Noname manuscript No.
(will be inserted by the editor)

A Parallel Simulator for Multi-Body Systems Based
on Group Equations

José-Carlos Cano - Javier Cuenca : Domingo Giménez -
Mariano Saura-Sanchez - Pablo Segado-Cabezos

This is a post-peer-review, pre-copyedit version of an article published in Journal of
Supercomputing. The final authenticated version is available online at:

https://doi.org/10.1007/s11227-018-2602-4

Abstract Multibody systems consist of a set of components connected
through some joints, where the movement of the system is determined by those
of its components. Their design is computationally demanding, and the Group
Equations formulation facilitates the application of parallelism to reduce the
simulation time. A simulator for the kinematic analysis of multibody systems
on up-to-date computational nodes (multicore CPU+GPU) is presented. The
movement of the components is simulated by repeatedly solving independent
linear systems working on sparse matrices. The appropriate selection of the
linear algebra library to be used and the degree of parallelism at each level
(explicit with OpenMP and implicit with multithread libraries) helps obtain
important reductions in the simulation time.

Keywords Multicore - GPU - Linear Algebra Libraries - Multilevel
Paralellism - Multibody Systems

1 Introduction

This paper presents a simulator for the kinematic analysis of multibody sys-
tems (MBS) in today’s computational systems composed of multicore CPUs

José-Carlos Cano, Domingo Giménez
Department of Computing and Systems, University of Murcia, Spain
E-mail: {josecarlos.canol, domingo}@um.es

Javier Cuenca

Department of Engineering and Technology of Computers, University of Murcia, Spain
Tel.: +34-868-884821

Fax: +34-868-884151

E-mail: jcuenca@um.es

Mariano Saura-Sénchez, Pablo Segado-Cabezos
Department of Mechanical Engineering, Technical University of Cartagena, Spain
E-mail: {msaura.sanchez, pablo.segado}@upct.es

2 J.-C. Cano, J. Cuenca, D. Giménez, M. Saura-Sanchez, P. Segado-Cabezos

plus one or more GPUs. MBS are mechanical systems composed of rigid and
flexible bodies connected through mechanical joints which determine the de-
pendencies between the individual bodies and their contribution to the move-
ment of the whole system. The kinematics analysis of a MBS consists of the
study of the relation of its components’ movements. The position and orienta-
tion of the bodies are defined by a vector of coordinates, q € R". If the MBS
has g degrees of freedom (DOF), the values of z € R independent coordinates
out of n are known, and the values of m = n — g dependent coordinates out
of n are calculated by means of a set of m constraint equations, @ (q,t) = 0.
The kinematic analysis of MBS deals with the study of the position q, velocity
q and acceleration ¢ of the MBS when the position z, velocity 2 and accelera-
tion Z of the DOF are prescribed by solving the corresponding position @ = 0,
velocity & (g,t) = 0 and acceleration b (g, t) = 0 constraint equations.

A simulator for a particular type of MBS was presented in [3]. It has
been improved with new functionalities and a desktop application has been
developed. Those improvements are discussed here, and its application to op-
timize the simulation time through the efficient exploitation of the parallelism
in today’s computational systems composed of multicore CPUs and GPUs is
experimentally analyzed.

The remainder of the paper is organized as follows. Section 2 presents
the Group Equations formulation for kinematic analysis and discusses the
possibilities of parallelism. The MBS simulator is described in Section 3, and
experimental results obtained with its parallel implementation are summarized
in Section 4. Section 5 concludes the paper.

2 The Group Equations Formulation and Possibilities of Parallelism

Kinematic formulations that use a number of coordinates to define the position
of each body independently of the position of the other bodies are known as
Global formulations. Constraint equations, due to the rigid body condition and
to the degrees of freedom restricted by each type of joint between bodies, are
systematically imposed, and the number of constraint equations increases with
the complexity of the topology of the MBS. So, a large system of constraint
equations has to be solved simultaneously.

On the other hand, kinematic formulations like the Group Equations for-
mulation, which takes into consideration the topology of the MBS, are known
as Topological formulations. One advantage of the Group Equations formula-
tion is that each of the subsystems that defines the kinematic structure of the
MBS is defined by a subset of group coordinates qg € %%, k < n, and the
corresponding subset of constraint equations @¢ (ga,t) = 0. So, the MBS
is decomposed into a set of subsystems whose kinematics can be solved in a
specific order [9,10]. As an example, a MBS and its decomposition into three
subsystems are shown in Figure 1 (a and b). The kinematic structure of the
MBS in Figure 1.c shows the division of the MBS into subsystems.

Parallel MBS Simulation based on Group Equation 3

c 3 D
.
5
2
6 B 4
G E
A
b)

a) o)

Fig. 1 a) MBS, b) Decomposition into Groups, ¢) Kinematic structure

Parallelism can be exploited at the implicit and explicit level. The term
explicit parallelism is used to indicate that different subsystems are solved with
shared-memory [5] or GPU [8] parallelism, and implicit parallelism refers to the
use of multithread libraries which are available for the solution of the constraint
equations with both dense [2] and sparse matrices [7] and for multicore CPU
or GPUs [1,4].

A simulator for the Stewart Platform [11] (Figure 2) was presented in [3],
where an analysis of the exploitation of parallelism and energy consumption
for the real-time control in multicore CPU and Raspberry Pi was carried out,
together with an initial experimental study of the exploitation of parallelism in
the simulation of larger MBS in larger computational systems. There are many
other real life MBS with highly paralellizable kinematic structures, in which
their subsystems undergo planar or spatial movements, the joints between
their bodies are of different kinds (spherical, cylindrical, prismatic) and the
number of group coordinates varies from only a few (e.g. 2) to a typical range of
(15—50) in 3D rigid body subsystems, and above those values for subsystems in
which flexible bodies are considered. For example, [10] analyzes the application
of the Group Equations formulation to a scalable four-bar linkage and to the
suspension of a truck with a variable number of axles (Figure 3).

Fig. 2 Schema of a Stewart Platform and its kinematic structure

4 J.-C. Cano, J. Cuenca, D. Giménez, M. Saura-Sanchez, P. Segado-Cabezos

a) b)

Fig. 3 Schema of a trunk suspension system and its kinematic structure

We use the structure shown by the Stewart Platform as a case study, but
our previous studies are extended for the optimization of the exploitation of
parallelism when larger systems are simulated, for which we use larger, het-
erogeneous and hybrid systems composed of multicore CPUs plus one or more
GPUs with a variety of architectures. An application to facilitate simulation
and optimization for general MBS has been developed. It allows us to work
with a wide range of input scenarios (sparsity degree, matrix sizes and num-
ber of groups) and of linear algebra libraries in computational systems with
variable complexity.

A schema for the simulation of the kinematics of a MBS with the topo-
logical structure of the Stewart Platform is shown in Algorithm 1. There are
two loops corresponding to iterations to determine the position of interme-
diate, independent bodies (line 4) and of the body whose position is being
established (line 1). These bodies correspond in the Stewart Platform to the
six structural groups (3,4), (5,6) and so on, and to the terminal (2). The
solution of the kinematics of the terminal (line 2) and of each structural com-
ponent (line 5) is obtained from the solutions of systems of linear equations,
with implicit parallelism through basic linear algebra routines. Because there
are several independent structural components, they can be processed with
explicit parallelism in the for all loop.

Algorithm 1 Schema of the Group Equations method for the Stewart Plat-

form

1: for number of external iterations do

2: Solve kinematics of terminal //implicit parallelism

3: for all structural components //explicit parallelism do

4: for number of internal iterations do

5: Solve kinematics of structural component //implicit parallelism
6: end for

7 end for

8: end for

Both multicore CPUs and GPUs can be used for the exploitation of implicit
and explicit parallelism:

— Parallelism can be exploited at some points without explicitly programming
it. This implicit parallelism can be exploited through multithread libraries,

Parallel MBS Simulation based on Group Equation 5

for example the MKL implementations of LAPACK and PARDISO on
multicore CPUs [2,7]. Some libraries run on GPU [4], while others exploit
the heterogeneity of multicore CPU+GPU systems [1].

— The explicit parallelism can be exploited in multicore CPUs with OpenMP.
If several GPUs are available, one thread from a set of OpenMP threads can
be assigned to each GPU in such a way that each structural component is
solved by a GPU. Heterogeneity of a multicore CPU+multiGPU system can
be explicitly exploited with a subset of threads working on the multicore
CPU and each of the remaining threads sending work to be done to its
associated GPU.

With two-level parallelism the two types of parallelism are exploited. Ex-
plicit parallelism is used to process the structural components (for all loop)
and implicit parallelism is used in the solution of the systems associated to
the terminal (line 2) and to the structural components (line 5). So, to fully
exploit the parallelism offered by up-to-date computational nodes composed
of multicore CPU+multiGPU, the number of threads to work with in the for
all loop must be selected together with the number of structural components
to be solved in multicore CPU or GPU and the number of threads used in the
computation of the linear algebra libraries.

3 MBS Simulator

How the MBS simulator works is briefly explained here, with topological struc-
tures similar to that of the Stewart Platform. The size and shape of the ma-
trices and the number of structural groups can be varied to simulate more
complex structures and various types of coordinates. Some parameters can be
varied to analyze the kinematics of the system (Table 1). There are iteration
and MBS parameters:

Table 1 Iteration and MBS parameters

parameter description

Iteration parameters
tEnd maximum time of simulation
tIncr time increment between iterations
nintIter number of internal iterations
MBS parameters

numSG number of Structural Groups
dimT dimension of the matrix of the final body (dimTXxdimT)
dimSG dimension of the matrix of each structural component (dimSGXxdimSG)

sparsity sparsity percentage of the matrices generated

— The iteration parameters are used to control the iteration properties of
the analysis of the MBS. The number of iterations of the external loop
in Algorithm 1 indicates how many times the whole MBS is solved (each

6 J.-C. Cano, J. Cuenca, D. Giménez, M. Saura-Sanchez, P. Segado-Cabezos

solution corresponds to different values of the z independent coordinates),
and is determined by parameters tEnd and tIncr (number of iterations=
tEnd/tIncr). nIntIter establishes the number of iterations in line 4. Nor-
mally, the number of external iterations is large, while that of internal
iterations is very low (between one and five), but the parameters can be
varied for the simulation of different convergence speeds.

— The MBS parameters determine the structure and size of the MBS. The
solution of the kinematics of the terminal or the structural components has
a cubic cost, so the total cost is

tEnd
O < n (dimT3 + tIntIter * numSG * dimSG3)>
tIncr

for dense problems. For the Stewart Platform, numSG=6, dimT=12 and
dimSG=15, and the sparsity degree is around 70% (the percentage of non-
zero elements in the matrices is 30%). So, the possibilities of exploitation
of parallelism are very limited. This could render the application of im-
plicit parallelism of little interest. On the other hand, only six threads can
be exploited simultaneously with explicit parallelism. But the parameters
enable us to use the simulator for the study of larger systems.

There are additional parameters to determine the way in which the paral-
lelism is applied. These parameters establish the basic linear algebra library
and the number of computational elements (OpenMP threads and number of
GPUs) to be used. They need to be selected properly for low simulation time.

3.1 Desktop application

The simulator worked initially with the information on the parameters, the
scenarios and the decomposition of the MBS in groups provided by the user
in files. But the users of the simulator will be engineers, and a more friendly
environment is advisable. So, a desktop application has been developed, both
for Windows and Linux. A screenshot of the application is shown in Figure 4.
The graphic interface comprises three parts:

— The Toolbar gives access to the functionalities of the simulator. An existing
model can be loaded or a new model can be created. The actual model can
be deleted and its coherence can be checked. When a model is being saved,
its coherence is checked. If it is valid, it is marked for simulation, otherwise
it continues in the edition state. Once a model is marked as coherent it
can be simulated (Execute model). The simulation generates a database
which contains the possible combinations in the execution of the nodes of
the directed graph, and the execution times obtained for each group and
the functions they comprise. This information can be used to determine
how to run future simulations.

Parallel MBS Simulation based on Group Equation 7

[(E ome et [B oot [B oo mos | B cvoer_] e | oo | P | ©mew | |o Toolbar
Groups @ | Scenarios @) | Routines (5) | Seripts (2) | Traiming scenario T conta |
selectacrou: [[~] En.Cooecaen iroms
Group name I | matrices
P [Parameter MatixName index | [Matrix vame
Routine: [lone Group__| = a
‘ Y id ‘ M2
3
Group Name I] 9 Work Area hia
[0
~1__Aga Delete unused Delete
T Auto layout
= _ =~ Rotate|
—_— ‘, N T “ Zoom to Fit
ar aa e s e a7 @, zoom 1n
soLvESYS soLvESYS soLvEsYs soLvEsYS soLvEsYs SoLvESYS <
e = = ; 5 oL . zoom out
—_—— — [] show scenarios
T
= "
——r 9 Graph View
MATADD
MATSUB
MATCHG
>

Fig. 4 Screenshot of the desktop application of the simulator (group representation of the
Stewart Platform on the right)

— The Work Area maintains the information of the elements managed by the
user for a particular model. The groups (nodes) of the MBS being simulated
and their connections are established. The Figure shows the graph for the
Stewart Platform, with eight groups. The routines executed in each group
are also introduced (for example, G8 comprises routines MATMUL, MATADD,
ete, while linear systems are solved in groups G2 to G7). The scenarios rep-
resent the input for the simulation (matrix sizes and sparsity degree). The
values of the algorithmic parameters the simulator will work with to obtain
the best configuration are established through the Scripts editor. These
parameters are the maximum number of OpenMP threads, the number of
GPUs and the basic libraries to experiment with. The general configuration
(number of simulations, model to be simulated, location of the simulator
and the database, etc) of the simulator is edited through Config.

— The Graph View shows the graph of the model that is being edited by the
user. Is is updated dynamically while new scenarios, groups, basic routines,
etc, are being included.

The simulator has four execution modes, which can be established in the
configuration:

— In normal mode, executions are carried out for each possible combination
of the parameters specified in the script. It supposes a long execution time,
but the results are stored in the database, and the user can consult it to
decide how to run similar simulations in the future.

— In the simple mode the user provides the values of the algorithmic param-
eters to experiment with.

8 J.-C. Cano, J. Cuenca, D. Giménez, M. Saura-Sanchez, P. Segado-Cabezos

— In training mode each of the basic functions in the model are executed,
for each scenario and script, and the results are stored in an autotuning
database.

— In autotuning mode the simulation is carried out with the algorithmic
parameters which give the lowest execution time according to the results
obtained in the training. This mode aims to obtain low simulation times
without the huge execution time the normal mode has, even for small
DAGs.

4 Experimental Results

The simulator can be used to analyze the application of parallelism in the
kinematic analysis of MBS, helping to obtain the best combination of the al-
gorithmic parameters for low simulation time. We summarize the results of
some experiments varying the size and the structure of the problem, with
the smallest configuration corresponding to the Stewart Platform, and with
larger configurations to analyze the scalability for larger MBS. The matri-
ces’ sizes range from 12 and 15 (dimT=12 and dimSG=15) to 4000, sparse
and dense matrices are considered (sparsity degrees of 85%, 50%, 30% and
10%), and configurations with more than six structural groups are experi-
mented with. The number of combinations is very large, so the results of the
experiments are summarized in the following subsections, beginning with the
simplest parallelism considered (implicit exploitation of parallelism by call-
ing routines of multithread libraries) and gradually increasing the parallelism
complexity, considering nested implicit-explicit parallelism, CPU-GPU het-
erogeneity and multiGPU computation. Experiments are carried out with two
multicore CPU+ GPUs configurations:

— 24C+GPU is a node with 4 hexa-cores Intel Xeon E7530 with 32 GB of
shared-memory at 1.87GHz, and a GPU Tesla K20c¢ (Kepler architecture)
with 4800 MBytes in Global Memory and 2496 CUDA cores (13 Streaming
Multiprocessors and 192 Streaming Processors per Multiprocessor).

— 12C+6GPU is a node with 12 cores and 6 GPUs. The multicore has two
hexa-cores Intel Xeon E5-2620 with 32 GB of shared-memory at 2.00GHz.
The GPU cards are two Nvidia Fermi Tesla C2075 with 5375 MBytes
in Global Memory and 448 cores (14 Streaming Multiprocessors and 32
Streaming Processors per Multiprocessor) and four Nvidia GeForce GTX
590 with 1536 MBytes in Global Memory and 512 CUDA cores (16 Stream-
ing Multiprocessors and 32 Streaming Processors per Multiprocessor).

For both systems the operating system is Linux (kernel 3.13.0-33-generic
#58-Ubuntu), the CUDA version is 7.5, and the compiler used is Intel FOR-
TRAN version 17.0.1, compilation 20161005.

Parallel MBS Simulation based on Group Equation 9

4.1 Experiments with implicit parallelism on multicore CPU

The exploitation of implicit parallelism is analyzed with the MKL multithread
implementation. The implementations of the dense library LAPACK and of
the sparse library PARDISO are considered to analyze the sparsity degree at
which each library is preferable. The results are compared with those with the
routine MA27 of the Harwell Subroutine Library [6], which is sequential, for
symmetric, sparse matrices and works especially well for small problems. So,
the linear algebra libraries established in the editor of scripts are LAPACK,
PARDISO and MAZ27.

Figure 5 compares the execution time (in logarithmic scale) for small and
large problems, and with sparsity degrees 30% and 85%, and Table 2 sum-
marizes the preferred library for different configurations, with sequential and
parallel execution with 24 threads in 24C+GPU (the GPU is not used).
For small problems, the preferred routine is MA27 (which is sequential) inde-
pendently of the sparsity degree. For larger matrices LAPACK outperforms
MA27, even for sparse matrices if the parallelism is exploited. PARDISO is
best only for very large, sparse matrices, but the parallelism is exploited worse
than with LAPACK.

o large matrix - 30% spartisy . large matrix - 85% spartisy
small matrix - 30% spartisy A TAPACK small matrix - 85% spartisy AT TAPACK
* LAPACK 3.5{%PARDISO s LAPACK 3.5(4PARDISO
< PARDISO 8 MA27 <+PARDISO o8 MA27
8 MA27 518 MA27 |

execution time log(s)

size of terminal matrix size of terminal matrix

Fig. 5 Execution time (seconds in logarithmic scale) with LAPACK, PARDISO and MA27,
for small and large matrices, and for sparsity degrees 30% and 85%, in 24C+GPU

Table 2 Most efficient library when varying the matrix size and the sparsity degree, for
sequential and parallel execution with 24 threads, in 24C+GPU

sequential parallel 24 threads
dimT/spar 10% 30% 50% 85% 10% 30% 50% 85%
12 MA27 MA27 MA27 MA27 | MA27 MA27 MA27 MA27
36 LAP LAP LAP MA27 | MA27 | LAP LAP MA27
60 LAP LAP LAP MA27 LAP LAP LAP MA27
400 LAP LAP LAP MA27 LAP LAP LAP LAP
1000 LAP LAP LAP MA27 LAP LAP LAP LAP
2000 LAP LAP LAP PARD LAP LAP LAP LAP
3000 LAP LAP PARD PARD LAP LAP LAP PARD

10 J.-C. Cano, J. Cuenca, D. Giménez, M. Saura-Sanchez, P. Segado-Cabezos

4.2 Exploitation of two-level parallelism on multicore CPU

The granularity of parallelism is low when only that of the linear algebra
operations is exploited, but the combination of multithread libraries with ex-
plicit parallelism enables the exploitation of coarser parallelism. So, by using
shared-memory with OpenMP in the for all loop of Algorithm 1, parallelism
can be exploited at two levels: explicit OpenMP parallelism and implicit par-
allelism with multithread libraries. The number of threads at each level needs
to be tuned for a particular computational system as a function of the problem
size, the sparsity degree and the number of structural groups. The speed-up
obtained with two-level parallelism is shown in Figure 6, for small and large
problems and when using the LAPACK or PARDISO implementations of MKL
for the basic linear algebra problems. The sparsity degree is 85% and the sys-
tem is 12C+6GPU (the GPUs are not used). The behavior with the two
libraries is different:

. large problem - LAPACK large problem - PARDISO
small problem - LAPACK small problem - PARDISO
5

oW
SRR RN - IR,

speed-up

0.5)
0

size of terminal matrix

Fig. 6 Speed-up with two-level parallelism for 6 structural groups and 85% sparsity de-
gree, for several threads combinations, with MKL implementations of LAPACK (top) and
PARDISO (bottom), in 12C+6GPU

— For small problems the use of OpenMP parallelism alone is a satisfactory
option, especially for PARDISO, with a worse exploitation of the implicit
parallelism.

— The combination of the two types of parallelism increases the performance,
but with the preferred number of threads being dependent on the library.
For large problems, 2 x 6 is preferred for LAPACK, while for PARDISO
the best combination is 6 x 2. This again is due to the better exploitation
of parallelism with LAPACK.

— The two-level parallelism allows us to surpass the limit of the number of
structural groups (six in the example).

Exhaustive experiments were carried out in the two computational systems
considered, with two-level parallelism with LAPACK and PARDISO and with
explicit parallelism with MA27, for six structural groups and several sparsity
degrees, and the number of threads at each level was varied to find the best
combination. Table 3 summarizes the results for sparsity degree 85%. Only
configurations which give the best results for some of the sizes are shown.
Explicit parallelism with MA27 as basic library is the preferred option for

Parallel MBS Simulation based on Group Equation 11

small and medium problems. For large problems, the exploitation of sparsity
with PARDISO together with two-level parallelism with a number of OpenMP
threads equal to the number of structural groups gives the best results. If the
number of structural groups is larger than the number of cores in the system,
it may be preferable to use only explicit parallelism with PARDISO. This is
seen in Figure 7, which shows that in 12C+4+6GPU and for a sparsity degree
of 85% the preferred combination is sequential PARDISO with a number of
OpenMP threads equal to the number of cores. For larger matrices the differ-
ence decreases.

Table 3 Summary of the lowest execution times obtained with two-level parallelism in two
computational systems, for numSG=6, 85% sparsity degree and varying the problem size

numSG=6 12C+6GPU 24C+GPU

dimT dimSG | MA276x1 PARD6x2 | MA276x1 PARD 6 x4

12 15 0.0009 0.0234 0.0030 0.0571

36 54 0.0043 0.0288 0.0060 0.0475

60 90 0.0089 0.0430 0.0132 0.0682

400 400 0.1559 0.4945 0.2728 0.6976

1000 1000 1.6476 2.4988 2.8928 3.5935

2000 2000 10.3387 7.7590 17.5241 10.7895

3000 3000 32.8752 16.732 54.6981 24.8652

4000 4000 76.5881 31.6888 123.6253 52.3393
*2x6/12x 1 *2x6/12x 1
+3x4/12x 1 +3x4/12x 1
B4 x3/12 x 1 B4 % 3/12 x 1
6x2/12x1 6x2/12x1

ORI S - N R
O oW e ol o~

500

size of terminal matrix size of terminal matrix

Fig. 7 Speed-up of OpenMP-+PARDISO parallelism with 12 x 1 threads with respect to
other combinations of OpenMP and PARDISO threads, with 21 (left) and 26 (right) struc-
tural groups, in 12C+6GPU

4.3 Experiments with parallelism on GPUs

Today’s standard nodes normally include GPUs. One of the systems experi-
mented with includes six GPUs of two types, and so there is heterogeneity in
the coprocessors in addition to that of CPU vs. GPU. There are linear algebra
libraries for GPU [1,4], which can be used to implicitly exploit the massive
parallelism of the coprocessors, and CPU+GPU hybrid parallelism can be ex-
ploited with explicit parallelism with OpenMP threads starting multithread

12 J.-C. Cano, J. Cuenca, D. Giménez, M. Saura-Sanchez, P. Segado-Cabezos

or GPU routines to work on the solution of the underlying linear systems. But
starting kernels in GPU comes at a high cost, which means the use of GPUs
for the problem in hand is only of interest for large problems.

The results with MA27 and PARDISO for sparse matrices (sparsity degree
85%) are compared with those obtained with MAGMA in 12C+6GPU (Table
4). The number of structural groups is six, and so 6 x 1 and 6 x 2 threads are
used for MA27 and PARDISO, respectively. For MAGMA, because there are
six GPUs in the node, the best results are obtained with each GPU working
on a structural group, but results with 2 and 3 GPUs are also shown to see the
reduction achieved with the inclusion of more coprocessors. The exploitation
of GPUs is advisable only for large problems and with a large number of
GPUs, and the reduction in execution time is not proportional to the number
of GPUs, which is due to the high management and transference cost of the
GPUs.

Table 4 Comparison of the execution time with CPU (MA27 and PARDISO) and with
GPU (MAGMA), for numSG=6, 85% sparsity degree and varying the problem size

numSG=6 th. OMPxMA27 | th. OMPxPARD MAGMA
dimT dimSG 6x1 6 x 2 2 3 6
12 15 0.0009 0.0234 0.0073 0.0064 0.0064
36 54 0.0043 0.0288 0.0073 0.0066 0.0067
60 90 0.0089 0.0430 0.0326 0.0269 0.0122
400 400 0.1559 0.4945 1.2254 1.1266 1.2620
1000 1000 1.6476 2.4988 2.7287 2.6829 2.2188
2000 2000 10.3387 7.7590 9.2946 7.8085 5.9685
3000 3000 32.8752 16.732 | 23.7600 18.9474 14.0435
4000 4000 76.5881 31.6888 | 48.3116 38.1400 28.2109

4.4 Autotuning preliminary results

The experiments in the previous subsections show that the preferred con-
figuration for low execution time depends not only on the problem size but
also on the basic library, the number of threads at each level and the computa-
tional system. The training and autotuning modes of the simulator are thought
to help the user in the efficient execution of simulations. The simulator can
be trained with all the computational components in the system (CPUs and
GPUs) and the corresponding linear algebra libraries (LAPACK, PARDISO
and MAGMA), and possible combinations of them if CPU and GPU compute
together. MAGMA has two interfaces, CPU and GPU, which differ in the im-
plementation of the routines. In the CPU interface, the LU is computed with
a hybrid algorithm which combines CPU and GPU, but the solution of the
equations system is not implemented for GPU, and is solved through LAPACK
in CPU. In the GPU interface both the LU factorization and the solution of

Parallel MBS Simulation based on Group Equation 13

the system are implemented with a hybrid algorithm for CPU+GPU. Train-
ing is done with the scenario parameters numSG={8, 14, 20,26}, dimT=dimSG=
{1000, 2000, 3000, 4000}, sparsity={50, 70, 85}.

Table 5 compares the execution times with autotuning mode with the low-
est experimental times for other problem sizes (numSG={11,17,23}, dimT=
dimSG ={1500, 2500, 3500}, sparsity={60,80}). MAGMA in its GPU (MA-
G) or CPU (MA-C) interface is always the best option, in some cases in combi-
nation with PARDISO (P+MA). The number of threads at each level changes,
with a larger number of threads for OpenMP, and with the total number of
threads close to the number of cores in the CPU. The autotuning methodology
always selects a combination of PARDISO with MAGMA for large problems
or for large sparsity. The combination selected with autotuning coincides with
the best experimental ones in less than half of the cases, which produces a
mean deviation of the lowest experimental time with respect to that with au-
totuning of around 15%. This deviation is admissible considering that it is
obtained without user intervention.

Table 5 Comparison of the parallelism parameters, library and execution time (in seconds)
with the autotuning methodology and those which give the lowest experimental time for
different validation configurations, in 12C+6GPU

configuration autotuning Optimum experimental
threads threads
numSG dim spar. ExxIm library time | ExxIm library time
11 1500 60 11x1 MA-G 5.47 6x2 MA-G 5.15
11 2500 60 8x1 MA-G 13.24 12x1 MA-G 13.21
11 3500 60 12x1 MA-G 30.05 5x2 P+MA-G 29.28
17 1500 60 6x2 MA-G 7.36 9x1 P+MA-G 6.50
17 2500 60 8x1 MA-G 18.82 10x1 MA-G 18.29
17 3500 60 6x2 P+MA-G 41.96 5x2 MA-G 40.68
23 1500 60 9x1 MA-G 10.11 10x1 MA-C 8.82
23 2500 60 10x1 MA-G 23.88 6x2 P+MA-G 23.25
23 3500 60 6x2 P+MA-G 53.45 12x1 MA-G 52.37
11 1500 80 6x2 MA-C 5.30 6x2 P+MA-G 5.05
11 2500 80 6x2 MA-G 13.32 6x2 MA-G 13.32
11 3500 80 8x1 MA-G 31.35 6x2 MA-G 29.72
17 1500 80 11x1 P+MA-C 7.06 10x1 P+MA-G 6.66
17 2500 80 12x1 P+MA-G 28.07 10x1 MA-G 18.33
17 3500 80 12x1 P+MA-G 68.93 5x2 MA-G 4149
23 1500 80 12x1 P+MA-C 12.40 Ix1 MA-C 9.00
23 2500 80 12x1 P+MA-G 46.16 9x1 MA-G 23.61
23 3500 80 12x1 P+MA-G 126.39 12x1 MA-G 52.38

5 Conclusions and Future Work

This paper presents a simulator for the kinematics of MBS. It can be used
to determine satisfactory configurations of the parallelism parameters (num-

14 J.-C. Cano, J. Cuenca, D. Giménez, M. Saura-Sanchez, P. Segado-Cabezos

ber of OpenMP threads and of GPUs, and basic linear algebra library) for
low simulation time. An autotuning mode is included to help non-expert users
in the selection of the simulation’ configuration. Experiments with a MBS
with the structure of the Stewart Platform show the usefulness of the simu-
lator with different configurations: computational systems composed of mul-
ticore CPU-+multiGPU and several basic linear algebra libraries (LAPACK,
PARDISO, MA27, MAGMA), together with their combinations with OpenMP
through two-level parallelism.

The simulator should be improved in some points. In particular, the auto-
tuning engine needs to be improved and the training time be reduced. Once
the simulator includes appropriate functionality, it will become freely avail-
able. The simulator and the autotuning engine can be adapted to other com-
putational systems, for example, nodes including Xeon Phi coprocessors and
clusters of multicore CPU-+multicoprocessors. The simulator is being applied
to other problems whose computation can be decomposed in DAGs.

Acknowledgements This work was supported by the Spanish MINECO and European
Commission FEDER funds under grant TIN2015-66972-C5-3-R.

References

1. Emmanuel Agullo, Jim Demmel, Jack Dongarra, Bilel Hadri, Jakub Kurzak, Julien
Langou, Hatem Ltaief, Piotr Luszczek, and Stanimire Tomov. Numerical linear algebra
on emerging architectures: The PLASMA and MAGMA projects. Journal of Physics:
Conference Series, 180(1), 2009.

2. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. J. Dongarra, J. Du Croz, A. Grenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK User’s Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1995.

3. Gregorio Bernabé, José-Carlos Cano, Javier Cuenca, Antonio Flores, Domingo Giménez,
Mariano Saura-Sanchez, and Pablo Segado-Cabezos. Exploiting hybrid parallelism in
the kinematic analysis of multibody systems based on group equations. In International
Conference on Computational Science, pages 576-585, 2017.

4. CUBLAS. http://docs.nvidia.com/cuda/cublas/, 2018.

5. Leonardo Dagum and Ramesh Menon. OpenMP: an industry standard API for shared-
memory programming. Computational Science & Engineering, IEEE, 5(1):46-55, 1998.

6. HSL. A collection of Fortran codes for large scale scientific computation,
http://www.hsl.rl.ac.uk/, year=2013,.

7. Intel@© MKL PARDISO. https://software.intel.com/en-us/node/470282, 2018.

8. John Nickolls, Tan Buck, Michael Garland, and Kevin Skadron. Scalable parallel pro-
gramming with CUDA. Queue, 6(2):40-53, 2008.

9. M. Saura, A. I. Celdran, D. Dopico, and J. Cuadrado. Computational structural analysis
of planar multibody systems with lower and higher kinematic pairs. Mechanism and
Machine Theory, 71:79-92, 2014.

10. M. Saura, P. Segado, B. Munoz, and D. Dopico. Multibody kinematics. A topological
formulation based on structural-group coordinates. In ECCOMAS Thematic Conference
on Multibody Dynamics, pages 88-99, June 2015.

11. D. Stewart. A platform with Six Degrees of Freedom. In Institution of Mechanical
Engineers UK, volume 180, pages 371-386, 1965.

