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Abstract

Multibody systems can be divided into an ordered set of kinematically determined modules, known as structural

groups, in order to compute their kinematics more efficiently. In this work a procedure for the kinematic analysis

of any kind of structural group is introduced, and two different methods for their solution in natural coordinates

are presented: the time derivative (TD) and the third-order tensor (3OT) approaches. Moreover, the newly derived

methods are compared in terms of efficiency with a global formulation, consisting in solving the kinematics of the

multibody system as a whole using dense and sparse solvers. Two scalable case studies have been considered: a 2D

four-bar linkage and a 3D slider-crank mechanism with an increasing number of constraint equations. The results

show that the TD approach performs better in all cases with speed ups in a range of 27 to 61 times faster in 2D, and

of 2.3 to 3.7 times faster in 3D with respect to the global sparse solution.
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1. Introduction

Computational kinematic analysis plays a fundamental role in the study of mechanical systems: first, kinematics

is necessary for multibody dynamics; second, kinematics is frequently employed as a first stage in the design process

of mechanical systems (dimensional and/or kinematic synthesis); finally, sometimes, the interest of the multibody

system (MBS) is purely kinematic (position analysis, range of movement, transmission angle, etc.).5

Most of the multibody systems of interest have typically connections (joints) between their bodies, in such a

manner that the moving capabilities (the mobility) of the whole MBS is reduced compared to the mobility of the free

bodies. The set of coordinates chosen to model the system has to completely (even if not always uniquely) define the

position and orientation of all the bodies in the multibody system. Moreover, for kinematics, a number of coordinates

equal to the mobility of the system need to be driven in order to be able to calculate the positions and orientations of10

all the bodies.

1.1. Global and topological approaches

The mathematical model of the MBS can be generated in dependent or independent coordinates. Related to

this two possible types of coordinates two different families of methods arise in the kinematic analysis of multibody

systems: global and topological. Global methods express the position of each body independently of the rest of bodies15

of the system, while topological methods express the position of each body by considering the loop (open or closed)

to which the body belongs. Thus, topological methods based on independent coordinates are better for open kinematic

chains, where the positions, velocities and accelerations of the bodies can be easily expressed analytically by means of

these coordinates, but they do not work well in MBS with closed-loops since the equations which define the position
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and orientation of the bodies of the MBS in terms of the independent coordinates are quite complex and, moreover,20

the solution is normally not unique. In that case, methods based on dependent coordinates are preferred.

The key-point in global formulations is that the set of constraint equations and the rest of matrices needed for the

kinematic analysis of the MBS are systematically obtained regardless of the topology of the MBS (open or closed

loops), which turns them into a very good candidate for the automatic modeling of multibody systems [1–4]. Also,

the constraint equations are really simple when compared to the ones obtained when using relative coordinates and25

can be programmed and re-used in specific subroutines. An additional advantage for the global approach with natural

coordinates is that the size of the problem is smaller than when using reference point coordinates, specially in spatial

MBS [5].

One of the main drawbacks of the global formulation is that the number of coordinates, constraint equations and the

size of any other matrix involved in the kinematic analysis increases accordingly with the complexity of the problem30

and the efficient solution of the position, velocity and acceleration problems is a permanent field of research. The use

of different linear algebra sparse solvers combined with parallel computing capabilities of new processors, as well

as substructuring techniques that divide the MBS into subsystems are currently being studied in the literature. Two

examples of the later are the subsystem segmentation in which the MBS is divided into smaller subsystems attending

to their functionality [6] and the divide and conquer algorithms, allowing the distribution of the computations between35

several processing cores [7–12].

Topological approaches require a detailed study of the kinematic structure of the MBS to generate the kinematic

and dynamic equations which define a MBS. To that end, different methods have been developed: vector-network

models, independent open and closed loops identification and modular or component-based decomposition.

Vector-network models have been introduced in 2D MBS [13, 14] and, together with the linear graph theory,40

efficiently applied to extend the dynamic analysis to a 3D single body [15], and more complex particle systems

[16–18] as well as 3D MBS formed by rigid bodies in one closed-loop [19–21] or multiple closure-loops [22–25],

modeled with relative and absolute coordinates [26], also in MBS including flexible bodies [27, 28] and in control

[29] or optimization problems [30]. Vector-network models represent multibody systems by means of a detailed graph

exploited by linear graph theory to generate the equations of motion of multibody systems.45

In topological approaches based on the identification of independent open and closed-loops, the topology of the

multibody system is represented by a simplified topological graph or the corresponding incidence matrix; linear graph

theory is also used, but only from a connectivity point of view. These approaches have been applied in different ways:

one of them is to obtain closed-form solutions for the kinematics of single-loop and multiple-loop chains [23, 31].

These closed-form solutions have been successfully applied to obtain and solve symbolic forms of the equations of50

motion in dynamics of multi-loop mechanisms [25]. An alternative approach are the so called recursive formulations,

which make use of an incidence matrix to identify open and closed-loops; they open the closed-loops obtaining a

spanned tree whose kinematics can be solved from the base to the leafs by means of kinematic relations between bodies

depending on the joints connecting them and loop-closure equations which relate the system coordinates [25, 32–40].

And a third way is to use the topology of the independent open and closed-loops to manipulate the elements in the55

Jacobian matrix of the constraint equations searching for a reduction in the computational cost of the solution of the

complete MBS [41, 42].

Finally, strategies used to formulate and solve the kinematics and dynamics of MBS based on modular decompo-

sition of MBS have also evolved from the basic concept of an Assur group, introduced by Assur at the beginning of

the twentieth century, to our days in which the efficiency of this approach has been studied in parallel architectures of60

high performance computers (HPC) [43]. The topological method based on a modular approach divides a MBS into

an ordered set of kinematically determined chains (KDC), known as modules, by applying certain mobility criteria.

These modules define the kinematic structure of the multibody system and the kinematics of the whole MBS can be

solved by solving each one of the modules in the order defined by its kinematic structure.

A detailed study of the aforesaid topological formulations based on vector-network models and independent open65

and closed-loops is out of the scope of the present work. Our work will focus in modular decomposition of MBS

introducing a systematic methodology to model and solve the kinematics of a general module using two different

formulations in natural coordinates and then we will apply this methodology to the kinematic analysis of two scal-

able MBS which will allow us to compare the efficiency of these two formulations to a global one, also in natural

coordinates.70
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Figure 1: Different topologies of a four-bar linkage: a) One closed-loop; b) Two structural groups: SGI and SGII.

1.2. The modular approach

Some of the global and topological approaches described before for the kinematic and dynamic analysis, need

to solve simultaneously the full set of constraint equations of the MBS. In particular, this happens in the subsystem

generation, divide and conquer and independent open and closed-loops methods, because the substructures obtained

with them do not need to be kinematically determined chains (KDC). Thus the topology of the MBS is not completely75

exploited in these methods. On the contrary, kinematic substructuring methods make a better job exploiting the

topology of the system, since they identify independent KDC which can either be solved in a certain order [22–

26] or be used to efficiently organize the elements of the Jacobian matrix of the constraint equations [41, 42]. The

kinematic substructuring methods have been developed in two directions: the linear graph algorithms (LGA) identify

independent open and closed-loops KDC of reduced size; and the mobility-based algorithms (MBA) in which KDC80

are obtained by means of algorithms based on mobility criteria [44–51].

In the methods based on linear graph algorithms, the obtained KDC (known as modules) do not always match the

number and size of the ones that can be obtained by the MBA methods (also known as modules, structural groups or

components) which have the minimum possible size. A very simple example is shown in Fig.1 in which the four-bar

linkage shows one single closed-loop in LGA, but it has been divided into two structural groups: SG-I and SG-II of85

reduced size using MBA methods. As the MBS becomes more complex, the differences between LGA and MBA

algorithms are more evident. Moreover, the use of modules in MBA have additional advantages, not only in the

analysis of multibody systems but also in dimensional and topological synthesis, which make us focus our interest in

this approach. The concept of ’module’ as a reference to a KDC is used in both LGA and MBA methods with different

topological requirements. In this document the word ’module’ will be used as a synonym of structural group (SG):90

KDC that can not be divided into smaller ones. This concept is the basis of the modular approach.

The modular approach was first introduced by Assur [52] it and has been in permanent development and discussion

until our days. In this approach (also known as ’dyad’, ’group equations’ or ’component’ approach) the kinematic

structure obtained by means of MBA, informs us about the set of modules (or accordingly: dyads, structural groups

or components) in which it can be divided, the sequence in which these modules have been obtained and how they95

are interconnected. Since all structural groups are KDC, the kinematic analysis of the whole MBS can be achieved by

solving each one of them in the specific order defined by its kinematic structure.

Different MBA methods are employed in the literature to obtain the kinematic structure of a MBS and to solve the

kinematics of the obtained structural groups. In most of these works the obtained kinematic structure is defined by an

ordered set of SG of two types: primary elements (PE) defined as one driving crank or slider that moves with respect100

to the frame, and Assur groups (AG) of class k defined as 2D kinematic chains with lower kinematic pairs, a number

of Nm = 2k bodies and null mobility. A dyad is an AG of class k = I and, by combining how these two bodies can

be connected among them and to other bodies of the MBS with revolute (R) or prismatic (P) joints, different types of

dyads can be obtained: RRR, RPR, RRP, PPR, PRP, PPP. In what follows we will refer as basic multibody systems to

those 2D ones which can be divided into one or more PE and a number of dyads, but not AG of larger class.105

Modular solutions for basic MBS in which the user must obtain the kinematic structure based on experience

have been proposed in [44] and [45]. Both authors offer closed-form solutions for a short list of dyads; they use
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trigonometric relationships for the position problem and vector algebra for the velocity and acceleration analysis. In

[46] basic MBS are solved with a modular program (the Linkage Analysis Program -LAP-) and the possibility to

extend this philosophy to meshing gears, belt/chain drives and cam routines is discussed.110

Basic MBS are also studied in [47] but these authors introduce a conceptual algorithm based on mobility criteria

to obtain the kinematic structure of 3D MBS searching for single loop determined chains (SLDC) with zero mobility.

They also apply previous developments to obtain a closed-form solution for the closure equations for an SLDC. A

different MBA for basic MBS is introduced in [48] which exhaustively searches for PE and AG structural groups

of a prescribed kind (from a library of nine defined modules) so that the number of PE modules coincides with the115

mobility of the MBS and all bodies have been assigned to AGs. This author also introduces the concept of floating

drivers to solve basic MBS in which the drivers do not actuate over independent coordinates. In those cases the

use of the predefined modules is possible by calculating the values of the independent coordinates, their velocities

and accelerations in a previous additional stage. An analysis program (CADME) is introduced and its main features

compared to other programs based in a similar modular approach: SIMPLA, CRANMEC, N.N. KIDYAN but no120

evidence of its efficiency or precision is reported. This author assumes without providing any proof a low efficiency

of his approach on 3D modules compared to a global approach.

In [49] the kinematics of basic MBS are also solved using a closed-form solution for a short number of dyads in

which a linkage can be automatically divided. An optimization method is introduced to transform non-dyad linkages

(those that can not be divided into dyads) into a dyad one, so that their kinematics is solvable with accurate results.125

The original concept of structural group: primary elements (PE) or Assur group of class k (AG) was extended in

[50] to any kinematically determined chain. With this new concept, the kinematic structure of any planar or spatial

MBS can be obtained and in [53] we propose a computational method that systematically divides into KDC any

planar MBS with different types of kinematic pairs (lower and higher) and any number and distribution of drivers.

This method has also successfully been expanded to 3D MBS [54]. However, the kinematics of these new conceptual130

and more complex 2D and 3D structural groups have not been studied in the literature neither with closed-form nor

with iterative solutions.

The modular approach using PE and dyads has also been applied by other authors in the fields of: dynamics

of rigid bodies with open loops [55], single-closed-loop rigid body dynamics [56], basic MBS with multiple loops

[57, 58] and one-loop flexible MBS [59, 60]. Although no references are made in these works about how to obtain135

the kinematic substructures of a MBS, except in [60], it is interesting to note that not only in kinematic analysis, but

also in dynamics of MBS the matrices associated to specific structural groups can be used to construct the equations

of motion of the MBS.

From the literature review it can be concluded that the modular approach is a useful and efficient tool to solve

basic MBS by dividing them into simpler KDC whose solution can be previously obtained in closed-form or iterative140

methods. And not only in kinematic analysis, but also in a broad field of applications in multibody dynamics. How-

ever, these solutions have been obtained in all cases in relative coordinates for one-DOF, 2D basic MBS formed by

one PE and one dyad whose kinematic solution can be obtained in closed-form due to their simplicity.

The objective in this work is to develop a systematic method which formulates the kinematic solution of any type

of KDC regardless of its topology (2D or 3D) number of bodies, type of joints, and number of DOFs, being the use145

of natural coordinates the best candidate for such task. It would be also of interest to compare the efficiency of the

proposed modular approach to the global solution of different 2D and 3D scalable multibody systems; that is, without

kinematic substructuring.

In this section, a review of the literature of different topological formulations focused on the modular approach

and the motivation of the present study has been established. The rest of the paper is organized as follows: section150

2 introduces the global formulation for the kinematic analysis of MBS. This formulation will be used as a basis to

develop the kinematic analysis of a module and also to solve the kinematics of the proposed case studies under a

global approach. Section 3 introduces the concept of kinematic structure of MBS and the kinematic formulation of

a structural group under two approaches: the time derivative and the third-order tensor approach. Section 4 defines

two case studies which will be used to evaluate the efficiency of the proposed methods and the algorithms that solve155

the kinematics of an MBS using both global and modular approaches. Section 5 introduces and discusses the results

derived from the implementation of the proposed methods and algorithms, and section 6 gathers the main conclusions

obtained from this work and introduces new developments to be accomplished in the future.
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Figure 2: Four bar linkage modeled using different sets of dependent coordinates.

2. Kinematic formulation of MBS: Global approach

It was already mentioned in section 1 that different approaches use different sets of coordinates. In order to160

illustrate this statement, in Fig.2, different sets global coordinates are used: reference point coordinates Fig.2(a) and

natural coordinates Fig.2(b), the ones of interest for this work; moreover, in Fig.2(c), the same system modeled in

relative coordinates is represented.

Focusing on the computational kinematic analysis, let’s suppose the multibody system (MBS) modeled by means

of a set, q ∈ Rn, coordinates that completely define the position and orientation of all the bodies in the MBS. If all165

the Nm movable bodies in the MBS were free to move in space, the total number of independent coordinates of the

system would be n = BNm, where B is a constant: B = 6 in spatial MBS and B = 3 in planar MBS. However, the

bodies in the MBS have typically connections (joints) between them in such a manner that the moving capabilities

(the mobility) of the whole system is reduced to f degrees of freedom (DOF).

In a global approach the complete set of n dependent coordinates q is used to model the MBS. Two methods can be170

used to solve the kinematic problem: the coordinate partition and the appended driving constraints. In the coordinate

partition method, the set of q coordinates is partitioned into a subset of f independent coordinates qi and a subset of

m dependent ones qd. Independent coordinates and their time derivatives are evaluated before the dependent ones, at

any instant of time, by means of a set of driving constraintsΦD which relate the independent coordinates with the time

variable. Then, the dependent coordinates are calculated by solving the corresponding constraint equationsΦ(q, t).175

In the appended driving constraints method, the values of the independent coordinates are calculated together with

the values of the dependent ones by appending the driving constraintsΦD(q, t) to the set of rigid-body and kinematic

constraint equationsΦ(q, t):

Φ(q, t) = 0

ΦD(qi, t) = 0
(1)

It will be assumed hereafter a compact form of the set of constraints Φ(q, t) which contains all the kinematic

and the driving (rheonomous) constraints. Then, if the coordinate partition method is used, it is supposed that, at180

any instant of time, the independent coordinates will be evaluated before the dependents by means of the ΦD driving
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constraints. Otherwise, both the dependent and the independent coordinates will be solved simultaneously by means

of Eq.(1).

Natural coordinates, the ones of interest for the present work, are cartesian coordinates of body-fixed entities

(points and vectors) used to sistematically model multibody systems. In the case shown in Fig.2(b) this type of185

coordinates are used to model the four-bar linkage and for each one of the Nm movable bodies a scalar condition of

rigid bodyΦRB has to be imposed:

ΦRB = rT
i jri j − L2

i j = 0 (2)

where i and j are two points belonging to the considered rigid body and Li j is the constant distance between them. In

addition, for some kinematic joints, additional constraint equations must be also appended, rising the number of scalar

constraint equations up to five. If one driving constraint is defined for the independent coordinate (i.e. x1 − 5t = 0),190

then the kinematics of the system has been completely defined or kinematically determined. For more details on

modeling with natural coordinates, see [61].

Once the MBS has been modeled using the selected type of coordinates, all these coordinates will be related

between them by means of the corresponding set of constraint equations:

Φ(q, t) = 0 (3)

For the mechanism shown in Fig.2.b the dependent coordinates are q =
[

x1 y1 x2 y2 x3 y3

]

, and the corresponding195

constraint equations:

Φ =







































rT
1A

r1A − L2
1A

rT
21

r21 − L2
21

rT
3D

r3D − L2
3D

r21r3D − L21L3D cos β
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
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









= [0]6×1 (4)

Eqs.(4) form a set of constraint equations that allows us to calculate five coordinates from q when the value of the

remaining one is known.

In order to solve the position problem, at each time step the f independent coordinates and their first and second

time derivatives: qi, q̇i, q̈i are evaluated, and then, the m dependent coordinates qd can be calculated by means of the200

Newton-Raphson numerical iterative method:

(

Φqd

)

k−1

(

qd
k − qd

k−1

)

= −Φk−1 (5)

whereΦqd represents the Jacobian matrix of the constraint equations with respect to the m dependent coordinates. The

elements of the Jacobian matrix can be systematically obtained and appended for each kind of constraint equation;

For example, for the constraint equationsΦRB in Eq.(2), one obtains:

ΦRB
qd =

[

dΦRB

dqd

]

1×m

(6)

Once the position problem is solved, at each time step, the dependent velocities can be obtained by deriving the205

constraint equations at position level Eq.(3) with respect to time. Then, the resulting system of linear equations for

velocities can be solved by using again the coordinate partition method:

Φ̇(q, t) = 0 (7a)

Φqd q̇d +Φqi q̇i = −Φt (7b)

Φqd q̇d = −
[

Φqi q̇i +Φt

]

(7c)

210
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In Eq.(7c),Φqi andΦt represent the Jacobian matrix of the constraint equations with respect to the f independent

qi coordinates and the time t respectively. For the constraint equation Eq.(2), one obtains:

ΦRB
qi =

[

dΦRB

dqi

]

1× f

(8)

Finally, the acceleration problem is solved by deriving again the constraint equations at velocity level Eq.(7a),

with respect to time:

Φ̈(q, t) = 0 (9)

By means of the coordinate partition method, the dependent accelerations can be expressed in terms of all the215

velocities q̇ and the independent accelerations q̈i as:

Φqd q̈d +Φqi q̈i + Φ̇qq̇ + Φ̇t = 0 (10a)

Φqd q̈d = −(Φqi q̈i + Φ̇qq̇ + Φ̇t) (10b)

In Eq.(10b), the column matrix Φ̇qq̇ is obtained as a matrix vector product, where the matrix Φ̇q is obtained as

the time derivative of the Jacobian matrix of the constraint equations differentiated with respect to the complete set q

of coordinates, and their velocities q̇ are known from the velocity stage of the analysis.220

3. Kinematic formulation of MBS: Modular approach

To solve the kinematics of a multibody system with a modular approach, the first step consists of obtaining the

kinematic structure of the MBS, which informs about how many SG compose the MBS and the specific order in which

these SG have to be analysed. Then, applying the method of group equations to each one of the SG in the specific

order they have been obtained, the kinematic analysis of the whole MBS is achieved.225

3.1. Kinematically determined chains (KDC)

From the theory of mechanism and machines, it is known that the mobility Lc of an holonomous kinematic chain

defines its number of degrees of freedom (DOF), which can be calculated, in general, as:

Lc = BNm −

B−1
∑

k=1

ekPk (11)

where: B has already been defined, Nm represents the number of movable bodies in the kinematic chain, Pk is the

number of kinematic pairs of grade k (DOF allowed between two connected bodies), and ek is the DOF removed by a230

kinematic pair of grade k (ek = B − k). In Pk both internal and external kinematic pairs must be considered. Internal

kinematic pairs are those formed between bodies from the same kinematic chain, whereas external kinematic pairs

are those formed between two bodies from different kinematic chains. Equation Eq.(11) is valid for most kinematic

chains, except for those in which well-known special topological or kinematic conditions appear (i.e. pure rolling).

We will restrict ourselves to the study of holonomic kinematic chains in which Eq.(11) apply.235

The mobility f of a MBS is calculated using Eq.(11) as if it were formed by an unique kinematic chain. Then,

if the set of independent coordinates qi ∈ R f are defined by means of driving constraints, the MBS is kinematically

determined, as defined in section 2. These independent coordinates are also known by different authors as driven

coordinates or input motions of the MBS.

In the modular approach, MBS are studied as a combination of kinematically determined chains (KDC): kinematic240

chains that have their Lc DOFs defined by a subset of nc = Lc out of the qi driven coordinates. As an example, Fig.1(a)

shows a four-bar MBS of mobility f = 1 and, in order to be kinematically determined, one independent coordinate

must be driven (i.e. qi = Ψ1). The same driven coordinate is considered in Fig.1(b) but, in this figure, the MBS is

composed of two kinematic chains: SG-I and SG-II whose mobility are LcSG−I = 1 and LcSG−II = 0 respectively. The

first kinematic chain SG-I is a KDC as one driven coordinate, Ψ1, from qi is considered, and ncSG−I = LcSG−I. The245

second kinematic chain SG-II is also a KDC as zero driven coordinates from qi are considered and ncSG−II = LcSG−II.

Dividing a MBS into an ordered set of KDCs is the main objective of the structural analysis theory and, as the result

of such process, the kinematic structure of a MBS is obtained.
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3.2. Kinematic structure of a multibody system

The theory of structural analysis defines a structural group as a KDC (nc = Lc). If a structural group (SG) has250

neither excessive constrains, nor additional DOF due to special geometric considerations, it is defined as a normal

SG [50]. Furthermore, one normal SG which cannot be split into other normal SGs of smaller number of bodies are

denominated simple SG. Then, the kinematic structure of a MBS is defined as an ordered set of simple SG in which

a MBS can be divided; this division is not unique and depends on the topology of the MBS and the selected driven

coordinates of the MBS.255

Multibody systems can be both divided into or built from an ordered set of simple SG. By combining Eq.(11) and

the condition of simple SG (nc = Lc), we can obtain the generation principle of mechanisms (Eq.(12)), which is the

necessary condition for any kinematic chain to be a simple SG.

S c − nc = B(P − Nm) (12)

where S c is defined as the number of DOF allowed by the P kinematic pairs formed by the Nm mobile bodies of

the kinematic chain, and nc is the number of the input motions (out of qi) that are present in the kinematic chain. In260

order to apply Eq.(12) correctly, the parameter S c is calculated as:

S c =

B−1
∑

k=1

kPk (13)

and it must be considered that, in Eq.(13), Pk refers to all internal kinematic pairs and, from the external ones,

only those with a directed edge in the structural graph, as it will be explained later.

The generation principle of mechanisms (Eq.(12)) can be applied to obtain the kinematic structure of a MBS by

means of graph-analytical [50, 53] or computational [53] methods. Due to its simplicity, the graph-analytical method265

is introduced here and applied, as an example, to the four-bar linkage shown in Fig.3(a). For a computational algorithm

that automatically obtains the kinematic structure of planar MBS, see [53].

In the graph-analytical method, the structural graph represents the topology of the MBS by means of graph theory

elements. There are many forms in which the topology of a MBS can be represented by a structural graph, and the

most frequently used in the literature are discussed in [53]. For the purposes of an efficient structural analysis, we use270

the one shown in Fig.3(b): vertices (1 to 4) correspond to bodies, and bodies that form a kinematic pair are connected

by a number of edges (thin lines) equal to the degree k of the kinematic pair. Moreover, a number of thin lines equal

to the driven coordinates in a kinematic pair become bold lines, which are known as root edges. In the example, lower

kinematic pairs (k = 1) connect bodies: (1 − 2, 2 − 3, 3 − 4, 1 − 4), and (1 − 2) is a root edge because the relative

motion it represents (θ1) is a driven one.275

The structural analysis starts by removing the frame from the structural graph. Since the frame is not allowed to

move, all the relative motions between the frame and the bodies attached to it must be considered as DOF assigned to

the corresponding bodies (2 and 4) by means of directed edges, as shown in Fig.3(c). Any body that receives DOF,

from the frame or from other bodies in a later stage of the structural analysis, becomes a candidate to form a structural

group. If one candidate satisfies Eq.(12) then it is a SG.280

By considering Eq.(13) and the fact that each thin and bold line identifies one DOF in the structural graph we

rewrite Eq.(12) as:

Lth = B(P − Nm) (14)

so that if the left hand side of Eq.(14) equals the right hand side, the kinematic chain is a simple SG. Recall that,

in Eq.(14), P is the number of kinematic pairs in the kinematic chain: internal kinematic pairs and, from the external

ones, only those with a directed edge and Lth is the number of thin lines that corresponds to these P kinematic pairs.285

With the considerations made above, and with the support of the structural graph, the kinematic structure of the

MBS is obtained in a very simple manner, as depicted in Figs. 3(c) to 3(f), following four basic steps:

Step 1: Frame (body 1) isolation and DOF assignment (Fig.3(c)). The DOF of the kinematic pairs between movable

bodies (2, 4) and the frame (1) are assigned to the former ones. These bodies become candidates to be a SG.
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Figure 3: Four-bar linkage. a) Kinematic graph. b) Structural graph. c) to f) Steps to perform structural analysis through its structural graph. g)

Structural diagram.

Step 2: Search for a SG from shorter to larger length. Each one of the candidates is a kinematic chain that has to290

satisfy Eq.(14) in order to be a SG. In Fig.3(c), the candidate of the kinematic chain {4} is a single body

(Nm = 1) that participates in one directed external kinematic pair 1 − 4 and zero internal kinematic pairs,

so P = 1. Note that the edge 3 − 4 is neither an internal pair nor an external directed one, so Lth = 1 and

Eq.(14) is not fulfilled as 1 , 3(1−1) and {4} does not form SG. Then, candidate 2 is studied (Fig.3(d)). This

kinematic chain {2} only participates in one directed external pair 1 − 2 which is a root edge, then: Nm = 1,295

P = 1 and Lth = 0. Thus, for this body it can be found that Eq.(14) is satisfied and this body is a simple SG.

Step 3: Reassign DOF. If a kinematic chain forms a SG, the DOF of its non directed external pairs are assigned to

the bodies of the corresponding external pair. In the example, body 2 is a SG and assigns the DOF (2 − 3) to

body 3, which now becomes a new candidate (Fig.3(e)). There are no more DOFs assignments.

Step 4: Turn to Step 2 until the complete kinematic structure of the MBS is obtained. Bodies 3 and 4 are candidates.300

Kinematic chains of only one candidate {3} or {4} does not satisfy Eq.(14) as Lth = 1. Then, larger chains

must be considered. Starting from a candidate, e.g. body 3, the chain is expanded by selecting another body

(candidate or not) that forms a kinematic pair with the selected candidate. Chain {3, 4}, whose parameters

are: Lth = 3; Nm = 2; P = 3 satisfies Eq.(14) and therefore it is a simple SG (Fig.3(f)).

Structural diagram. The kinematic structure of a mechanism is graphically represented by its structural diagram305

Fig.3(g). It is composed by as many circles as SG define the kinematic structure plus one, corresponding to the

frame, which is identified with the number 0 in it. The two parameters inside each circle are (Nm, nc). An arrow

joins two circles if any of their bodies form an external kinematic pair, and it is directed in the same direction as the

DOF assigned during the structural analysis, showing the order in which the SG have been obtained and dictating the

sequence in which their kinematics have to be solved. In the four-bar linkage, the frame assigns DOF to bodies 2 and310

4, and body 2 assigns DOF to body 3. This means that to solve the kinematics of the whole MBS, first the kinematics

of SG {2} must be solved and then, the kinematics of SG {3, 4}.

Any kinematically determined MBS can be divided into SG regardless its topology and mobility. Different cases

have been studied for 2D MBS with lower and higher kinematic pairs in [53] and an extension of this computational

method to 3D MBS will be presented in a separated paper. Moreover, the kinematic structure of a MBS which satisfies315

Eq.(11) is unique for a given set of independent coordinates qi .
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Figure 4: A planar SG formed by two bodies {i, j}, with one internal kinematic pair and two external ones: { f , i}, { j, k}. Independent group

coordinates: ~rA and ~rB are known from previous SG and dependent group coordinates: ~rC are to be determined.

3.3. Kinematic formulations of a structural group

The kinematic analysis of a MBS can be carried out by solving, at each calculation step, the kinematics of each

one of its SG, in the specific order defined by its kinematic structure. One of the main advantages of the topological

formulation based on group equations is that the kinematic analysis of any SG can be programmed in specific sepa-320

rated (reusable) subroutines, whose writing can be standardized following a few steps as introduced in this section.

The kinematic analysis of any SG deals with the solution of the position, velocity and acceleration problems of the

corresponding subsystem. In this section, the kinematic analysis of a general SG (Fig.4) is described. Then, two

different approaches for the solution of the acceleration problem are introduced: the first one uses the time derivative

of the Jacobian matrix of the group equations and, in the second one, the same Jacobian matrix is derived with respect325

to the vector of independent coordinates of the SG.

A. Position problem. Fig.4 shows a planar SG formed by two bodies {i, j} linked at point C (internal kinematic pair),

which are linked to other two different bodies f and k, forming two external kinematic pairs { f , i} and { j, k}. This

structural group is known as 3R, because of its three revolute kinematic pairs. Since the kinematic chain {i, j} is a SG,

bodies f and k must belong to other SG previously obtained or to the frame. Without loss of generality, this SG will330

be used to illustrate the kinematic analysis based on group equations.

The kinematics of any SG can be solved if the appropriate set of group coordinates qSG are selected to modelize

the SG and the corresponding constraint equationsΦ defined.

Identify the group coordinates and parameters. A local coordinate system {ηi, ξi, ζi}, {η j, ξ j, ζ j} is attached to each

body in the SG and the appropiate set of group coordinates that defines the kinematic chain is selected. In this335

paper, only natural coordinates will be considered, although other types of coordinates: reference point or relative

coordinates can be employed.

When modeling a structural group in natural coordinates, points and vectors must be considered so that all their

bodies can be defined as rigid and all the degrees of freedom constrained by their joints are considered. The cartesian

coordinates of the entities that connects the bodies of the structural group to the frame or to bodies of already solved340

structural groups will enter in the subset of independent group coordinates h, and therefore their values are known.

On the other hand, the cartesian coordinates used to define the rigid-body conditions or the constrained degrees of

freedom of the internal kinematic pairs of the structural group, as well as entities needed to solve other SGs in the

kinematic structure, will enter in the subset of dependent group coordinatesϕ. Both subsets of coordinates form the set

of group coordinates qSG which are related by means of ΦSG, the constraint equations obtained from rigid-body and345

kinematic-pair conditions. Let r and s be the number of dependent and independent group coordinates respectively

and p the number of constraint equations of the structural group and lets see two examples of these sets of group

coordinates.

In the planar structural group of Fig.4 these sets of coordinates are: ϕ =
[

xC , yC

]

and h =
[

xA, yA, xB, yB

]

respectively, and if the values of the h coordinates are known, then the values of the dependent ones can be calculated350

from the rigid-body conditions of bodies i and j.
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For the mechanism shown in Fig.2.b, we have two structural groups. The first one has: qSG =
[

x1 y1

]

and we can

consider: h = x1 known, and ϕ = y1. The rigid-body constraint equation for this SG:

Φ = rT
1Ar1A − L2

1A = 0 (15)

allows us to determine the value of the dependent coordinate.

For the second structural group: qSG =
[

x1 y1 x2 y2 x3 y3

]

; we must consider: h =
[

x1 y1

]

as independent (known)355

and ϕ =
[

x2 y2 x3 y3

]

and the constraint equations are obtained and appended due to rigid-body and kinematic pair

conditions:

Φ =





























rT
21

r21 − L2
21

rT
3D

r3D − L2
3D

r21r3D − L21L3D cos β

r21 × r31





























= [0]5×1 (16)

which is a redundant set of constraint equations that can be solved as introduced in the following sections.

Position problem for the SG. To solve the position problem of any SG, the corresponding group equations that relate

the dependent and independent group coordinates must be defined.360

Φ(ϕ, h, t) = 0 (17)

For the structural group in (Fig.4), only rigid body constraints apply:

Φ(ϕ, h, t) =

[

rT
CA

rCA − L2
AC

rT
CB

rCB − L2
BC

]

= 0 (18)

Then, the Newton-Raphson iterative method is applied to obtain the values of the dependent group coordinates:

(

Φϕ
)

k−1
(ϕk − ϕk−1) = −Φk−1 (19a)

where Φϕ represents the Jacobian matrix of the constraint equations with respect to the dependent coordinates,

whose terms, in SG with a reduced number of bodies, can be obtained in symbolic form (Eq.(19b)).

In the example of the 3R SG from Fig.4, this Jacobian matrix can be obtained in symbolic form as:365

Φϕ =

[

2 (xC − xA) 2 (yC − yA)

2 (xC − xB) 2 (yC − yB)

]

(19b)

In order to reduce the computation time, and depending on the size of the matrices involved in the kinematic

analysis of the SG, the solution of the position problem might be achieved by selecting the most appropriate method:

LU, QR decomposition, or even a direct computation of the inverse of the Jacobian matrix Φ−1
ϕ

. For the 3R SG

considered in Eq.(19b), the inverse of the Jacobian matrix can be easily obtained and used directly in the position

problem although, in most cases, this solution is not the most efficient.370

(

Φϕ
)−1
=

1

χ

[

(yC − yB) − (yC − yA)

− (xC − xB) (xC − xA)

]

(20a)

χ = 2(xAyB − xByA − xAyC + xCyA + xByC − xCyB) (20b)

However, in the most general case, the number of constraint equations of the structural group p exceeds the

number of dependent coordinates r; the Jacobian matrix Φϕ is not square and can not be inverted. Among the

different solutions proposed in the literature, the least square method described in [61] is used in this work. In such

cases, the position problem is formulated as:375

(

ΦT
ϕ
Φϕ

)

k−1
(ϕk − ϕk−1) = −

(

ΦT
ϕ
Φ

)

k−1
(21)

whereΦT
ϕ

is the transpose of matrixΦϕ.
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B. Velocity problem. The velocity problem can be formulated by deriving the constraint equations Eq.(17) with respect

to time and solving the resulting system of linear equations for the dependent velocities.

Φ̇(ϕ, h, t) = 0 (22a)

Φϕϕ̇ +Φhḣ +Φt = 0 (22b)

Φϕϕ̇ = −
[

Φhḣ +Φt

]

(22c)

where the independent group velocities ḣ, the Jacobian matrix with respect the independent group coordinates Φh380

and the partial derivative of the constraint equations with respect to time Φt are known. In the general case, in which

p > r, the velocity problem shown in Eq.(22c) has to be reformulated as:

ΦT
ϕ
Φϕϕ̇ = −Φ

T
ϕ

[

Φhḣ +Φt

]

(23)

Then, dependent velocities ϕ̇ are obtained by using the most appropiate method, depending on the size of the

matrices involved in the analysis. For the 3R structural group, a symbolic form of these Jacobians matrices can be

obtained.385

Φh =

[

−2 (xC − xA) −2 (yC − yA) 0 0

0 0 −2 (xC − xB) −2 (yC − yB)

]

(24a)

Φt =

[

0

0

]

(24b)

Velocity coefficients matrix. Eqs.(22c) and (23) show that the dependent velocities ϕ̇ are obtained as the sum of two

terms: the first one expresses the dependent velocities as a linear combination of the independent ones ḣ and the

second term considers the dependency of the constraint equations with respect to the time variable.

Lets consider the case in which p = r and lets define matrix Kϕh, matrix S and column matrix b as:390

ΦϕKϕh = −Φh (25a)

ΦϕS = I (25b)

b = −Φt (25c)

where matrix Kϕh is known as the velocity coefficients matrix and I ∈ Rr×r is the identity matrix, then these depen-

dencies become more clear:

ϕ̇ = Kϕhḣ + Sb (26)

In very simple SG, not only the Jacobian matrices Φϕ, Φh and Φt, but also the velocity coefficients Kϕh, and the395

column matrix Sb can be obtained in symbolic form. In the example of the 3R SG (where χ is the same as Eq.(20b)):

Kϕh =
1

χ

[

2(xA − xC)(yB − yC) 2(yA − yC)(yB − yC) −2(xB − xC)(yA − yC) −2(yB − yC)(yA − yC)

−2(xA − xC)(xB − xC) −2(yA − yC)(xB − xC) 2(xB − xC)(xA − xC) 2(yB − yC)(xA − xC)

]

(27)

However, in complex MBS the velocity coefficients matrix can not be obtained in a symbolic form, and the solution

of Eq.(26) is less efficient than the system shown in Eq.(22c). In order to solve Eq.(26): first, each column in the Kϕh

matrix has to be obtained by solving Eq.(25a) s times and then, Eq.(26) has to be solved to obtain the dependent

velocities.400
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In the general case, in which p > r, Eq.(23) apply, but the solution given by Eq.(26) might be used by redefining

matrices Kϕh, matrix S and column matrix b as:

ΦT
ϕ
ΦϕKϕh = −Φ

T
ϕ
Φh (28a)

(

ΦT
ϕ
Φϕ

)

S = I (28b)

b = −ΦT
ϕ
Φt (28c)

The velocity coefficients matrix is required to solve the acceleration problem as a part of the third-order tensor405

approach presented in the following section.

C. Acceleration problem. To solve the acceleration problem for the dependent group coordinates, two approaches are

considered in this study: the time derivative approach and the third-order tensor approach.

Option 1: Time derivative approach. The acceleration problem is solved by deriving the constraint equations at a

velocity level Eq.(22c) with respect to time:410

Φ̈(ϕ, h, t) = 0 (29)

Lets define the column matrix qG as the group coordinates matrix, which contains all the ϕ dependent and h

independent group coordinates, and q̇G as the column matrix of group velocities. By means of the coordinate partition

method, the dependent accelerations might be expressed in terms of q̇G and the independent accelerations ḧ. If no

redundant constraint equations exists (p = r) the solution to the acceleration problem is expressed as:

Φϕϕ̈ +Φhḧ + Φ̇qG
q̇G + Φ̇t = 0 (30a)

415

Φϕϕ̈ = −(Φhḧ + Φ̇qG
q̇G + Φ̇t) (30b)

Where Φ̇qG
is the time derivative of the Jacobian matrix of the constraint equations derivated with respect the

group coordinates qG. Once again, the most efficient numerical methods, according to the size of the matrices in

Eq.(30b) must be considered. For the example of the SG in Fig.4, matrix Φ̇qG
q̇G is shown in Eq.(31).

Φ̇qG
q̇G =

[

2 (ẋC − ẋA) ẋC + 2 (ẏC − ẏA) ẏC − 2 (ẋC − ẋA) ẋA − 2 (ẏC − ẏA) ẏA

2 (ẋC − ẋB) ẋC + 2 (ẏC − ẏB) ẏC − 2 (ẋC − ẋB) ẋB − 2 (ẏC − ẏB) ẏB

]

(31)

In the most general case, redundant constraint equations appear (p > r) and Eq.(30b) must be redefined as:

ΦT
ϕ
Φϕϕ̈ = −Φ

T
ϕ
(Φhḧ + Φ̇qG

q̇G + Φ̇t) (32)

Option 2: third-order tensor approach. If the velocity coefficient matrix Kϕh has been obtained at the velocity stage,420

a more involved analysis has to be performed to derive the acceleration equations. Considering that a structural group

is defined by r dependent and s independent group coordinates, and deriving both terms in Eq.(26) with respect to

time, the acceleration problem can be formulated. Lets start with structural groups without redundant constraints:

ϕ̈ = Kϕhḧ +

s
∑

i=1

ḣi

d Kϕh

d hi

ḣ + Ṡb (33)

where the first addend represents the tangential component of the acceleration of the dependent group coordinates, the

last addend corresponds to the rheonomous term, which can be obtained as:425

ΦϕSb = b→ Ṡb = −SΦ̇ϕSb + Sḃ (34a)

ḃ = −Φ̇t (34b)

13



and the intermediate addend in Eq.(33) corresponds to the velocity dependent terms of the accelerations, which

have been obtained applying the chain rule of derivation. In the total derivative of the velocity coefficient matrix Kϕh

with respect to each independent group coordinate (Eq.(33)) the dependency that exist among the dependent group

coordinates with respect to the independent ones must be considered. Introducing the velocity coefficient derivative

Lϕh/hi
(a third-order tensor) as the derivative of the velocity coefficient matrix Kϕh with respect to a given independent430

coordinate hi:

Lϕh/hi
=

d Kϕh

d hi

(35)

Then, the solution to the acceleration problem Eq.(33) can be expressed as:

ϕ̈ = Kϕhḧ +

s
∑

i=1

ḣiLϕh/hi
ḣ + Ṡb (36)

Calculating the velocity coefficient derivatives is the most complicated and time consuming part of this approach.

From the definition of the velocity coefficient matrix Kϕh in Eq.(25a), taking the total derivative of both terms with

respect to the independent group coordinate hi allows us to obtain the definition for the derivative of the velocity435

coefficient as:

dΦϕ

d hi

Kϕh +Φϕ
d Kϕh

d hi

= −
dΦh

d hi

(37a)

ΦϕLϕh/hi
= −

(

dΦh

d hi

+
dΦϕ

d hi

Kϕh

)

(37b)

Using the following notation to express the total derivatives of the Jacobian matrices with respect to the indepen-

dent group coordinate hi:

dΦϕ

d hi

= Φϕ/hi
;

dΦh

d hi

= Φh/hi
; (38)

Eq.(37b) may be expresed as:440

ΦϕLϕh/hi
= −

(

Φh/hi
+Φϕ/hi

Kϕh

)

(39)

If analytic expressions for the elements of the velocity coefficient matrix Kϕh have been obtained, as in the example

of the 3R structural group in Eq.(27), then the elements of the RHS parenthesis in Eq.(39) can also be analytically

obtained to reduce the computational effort during the analysis. As an example, according to Fig.4, the first column

of the (2 × 4) velocity coefficient derivatives Lϕh/xA
of the velocity coefficient matrix Kϕh derivative with respect the

independent group coordinate xA has the following form (where χ is the same as Eq.(20b)):445

Lϕh/xA
=

1

χ

[

(yA − yC )
(

2K2
ϕh

(1, 1) + 2K2
ϕh

(2, 1)
)

− (yB − yC )
(

2K2
ϕh

(2, 1) − 2Kϕh(1, 1) + Kϕh(1, 1)
(

2Kϕh(1, 1) − 2
)

+ 2
)

(xB − xC )
(

2K2
ϕh

(2, 1) − 2Kϕh(1, 1) + Kϕh(1, 1)
(

2Kϕh(1, 1) − 2
)

+ 2
)

− (xA − xC )
(

2K2
ϕh

(1, 1) + 2K2
ϕh

(2, 1)
)

]

(40)

The rheonomous term in Eq.(33) may also be obtained in more general structural groups with redundant constraints

in a similar way, now by deriving Eq.(28b) with respect to time. First we reorganize the equation Eq.(34a) as:

ΦT
ϕ
ΦϕSb = b (41)

and then we derive Eq.(41) with respect to time to obtain Ṡb:

ΦT
ϕ
ΦϕṠb = −

[(

Φ̇
T

ϕ
Φϕ +Φ

T
ϕ
Φ̇ϕ

)

Sb + ḃ
]

(42a)

ḃ = −Φ̇
T

ϕ
Φt −Φ

T
ϕ
Φ̇t (42b)
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Also the velocity coefficients as defined in Eq.(28a) may be derived with respect to the independent group coordi-450

nate hi to obtain the corresponding velocity coefficient derivatives as:

ΦT
ϕ
ΦϕLϕh/hi

= −
[(

ΦT
ϕ/hi
Φϕ +Φ

T
ϕ
Φϕ/hi

)

Kϕh +Φ
T
ϕ/hi
Φh +Φ

T
ϕ
Φh/hi

]

(43)

D. Solve the kinematics of other points of interest. Apart from the dependent group coordinates ϕ, needed to model

each specific SG, the position, velocity and acceleration analysis of other entities of interest (points and vectors)

pertaining to the bodies of the same SG might be necessary. Normally the coordinates of such entities should not be

included in matrix ϕ to keep its size as reduced as possible. If the body is defined, for example, by one point and three455

vectors whose global and local cartesian coordinates are: [r1,V1,V2,V3] and
[

r1,V1,V2,V3

]

respectively, then the

rotation matrix A of that body can be easily computed:

X =





















V1x V2x V3x

V1y V2x V3x

V1z V2x V3x





















(44a)

X =























V1x V2x V3x

V1y V2y V3y

V1z V2z V3z























(44b)

A = XX
−1

(44c)

and then, the global coordinates of any other vector of interest V from this body whose local coordinates are460

known V can be calculated as:

V = AV (45)

Moreover, the kinematics of any other point of interest, P can also be calculated introducing the transformation

matrix T4×4 of the body it belongs:

T =

[

A r1

0 1

]

(46)

Then, making use of the homogeneous coordinates: r
∗
p =

[

x∗p y∗p z∗p 1
]

and r∗p =
[

xp yp zp 1
]

it is straightforward to

calculate the position of the point of interest:465

r∗p = Tr
∗
p (47)

The first and second time derivatives of the transformation matrices A and T can also be calculated provided that

the velocities and accelerations of the cartesian coordinates of the entities that define the rigid body are included in ϕ

and h and, therefore, they are known at any instant of time. Then, the velocity and the acceleration of any point P or

vector V of interest can also be easily calculated by taking the first and second time derivative of Eq.(45) and Eq.(47)

respectively.470

4. Methodology

To study how the two topological formulations based on group equations perform, in terms of computational cost,

two scalable MBS have been studied: the 2D four-bar linkage and the 3D slider-crank mechanism. On the one hand,

scalable MBS allow us to control the number of constraint equations and coordinates that define the MBS and, on the

other hand, the selected 2D and 3D mechanisms show that the topological formulation solves both planar and spatial475

MBS with structural groups of different complexity. Moreover, since the most important difference between the two

topological formulations consists of the way they compute the velocity dependent component of the acceleration, in

order to compare the performance of both topological approaches, a code that performs the operations involved in the

calculation of this component of the acceleration will be launched, controlling the sizes of the sets of dependent and

independent group coordinates.480
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Figure 5: The scalable four-bar linkage is formed by a crank and a number of k dyads. Its kinematic structure is obtained by means of the structural

graph and shown in its structural diagram.

Coordinates 1R Dyad 1: 3R Dyad k: 3R(∀k > 1)

Fixed coord. A(x, y) D1(x, y) Dk(x, y)

Indep coord. θ1 B(x, y) Ck−1(x, y)

Dep coord. B(x, y) C1(x, y) Ck(x, y)

Table 1: Fixed, independent and dependent group coordinates of the structural groups: 1R, the first dyad 3R of the four-bar linkage and the rest of

the k dyads 3R in case study 1.

4.1. Scalable 2D four-bar linkage

The scalable 2D four-bar linkage consists of a fixed frame (body 1), a crank (body 2, AB), and an increasing

number k of dyads that can be added to make this linkage scalable. Each one of these k dyads introduces two bodies:

a rod (body 2k + 1,Ck−1Ck), and a rocker (body 2k + 2, CkDk) linked with an internal rotation joint Ck and attached to

the previous dyad and the frame with two external rotation joints Ck−1 and Dk (Fig.5(a)). All lengths are set equal to485

6 m, except AB = 2 m.

The structural graph and the structural diagram associated to this linkage, obtained applying the methods exposed

in section 3.2, are shown in Figs. 5(b) and 5(c) respectively. Once the frame has been isolated, the kinematic structure

of this MBS is composed by: one SG, named 1R, formed by body 2 and one external rotation kinematic pair {1 − 2},

one dyad {3 − 4}, and a number of k (∀k > 1) dyads, named 3R, formed by two bodies (2k + 1, 2k + 2), whose490

kinematics can be solved in the order specified by the parameter k.

The constraint equations that define the two types of structural groups (1R and 3R) that conforms the scalable

four-bar linkage are, respectively:

Φ1R =





















rT
BA

rBA − L2
BA

xB − xA − LBA cos θ1
yB − yA − LBA sin θ1





















3×1

(48a)

Φ3R =

[

rT
CB

rCB − L2
rod

rT
CD

rCD − L2
rocker

]

2×1

(48b)

The first equation in column matrixΦ1R, express the rigid body condition for the crank, and the second and third495

equations are needed to introduce the relative coordinate θ1. In each 3R structural group,Φ3R include two rigid body

conditions. The Jacobian matrices of each SG with respect to the dependent ϕ and independent h group coordinates

can be easily obtained as:

Φϕ, 1R =

[

dΦ1R

dϕ1R

]

3×2

(49a)

Φh, 1R =

[

dΦ1R

dh1R

]

3×1

(49b)
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Coordinates SG: 1R3D Rod-slider k : SG: 2E1P (∀k ≥ 1)

Fixed coord. A(x, y, z),V1(x, y, z),V3(x, y, z) V6k(x, y, z),V7k(x, y, z),V8k(x, y, z)

Indep coord. θ B(x, y, z),V4k(z)

Dep coord. B(x, y, z),V2(x, y, z) Ck(x, y, z),V4k(x, y),V5k(x, y, z)

Table 2: Fixed, independent and dependent group coordinates of the structural groups: 1R3D and the k ones of type 2E1P in case study 2.

500

Φϕ, 3R =

[

dΦ3R

dϕ3R

]

2×2

(49c)

Φh, 3R =

[

dΦ3R

dh3R

]

2×4

(49d)

4.2. Scalable 3D crank-slider mechanism

The scalable 3D crank-slider mechanism Fig.6(c) consists of a fixed frame (body 1), a crank (body 2, AB) which

rotates with respect to the frame, and an increasing number k of dyads that can be added to make this linkage scalable.

Each one of these k dyads introduces two bodies: a rod (body 2k + 1, BkCk), and a slider (body 2k + 2, Dk) which505

translates with respect to the frame at a fixed direction. Each rod is linked to the crank 2 and the corresponding slider

by means of spherical joints. The length of the crank is set to 2 m and the rods are set equal to 6 m. To set the degrees

of freedom of the whole MBS to one: Lc = 1, the rotation of the rod with respect its longitudinal axis has been

hindered by making the vertical component z of vector
−→
V4k constant and equal to its value at the initial configuration.

The structural graph and the structural diagram associated to this linkage, obtained as exposed in section 3.2, are510

shown in Figs. 6(b) and 6(c) respectively. Once the frame has been isolated, the kinematic structure of this MBS

is composed by: a first SG, named 1R3D, formed by body 2 and one external rotation kinematic pair {1 − 2}, and a

number of k (∀k ≥ 1) dyads, named 2E1P, formed by two bodies (2k + 1, 2k + 2), whose kinematics can be solved in

the order specified by the parameter k. These structural groups have the coordinates shown in Table2.

30º
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z

�
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1
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V1

V41

V51

V71

V61

V81
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(a) Scheme of the mechanism.

1 2

34

n-1n

(b) Structural

graph.

{2}
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1,1
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2,0

(c) Structural diagram.

Figure 6: The scalable 3D slider-crank mechanism is composed by a crank and a number of k structural groups of type 2E1P. Its kinematic

structure is obtained by means of the structural graph and shown in its structural diagram.
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The constraint equations associated to each SG are:515

Φ1R3D =





























































rT
BA

rBA − L2
crank

VT
2 V2 − 1

rT
BA

V1

rT
BA

V2

VT
1 V2

rT
BA

V3 − Lcrank cos(θ)

rBA × V3 − LcrankV1 sin(θ)





























































9×1

(50a)

Φ2E1P =





























































rT
BC

rBC − L2
rod

VT
4 V4 − 1

VT
5 V5 − 1

rT
BC

V4

rT
BC

V5

VT
4 V5

rCA × V6





























































9×1

(50b)

In Φ1R3D, the first equation corresponds to the rigid body condition of body 2, the second one defines V2 as an

unitary vector and the three following equations define rBA, V1 and V2 as orthogonal vectors. The remaining equations

are needed to introduce the relative coordinate θ.

The constraint equationsΦ2E1P include a first equation that corresponds to the rigid body condition of the rod, the520

two following equations introduce V4 and V5 as unitary vectors, and the three last equations consider rBC, V4 and

V5 as orthogonal vectors. The remaining equations define the prismatic kinematic pair {frame-slider}. The Jacobian

matrices of each SG with respect to the dependent ϕ and independent h group coordinates can be easily obtained:

Φϕ, 1R3D =

[

dΦ1R3D

dϕ1R3D

]

9×6

(51a)

Φh, 1R3D =

[

dΦ1R3D

dh1R3D

]

9×10

(51b)

525

Φϕ, 2E1P =

[

dΦ2E1P

dϕ2E1P

]

9×8

(51c)

Φh, 2E1P =

[

dΦ2E1P

dh2E1P

]

9×13

(51d)

4.3. Computational kinematics: global and topological algorithms

The scalable MBS defined in the previous sections have been solved with two algorithms presented here: the first

one deals with the kinematics of MBS using a global formulation while the second one uses a topological formulation

based on group equations. Both algorithms are described using Fortran programming language.530

In algorithm 1 the MBS is defined by n dependent coordinates qd and f independent ones qi. These coordinates

are related by m constraint equations Φ(q, t), and f driving constraints Φ(qi, t) from which the set of independent

coordinates can be evaluated at any instant of time.
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Algorithm 1: Global solution.

1: MBData // read MultiBody model

2: for t = t0:∆t:t f do

3: evaluate(qi, q̇i, q̈i) // independent coordinates from
[

ΦD(qi, t)
]

f×1

// Position problem

4: evaluate(Φ) //
[

Φ(q, t)
]

m×1 constraint equations

5: while |Φ| > ǫ do

6: evaluateΦqd // Jacobian Φqd
(m×n)

7: solve

(

Φqd

)

k−1

(

qd
k
− qd

k−1

)

= Φk−1 // solve positions

8: evaluate(Φ)

9: end

// Velocity problem

10: evaluate(Φq) // Jacobian Φq(m+ f × n+ f )

11: solveΦqq̇ = −Φt

// Acceleration problem

12: evaluate Φ̇qq̇

13: solveΦqq̈ = −Φ̇qq̇ − Φ̇t

14: end
535

The multibody model is read from a file and, at each time step (loop 2-14): the values of the independent co-

ordinates are evaluated (line 3) from the set of ΦD(q, t) driving constraints. The position, velocity and acceleration

problems are solved in lines: 5-9; 10-11 and 12-13 respectively, and finally, the time is increased by the time step

defined for the analysis and the for-end loop is repeated until the final time is reached. The position problem uses

an Newton-Raphson iterative method which lasts until the norm of the constraint equations falls below a predefined540

tolerance ǫ. It is clearly seen that in the global formulations, as the complexity of the MBS increases, the size of the

matrices involved in the kinematic analysis increases accordingly.

Algorithm 1, which solves the kinematics of MBS based on a global formulation, have been implemented for two

solutions: GLOB which considers dense matrices and uses libraries of linear algebra (Linear Algebra PACKage, also

known as LAPACK, integrated in the Intel R© Math Kernel Library MKL), and GLOB_SP which uses sparse subrou-545

tines (MA27, from the Harwell Subroutine Library, developed by the Numerical Analysis Group at the Rutherford

Appleton Laboratory). Both global formulations are solved applying the time derivative approach.

Algorithm 2 solves the kinematic analysis by means of the topological approach based on group equations intro-

duced in this paper. Once the model of the MBS has been read from a file, included its kinematic structure (MBData

in line 1), the whole MBS is solved at each time step in a for-end loop (lines 2-14) until the final time of the simulation550

is reached. All the information related to the structural groups is stored in the data structure S G. At each time step,

the values of the coordinates which are driven in the MBS are updated (line 3) from the corresponding driving con-

straints. Then, the MBS kinematics is solved in a new for-end loop (lines 4-13) in which each one of the SG is solved

in the order (variable ng) specified by the MBS kinematic structure. The kinematic solution of each SG is obtained

by calling specific subroutines, in a switch-case loop, in which the position, velocity and acceleration problems are555

solved as explained in section 3.3. Each time that a SG is solved, the global matrix POI is updated with the position,

velocity and acceleration values of the coordinates of points and vectors of interest in the solved structural group.

Algorithm 2, for the modular topological formulation based on group equations, have been implemented for other

two solutions: MOD_TD and MOD_3OT which corresponds to the time derivative approach and the third-order

tensor approach respectively.560

19



Algorithm 2: Topological SG solution, time derivative option.

1: MBData; // read MultiBody model. Includes its kinematic structure

2: for t = t0 : ∆t : t f do

3: evaluate(qi, q̇i, q̈i) // independent coordinates from
[

ΦD(qi, t)
]

f×1

4: for ng = 1 : length(SG) do
// solve each SG as a subsystem

5: switch SG(ng).type do

6: case SG(ng).type == ’1R’ do

7: Solve_1R // POI

8: case SG(ng).type == ’3R’ do

9: Solve_3R // POI

10: case ... do

11: Solve ... // POI

12: end

13: end

14: end

The three solutions have been implemented in Fortran 90 programming language, compiled with MS Visual Studio

in RelWithDebInfo mode (in order to be able to register the computational cost of the different subroutines) and run

on a Intel Core i5-2400 CPU 3.10 GHz, RAM 16 GB, and Windows7 SP1 64 bits. The Intel VTune Amplifier tool565

has been used to check the CPU time distribution among all the operations involved in the analysis.

5. Results and discussion

In this section the efficiency of two topological approaches based on group equations are studied in detail and

compared with respect to a global formulation using the algorithms introduced in section 4.3.

5.1. Planar simulation results570

As a first case study, the kinematic analysis (position, velocity and acceleration) of the scalable four-bar linkage

shown in Fig.5(a) and described in section 4.1 is solved. The time loop is defined in the interval [0 − 120] s with

a time increment of ∆t = 0.005 s so that the whole MBS is solved up to 24.000 times. At the initial time (t0 = 0)

the initial orientation of the crank is θo = π/2 rad and during the time interval the angular velocity of the crank is set

to a constant value: θ̇ = 34.96 rad/s so that, at any instant of time, the independent coordinate can be evaluated as:575

θ = θ̇(tF − t0) + θ0. An increment of ∆θ = 10◦ for the crank is obtained at each time step.

This test is launched with an increasing number of constraint equations neq which depends on the number of dyads

k added to the scalable linkage, satisfying the relation: neq = 2k+2. The number of constraint equations together with

the CPU time consumed in each test and the speed up obtained for the different formulations are shown in table 3.

Figure 7 shows the CPU time consumed by the four formulations: GLOB, GLOB_SP, MOD_TD and MOD_3OT580

defined in the previous section.

As it can be seen in Fig.7 the GLOB formulation shows a cubic response (the Matlab curve fitting tool shows a

perfect adjustment, R = 1) on CPU time consumption as the number of constraint equations increases, whereas the

other three approaches: GLOB_SP, MOD_TD and MOD_3OT show a linear behavior. From the speed-ups shown

in Table 3 it can be clearly stated that: the topological approach MOD_TD performs [61.0 − 27.0] times faster than585

the GLOB_SP and [2.35 − 2.18] times faster than the MOD_3OT approach. Moreover, the MOD_3OT performs

[27.9 − 11.6] times faster than the GLOB_SP. It is also interesting to note that above a number of neq = 62 the speed

ups stabilize at an almost constant value. These results have been confirmed by a series of test in which the number

of constraint equations have been extended up to neq = 2002, which corresponds to the total number of 1000 dyads.

It is also interesting to point out that the ’3R’ dyads considered in this case study have two independent coordinates590

which coincides with the third dimension of the third-order tensor Lϕh/hi
so, due to the reduced size of the SG, the
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nEq
Profiling (s) Speed ups

GLOB GLOB_SP MOD_TD MOD_3OT GLOB_S P

MOD_T D

GLOB_S P

MOD_3OT

MOD_3OT

MOD_T D

22 0.746 0.976 0.016 0.035 61.0 27.9 2.18

42 2.171 1.823 0.049 0.112 37.2 16.3 2.28

62 4.198 2.509 0.087 0.205 28.8 12.2 2.35

82 7.059 3.124 0.119 0.269 26.3 11.6 2.26

102 11.036 4.502 0.156 0.348 28.9 12.9 2.23

122 16.696 5.108 0.180 0.416 28.4 12.3 2.31

142 24.694 6.021 0.205 0.475 29.4 12.7 2.31

162 33.221 6.814 0.252 0.563 27.0 12.1 2.23

182 44.466 7.981 0.284 0.642 28.1 12.4 2.26

202 57.139 8.715 0.317 0.718 27.5 12.1 2.26

Table 3: planar case: profiling and speed-ups of the four different approaches: global, global sparse, topological ’time derivative’ and the so called

topological ’third-order tensor’ as a function of the number of constraints equations (nEq).

velocity coefficient matrix is given in symbolic form, and then, the only difference between the two topological

approaches appears at the velocity dependent component of the acceleration, see Eq.(30a).

5.2. Spatial simulation results

The second case study is the kinematic analysis of the 3D crank-slider mechanism shown in Fig.6(a) and explained595

in subsection 4.2. The time loop is also defined in the interval [0 − 120] s with a time increment of ∆t = 0.005s so

that 24.000 time steps of the whole MBS are solved. At the initial time (t0 = 0) the initial orientation of the crank is

θ0 = 0 rad and during the time interval the angular velocity of the crank is set to a constant value. In this case study, up

to three angular velocities have been studied: θ̇ =
[

34.9E−5, 34.9E−2, 34.9
]

rad/s corresponding to three increments

of ∆θ = [0.0001◦, 0.1◦, 10◦] for the rotation of the crank. This procedure allows us to evaluate the influence of the ∆θ600

value in the number of iterations during the position problem.
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Figure 7: Planar case: evolution of the computational cost of the four approaches under study with the number of constraint equations (values from

Table 3).
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This is an scalable linkage in the sense that an increasing number of dyads (structural groups) formed by a rod

and a slider can be attached at the point B of the crank with independence on the direction of the slider motion with

respect to the frame. In this case, the number of constraint equations (neq) of the MBS is related to the number of

dyads k considered in the study by means of the function: neq = 8k + 6. This MBS has been studied with the Global605

Sparse GLOB_SP and the two topological approaches: MOD_TD and MOD_3OT. The global approach with dense

solver (GLOB) has not been considered due to the poor results obtained in the planar case.

As a first result, the horizontal component of the acceleration of the slider versus the crank rotation is shown

in Fig.8(a) for the global sparse GLOB_SP and the two topological approaches: MOD_TD and MOD_3OT. The

absolute values of the differences between the global approach and each one of the topological approaches are repre-610

sented in Fig.8(b) for each kinematic problem: position, velocity and acceleration analysis, and for [0◦ − 180◦] crank

angles. The biggest error is found in the position problem, having an order of magnitude of 10−13 for both topological

solutions. The results offered by the three solutions are, then, very similar.

The computational cost of the GLOB_SP approach together with the speed ups of the MOD_TD and MOD_3OT

approaches with respect the former are shown in Table 4 with different number of constraint equations for the three615

angular velocities considered: θ̇ =
[

34.9E−5, 34.9E−2, 34.9
]

. It is important to note that, in the modular approaches,

the kinematics of the SG have been solved by means of the LAPACK MKL libraries, which means that the matrices

have been considered to be dense. However, the size of the matricesΦϕ, 1R3D(9 × 6),Φh, 1R3D(9 × 10),Φϕ, 2E1P(9 × 8),

Φh, 2E1P(9 × 13) involved in the analysis of this case study are small enough to obtain a linear growth of the CPU time

with respect to the number of constraint equations considered. It would be interesting to study how different solvers,620

dense and sparse, perform using the modular approach based on group equations depending on the size of the SG.

As expected, the CPU time spent by the global solutions in the planar and the spatial cases shows a similar value

for the same number of constraint equations, being these ratios GLOB_SP (3D/2D) = 1.4. However, in spite of the

linear growth of the topological approaches in the spatial case, the CPU time spent by these two solutions is higher

than in the planar case, being their ratios: MOD_TD (3D/2D) = 12 and MOD_3OT (3D/2D) = 57 respectively.625

From the results shown in Table 4, the MOD_TD approach shows speed ups with respect to the GLOB_SP one

that ranges from [2.248 − 3.18] for θ̇ = 34.9E − 5 and similar speed ups, from [2.326 − 3.166] for θ̇ = 34.9E − 2.

Better results have been obtained for θ̇ = 34.9 which ranges from [2.706 − 3.706]. That means that when the value of

the independent coordinate is considerably increased at each time step, the global formulation needs more iterations

to achieve convergence than the topological ones.In all cases, the MOD_3OT shows a poor performance in this 3D630

study, with speed-ups that ranges from [0.121 − 0.339].

It has been proved that the size of the matrices which define the structural groups affects the performance of the
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rotation; results obtained by using three approaches: GLOB_SP,

MOD_TD and MOD_3OT.

0 45 90 135 180

Crank angle (º)

0

0.5

1

1.5

P
o
si

ti
o
n

 

er
ro

r 
(m

) 

10
-13

TD

3OT

0 45 90 135 180

Crank angle (º)

0

2

4

6

V
el

o
ci

ty
 

er
ro

r 
(m

/s
) 

10
-15

TD

3OT

0 45 90 135 180

Crank angle (º)

0

1

2

A
cc

el
er

a
ti

o
n

 

er
ro

r 
(m

/s
2
)

10
-14

TD

3OT

(b) Results for position (up), velocity (middle) and acceleration (down):

comparison of differences of topological formulation with the global one

ǫT D = |GLOB_S P − MOD_T D| and ǫ3OT = |GLOB_S P − MOD_3OT |.

Figure 8: Spatial case: comparative of the acceleration results of global and topological formulations.
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nEq

Profiling (s) Speed-ups

GLOB_SP GLOB_SP

MOD_T D

GLOB_SP

MOD_3OT

34.9E-5 34.9E-2 34.9 34.9E-5 34.9E-2 34.9 34.9E-5 34.9E-2 34.9

14 0.281 0.435 0.717 2.248 2.326 2.706 0.121 0.181 0.280

86 1.981 2.870 4.632 2.593 2.390 2.856 0.119 0.170 0.274

166 3.946 5.771 9.655 2.456 2.623 3.207 0.125 0.178 0.298

246 5.974 8.688 13.977 2.715 2.579 3.200 0.131 0.183 0.277

326 8.408 12.090 19.623 2.821 2.636 3.364 0.136 0.195 0.296

406 10.372 15.084 24.616 2.782 2.686 3.287 0.138 0.194 0.298

486 12.745 18.673 29.873 2.918 2.830 3.520 0.142 0.202 0.302

566 15.849 22.432 37.080 3.070 2.953 3.548 0.147 0.204 0.319

646 18.205 26.924 43.303 3.146 2.935 3.691 0.152 0.219 0.339

726 21.013 30.123 48.343 3.082 3.022 3.672 0.150 0.209 0.326

806 23.758 33.929 54.629 3.180 3.166 3.706 0.156 0.217 0.339

Table 4: Spatial case: profiling of the global sparse approach and speed ups obtained by the two topological approaches, as a function of the number

of constraint equations, for three constant angular velocities of the crank.

topological approaches and, moreover, in the case of the third-order tensor approach, the increase in the size of the

number of independent coordinates in the structural group 2E1P worsens the efficiency of the decomposition into

structural groups.635

5.3. Profiling during the kinematic analysis of MBS.

Fig.9 and Table 5 show the distribution into the tasks in which the CPU time is mainly spent during the kinematic

analysis of the spatial case study: the total CPU time, the CPU time spent in Position, Velocity and Acceleration

analysis, and Other processes like building the multibody model or internal math operations of minor relevance. The

results have been plot in a logarithmic bar graph for a better comparison of the different formulations. Solving the640

position, velocity and acceleration problems for the global GLOB_SP formulation takes the 77.7%, 17.6% and 2.7%

of the whole CPU time respectively. For the MOD_TD these percentages are 94.5%, 1.7% and 3.4%. Finally for the

MOD_3OT approach are 8.6%, 6.1% and 80.8%.

The position problem takes the same time for both topological approaches since they use exactly the same formu-

lation and the same size of the matrices involved in the analysis. The global sparse formulation GLOB_SP is 3 times645

slower solving the position problem than the former two because it has to deal with matrices whose size equals the

size of the whole MBS. In the velocity analysis, MOD_TD is about 38.7 times faster than GLOB_SP for the same

reason that the position problem and 39.3 times faster than MOD_3OT since the matrix
(

Kϕh

)

has to be obtained by

solving as many position problems as independent group coordinates define the structural group under analysis, as

defined in Eq.(25a). Finally, in the acceleration problem, the global formulation GLOB_SP is three times slower than650

the time derivative approach MOD_TD, while the third-order tensor approach MOD_3OT spends up to a 80.8% of

the whole CPU time performing this analysis due to the sum needed to compute the coefficient velocity derivatives

Lϕh/hi
, as defined in Eq.(37b).
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GLOB_SP MOD_TD MOD_3OT

Total 54.629 14.742 161.045

Position 42.431 13.931 13.853

Velocity 9.640 0.249 9.781

Acceleration 1.451 0.499 130.170

Others 1.107 0.063 7.241

Table 5: Spatial case: Profiling (ms) of the main stages of the

kinematic analysis for the global sparse formulation and the two

topological approaches at nEq = 806.
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Figure 9: Bar graph representation of values from Table 5.

5.4. Results related to the implementation of the global and the modular solutions655

The scalable four-bar and the 3D slider-crank linkages are formed by adding to a rotating crank as many SG of

a certain type (3R and 2E1P respectively) to achieve an increasing number of coordinates and constraint equations.

When dealing with the code needed to perform the studies, the modular approach allows us to list some advantages

with respect to the global methods:

Modularity: the topological method based on group equations is a modular approach. The kinematic analysis of660

each SG can be programmed, optimized and compiled in an independent subroutine which might be included in a

extensive library of structural groups. This modularity offers several advantages: facilitates the modeling and solution

of any MBS, the analysis is fast and reliable and this library can be shared among other research groups.

Flexibility: the subroutines responsible for modeling and solving the kinematics of any SG might use any kind of

coordinates (reference point, relative, natural or mixed coordinates). This feature is of interest because any analyst665

might use this more efficient approach without the necessity to introduce any change in the way they model or had

modeled their MBS.

Performance: since the subroutine for the kinematic analysis of each SG might be solved with independence from

the others, the efficiency of each subroutine can be improved by selecting the most appropiated solver depending on

the topology of each SG. Moreover, the efficiency of the whole solution can be improved, depending on the kinematic670

structure of the MBS by exploiting hybrid parallelism in high performance computers (HPC) as shown in [43].

6. Conclusions

Computational methods for the kinematic analysis of multibody systems are a constant field of research because,

in addition to being the base of dynamic analysis, these methods deal with many others problems of interest for the

scientific community: angle and force transmission, range of motion, dimensional synthesis, inverse kinematics and675

control among others.

In this work, two formulations for the computational kinematics of multibody systems based on a modular ap-

proach in natural coordinates have been introduced. A mobility based algorithm is used for the structural analysis of

multibody systems whichs allows us to obtain the kinematic structure of the multibody system under study. The kine-

matic structure shows the division of the multibody system into an ordered set of kinematically determined chains, or680

modules, which are used in the modular approach to solve the kinematics of the whole multibody system.

Then, two different formulations in natural coordinates which solve the kinematics of any kind of structural group

by means of group equations have been introduced: the time derivative approach and the third-order tensor approach,

whose main difference consist in the way they calculate the velocity dependent components of the accelerations. In

order to evaluate the advantages of these topological approaches, they have been compared to a global formulation,685

also in natural coordinates, implemented with both dense and sparse solvers. In all cases the position problem is

solved with iterative methods.

The performance of these four methods, in terms of computational cost, depending on the number of constraint

equations of the MBS, has been analyzed by solving two case studies: the scalable four-bar linkage as a planar
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mechanism, and the scalable 3D slider-crank linkage to prove that the topological formulations might also be applied690

to spatial MBS. Both case studies have been tested by increasing the number of structural groups to analyze their

computational efficiency. The lack of efficiency of the global approach using dense matrices in the planar case study

reveals unnecessary to apply this method in the three dimensional case.

6.1. Future developments

The topological formulation based on the kinematic structure of the MBS has shown many advantages with respect695

to global formulations. This fact encourages us to improve the possibilities it brings to the computational kinematic

and dynamic analysis of MBS, as well as to solve its drawbacks.

Since this is a modular approach, the automatic modeling and solution of a MBS can be accomplished in two

ways: by means of the offline use of symbolic software to feed with efficient and optimized solutions the kinematics

solution subroutines of any SG, and by means of the use of the kinematic structure of the MBS, obtained by using700

computational methods, to automatically define the analysis sequence (automatic modeling of the MBS).

The modular character of this approach should be exploited to include the use of parallel calculation libraries

combined with the use of different dense and sparse solvers to improve the efficiency of the calculations in kinematic

and dynamic analysis of MBS.

Finally, a well known drawback related to all the topological formulations is that the efficiency of the solution, and705

even the capability to find a solution itself, depends on the kinematic structure of a MBS which might even change

during the analysis. Methods devoted to find the more efficient kinematic structure and to allow the solution procedure

to change to a different kinematic structure, at any time step, must be developed to make this formulation both efficient

and general.
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