensioning the energy system in buildings and how to establish and
define the main input parameters for building energy estimation and long
term evaluation of the indoor environment (thermal and visual comfort, and
indoor air quality). Among others, several parameters involved are: loca-
tion data about occupants, user activity level, total number of occupants per
room, temperature, humidity and natural light. All these variables need to
be measurable and available from the automation system deployed in the
building.

Therefore, the need of solving the localization problem inside the building
is clear, to determine the user location, the human activity level and the
number of occupants. It is necessary to gather localization information,
as well as user identity data, so that an Intelligent Building can learn and
manage devices according to the behavior of users.

Although solving the user identification issue in smart buildings is a key
objective, privacy should be considered. Some sensors cannot be installed
in buildings, for instance, in Spain video cameras could not be used in of-
fices. These problems cause some localization systems to be unsuitable in
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Intelligent Buildings, where nonintrusive, ubiquitous and cheap systems are
needed. In addition, maintaining an updated image of the operation environ-
ment is essential for indoor localization systems. Therefore, in order to offer
comfort and energy efficiency services, our localization system must be able
to locate a user among the various areas of the building, depending on the
needs of lighting and HVAC services, for instance, and thus our localization
system should be able to calculate the user position within target regions of
different areas.

2.2. Indoor Localization Problem

There is a common classification of indoor localization solutions in the
literature: those based on RF and those using other technologies. Among
RF-based techniques we could cite those based on GPS, wireless local area
network (WLAN), and RFID localization, whereas non RF-based techniques
include audio, visual, ultrasonic, infrared and laser sensors. By nature, RF
signals have certain advantages over non-RF signals, as it is explained in [15],
since despite that non RF-based localization tecniques are relatively mature,
they are vulnerable to environment disruptions. Depending on the accuracy
needs of the final localization application, a specific technological solution
should be chosen to solve the problem.

In [16], for instance, a localization mechanism based on 802.11 and RADAR
technologies is presented. Its main advantage is the easy deployment but a
delicate calibration process is needed. In [17] an RFID localization mecha-
nism is proposed, enabling 3D localization, but presenting important errors
due to the RFID signal variations during its indoor transmission. In [18]
a fusion of infrared and active badge data is used to calculate the posi-
tion. Although this is a low-cost solution, an imprecise location estimation
is obtained using this type of localization technology. In [19] a localization
mechanism based on cameras is proposed. Wearable devices are not needed
in this solution, but a high cost and a delicate calibration process are its
main drawbacks.

Since each localization technology has its pros and cons in terms of accu-
racy, cost and complexity, the fusion of several of these technologies should
improve the overall system performance. Moreover, in our localization system
we need to deal with both the identification and privacy problems, avoiding
the common intrusion problem of cameras.

Among the various localization technologies previously mentioned, RFID
and infrared (IR) have been chosen. RFID provides identification capabilities
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inherently and extra security features could be added to deal with the privacy
issue. Furthermore, the relatively low cost of RFID tags makes this solution
a popular candidate to deal with localization and tracking needs, despite the
drawbacks of imprecise location estimate due to RFID signal variations, as it
is indicated in [20]. Additionally, a lot of public and private buildings already
provide access control through personal identification based on RFID, which
implies a cost reduction in the system deployment. The same applies to the
IR technology, used in automatic control in alarm systems. Using any of these
two technologies to solve the indoor localization problem means a cost saving,
since no additional devices are needed in those buildings where these devices
are already presented. Additionally, using IR sensors we can provide stability
to the localization solution since it is a non-RF based technology, and thus
it is not influenced by the losses for reflection, diffraction and absorption in
walls, floors, etc.

Location technologies based on RFID can be classified into three cate-
gories [21]: tag-based, reader-based and hybrid. In a previous work [22], we
present a theoretical study about the indoor transmission of RFID signals
given a real distribution of reference tags. From this, we propose to carry
out the fusion of RF-based data and non RF-based data in order to solve
the large variability problem of the RFID signals in indoor environments.
Furthermore, using these theoretical analysis, it is possible to optimize the
number of devices needed to solve our location problem.

In contrast to many RFID location-based works, where it is common to
use information from several RFID readers to improve robustness through
integrating beaconing information from multiple sources [23], our localiza-
tion system can work with a single RFID reader to reduce cost. Location
robustness is offered by a mechanism that combines RFID and IR data in
an effective way. It is important to note that IR devices are cheaper than
RFID readers. In [20], for example, a solution that also combines RFID and
seamless sensors solves the localization problem by means of an agent-based
virtual architecture that considers human-centric needs. It calculates the
probabilities of possible user paths choosing a locator region to represent the
user position. In contrast to this paper, our work is based on estimation
and tracking techniques that let us achieve an efficient solution, while cost
considerations are also taken into account through the optimization of the
number of sensors used.
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3. An Indoor Localization System Based on Artificial Neural Net-
works and Particle Filters

This section explains the analysis performed to give an optimum solution
for the localization problem, as well as the algorithms used to process the
gathered data from the RFID and IR systems to compute the user positions.

3.1. Theoretical Distribution of the RFID Signals in Indoor Environments

It is known the large variability problem of the RFID signals in indoor
environments [23], which implies that to solve localization problem using
RFID data may derivate in inaccurate estimations of the user positions.

Despite this, as mentioned previously, RFID system provides some ad-
vantages and its relatively low cost makes this a good solution to deal with
localization and tracking needs, and being more often to find this technology
already deployed in modern buildings (such as access control systems).

Bearing all these aspects in mind, we bet to use RFID technology while
a theoretical study about its indoor transmission is performed (given a real
distribution of RFID reference tags). We aim to analyze the RFID signals
distribution in indoor spaces, i.e. the RFID power losses through reflection,
diffraction and absorption, and to provide the most suitable technological
solution to solve the localization.

This theoretical study was carried out using a radio planning software
tool, which is able to consider different propagation models to simulate the
RF signals transmission. In our study, we considered an indoor RFID signals
transmission based on the application of Geometrical Optics (GO) and Uni-
form Theory of Diffraction (UTD) using ray tracing techniques. With this
method it can be predicted the electric field created by the direct, reflected
and diffracted contributions of RFID signals. Then, as parameters required
to carry out these simulations are the reflection, diffraction and absorption
coefficients of walls, ceiling and floor. Thus, when we performed these stud-
ies, we took into account different values for these coefficients, and then, our
final theoretical proposal for solving the localization cover this issue. More
details about this theoretical study are presented in [22].

This proposal consists on performing the fusion of RF-based data and
non RF-based data to solve the large variability problem of the RFID sig-
nals. Thus, we propose to locate the non RF-based devices in a such way
that lets divide the total area into subareas where RFID distribution is uni-
form, choosing the best locations for non RF-based devices analysing this
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distribution. Therefore, the active RFID reference tags are installed in the
ceiling of each subarea, and then, the RFID information inside the subareas
is used to further localize the user located inside of it, being possible to im-
plement a regression or classification technique to estimate the location data
of occupants taking into account these subareas.

In the following subsections, the different stages of the localization mech-
anism proposed are quite explained.

3.2. Overview of the Localization System

As it has been already mentioned above, the technological solution to
cover our localization needs is based on a single active RFID system and
some IR transmitters. The RFID technology provides cost and identification
advantages, while the IR technology provides stability to the localization
mechanism, since IR transmitters provide us information related to which
region a target tag belongs.

The integration of these two technologies in a final and commercial system
is already available. Thus, all the RFID tags used are IR-enabled tags, whose
IR sensor is powered by an IR transmitter. The RFID tags communicate with
a nearby RFID reader, reporting on from what IR transmitter is reading.

IR transmitter

Monitored RFID tag

Reference RFID tag

{IDIR j, IDtag 1}

Data collection software

RFID Reader

{IDIR i, IDtag M}

{IDIR j, IDtag 1, RSSItag 1}
…

{IDIR i, IDtag N, RSSItag N}
{IDIR i, IDtag M, RSSItag M}IDIR i

IDIR j

IR transmission

RFID transmission

IP transmission

Zone 1 (IDIR i) Zone 2 (IDIR j)

Tag 1

Tag N

Tag M

…

{IDIR i, IDtag N}

Figure 1: Scenario of the localization solution using RFID and IR devices

Figure 1 illustrates the data exchange of our localization system, where
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the RFID reference tags are placed in the ceiling of the room, the IR trans-
mitters are placed on the walls and the target user wears the RFID monitored
tag.

In detail, the process is as follows: the RFID reader receives a data vector
from the IR-enabled RFID tags periodically (after several seconds), this vec-
tor contains [IDir, IDtag], where IDir is the identifier of the IR transmitter
that is read by the RFID tag with identifier IDtag. Additionally, the reader
is able to provide us with the Receive Signal Strength Indication (RSSI) re-
lated to this tag. This data are continually updated, hence, the dynamics of
the environment can be modeled continuously. Then, the input data of our
localization mechanism are vectors in the form [IDir, IDtag, RSSItag], which
are obtained from the RFID reader.

Figure 2: Schema of the data processing for position calculation

Figure 2 shows a schema of the data processing implemented to solve our
indoor localization problem, which can be split into three stages that are
explained in the following subsections.

3.3. Space Division through IR Transmitters

Our goal is to get an easily trainable localization model to compute the
relationship between the RSSI values and the objects positions. Since the
RSSI data are not robust, due to the multi-path phenomenon, we first bound
the area in which the user stand by dividing the space in IR zones. This is
performed according to the IDir values received. Each of these IDir values is
associated with some IDtag and RSSItag values coming from several deployed
active RFID reference tags installed in the ceiling of each subarea. Then, the
information inside the subarea to which the monitored tag belongs is used
to further localize the object.

3.4. RBF Algorithm for Location Determination

The following stage after the space division consists on exploiting the
reference tags RSSI database selected in the first stage to approximate the
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function that maps the reference information from the signal space to coor-
dinates in the plane by interpolating the collected data.

A widely used solution is applying the Nearest Neighbors Technique to
choose the reference tags used to estimate the target position, but this tech-
nique provides a poor estimation due to the great variations of the RFID
signals. An alternative solution is using Artificial Neural Networks (ANN)
[24] [25] for that purpose, where localization can be viewed as an approxi-
mation function problem. Thus, for instance, in [26] a modular classification
model based on modular multi layer perceptron (MLP) networks is presented
to develop large scale and highly accurate signal strength based location sys-
tems.

The work presented here uses the Radial Basis Function (RBF) technique,
which is a special class of ANN. Some advantages of RBF are its scalability
and easy deployment for different RFID system setups, where a variable
number of RFID readers or reference tags (fingerprints) may be available.
Then, for each space division performed according to the IDir values received,
a radial basis function (RBF) network can be implemented as a regression
technique to estimate the position of the monitored tags.

This mechanism can be summarized mathematically as follows. The input
space P of our RBFs is the vector of RSSI values received in the RFID reader.
These data can be denoted as:

P ∈ R,P = {pi},∀pi =
[
p1, p2, . . . , pn

]
(1)

Where n is the number of reference tags within the chosen subarea. The
target class Z represents the positions of the reference tags. This is denoted
as:

Z ∈ Rk, Z = {zki },∀zki =
[
zk1 , z

k
2 , . . . , z

k
n

]
(2)

Where k is the dimension of the position of the reference tags. In our case,
we assume a value of k = 2, then given the training values {(pi, zki ),. . . ,(pn, z

k
n)},

our goal is to find a function that let us classify the tracking tag position
(zi = [xi, yi]) knowing its RSSI tag value (pi).

The RSSI tag value pj is provided as input to all functions of our RBF
classifier, and the output f(pj) is given by:

f(pj) =
c∑
i=1

wi · ϕ(‖ pj − ci ‖) (3)
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Where ‖ pj − ci ‖ is the Euclidean distance between pj and the RBF
function with center ci. The number of RBF is C, and wi are the weights of
the network. Gaussian radial basis are usually used to represent the RBF.
However, other types of functions are common, such as thin-plate splines,
multi-quadratic, linear polynomial bi-harmonic splines, etc. [27]. The poly-
harmonic splines are softer, and we use these functions for our RBF networks.
The equation that represents to this type of functions is shown in Eq. (4).

ϕ(‖ p− ci ‖) =‖ p− ci ‖β log(‖ p− ci ‖) (4)

The value of β specifies the width of the basis functions and allows their
sensitivity to be adjusted. When β decreases implies that the basis functions
become wider and there may be more overlap among them. The appropriate
value of β is usually selected experimentally based on the reference data, and
can be further adjusted when testing data are available. A common practise
is to use a heuristic method to set the width β according to Eq. (5), where
dmax =‖ pj − ci ‖ for i = 1, ..., L.

β =
1

2 · dmax
(5)

From this equation, it is deducted that when the distance among centers
in the n-dimensional signal space increases, the value of β is reduced to ensure
that the basis functions still overlap enough to produce accurate location
estimates. With this scheme the value of β can be easily adjusted to provide
high level of accuracy when a variable number of reference tags is used

The proper values for C and the centers ci are not trivial. These values
affect the performance of the RBF network. A common practice is using each
reference RSSI value to define the centers, so if there are L reference tags,
there will be L basis functions. However, this architecture has high memory
requirements when there are a lot of reference fingerprints and when there are
more than one RFID reader. In these cases the computational complexity is
high, both for the calculation of wi and location estimation. In our problem,
the number of reference tags per each space division performed is low and
a single RFID reader is used, therefore there are no problems related to
computational complexity, and it is possible to use the reference RSSI data
as center of our basis functions. For this reason, our RBF system has a
unique solution and the design guarantees the exact fitting for all reference
data.
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The reference fingerprints and their corresponding coordinates (xi, yi) are
employed to train the network and adjust the weights accordingly. Thus,
given a RSS target pj measured at location zj = (xj, yj), the output of
the RBF network may be expressed as a weighted sum of normalized basis
functions:

z(pj) =
c∑
i=1

wi ·
ϕ(‖ pj − ci ‖)∑c
k=1 ϕ(‖ pj − ck ‖)

(6)

Where wi are 2-dimensional weights. The parameter wi may be deter-
mined to obtain a good approximation by optimizing the fit represented by
Eq. (6), i.e. the difference between the RSSI values of the reference data
and the RSS targets, to estimate the target coordinates given the known
positions of the reference tags. Thus, we form the following set of equations:

z(pk) =
c∑
i=1

wi · u(‖ pk − ci ‖), k = 1, ..., L (7)

We calculate wi by solving the system of linear equations based on Eq.
(7) using the reference fingerprints in the database and their corresponding
coordinates. Therefore, our resulting RBF avoids over-fitting. Subsequently,
the weights wi are used during localization to obtain a location estimate ẑ
given a new RSSI value p′j according to:

ẑ(p′j) =
c∑
i=1

wi · u(‖ p′j − ci ‖) (8)

Every T seconds, it is evaluated whether there are new sensor data to
estimate the target position using the RBF network. If there is updated in-
formation, the RBF is applied to perform the estimate of the target position,
but if it is not the case (loss of signal, different sampling time of the RFID
system), the particle filter is applied to estimate the next position based on
the prior state of the target.

Therefore, for each RBF network implemented, a probabilistic algorithm
is applied to estimate the next position of the target. As tracking technique
we implement a Particle Filter (PF), which is a powerful tool to construct
a probability distribution over the target area representing the environment
[28].
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3.5. Path Estimation through Particle Filters

The particle filter is a probabilistic approach that uses recursive Bayesian
filters based on Sequential Monte Carlo Sampling. The proposed technique
computes a posterior distribution of the target’s location using Sequential
Monte-Carlo Sampling, which is capable of using an arbitrary a-priori dis-
tribution to compute a posterior distribution. This method is less compu-
tationally intensive than other probabilistic methods, as Kalman filters [28],
avoiding any assumptions about intrinsic features of the process, and the
uncertainty about the sensor data is dealt.

The algorithm followed starts with the particle set initialized uniformly.
Then all particle positions are updated according to the motion model. In
our case we consider a movement in the space (x, y) that follows a random
walk model [29] to represent the human motion, which takes into account
the error model in the obtained measures from the deployed RFID tags.

During the correction stage of the filter, particle weights are modified
according to their distances to the real measurement, as Eq. (9) shows:

w(~xt) = w(~xt−1) ·
p(~yt | ~xt) · p(~xt | ~xt−1)

q(~xt | ~xt−1, ~yt)
(9)

Where w(~xt) represents the weights of the set of particles at instant t,
p(~yt | ~xt) and p(~xt | ~xt−1) denote, respectively, the probabilistic behaviour of
the output model and the state model of the system, and q(~xt | ~xt−1, ~yt) is
the approximation of the belief function.

It is important to note that the areas in which we want to solve the local-
ization problem are defined by dividing the space into IR zones (according
to the previously performed theoretical RFID signal distribution analysis),
and several active RFID tags are deployed in each subarea. Therefore, the
information inside each subarea is used to further estimate the user localiza-
tion and carry out its tracking process. Thus, a RBF network and a Particle
Filter are defined for each subarea, and the amount of data to process by
each one depends on the number of reference tags deployed in each subarea,
but in any case, the resulting RBFs and PFs are small enough, easy to train
and offer good performances, satisfying the requirement of providing user
location data in real-time. At the same time, statistical values of velocity
are provided continuously, thanks to the particle filter, which will be able to
be used later to determine the user activity level and adapt comfort services
according to the users behavior.
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Therefore, combining these two algorithms, a radial basis function net-
work as an estimation technique and a particle filter as a tracking method,
a good estimate of the motion of the monitored RFID tag is obtained, while
an optimum number of sensors is required.

4. Experience Deploying and Testing the System

4.1. Deployment of the System

The reference building where our localization system has been evaluated is
the Technology Transfer Center at University of Murcia 1, which was designed
as a smart environment since its early stages of design.

Figure 3: Distributed Data Collection Architecture

The hardware Architecture (Domosec) developed and deployed in this
building (Figure 3) was troughly presented in [30]. The main components of
this architecture are the network of Home Automation Modules (HAM) and
the building gateway. All the environmental and location data measured by
the deployed sensors are available in each of these modules. In Figure 3 we
show all the inputs involved in our overall system, as well as the different
type of connections with sensors and actuators.

1http://www.um.es/otri/?opc=cttfuentealamo
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In this reference building, smart services are provided, such as the control
and regulation of the lighting and HVAC appliances. In our work, different
kinds of space belonging to a home environment have been simulated in a test
lab of this building, such as a living room, a corridor, a bedroom, an office
and a dining room. Each one of these locations with a different distribution
of the HVAC and lighting appliances according to the features of the space
(such as natural light, interior space activities and occupants’ differences)
and the estimated comfort requirements associated with them.

Figure 4 depicts the test lab of the Technology Transfer Center at Univer-
sity of Murcia where we have allocated different rooms/areas that represent a
home environment and have carried out the essays described in the following
subsection.

1,8 m x 0,8 m

Automated blinds

Controlled HVAC

Power monitoring

Temperature sensors

Smart lighting

Automated switches

LUX

Presence sensors

Local gateway

Individual lighting

2,2 m x 0,8 m

Home Automation Module (HAM)

Lighting sensors

Control panel

Figure 4: Distribution of space to simulate a home environment

Figure 5 shows a possible distribution of the different target location sur-
faces taking into account the distribution of lighting and HVAC appliances,
as well as the user lighting and climate needs depending on the activities ex-
pected to be performed in each region (which are determined in accordance
with the different work areas). Therefore, to satisfy the location require-
ments to provide customized services, our localization system must be able
to locate a user within these different space surfaces.
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4.6m x 1.25m 4.3m x 1.3m 

3.2m x 1.1m 1
.
1
m
 
x
 
3
.
1
m
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Figure 5: Target location surfaces according to the offered services

In this lab an RFID system is already available for access control, and
various IR transmitters are already installed for the alarm system. Therefore,
it does not require any additional equipment.

The RFID system used in our tests is based on IR-enabled RFID tags
which initiates communication with the RFID reader, sending their data
every 10 sec using the frequency band of 433 MHz. The transmission power
of RFID tags is 28 µW, and the RFID reader has two radios, a channel with
a maximum sensitivity of −58 dBm and another channel with −108 dBm, so
that it is possible to configure various ranges of detection.

The RFID reference tags are placed in the ceiling of the test lab, and one
IR transmitter is placed on the wall for every floor surface of 9m2 to optimize
the total number of IR transmitters needed (according to the theoretical
study of the RFID power distribution in this indoor environment [22]).

The distribution of reference tags is crucial to reach the accuracy require-
ments in the desired zones. For this reason, in the following subsections
we analyze how it affects the accuracy of the location data obtained given
different RFID reference tag distributions.
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4.2. Experimental Tests

Firstly, it is important to bear in mind that the minimum accuracy
achieved in the location data must be lower than the IR transmitter cov-
erage. Consider that a single IR transmitter can be used to estimate the
user location within a target area of 9m2.

In the previous work presented in [22], a distribution of tags in a grid of
1m x 1m was considered. Using this distribution, a 77% success in estimated
positions with an error lower than 1.5m is reached. However, in practice it is
not feasible to equip a whole building with tags placed at 1m of distance from
each other, due to the consecuent cost, and the amount of data to process.
Moreover, it is clear that an accuracy of 1, 5m is not always needed to provide
us with individual lighting and HVAC conditions.

The results obtained from the tests performed in our test lab are col-
lected as statistical values of the error achieved in the estimated positions
considering different RFID reference tag distributions. The tests performed
represent different users behaviour and different conditions of context, such
as very crowded space, few people, a lot of/few obstacles, a lot of/few hu-
man activities, etc. Table 1 shows the results corresponding to several days’
monitored. As can be seen, they are quite accurate according to the location
requirements of lighting and HVAC services, giving an acceptable error, even
using a low number of reference tags.

Table 1: Statistical values of localization error for different distributions of the reference
tags: me (mean error), mxe (max error) and mne (min error)

Location surface me (m.) mxe (m.) mne (m.)
1m x 1m 1 2.6 0.3

1m x 1.5m 1.8 2.7 0.3
1m x 2m 1.2 2.9 0.3

1.5m x 1.5 m 1.3 2.7 0.4
2m x 2m 1.6 3.1 0.6

2m x 2.5m 1.9 3.3 0.6

In Table 2 we collect the successful cases related to the same previous dis-
tributions of reference tags, and given a maximum error in location estima-
tion. These results allow us to analyze the general behavior of the proposed
localization system.

As we can see, with a distribution of tags of 1m x 1m it is possible to
obtain a 65% success rate in localization with an error less than 1m, while
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a 98% of the cases have a maximum error distance less than 2.5m. These
results ensure a good performance of our solution in terms of location error
given the common target location surfaces to provide comfort services in
buildings, such as those shown in Figure 5, where the worst case corresponds
to solve localization within an area of 1.5m x 1.7m (to provide individual
lighting in an office space), it means to have location data with a mean error
lower than 1.5m. Therefore, with three of the five reference tag distributions
analyzed in this work (1m x 1m, 1m x 2m and 1.5m x 1.5m), we can solve
one of the most restrictive location problems in a home environment.

Table 2: Success rate in the localization mechanism given a mle (maximum location error)

Location surface mle<1m mle<1.5m mle<2m mle<2.5m
1m x 1m 65% 77% 96% 98%

1m x 1.5m 51% 73% 88% 92%
1m x 2m 45% 72% 81% 85%

1.5m x 1.5 m 42% 69% 75% 82%
2m x 2m 38% 64% 66% 78%

2m x 2.5m 37% 64% 65% 76%

In addition, contrasting with previous works that also use RFID sys-
tems for indoor localization, such as those collected in [23] (Landmarc, SA-
Landmarc and SA-SVR), our work clearly reduces the final cost of the tech-
nological solution chosen, while the mean error in the location estimation
is acceptable given our requirements in terms of accuracy in location data.
Our investment in equipment is reduced due to the RFID reader is the most
expensive device involved in these localization systems and in our purpose
there is a single reader. Besides, the technology chosen to fuse with RFID
data (and in this way providing stability to the localization mechanism), i.e.
the IR technology, is a low-cost choice.

In Figure 6 an example of some tracking processes carried out in our
test laboratory is showed using a distribution of reference tags of 1m x 1m
and several IR transmitters. As can be noted, our localization system is
able to monitor the users locations with a high accuracy according to the
target location surfaces involved in the main comfort services provided in
the different work areas.

On the other hand, for greater maximum errors than 1m in the location
data provided, our system assures a good performance even when the surface
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Figure 6: Tracking position using a distribution of reference tags of 1m x 1m

covered by reference tags is higher, being 62% the lowest value of successful
cases in location for a location surface of 2m x 2.5m and with a mean error
of 1.9m. Furthermore, for location surfaces greater than 1.5m x 1.5m, the
success cases obtained with different maximum errors is similar. This shows a
stabilization of the location error. Therefore, among these location surfaces,
we can choose those requiring a lower number of reference tags, i.e. the
distribution of 2m x 2.5m with a 64% of successful cases providing an error
lower than 1.5m, which is quite suitable considering the location requirements
of our problem.

4.3. Analysis and Discussions

From the results of our tests, we can assert that using an IR transmitter
per each 9m2 of location surface and a single RFID system with different
distributions of reference tags, our localization mechanism ensures an ad-
justable location error, taking into account the location requirements of the
pervasive services analyzed in this work.

The test lab where our essays have been performed is designed to provide
flexibility in the distribution of space and appliances, using for this portables
walls made of different material from the initial and fixed walls of the room.
Therefore, these experimental results are also satisfactory in those cases in
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which the RFID signal shows a large variability, for instance, when to esti-
mate the user location is needed to go through walls of different materials,
i.e. with different coefficients of reflection, diffraction and absorption (as
theoretically we had proved).

An important consideration to bear in mind is the best places to install
the IR transmitters, since they need to have line of sight with the RFID tags.
In the case of non line of sight with the monitored tags, despite the RBF
can not be applied to estimate the positions, the PF is able to provide the
users positions using previous information about their paths. However, the
line of sight of the IR transmitters with the reference tags is an indispensable
requirement in our localization system, since it affects directly in the accuracy
achieved in the location data provided by our mechanism.

And finally, to choose the most appropriate distribution of reference tags,
we recommend defining priorities among the different zones of a building
regarding the duration and frequency of use. Thus, it may be possible to
reach a tradeoff between the energy and hardware cost and the position
accuracy. For example, in an office room where users stay for a long time
daily, some accurate localization information is needed in order not to waste
energy with inappropriate settings of comfort appliances. Instead, in a dining
room where sporadic users appear, the energy wasted due to localization
errors may be lower, because the poorly setup comfort appliance may be
working during a short period of time.

Hence, after the evaluations performed, we can assert that this indoor
localization system is both a cost effective and a realistic solution to provide
positioning for services oriented to smart energy management.

5. Conclusions

In this paper a hybrid RFID/IR mechanism to solve the indoor localiza-
tion problem is proposed. The localization solution proposed is focused on
satisfying the accuracy location requirements needed to provide customized
services in buildings, such as those involved in lighting and HVAC services.

Our mechanism is based on a regression method implemented using the
RSSI values available in an RFID reader in order to estimate the location
data of those users who wear an monitored RFID tag. Then, a particle
filter is applied as a tracking technique to estimate the user path. This filter
eliminates those estimated positions that do not fit according to a realistic
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movement pattern. This localization system is easily configurable, and totally
embeddable in an automation platform.

Nevertheless, although this paper is based on a specific case study and
on applying the localization mechanism proposed to smart buildings, it can
also be applied in different scenarios where an RFID system and some IR
transmitters are available, and where target users to be monitored only need
to wear an RFID tag.

This system has been tested in real scenarios where a smart energy control
wants to be performed depending on the presence and identification of users.
The results obtained are satisfactoy, covering the accuracy requirements of
localization data for pervasive indoor services. Therefore, we present it as
both a cost effective and realistic solution for solving the indoor localization
problem.

The current working line is defining predictive comfort models for indoor
areas, considering the localization system proposed in this paper. In future
studies we will test this indoor localization system taking into account dif-
ferent floors of a building, as well as in other types of buildings (for instance
in a campus, a shopping mall, etc.) to verify its performance. In addition,
considering location data about occupants, we will show details about the
energy models and results obtained in terms of energy saved and comfort
indexes achieved.

Acknowledgment

This work has been sponsored by the Spanish Seneca Foundation, by
means of the Excellence Researching Group Program (04552/GERM/06) and
the FPI grant 15493/FPI/10.

References

[1] L. Atzori, A. Iera, G. Morabito, The internet of things: A survey, Else-
vier Computer Networks 54 (15) (2010) 2787–2805.

[2] D. Clements-Croome, D. J. Croome, Intelligent buildings: design, man-
agement and operation, Thomas Telford, 2004, Ch. 10, pp. 273–288.

[3] D. Petersen, J. Steele, J. Wilkerson, Wattbot: a residential electricity
monitoring and feedback system (2009).

22



[4] M. Hazas, A. Friday, J. Scott, Look back before leaping forward: Four
decades of domestic energy inquiry, IEEE Pervasive Computing 10
(2011) 13–19.

[5] J. Pargfrieder, H. Jorgl, An integrated control system for optimizing
the energy consumption and user comfort in buildings, in: Computer
Aided Control System Design, 2002. Proceedings. 2002 IEEE Interna-
tional Symposium on, IEEE, 2002, pp. 127–132.

[6] A. Dounis, C. Caraiscos, Advanced control systems engineering for en-
ergy and comfort management in a building environment–a review, Re-
newable and Sustainable Energy Reviews 13 (6-7) (2009) 1246–1261.

[7] H. Liu, H. Darabi, P. Banerjee, J. Liu, Survey of wireless indoor posi-
tioning techniques and systems, Systems, Man, and Cybernetics, Part
C: Applications and Reviews, IEEE Transactions on 37 (6) (2007) 1067–
1080.

[8] Z. Chen, D. Clements-Croome, J. Hong, H. Li, Q. Xu, A multicriteria
lifespan energy efficiency approach to intelligent building assessment,
Energy and Buildings 38 (5) (2006) 393 – 409.

[9] C. Diakaki, E. Grigoroudis, D. Kolokotsa, Towards a multi-objective op-
timization approach for improving energy efficiency in buildings, Energy
and Buildings 40 (9) (2008) 1747 – 1754.

[10] M. Stunder, P. Sebastian, B. Chube, M. Koontz, Integration of real-time
data into building automation systems, Tech. rep., Air-Conditioning and
Refrigeration Technology Institute (US) (2003).

[11] D. Kolokotsa, D. Rovas, E. Kosmatopoulos, K. Kalaitzakis, A roadmap
towards intelligent net zero- and positive-energy buildings, Solar Energy
In Press, Corrected Proof (2010) –.

[12] L. Perez-Lombard, J. Ortiz, C. Pout, A review on buildings energy con-
sumption information, Energy and Buildings 40 (3) (2008) 394–398.

[13] E. Comission, DIRECTIVE 2010/31/EU OF THE EUROPEAN PAR-
LIAMENT AND OF THE COUNCIL of 19 may 2010 on the energy per-
formance of buildings (recast), Official Journal of the European Union
53 (L 153) (2010) 13– 34.

23



[14] Centre Europeen de Normalisation, EN 15251:2006. Indoor Environmen-
tal Input Parameters for Design and Assesment of Energy Performance
of Buildings - Addressing Indoor Air Quality, Thermal Environment,
Lighting and Acoustics (2006).

[15] J. Zhou, J. Shi, Rfid localization algorithms and applications, a review,
Journal of Intelligent Manufacturing 20 (6) (2009) 695–707.

[16] P. Bahl, V. Padmanabhan, Radar: An in-building rf-based user loca-
tion and tracking system, in: INFOCOM 2000. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Pro-
ceedings. IEEE, Vol. 2, Ieee, 2000, pp. 775–784.

[17] L. Ni, Y. Liu, Y. Lau, A. Patil, Landmarc: indoor location sensing using
active rfid, Wireless networks 10 (6) (2004) 701–710.

[18] R. Want, A. Hopper, V. Falcao, J. Gibbons, The active badge loca-
tion system, ACM Transactions on Information Systems (TOIS) 10 (1)
(1992) 91–102.

[19] J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale, S. Shafer, Multi-
camera multi-person tracking for easyliving, in: Visual Surveillance,
2000. Proceedings. Third IEEE International Workshop on, IEEE, 2000,
pp. 3–10.

[20] C. Lu, C. Wu, L. Fu, A reciprocal and extensible architecture for
multiple-target tracking in a smart home, Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, IEEE Transactions on 41 (1)
(2011) 120–129.

[21] L. Ni, D. Zhang, M. Souryal, Rfid-based localization and tracking tech-
nologies, Wireless Communications, IEEE 18 (2) (2011) 45–51.

[22] M. Moreno, M. Zamora, J. Santa, A. Skarmeta, An indoor localization
mechanism based on rfid and ir data in ambient intelligent environments,
in: Proceedings of the Sixth International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing, IoT6 European
Project, 2012.

24



[23] D. Zhang, Y. Yang, D. Cheng, S. Liu, L. Ni, Cocktail: an rf-based hybrid
approach for indoor localization, in: Communications (ICC), 2010 IEEE
International Conference on, IEEE, 2010, pp. 1–5.

[24] A. Meystel, J. Albus, Intelligent systems: architecture, design, and con-
trol, John Wiley & Sons, Inc., 2000.

[25] L. Ogiela, M. Ogiela, Advances in Cognitive Information Systems,
Vol. 17, Springer, 2012.

[26] U. Ahmad, A. Gavrilov, S. Lee, Y. Lee, A modular classification model
for received signal strength based location systems, Neurocomputing
71 (13) (2008) 2657–2669.

[27] T. Foley, H. Hagen, G. Nielson, Visualizing and modeling unstructured
data, The Visual Computer 9 (8) (1993) 439–449.

[28] R. Van Der Merwe, A. Doucet, N. De Freitas, The unscented particle
filter, Advances in Neural Information Processing Systems (2001) 584–
590.

[29] F. Spitzer, Principles of random walk, Vol. 34, Springer Verlag, 2001.

[30] M. Zamora-Izquierdo, J. Santa, et al., Integral and networked home au-
tomation solution towards indoor ambient intelligence, Pervasive Com-
puting, IEEE (99) (2010) 1–1.

25



M.V. Moreno-Cano received the B.S. (Hons.) and the M.S.
degrees in Telecommunications Engineering in 2006 and 2009,
respectively, both of them from the School of Telecommunica-
tion Engineering of Cartagena, Spain. Currently, she is a Ph.D.
Student in the Department of Information and Communication
Engineering at University of Murcia. Research interests include
sensor data fusion, intelligent systems and smart environments.

M.A. Zamora-Izquierdo received the M.S. degree in Au-
tomation and Electronics and the Ph.D. degree in Computer
Science in 1997 and 2003, respectively, both of them from Uni-
versity of Murcia, Spain. Currently, he is an Associate Pro-
fessor in the Department of Information and Communication
Engineering at the same university. His research interests in-
clude consumer electronics, home and building automation and
sensor fusion.
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