
1

PRESQ: Discovery of Multidimensional
Equally-Distributed Dependencies via

Quasi-Cliques on Hypergraphs
Alejandro Álvarez-Ayllón, Manuel Palomo-Duarte, Juan-Manuel Dodero

Abstract—Cross-matching data stored on separate files is an everyday activity in the scientific domain. However sometimes the
relation between attributes may not be obvious. The discovery of foreign keys on relational databases is a similar problem. Thus
techniques devised for this problem can be adapted. Nonetheless, when the data is numeric and subject to uncertainty, this adaptation
is not trivial. This paper firstly introduces the concept of Equally-Distributed Dependencies, which is similar to the Inclusion
Dependencies from the relational domain. We describe a correspondence in order to bridge existing ideas. We then propose PRESQ: a
new algorithm based on the search of maximal quasi-cliques on hyper-graphs to make it more robust to the nature of uncertain
numerical data. This algorithm has been tested on seven public datasets, showing promising results both in its capacity to find
multidimensional equally-distributed sets of attributes and in run-time.

Index Terms—Data mapping, Probabilistic algorithms, Hypergraphs, Inclusion Dependencies, Equally-Distributed Dependencies,
Quasi-clique

F

1 INTRODUCTION

Nowadays, it is not uncommon for many types of users —
from proficient data scientists to enthusiasts without formal
training— to dive into overwhelming sets of data looking
for any relevant pattern they can find. This data may consist
of raw files that have not yet been ingested into a database
system and for which the schema may be unfamiliar and
not adequately documented. Furthermore, the entire data
set may be composed of multiple files with heterogeneous
schemes [1], [2].

For the in-situ interactive exploration, there are many
proposals at different levels: database (indexes, physical lay-
out), middleware (pre-fetching, query approximation) and
user interface (visualization, assisted exploration) [3]. For
more details, including a survey of existing solutions, we
refer the reader to an exhaustive systematic mapping of the
literature previously published [4]. As a result of this survey,
we realized that most of the solutions treat files separately,
leaving it to the end-user to work out how they are related.
This is an observation shared by other authors [5].

Therefore, our goal is to assist users to understand how
multiple raw files are related; to identify shared sets of at-
tributes, and to facilitate relationship-based mining between
different files with heterogeneous schemes. To illustrate this,
we show three possible scenarios for this kind of exploration
of associations. These are focused mainly on astronomy but
they can be extrapolated to other areas [6]:

• A. Álvarez-Ayllón works in the Department of Astronomy, University of
Geneva — Chemin d’Ecogia 16, 1290 Versoix, Switzerland
E-mail: alejandro.alvarezayllon@unige.ch

• M. Palomo-Duarte and J.M. Dodero are with the Department of Computer
Science and Engineering, University of Cadiz — 10 Avenida de la
Universidad, 11519 Puerto Real, Spain

• Spatial: Identify objects in the same location.
• Temporal: Identify events occurring within the same

time period.
• Coincidence: In general, apply clustering techniques to

identify objects that are co-located within a multidi-
mensional space.

REDISCOVER [1] is an example of a proposed solution
aimed in this direction. It is based on machine learning
techniques, such as Support Vector Machines, to identify
matching columns between scientific tabular data. Yet, this
system focuses mainly on the correspondence between in-
dividual columns. This is insufficient for spatial and coinci-
dence associations, as they are multidimensional.

Our general research question is: Can we use the ac-
tual data to automatically guide the user to cross-match
different files or to use them together as a single source,
taking multidimensionality into account? To bridge this gap,
we propose the concept of Equally-Distributed Dependencies
(EDDs), which is inspired by the idea of Inclusion Dependen-
cies (INDs) from the relational algebra:

An inclusion dependency between column A of relation
R and column B of relation S, written R.A ⊆ S.B, or
A ⊆ B when the relations are clear from the context,
asserts that each value of A appears in B. Similarly, for
two sets of columns X and Y , we write R.X ⊆ S.Y ,
or X ⊆ Y , when each distinct combination of values
in X appears in Y [7]

The definition of IND is based on set theory, which is not
directly applicable to numeric data where measures are in
the real domain (e.g. spatial coordinates) and usually have
an associated uncertainty that may or may not be explicitly
stored.

However, this definition can be naturally reformulated

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3198252

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on September 08,2022 at 08:54:25 UTC from IEEE Xplore. Restrictions apply.

2

in terms of equality of distribution X
d= Y : FX(x) =

FY (x) ∀x, where FX and FY are the cumulative distribution
functions of X and Y, respectively:

An equally-distributed dependency between a set of
columns X from of relation R and a set of columns Y
of relation S, written R.X d= S.Y or X d= Y , asserts
that the values of X and Y follow the same probability
distribution.

The term arity refers to the cardinality of the sets of
attributes X and Y . For instance, if |X| = 1, we talk about
unary EDDs; if |X| = 2, binary or 2-EDDs; and, in general,
for |X| = n, n-ary EDDs.

Contribution: This paper develops the basis for equally-
distributed dependencies and proposes a statistically robust
algorithm for finding them. Different experiments show
that our proposal successfully finds dependencies in a rea-
sonable amount of time. In addition, it shows how differ-
ent parametrizations balance performance (run-time), effi-
cacy (capability of finding high-arity EDDs), and efficiency
(avoidance of redundant results).

Paper organization: In section 2, we briefly discuss
existing work done on IND discovery. In section 3, we
introduce the background for our research. In section 4, we
propose a novel algorithm based on quasi-cliques to infer
common equally-distributed multidimensional attributes. In
section 5, we show experimental results, and in section 6,
we discuss our findings. We list the threats to the validity of
this study in section 7. Finally, in section 8, we compile the
conclusions and propose areas for further work.

2 RELATED WORKS

Finding high arity INDs is a NP-hard problem [8]. For
instance, for two sets of n attributes in R and S, there are
n! different possible permutations to check. In comparison,
finding unary INDs seems a relatively simple problem, as
the worst case has complexity O(n2). Nonetheless, testing
over real files may require expensive input/output opera-
tions. Furthermore, as we will see later, false positives at this
stage can quickly make finding high arity INDs unfeasible.
This is because the search space tends to grow exponentially
with the number of one-attribute matches, making unary
INDs search time much less important than reducing the
number of false positives.

We used a published experimental evaluation [9] as a
starting point for assessing how adequate existing solutions
are for our problem. The authors carried out a set of experi-
ments with thirteen IND algorithms, of which seven are for
unary INDs, four for n-ary INDs, and two for both types.
A more recent survey confirms that this work contains the
current state-of-the-art for Inclusion Dependencies [10].

We describe the unary problem and propose our algo-
rithm, tailored to numeric data, in section 4.1. We will now
describe briefly the n-ary finding algorithms evaluated by
the authors and discuss their suitability for our needs.

2.1 n-INDs finding algorithms
Given two relations R and S, with attributes A and B
respectively, a unary Inclusion Dependency (uIND) exists
if R.A ⊆ S.B. More generally, for two sets of attributes X

B N⊆A M⊆ C O⊆

AB MN⊆ AC MO⊆

D P⊆

BC NO⊆AD MP⊆ BD NP⊆

ABC MNO⊆

CD OP⊆

ABD MNP⊆ BCD NOP⊆ACD MOP⊆

ABCD MNOP⊆

Unary IND

2-IND

3-IND

4-IND

Fig. 1. Example structure of the search space as a lattice for an initial
set of 4 unary INDs. As an illustration, if the 2-INDs surrounded by a
solid line were valid, a bottom-up traversal would only need checking
the validity of the 3-INDs with a grey background since the others could
not be valid.

and Y , both of cardinality n, an n-ary Inclusion Dependency
(nIND) exists if every combination of values in X appears in
Y [7], [11].

Given a setU of valid uINDs, the search space for higher-
arity candidates is defined by its power set and a partial
order relation called specialization [11]:

Definition 1. Let I1 = R[X] ⊆ S[Y] and I2 = R′[X ′] ⊆
S′[Y ′]. I1 specializes I2 (denoted I1 ≺ I2) iff

1) R = R′ and S = S′.
2) X and Y are sub-sequences of X ′ and Y ′, respectively.

Equivalently, we can also say that I2 generalizes I1.

Example 1. (R[AB] ⊆ S[EF]) ≺ (R[ABC] ⊆ S[EFG]).
However, R[AB] ⊆ S[DE]) ⊀ (R[ACD] ⊆ S[DFG])

This partial order enables us to structure the search
space as a lattice, as exemplified in figure 1. Most solutions
leverage this property to explore the search space bottom-
up —from level k to k+1— or top-down —from level k to
k–1— order.

MIND [11] is a bottom-up approach: it starts from a
set of known, satisfied unary INDs and builds higher arity
candidates combining them. These new candidates are then
validated against the database and those satisfied are used
for computing the next level candidates until no more
candidates are available.

ZIGZAG [12] starts with a MIND bottom-up approach up
to a given arity n ≥ 2. Then, it uses all satisfied INDs to
initialize a positive border and the non-satisfied to initialize
a negative border. The set of satisfied INDs is used to gen-
erate the set of candidates with the highest arity possible,
called optimistic border, which is then validated against the
database. This is the bottom-up part of the search. Valid
candidates are directly added to the positive border. Invalid
candidates are treated depending on how many tuples are
different between relations. Those above a given threshold
(too many different tuples) are added to the negative border.
Those below are top-down traversed, from level n to n–
1, validated, and then added to the positive border if they
are satisfied. The algorithm then iterates, building a new
optimistic border until it is not possible to generate new
INDs. The optimistic approach can prune the search space
very aggressively when there are high-arity INDs, but when
most arities are low, MIND may perform better.

FIND2 [13] is based on the equivalence between find-
ing n-INDs and finding cliques on n-uniform hypergraphs

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3198252

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on September 08,2022 at 08:54:25 UTC from IEEE Xplore. Restrictions apply.

3

(a generalization of the concept of a graph where each
edge connects n nodes). Each unary IND corresponds to
a node, and an n-IND corresponds to an edge on an n-
uniform hypergraph. Once such a graph is built, each IND
corresponds to a clique and maximal INDs correspond to
maximal cliques. They present the HYPERCLIQUE algorithm,
capable of finding maximal cliques performantly, which
can be mapped back to candidate maximal INDs. These
are finally validated using database queries. As ZIGZAG,
FIND2 starts with a bottom-up approach to look for maximal
cliques (i.e., potential maximal INDs). The invalid ones are
used to generate a new (n+1) uniform graph. This is a stage
that corresponds to the top-down traversal.

While these three algorithms were evaluated on INDs
between relational datasets and with attributes that can be
directly compared (i.e. from discrete domains), their traver-
sal of the search space and their validation steps are well
decoupled. They can be easily be adapted to the equality-of-
distribution statistical tests.

Furthermore, the reference benchmark shows that MIND,
FIND2 and ZIGZAG have a comparable run-time, sometimes
even faster, than the alternatives. While FAIDA is generally
faster, its validation strategy requires computing hashes
over the attributes and their combinations, which is inap-
plicable for continuous data that can very possibly have an
associated uncertainty.

From the three suitable candidates, MIND’s bottom-up
approach can be performant enough for relatively low arity
IND relations. However, it has one substantial disadvan-
tage: it requires an exponential number of tests, prohibitive
for higher arity INDs. Both ZIGZAG and FIND2 overcome
this limitation by alternating between optimistic (top-down)
and pessimistic (bottom-up) traversals. Finally, FIND2 maps
the search of INDs to the search of maximal cliques. We
know that using statistical tests will introduce unavoidable
false negatives, which would translate into missing edges.
A clique with missing edges is a quasi-clique, and finding
quasi-cliques, while at least as hard as finding cliques, is
doable. This has influenced our approach.

2.2 Foreign Key Discovery

Foreign key discovery is outside the scope of this paper.
We briefly survey this area, however, since we consider
it complementary to IND discovery. A foreign key (FK)
constrain on an attribute A over a primary key (PK) B
implies that all values present on A must also be present on
B. Therefore, there exists an inclusion dependency between
A and B. However, the reverse is not necessarily true. For
instance, two auto-increment attributes from two different
relations may have an accidental Inclusion Dependency
with no semantic meaning.

To distinguish between accidental and meaningful INDs,
Rostin et al. [14] propose to train machine learning models
over a set of features extracted from positive PK/FK rela-
tions and negative, non-meaningful INDs. However, their
proposal is limited to unary INDs.

Zhang et al. [15] present an algorithm capable of
handling multi-column PK/FK relations. They define the
concept of Randomness Test, which assumes that an FK is a
representative sample of a PK and, therefore, should follow

a similar distribution. They use an approximation of the
Earth-Mover Distance (EMD) —the cost of transforming one
distribution into another— to measure the similarity be-
tween PK and FK. Their algorithm ranks PK/FK candidates
by distance —closest first— and selects the top X%, where
X must be chosen to balance precision and recall.

More recently, Jian et al. [16] introduced an approach
that identifies both PK and FK holistically. They validate
Zhang’s concept of Randomness and propose a simplified
estimator that treats each attribute separately. They do not
need the PKs to be known but require a list of INDs as input.

It is worth noting that even though the latter two publi-
cations use the idea of the FK being a random sample of the
PK, their methods use the distance between distributions for
ranking candidates [15] or as a feature [16]. Our method is
based, however, on statistical hypothesis testing1.

In the next section, we will provide the necessary back-
ground for describing our proposal, described in section 4.

3 BACKGROUND

3.1 Equally Distributed Dependencies

An Inclusion Dependency exists if all combinations of
values from a given set of attributes in one relation are
contained within a set of attributes from another. However,
in the real domain, we will hardly ever find a strict subset
relation between two attributes. Measurements may have
associated uncertainty, and even floating-point representa-
tion may vary (i.e. 32 vs 64 bits). In general, it is a flawed
idea to compare floating-point numbers with strict equality.

Instead, we can use R.X d= S.Y as an approximation,
meaning that the two sets of attributes are equally dis-
tributed. This relation is, unlike the subset relation, sym-
metrical.

Following the parallelism with IND finding, we say that
the dataset d satisfies the relation defined by equality of
distribution d= when a statistical test fails to reject the null
hypothesis

H0 : P (R[X]) = P (S[Y]) (1)

Three inference rules can be used to derive some additional
INDs from an already known set of INDs. They are defined
using sets and subsets [18], but they translate to the equality
of distribution:
Reflexivity

R[X] d= R[X]
Permutation and projection

If R[A1, . . . , An] d= S[B1, . . . , Bn] then
R[Ai1 , . . . , Aim] d= S[Bi1 , . . . , Bim] for each sequence
i1, . . . , im of distinct integers from {1, . . . , n}

Transitivity
R[X] d= S[Y] ∧ S[Y] d= T [Z] =⇒ R[X] d= T [Z]

The reflexivity, permutation and transitivity rules are
well known to hold for d= [19]. We have proven that the
projection rule also holds, as is logical [20].

1. While the EMD could be used as a test statistic, it would be
computationally expensive [17].

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3198252

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on September 08,2022 at 08:54:25 UTC from IEEE Xplore. Restrictions apply.

4

Thanks to the validity of these rules, particularly the
permutation and projection, we can use the specialization
relation seen in definition 1 when dealing with distributions.

With these rules we have defined the search space sim-
ilar to the one from IND discovery. The last requirement is
a property that allows the pruning of the search space as
illustrated in figure 1.

Let I = R[X] d= S[Y]. A dataset d satisfies I iff a
statistical test fails to reject H0 : P (R[X]) = P (S[Y]) given
a significance level α. This is denoted as d |= I .

Property 1. Given I1 ≺ I2:
1) If d |= I2, then d |= I1 (Accepting H02 implies accepting
H01

2)
2) d 6|= I1 with a probability α when d |= I2 (Rejecting H01

does not imply the rejection of H02)

This property is similar to that proposed for INDs [11],
with the exception that even if d |= I2, there is a probability
to falsely reject I1 bound by the significance level α.

Example 2. If we have two sets of 10 attributes that are equally
distributed, the number of 3-dimensional projections (specializa-
tions) that must be equally distributed will be

(10
3
)

= 120 . If
we have a significance level of α = 0.1, the expected number of
falsely rejected 3-dimensional equalities is then 12.

3.2 Uniform n-Hypergraphs and quasi-cliques

A hypergraph is a generalization of a graph where the edges
may connect any number of nodes. It is defined as a pair
H = (V,E), with V the set of nodes and E the set of edges.
An edge e ∈ E is a set of distinct elements from V .

Definition 2. Given the hypergraph H = (V,E), H is a n-
hypergraph iff all of its edges have size n.

A clique or hyper-clique on a n-hypergraph H = (V,E)
is a set of nodes V ′ ⊆ V such that every edge defined by the
permutations of distinct n nodes from V ′ exists in E [13].

A quasi-clique or hyper-quasiclique (sometimes named
pseudo-clique) is a generalization of a clique where a given
number of edges can be missing. The exact definition can be
based on the ratio of missing edges or based on the node
degrees. Another option is to combine both measures [21],
which is our preferred method.

We generalize the definition of quasi-cliques to k-
uniform hypergraphs :

Definition 3. Given a k-uniform hypergraph (V,E), and two
parameters λ, γ ∈ [0, 1] the sub-graph H ′ = (V ′, E′) induced
by a subset V ′ ⊆ V is a (λ− γ) quasi-clique iff:

|E′| ≥ γ ·
(
|V ′|
k

)
(2)

∀v ∈ V ′ : degV ′(v) ≥ λ ·
(
|V ′| − 1
k − 1

)
(3)

Where degV ′(v) represents the degree of v, and E′ is a subset
of E such that ∀e ∈ E′ : e ⊆ V ′

2. Strictly speaking, not rejecting H02 implies that we can not reject
H01 .

In other words, condition 2 allows for some edges to
be missing, while condition 3 enforces a lower bound on
the degree of each node. Intuitively, the latter is essential
to avoid quasi-cliques where most nodes are densely con-
nected and a handful of nodes are connected only to a few.

The hyper-clique problem is a particular case when
either λ = 1 or γ = 1.

4 INFERRING COMMON MULTIDIMENSIONAL DATA

The first required step to find multidimensional EDDs is to
find a set of unary EDDs, for which a naive approach would
mean quadratic complexity. To reduce the complexity, we
propose an algorithm based on interval trees in section 4.1.
In section 4.2, we discuss the difficulties of the existing
adaptable algorithms when dealing with uncertainties. Fi-
nally, in section 4.3, we propose a novel algorithm, based on
quasi-cliques, which is more resilient to both false positives
and false negatives.

4.1 Uni-dimensional EDDs

The first required step for any of the three algorithms is to
find a set of valid unary EDDs on the datasets. i.e., attribute
pairs that follow the same distribution. It can be done with
the non-parametric Kolmogorov-Smirnov (KS) two-sample
test [22]. More formally, for a possible pair of attributes A
and B from two different relations, the null hypothesis H0

for the KS test is A d= B. As for any statistical test, this null
hypothesis is accepted or rejected with a significance level
α ∈ [0, 1], which is the probability of falsely rejecting H0
(false negative).

Consider a dataset containing the relations
R1, R2, . . . , Rn with a total number of attributes
N =

∑n
i=1 |Ri|. A naive approach to finding unary

EDDs requires N −1 statistical tests for each attribute. Since
the EDD relation is symmetric (A d= B ⇐⇒ B

d= A) half
of the tests can be avoided, bounding the total number of
tests by the quadratic expression (N × (N − 1))/2.

We propose using an interval tree built over the complete
dataset to reduce the number of tests. The building of
the tree can be performed in O(N log(N)) time, and each
query done in O(log(N) + m), where m is the number of
overlapping intervals for a given attribute. When m � N ,
which we expect to be generally the case, the number of
operations can be thus reduced to O(N log(N)+M), where
M is the total number of overlapping pair of attributes.
Note that M ≤ (N × (N − 1))/2, so the worst-case remains
quadratic.

However, the cost of the tests themselves is almost neg-
ligible when compared to the cost of finding n-ary EDDs,
which is exponential with the number of unary EDDs.
Therefore, a low significance level α for finding unary EDDs
will considerably increase the cost at later stages.

4.2 Multidimensional EDDs

Once we have a set of unary matches, we need to find which,
if any, higher dimensional sets of attributes are shared
between each pair of relations. As discussed in section 2,
only three of the existing IND finding solutions are not

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3198252

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on September 08,2022 at 08:54:25 UTC from IEEE Xplore. Restrictions apply.

5

strongly dependent on discrete types: MIND, ZIGZAG and
FIND2. However, replacing the inclusion tests with statistical
tests affects their behavior.

MIND traverses the search space bottom-up. Thus, for
two relations with a single multidimensional EDD with n
attributes, every combination of k nodes from k = 2 to k =
n must be tested, as shown in equation 4.

n∑
k=0

(
n

k

)
=

n∑
k=0

n!
n!(n− k)!

(4)

Since statistical tests are not exact, the chances of having
at least one false rejection in the validation chain increases
with the maximal EDD arity, introducing discontinuities in
the search space. This makes its traversal more difficult.

The search algorithm of FIND2 is capable of finding
maximal INDs with fewer tests. As an input, it requires a
set of valid unary and n-ary IND relations. A k-uniform
hypergraph G(V,E) is then constructed, where the set of
accepted unary INDs are mapped to the set of vertices V ,
and the set of accepted k-INDs to the set of edges E. Given
this initial hypergraph, the authors of FIND2 prove that
finding higher arity INDs can be mapped to the problem
of finding cliques, since all the generalized k-ary INDs must
appear as edges.

However, this is not always true for the EDD finding
problem. The statistical test will yield some false positives
and some false negatives, a combination that makes it
difficult for FIND2 to find the true relations. Cliques will
likely be broken due to the false rejections, and there will be
spurious edges due to false positives. Higher arity EDDs do
not appear as cliques in this scenario.

Finally, ZIGZAG can not recover well from missing
EDDs. Any rejected EDD is added to the negative border
and will not be considered any further. Additionally, some
early experiments with ZIGZAG indicated that the com-
bination of false positives and false negatives makes the
algorithm run close to its worst-case complexity (factorial).

4.3 PRESQ algorithm
As we have discussed, EDD finding does not map well to
the clique-finding problem due to missing and spurious
edges caused by the statistical tests. We propose instead
an algorithm based on quasi-cliques as described in defi-
nition 3. This approach is better suited to the uncertainties
associated to hypothesis testing.

Finding quasi-cliques seeds: Some initial experiments
with FIND2 showed that, by only modifying the validation
strategy to use statistical tests, the algorithm was able to find
relatively high arity EDDs regardless of the missing edges.

The modified FIND2 maps the initial set of EDDs into
a graph and lets the HYPERCLIQUE algorithm find the set
of maximal cliques, then maps them back to EDDs and
validates the inferred EDDs. Therefore, if FIND2 finds high
arity EDDs is because HYPERCLIQUE finds maximal cliques
close to the maximal quasi-clique. This makes sense since,
generally, a quasi-clique contains smaller but denser sub-
graphs [23] and a clique is denser than a quasi-clique.

Therefore, we use a modified version of HYPERCLIQUE
to search for quasi-clique seeds, accepting a candidate if it
is a quasi-clique, as per the joint definition of equations 2

and 3. We combine both definitions since limiting only the
number of missing edges tends to accept quasi-cliques with
too many vertices.

Growing the quasi-clique seeds: This is similar to KER-
NELQC’s idea [23], but based on a quasi-clique enumeration
algorithm. Given a quasi-clique seed from the first stage,
candidates are grown following a tree-shaped, depth-first
traversal [24].

Let v be a node on a graph G[V] with a degree lower or
equal to the average degree. The density (i.e. γ) of G[V \v]
is no less than the density of G[V]. In other words, if we
remove from a γ-quasi-clique a node v with a degree lower
than the average degree, the resulting graph is still at least a
γ-quasi-clique. This is consistent with the observation that a
quasi-clique contains denser sub-graphs [23].

Consequently, removing the vertex with the lowest de-
gree means that the resulting quasi-clique is still a γ-quasi-
clique. In the case of a tie, we can choose the vertex by its
index (or name). This node is named v∗(V).

Finally, a quasi-clique K ′ is considered a child of another
quasi-clique K if and only if K ′\K = v∗(K ′), i.e a quasi-
clique K ′ is a child of K if it has one additional node that is
the first node when sorted in ascending order by degree and
index. This defines a strict parent-to-child relationship be-
tween quasi-cliques, which can be modelled and traversed
like a tree.

The original algorithm [24] is exclusively oriented to-
wards γ-quasi-cliques, and this traversal would include
many candidates that are not λ-quasi-cliques. To prune the
search space and avoid branches that will not yield any
valid quasi-clique, at each recursion step, we compute the
degree that the nodes on K ′ should have, so that K ′ is a λ-
quasi-clique. When adding a node, the expected minimum
degree may increase. By knowing this value, we can ignore
all nodes with a degree lower than the threshold in the
input graph, as no matter how many more nodes we were
to add afterwards, no child candidate would satisfy the λ
threshold.

This step successfully increases the number of quasi-
cliques found. However, the number of maximal cliques
is bound in general by an exponential expression of the
form Ω(a|V |/b), where a, b are two constants that depend
on the rank of the hypergraph [25]. Since cliques are a
particular case of quasi-cliques, we can expect the lower
bound for the maximum number of quasi-cliques also to
be exponential. Even if enumerating quasi-cliques can be
done in polynomial time per quasi-clique [24], the total run-
time has a worst-case exponential complexity for dense
hypergraphs. Therefore, it would be advisable to disable
this stage for datasets with attributes hard to differentiate
at low dimensionality or restrict it to the top-k seeds found.

4.3.1 Parameters
Before explaining how to tailor the parameterization of the
quasi-clique finding for the purpose of searching EDDs,
we need to remind that, given two sets of attributes R[X]
and S[Y], our algorithm builds on the null hypothesis
H0 : P (R[X]) = P (S[Y]). In other words, it is based on
the assumption that any EDD candidate is valid.

Let α be the significance level chosen by the user be-
fore running the algorithm. Let G be the initial k-uniform

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3198252

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on September 08,2022 at 08:54:25 UTC from IEEE Xplore. Restrictions apply.

6

A B C ...

0.247 5.944 10.451 ...

0.752 5.846 10.758 ...

O P Q ...

0.850 5.107 10.844 ...

0.698 5.132 10.429 ...

R S

1-EDD

2-EDD

n-EDD

Quasi-cliques

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2. Simplified schematic of the algorithm. Given datasets R and S,
(a) Candidate 1-EDDs are found applying the interval-tree as described
in section 4.1.
(b) Those for which the Kolmogorov-Smirnov finds a significant differ-
ence are discarded, and the rest are mapped to nodes.
(c) All pairwise combinations are tested, and those equally distributed
are (d) mapped to edges on a 2-hypergraph. The algorithm works
with hypergraphs of any rank (e.g., triplets mapped to edges on a 3-
hypergraph).
(e) PRESQ searches for quasi-cliques as described in section 4.3.
(f) A quasi-clique of cardinality n corresponds to an n-EDD, which is
then validated by a statistical test. Those rejected are decomposed to
generate the edges for a 3-hypergraph, which are verified (c), used to
build a 3-hypergraph (d) and finally passed as input back to (e).
The graph above displays spurious nodes and edges (light grey, dotted)
and false negatives (missing edges between dark nodes) based on
attribute names. The full graph is not a valid quasi-clique because the
hypergeometric test on the node degree (eq. 6) prunes the two nodes
shown with crosses. Three candidates of arity 8 are generated given the
constrain on the number of edges (eq. 2). Two of them are rejected by
the n-dimensional statistical test and used to compute the edges of the
3-hypergraph.

hypergraph and let K be a quasi-clique candidate. Under
H0, K represents a |K|-ary EDD, and by the projection rule,
all possible edges between the nodes in K are also valid k-
ary EDDs. If we run null hypothesis tests over these k-ary
specialized EDDs, by the definition of type-I error, we can
expect as many as α×

(|K|
k

)
false rejections. In other words,

under H0, we can expect a ratio of α missing edges. This is
equivalent to setting the threshold for equation 2 as:

γ = 1− α

Adjusting λ is less straightforward: a high threshold
will reject good candidates. A low one will accept spurious
ones, triggering unnecessary tests. Even worse, the spurious
quasi-cliques tend to have a high cardinality. Once rejected,
they will cascade and cause an increase on lower-arity EDDs
to be tested as much as

(n
k+1
)
, where n is the arity of the

EDD candidate, and k is the current level of the bottom-up
exploration.

To solve this dilemma, we propose to use an adaptive
value for λ based on the quasi-clique being checked: under
H0, there is no reason to think that any particular subset
of the edges from the clique has a higher probability of
having missing members. In other words, if a given node
has an unexpected low degree, it is most likely connected
by spurious edges.

Let N be the number of edges and n the maximum
degree of the nodes on a clique with |V ′| nodes. Under
this null hypothesis, the degree of the nodes should roughly
follow a hypergeometric distribution:

Pr(Degree(v) = d) =
(|E′|
d

)(N−|E′|
n−d

)(N
n

) , for v ∈ V ′ (5)

This fact allows us to perform a statistical test and accept or
reject our quasi-clique candidate with a given significance
level. Figure 3 shows some examples of this distribution for
a quasi-clique with 29 nodes and the critical value for a one-
tail test with α = 0.05. In other words, if the degree of a
node within a quasi-clique candidate is less than the critical
value, we can reject the null hypothesis and accept that the
set of edges connecting the node are spurious.

In summary, as a constant number of missing edges
could be considered too restrictive [21], we consider a fixed
ratio to be limiting as well, and harder to make sense of
—i.e., why choose λ = 0.6 and not λ = 0.7?. We propose
that instead, replacing equation 3 with equation 6 could be
a more intuitive and flexible approach.

∀v ∈ V ′ : CDF(Degree(v)) ≥ Λ (6)

Where 0 ≤ Λ ≤ 1. As with γ and λ, a value of 1 would only
accept regular cliques.

The proposed parameterization for γ and Λ are inter-
nally consistent since they are both constructed under H0.

Figure 2 visually summarizes the stages of PRESQ al-
gorithm, and the effects of the parameters γ and Λ on the
quasi-clique finding stage.

In the following section, we will show that adapting
FIND2 clique validation with ours is enough to improve
its performance in run-time and results. The growing step
improves the efficacy (i.e. more maximal EDDs found) at
the cost of a higher run-time.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3198252

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on September 08,2022 at 08:54:25 UTC from IEEE Xplore. Restrictions apply.

7

0.0

0.5

1.0

λ = 1.00 (28)

γ = 1.00 (0 / 406)

λ = 0.89 (25)

γ = 0.95 (20 / 406)

0.0

0.5

1.0

λ = 0.82 (23)

γ = 0.90 (40 / 406)

λ = 0.75 (21)

γ = 0.85 (60 / 406)

0 3 6 9 12 15 18 21 24 27
0.0

0.5

1.0

λ = 0.68 (19)

γ = 0.80 (81 / 406)

0 3 6 9 12 15 18 21 24 27

λ = 0.61 (17)

γ = 0.75 (101 / 406)

Fig. 3. Distribution of the degree of the nodes under the null hypothesis
that the missing edges on the quasi-clique are due to the expected false
negative rate of the statistical test. The vertical line corresponds to the
one-tail test with α = 0.05.

5 EXPERIMENTS

We have implemented in Python a version of FIND2 that
validates candidates with statistical tests, and the proposed
PRESQ. Both share most of the code, including initialization
and statistical tests. Any difference in run-time is only
because the modified version searches for quasi-cliques
instead of full cliques.

We focus on comparing these algorithms for two main
reasons: 1) To prove that quasi-clique finding can outper-
form clique finding both in run-time and results when the
data is noisy, an advantage not necessarily exclusive to
EDD finding; 2) While INDs are targeted towards infer-
ring foreign-key relationships and generally of low arity,
we expect EDDs to be of high arity —co-located within a
multidimensional space—, and FIND2 performs well when the
arity is high [9].

5.1 Experimental design

We have performed two different sets of experiments: one
exclusively benchmarks the quasi-clique search, while the
other runs over real-world datasets.

5.1.1 (Quasi-) clique search
This experiment decouples the testing of the quasi-clique
search from the uncertainty associated with the data. The
test accepts as parameters the rank for the hyper-graph k,
the cardinality for the clique n, the number of additional
nodes N , the fraction of missing edges α and the fraction of
spurious edges β. With these parameters, the test performs
the following initialization procedure:

1) Create n nodes belonging to the clique
2) Create N additional nodes
3) Create the set E of

(n+N
k

)
edges connecting all nodes

4) Create the set Q of
(n
k

)
edges belonging to the clique

5) Obtain the set of all edges not belonging to the clique
C = E \Q

With these sets, and to obtain an estimation of the
distribution of the target measurement, it then repeatedly

TABLE 1
Set of measurements taken for the quasi-clique finding problem.

Recovery ratio For each quasi-clique Q′ found, we compute
the Jaccard index for each found quasi-clique,
J(Q,Q′) = |Q ∩Q′| ÷ |Q ∪Q′|. From all the
obtained values, we report the maximum. A value
of 1 signals a perfect match.

Time Wall-clock time
Timeouts How many runs exceeded the timeout

TABLE 2
Combination of parameters for the quasi-clique find problem.

Rank α β Timeout (s)

2 [0.05, 0.30], step 0.05 0.0 2400.1 [0.0− 0.8] step 0.2

3 [0.05, 0.30], step 0.05 0.0 300
0.1 [0.0− 0.8] step 0.2 1200

4 [0.05, 0.30], step 0.05 0.0 1200
0.1 [0.0− 0.8] step 0.2 3000

generates noisy versions of the original clique through the
following steps:

6) Remove α × |Q| random edges from the original full
clique Q

7) Add β × |C| random edges from C
8) Run FIND2 and PRESQ over the resulting graph

The parameters α and β simulate the effect of type I and
type II errors respectively.

PRESQ is configured with γ = 1 − α and Λ = 0.05. The
number of additional nodes is fixed to half the number of
nodes in the clique: N = n

2 .
This experiment measures, in a controlled manner, the

capability of the algorithms to find the true clique and how
their run-time is affected by the number of missing and
spurious edges. Since the inputs are randomized, some will
unavoidably run with exponential complexity, the worst
case for all the algorithms. To avoid spending too much
time on these extreme cases, the test also accepts a timeout
parameter. We describe the measurements we have taken in
table 1, and the different parametrizations in table 2.

5.1.2 Real-world datasets

For the statistical tests, we use a non-parametric multivari-
ate test based on k-Nearest Neighbors (kNN) [26], [27],
but any other multivariate test could be used. However,
regardless of the chosen test, there will always be a number
of false negatives bound by the significance level. In any
case, the techniques here discussed remain relevant.

The initialization stage of the test is as follows:
1) We load two separate datasets.
2) The constant columns, where every tuple has the same

value —including null— or only a handful of different
values, are dropped. FAIDA authors followed a similar
procedure to reduce the number of columns to check
[28].

3) A random sample is taken from both relations (it de-
faults to 200)

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3198252

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on September 08,2022 at 08:54:25 UTC from IEEE Xplore. Restrictions apply.

8

TABLE 3
Set of measurements taken from individual runs.

Time Wall-clock time, without accounting for the
initialization stage, as this is shared

Number of tests Time spent looking for quasi-cliques and val-
idating the candidates. Tests can be poten-
tially expensive, so we measure how many
statistical tests are necessary.

EDD count Without removing non-maximal EDDs
Maximal EDD count Removing non-maximal EDDs
Timeouts The execution time has a time limit of 3000

seconds. We report the percentage of runs
that could not finish within the allocated
time window.

Highest arity The maximum EDD arity found

4) The algorithm described in section 4.1 is used to find a
set of valid unary EDDs.

5) All possible n-EDDs (for n ∈ {2, 3}) are generated
and validated. The tests begin at different arities in
order to compare the resiliency of FIND2 and PRESQ
for different initial conditions.

6) Valid n-EDDs are used to create the initial graph passed
as input to PRESQ.

The fifth step is performed at different significance levels
of α ∈ {0.05, 0.10, 0.15} to verify how the number of
missing and spurious edges affects the search algorithms.
Typically, MIND would generate the graph (i.e. 3-EDDs are
generated from valid 2-EDDs). Nonetheless, we start with
all possible n-EDDs for simplicity: it is easier to model
and understand how many missing edges are expected as
a function of α.

The input for both search algorithms is, thus, identical
at every run. However, since there is an unavoidable effect
of the randomization of the sampling in step 3 and the
N -dimensional permutation tests, we have repeated the
experiment. As a result, we are confident that the difference
is significant and not due to chance.

While FIND2 has no parameters beyond the initial set
of EDDs, PRESQ requires a value for both γ and Λ. As we
mentioned earlier, it makes sense to bind γ to the expected
number of missing edges (false negatives): γ = 1 − α. For
Λ, we have tested with the values 0.05 and 0.1 since lower
values yield too many accidental quasi-cliques, while higher
values defeat the tolerance introduced by γ.

To measure the efficacy (EDDs finding) and efficiency
(run-time) of the algorithms, we took the measurements
summarized in tables 3 and 4.

Given the variability and the number of dimensions, it
can be hard to assess the quality of the results. As a general
guideline, we consider:
• The higher the match ratio, the better: the highest arity

EDD is potentially the most interesting and selective
candidate for cross-matching.

• For a similar match ratio, the lower the run-time, the
better.

For a similar match ratio, a higher number of maximal
EDDs is desirable. Arguably not for the IND discovery —
after all, a few good candidates may suffice—, but it proves
the capacity of finding maximal quasi-cliques.

It is important to note that some of these measures are in-
terdependent. For instance, if a maximal EDD with a higher

TABLE 4
Set of measurements derived over the complete set of runs.

Match ratio It is a ratio between the maximum arity of the max-
imal quasi-clique found and the true maximum EDD
possible to find on each separate run. This truth is
solely based on attribute names. The algorithms can
find higher arity EDDs when the values are taken
into account. This is a proof of success: the metadata
would not have sufficed to capture this trait.

Accuracy Measured as the number of total returned EDDs,
divided by the number of statistical tests executed.
A ratio of 1 (best) means that every candidate was
accepted by the statistical test, while a ratio of 0
(worst) means that all candidate quasi-cliques were
rejected. This value is also affected by the power of
the statistical test as a function of dimensionality.

arity is found, the number of EDDs should generally de-
crease. Conversely, if a true, high arity candidate is rejected,
multiple generalizations will be considered and possibly
accepted, increasing the number of unique EDDs. Similarly,
finding more maximal EDDs implies running more statisti-
cal tests, so the run-time will be worse. Ultimately, it is up to
the user to decide what is more important and parameterize
the algorithm accordingly.

We have run the tests disabling the limitation on the
degree (Λ = 0) and the limitation on the total number of
edges (γ = 0). In this manner, we can evaluate if there is
any difference when using one, the other, or both.

TABLE 5
Summary of the datasets used for validation.

Dataset Tables Rows Columns 1-EDD
Mortgage/Treasury 2 1k + 1k 16 + 16 26
Ailerons/Elevators 2 14k + 17k 41 + 19 44
DC2 2 198k + 193k 39 + 33 279
AFDS 4 172× 4 8× 4 63
Waveform 2 5k + 5k 22 + 41 145
KEEL 43 43 — 41k 444 972
ChEMBLDB 79 5 — 19M 418 599

Datasets: To test the algorithms, we have run them over
two pairs of relations from the KEEL regression datasets
[29], the training and test catalog from the Euclid photometric-
redshift challenge [30], and a set of sensor measurements from
an aircraft fuel distribution system [31]. For the scalability
tests, we have used the full KEEL regression dataset, two
variants from the Waveform Database Generator [32], [33],
and versions 29 and 30 of the ChEMBL database [34].

Some statistics about these datasets are summarized in
table 5.

Mortgage / Treasury contain the same data, permuted by
rows and by columns. These datasets are an example of data
de-duplication.

Ailerons /Elevators share their origin (control of an F16
aircraft) but have different sets of attributes. These datasets
are an example of data fusion.

DC2 comes from a single catalog of astronomical objects,
split based on the sky coordinates. The authors masked
some of the attributes of the training set (i.e., coordinates
and the target attributes: red-shift). Therefore, both catalogs
share some of the attributes but for different sources. A
naive one-to-one schema matching will easily mistake these

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3198252

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on September 08,2022 at 08:54:25 UTC from IEEE Xplore. Restrictions apply.

9

attributes for small sample sizes. In contrast, for bigger
samples some true correspondences will be falsely rejected.
These datasets require some more resilient methods capable
of working on a multidimensional space. These datasets are
an example of schema inference/matching and automatic
feature discovery.

Aircraft Fuel Distribution System (AFDS) comprises five
different files, all sharing the same schema but contain-
ing sensor measurement values for different scenarios: one
nominal, and four abnormal. Our implementations of FIND2
and PRESQ can process the five files at the same time.

Waveform Database Generator We use version 1, with 21
attributes, and version 2, which shares the same 21 attributes
and adds 19 extra features that are just Gaussian noise. This
21-ary EDD between the datasets goes beyond the maxi-
mum 7-ary evaluated in previous works [9]. Additionally,
the number of attributes and their distribution similarity
generates many false positives at low dimensionality, stress-
ing the capability of processing noisy, dense, graphs.

ChEMBL Database We use versions 29 and 30 of the
ChEMBL database, each of size 20GiB. They are stored on
BEEGFS, a clustered filesystem. We evaluate the scalability
with respect to the number of columns, adding tables pro-
gressively. In this scenario, the overhead introduced by the
sampling becomes significant.

The two pairs from KEEL (i.e. Mortgage/Treasury and
Ailerons/Elevators) were found running over the whole
KEEL dataset initial versions of the algorithms described
in this paper, proving their capabilities. We report the
performance of this exercise, together with the other two
scalability tests, in section 5.3.3.

5.2 Environment

The tests were run on a cluster, where each node is fitted
with an Intel(R) Xeon(R) Gold 6240 CPU at 2.60GHz with
36 virtual cores, running on a standard CentOS Linux 7.9.
The default memory allocation per core was 3 GB.

For the (quasi-)clique search, we submitted one job with
as many tasks as parameter combinations described in table
2 and 1 CPU per task, for cliques of size 10, 20 and 30. We
chose the time limit based on the measured run-time from
early test runs.

For the real dataset tests, we submitted jobs with 8 tasks
and 1 CPU per task, limited to 24 hours. The objective of
concurrent runs was to increase the number of data points
since the code has not been parallelized.

Finally, we executed ten randomized runs for each incre-
ment on the number of columns for the scalability tests.

5.3 Results

In this section, we will summarize the results from our test
setup. We will discuss our interpretation in section 6.

5.3.1 (Quasi-) clique search
We summarize the wall-time and recovery ratio metrics by
estimating their distribution mean and its associated stan-
dard error following the Bootstrap method. The timeout is
measured by counting how many runs fail to find a quasi-
clique within the allocated time window.

While the wall-time distribution is far from Gaussian,
we consider that randomizing the input, pruning the long-
running cases, and averaging the results of a few short-
running iterations is a valid usage of the algorithms. This
makes comparing the means a reasonable assessment.

Influence of spurious edges: We show in figure 4 the
performance of the algorithms for 3-hypergraphs and dif-
ferent ratio of spurious edges. The exponential worst-case
complexity becomes more apparent the more connected
nodes there are. FIND2 is the most affected, but at some
point, PRESQ performance also degrades significantly and
eventually also fails to finish on time. These results confirm
that spurious edges influence the run-time of these algo-
rithms very negatively [35].

0.8

1.0

J
a
cc
ar
d
id
x.

Clique size 10

100

102

T
im

e
(s
)

0.2 0.6

β

0%

50%

100%
T
im

eo
u
ts

Clique size 20

0.2 0.6

β
Hyperclique PresQ PresQ (grow)

Clique size 30

0.2 0.6

β

Fig. 4. Recovery ratio and run-times for cliques on uniform 3-
hypergraphs for different ratios of spurious edges (β). Each data-point
corresponds to 15 runs.

Influence of missing edges: Figure 5 shows that our pro-
posal generalizes for hypergraphs. PRESQ with the growing
stage enabled, oscillates very close to the original clique
even when 30% of the edges are missing. However, the
number of timeouts increases given that the algorithm needs
to traverse more levels from the seed to the maximal quasi-
clique. Interestingly, there is an inverse correlation between
the number of missing edges and run-time.

Influence of correlated ratios: In a more realistic sce-
nario — i.e., when using statistical tests — as the number
of missing edges increases, the number of spurious edges
should decrease. We have run tests with the growing stage
enabled for different parametrization on the node degree
threshold. This includes a regular λ parameter with a value
of 0.8 chosen based on good empirical results we obtained
during early iterations of this work. The correlation between
β and α is based on the empirical statistical power of the
kNN test as a location test on k dimensions and a sample
size of 100. In all cases, γ = 1− α.

Figure 6 summarizes the results. A hand-picked param-
eter of λ = 0.8 can perform well for some hypergraphs but
quickly underperforms as the hypergraphs become noisier.
To the contrary, our proposal based on the hypergeometric
distribution remains stable. However, disabling the degree
limitation performs better for this particular setup. This

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3198252

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on September 08,2022 at 08:54:25 UTC from IEEE Xplore. Restrictions apply.

10

0.5

1.0
J
a
cc
ar
d
id
x.

Clique size 10

100

102

T
im

e
(s
)

0.1 0.2 0.3

α

0%

50%

100%

T
im

eo
u
ts

Clique size 20

0.1 0.2 0.3

α
Hyperclique PresQ PresQ (grow)

Clique size 30

0.1 0.2 0.3

α

Fig. 5. Recovery ratio and run-times for cliques on uniform 3-
hypergraphs for different ratios of missing edges (α). Each data-point
corresponds to 15 runs.

makes sense since there is no correlation between missing
edges.

0.5

1.0

J
a
cc
ar
d
id
x.

k=2

0.15 0.25
α

101

102

T
im

e
(s
)

0.41 0.33
β

k=3

0.15 0.25
α

λ = 0 λ = 0.8 Λ = 0.05

0.13 0.05
β

k=4

0.15 0.25
α

0.11 0.03
β

Fig. 6. Recovery ratio and run-times for cliques of size 20 on uniform
(2, 3, 4)-hypergraphs. In this setup there were no timeouts. Each data-
point corresponds to 5 runs.

5.3.2 Real-world datasets

The initial randomized state heavily influences the pro-
posed performance measurements. Their distribution can
not be assumed normal. Purely comparing their means is
not enough to assess the validity of our proposal, and we
also need an estimation of variability.

The metric of choice used to compare our measurements
is the percent difference between sample means, being its
sample estimator [36]:

φ̂ = µ̂PRESQ − µ̂FIND2

µ̂FIND2
(7)

The distribution of φ̂ can be estimated using bootstrap-
ping. In this manner, we obtain the estimated population
mean and standard deviation. Finally, we compute the 95%
confidence interval µ̂φ ± 1.96σ̂φ

Figure 7 shows this confidence interval for match ratio,
unique EDDs, number of tests and wall time (columns) for
a significance level of 0.10, against the different datasets
(rows).

The DC2 case is particularly interesting. The attributes
of the datasets are relatively numerous —compared to the
others— and very similar in their distributions. A low initial
significance level will generate very dense graphs, with
a few missing edges, and many spurious, which impacts
the performance considerably. This is a known issue of
FIND2 [35]. Increasing the significance level reduces the
number of spurious edges, at the cost of missing true ones.
Consequently, the efficiency is improved at the cost of the
efficacy. PRESQ allows us to increase the significance level
without sacrificing much efficacy.

For the AFDS dataset, when comparing the maximum
EDD arity found per pair of files, scenarios two and three
are the most similar. We can obtain this insight without even
knowing what the schema nor the content of the files are.
After seeing this result, we checked the original paper from
where the dataset was obtained, verifying that, indeed, they
are “two closely related scenarios” [31]. We consider this
another proof of the utility of the proposed techniques.

Table 6 summarizes the overall results when we execute
our tests over the datasets Mortage vs Treasury, Ailerons vs
Elevators and DC2 for different values of γ and Λ — note
that FIND2 is equivalent to either one of the two parameters
set to 1.. For run-time, match ratio, and the number of
unique EDDs, we provide the first and third quartiles. The
precision column shows a measure of how many candidates
are accepted by the statistical test. A value of 1 means that
all candidates were valid EDDs.

When the search algorithm looks for cliques (first entry
for each dataset), the precision is high since almost all
candidates were accepted. However, these candidates are,
on average, of lower arity. This is visible on the Match
columns. As the potential maximal arity becomes higher —
e.g., DC2— the chance of having missing edges increases,
thus making the search more resource intensive.

On the other hand, in a too permissive setup where only
γ constrains the quasi-cliques (second entry), the algorithm
is too eager and accepts EDD candidates later rejected either
by the statistical test or by the limitation of not accepting
duplicated columns. The precision is low, and the search
time increases as well.

Our proposed Λ parameter, based on the expectation on
the number of missing edges, is more effective at constrain-
ing the set of candidates even when used alone (third entry).
The precision increases and the run-time is reduced. When
combined with γ (fourth and fifth entries), the precision
increases and fewer tests are required.

As an illustration of this balance, let us examine in more
detail the consequences of the different Λ parameterization
following the process shown in figure 2 when running over
the DC2 dataset. The first four stages are unaffected by this
parameter:

(a) As described in section 4.1, an interval tree is built
over the attributes from both relations. Only overlapping
ranges are compared, reducing by 27% the number of
tests required.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3198252

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on September 08,2022 at 08:54:25 UTC from IEEE Xplore. Restrictions apply.

11

(b) 810 KS tests need to be done. 49 pairwise combinations
are considered equally distributed (uEDDs).

(c) (n× (n− 1))÷ 2 = 1176 edges are build combining all
uEDDs and validated using the kNN test. 612 edges are
considered valid.

(d) The initial graph has half as many edges as the complete
graph. Since we know the ground truth, we can extract
the sub-graph induced by the set of true uEDD and find
the number of missing edges to be ≈ 0.10 on average, as
we expected.

The following table exemplifies the consequences of dif-
ferent values of Λ — see equation 6 — on the count and size
of the found quasi-cliques (e) and the number validated by
the kNN test (f). Those invalid are ‘decomposed’ into candi-
date 3-EDDs, validated, and used to build a 3-hypergraph
(d) feedback to the stage (e) for the next iteration.

Quasicliques Valid Median size
Λ = 0.00 2385 292 19
Λ = 0.05 107 64 12
Λ = 1.003 53053 52291 6

For Λ = 0, the search algorithm is too greedy and accepts
quasi-cliques that are poor candidates. Too many are invalid
and need to be feedback to the algorithm, increasing run-
time. For Λ = 1, the search algorithm is too restrictive.
Its precision is high, but it spends much time enumerating
small cliques. Λ = 0.05 provides the right balance, improv-
ing the result and performance.

Finally, the growing stage increases the number of candi-
dates of all arities. This requires a more exhaustive traversal
of the search space and the execution of more tests, increas-
ing the total run-time. While we run the growing stage over
all found seeds this stage could be restricted only to a subset
of the most interesting seeds —e.g., highest cardinality.

5.3.3 Scalability tests
For measuring the scalability of our algorithm, we executed
the algorithm over the KEEL, Waveform, and ChEMBL
datasets, progressively adding columns, measuring run-
time; the number of 1, 2, and n-EDDs; and the number
of unary tests saved by the interval tree. In all cases the
chosen parameterization is α = 0.1, Λ = 0.05, γ = 1 − α
and 200 samples. We set the run-time limit at 3000 seconds.
The relations and their attributes are consistently added in
alphanumeric order. Figure 8 summarizes our results.

The accepted 1-EDDs are used to compute all the pos-
sible 2-EDDs, while the accepted 2-EDDs define the initial
edges for the n-EDD finding.

The KEEL dataset contains 43 different relations. The
interval tree saves around 45% of the tests since many
columns do not overlap. The number of EDDs increments in
‘bursts’ when a relation that matches a previous one enters
the pool. This is due to the existence of high arity EDDs (16,
12, 7 and 6). The high number of 2-EDDs makes the growing
stage eventually impractical.

For the ChEMBL databases, we have used a naive
random sampling that only requires a single pass over
the entire database. Even then, the reading time is small

3. Equivalent to clique finding

with respect to the rest of the EDD finding algorithm.
The number of 1-EDDs increments steadily as relations
are added, but 2 and n-EDDs remain relatively stable —
the corresponding error bars overlap—, and so does the
run-time. The arities are lower than those from KEEL, the
maximum being 6 for the tables molecule_dictionary
and compound_properties. The interval tree saves 57.9%
tests for 1-EDDs.

Finally, while the Waveform Generator datasets are the
smallest, it is the case for which the algorithm shows the
worst performance. This is due to the high arity possible
(up to 20), and because the attributes are hard to distinguish
—the interval tree can not save even one test. The number of
2-EDDs grows super-linearly with respect to the number of
attributes, resulting in a very dense and noisy initial graph
with many possible quasi-cliques.

From these experiments, we can conclude that the algo-
rithm scales well in relation with the number of relations
and columns and that the sampling has a low impact
even for big datasets. However, when the statistical test
has low power for the input data, the run-time degrades
significantly even for moderate input sizes since the search
space is combinatorial and little pruning is possible. Then
the user can choose a different test or increase the sample
size to increase the power. Figure 9 exemplifies the effect
the sample size has on the result set and, therefore, run-time
for the complete Waveform dataset. The power of the test is
low for low dimensionality, and the initial graph becomes
very dense.

6 DISCUSSION

Identifying shared attributes between multiple numerical
datasets is an interesting problem. It combines the chal-
lenging nature of algorithms devised to find Inclusion De-
pendencies, an NP-hard problem [8], with the unavoidable
uncertainty of statistical methods. This uncertainty reflects
as falsely rejected EDDs and falsely accepted EDDs.

FIND2 is an algorithm that maps inclusion dependencies
to hyper-cliques, which generally performs at least as well
as the alternatives [9]. It is not strongly coupled to the
discrete nature of the underlying data. However, its ability
—and of most, if not all, of the existing algorithms— to
find high arity EDDs will be impaired by the level of false
rejections.

A lower rejection threshold could compensate for this.
Yet, it increases the number of false detections, which is a
known factor that degrades its performance significantly as
well as other hypergraph-based methods’ performance [35].
We have experimentally confirmed this problem in section
5.3.1.

We propose a new algorithm based on quasi-cliques,
where a candidate is accepted even if some edges are
missing. This algorithm has three parameters:
• The ratio of missing edges (γ).
• The tolerance on the number of missing edges connect-

ing a node from the quasi-clique (Λ).
• Whether to use the found quasi-clique as seeds.
We provide a generalization of this parameterization

from regular 2-graphs [21] to uniform n-graphs in equa-
tions 2 and 3.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3198252

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on September 08,2022 at 08:54:25 UTC from IEEE Xplore. Restrictions apply.

12

0 %

20 %
D
C
2

Match Ratio

0 %

250 %

500 %

Unique EDDs

-50 %

0 %

N. Tests

0 %

200 %

Runtime

0 %

20 %

A
il
e
ro
n
s

0 %

200 %

0 %

200 %

0 %

2000 %

0 %

5 %

10 %

M
o
rt
g
a
g
e

0 %

500 %

1000 %

0 %

250 %

500 %

0 %

2000 %

Λ = 0.05 γ = 1− α Λ = 0.1 γ = 1− α Λ = 0.05 γ = 1− α grow

Fig. 7. 95% confidence intervals for the percent difference (equation 7) between FIND2 and three parameterizations of PRESQ for the DC2, Ailerons
vs. Elevator, and Mortgage vs. Treasury datasets. Intervals that do not intersect the horizontal dashed line at 0% show a statistically significant result.
For ratio, higher is better. For tests and run-time, lower is better. Unique is harder to assess since the results also depend on the statistical power
of the chosen test. Since the growing stage can generate many candidates, a low-powered test will accept many false EDDs.

The results shown in the quasi-clique test set (sec-
tion 5.3.1) demonstrate that the seed stage of PRESQ pro-
vides results close to the original cliques on uniform n-
hypergraphs. The growing stage can recover them even for a
high number of missing edges (up to 30%), at the expense of
a higher run-time. These results also prove that the degree
threshold based on the hypergeometric distribution offers
comparable performance to a hand-picked ratio λ while
being more stable and predictable.

For real datasets, the ratio of missing edges can be
intuitive to configure (simply γ = 1 − α, where α is the
test significance level), but λ can be harder to interpret. We
propose instead an intuitive and statistically interpretable
method to adapt the threshold to the degree dynamically,
which is expected to follow a hypergeometric distribution
and can be adjusted based on the quasi-clique itself, as
shown in equation 6.

While our tests on artificial hypergraphs seem to point
to the redundancy of the parameter Λ, the results shown in
the real-world test set (section 5.3.2) prove that for real noisy
graphs, the combination of both performs consistently better
than either of them separately. The γ parameter enables
recovery from missing edges and, at the same time, Λ avoids
too many false positives due to the existence of spurious
edges. Thanks to them, the efficacy can be kept even while
maintaining, or even increasing, the significance level of the
tests. This reduces the risk of decreased performance since
the density of the graphs can be kept under control.

If a more exhaustive listing of maximal quasi-cliques is
required, the initial set of quasi-cliques can be used as seeds
to grow other quasi-cliques by adding suitable vertices. The
results shown in section 5 demonstrate that this method
is capable of finding considerable more maximal quasi-
cliques (not contained in any other found quasi-cliques) at

the expense of a higher run-time. This is due both to the
traversal of the search space and the validation of the EDDs
represented by the quasi-cliques.

The loss of accuracy introduced by this growing stage
is minor when starting at n = 3, which means that the
statistical test could not reject most candidates. However, for
an initial n = 2, most candidates were rejected. We consider
that this is mostly due to the lack of power of the kNN test
for low dimensions, which introduces many spurious edges.

The overall run-time of the EDD finding algorithms is
heavily influenced by the chosen parameter values. A strict
parametrization will reject most seed candidates, and the
quasi-clique search will fall into exponential complexity.
Conversely, a flexible one will be faster at finding quasi-
clique candidates. Yet, the statistical test will likely reject
them, causing their decomposition into an exponential num-
ber of newer, smaller candidates. In general, a balanced
parametrization based on both γ and Λ is more predictable.

As a final remark, the set of accepted EDDs may con-
tain several false positives depending on the power of the
multivariate statistical test. A second pass adapted from the
foreign key literature can prove helpful. For instance, we
can envision a ranking based on the previously discussed
randomness [15] in order to decide which set of EDDs is more
suitable for cross-matching the datasets.

7 THREATS TO VALIDITY

Internal validity: The results shown in the experiments
described in section 5 could risk being just a fluctuation, not
due to an underlying algorithmic improvement. However,
the experimental design described in section 5.1 signifi-
cantly reduces this possibility thanks to the randomization
of the initial conditions, and the number of measurements.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3198252

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on September 08,2022 at 08:54:25 UTC from IEEE Xplore. Restrictions apply.

13

TABLE 6
Summary of run-time, matching ratio (based on name), and number of maximal quasi-cliques found accepted by the statistical test. The

significance level is α = 0.1. N corresponds to the number of randomized runs. PRESQ(G) identifies PRESQ with the growing stage.

Mortgage vs Treasury
Λ γ Time (s) Match Unique Prec. N Timeouts

Q1 Q3 Q1 Q3 Q1 Q3
FIND2 0.44 0.64 0.75 1.00 12 21 0.99 527 0.0%
PRESQ 0.00 0.9 44.86 459.04 0.94 1.00 11 15 0.06 212 0.0%
PRESQ 0.05 0.0 0.71 11.08 0.88 1.00 11 17 0.49 535 0.0%
PRESQ 0.05 0.9 0.76 10.61 0.88 1.00 11 17 0.57 507 0.0%
PRESQ 0.10 0.9 0.73 1.99 0.84 1.00 11 17 0.75 503 0.0%
PRESQ(G) 0.05 0.9 47.10 247.39 0.88 1.00 125 262 0.22 503 0.0%

Ailerons vs Elevators
FIND2 5.63 48.41 0.78 1.00 142 291 0.98 93 0.0%
PRESQ 0.00 0.9 8.82 36.75 1.00 1.22 88 174 0.24 128 0.0%
PRESQ 0.05 0.0 22.68 52.87 1.00 1.22 113 239 0.16 126 0.0%
PRESQ 0.05 0.9 7.51 20.12 1.00 1.11 86 198 0.35 60 0.0%
PRESQ 0.10 0.9 6.83 22.40 1.00 1.11 89 205 0.41 60 0.0%
PRESQ(G) 0.05 0.9 57.86 674.26 1.11 1.25 321 1062 0.22 60 0.0%

DC2
FIND2 74.94 805.71 0.60 0.71 73 150 0.90 53 34.0%
PRESQ 0.00 0.9 681.51 1536.19 0.68 0.69 102 200 0.01 16 87.5%
PRESQ 0.05 0.0 40.07 189.45 0.80 0.93 46 115 0.10 21 47.6%
PRESQ 0.05 0.9 25.57 214.27 0.76 0.89 46 113 0.14 53 13.2%
PRESQ 0.10 0.9 18.61 144.98 0.76 0.87 42 98 0.18 52 23.1%
PRESQ(G) 0.05 0.9 458.26 1881.02 0.81 0.93 518 798 0.23 52 50.0%

Looking at the results summarized in table 6, it is evident
that, on average, the quasi-clique-based searching algorithm
consistently performs better both in terms of run-time and
ability to find the maximal EDD. It has enough runs as to
make the difference significant. It is worth mentioning that
there are proposed heuristics [13] to find higher arity EDDs,
even when edges are missing, by merging found lower-arity
EDDs and testing them instead. Nonetheless, we consider
that the run-time differences are significant enough to make
the quasi-clique-based search a better approach in those
cases. Even so, that heuristic can be applied to the output
of our proposed algorithm as well.

We have implemented FIND2 and PRESQ from scratch,
with both sharing many parts of the code — i.e., data
structures, statistical tests, etc. While there is room for opti-
mizations, both would benefit. Since the relative differences
would remain similar, we are confident that the gains come
from the algorithm rather than its implementation.

External validity: The experiments have been run over
four different datasets of diverse nature and from three
separate sources. The chosen statistical tests for uni- and
multi- dimensional distributions have not been customized
to any of them. However, a better statistical test can be used
if the underlying data distribution is more or less known (or
simply suspected), which may reduce, or even remove, the
advantage of the quasi-clique approach. Although it is also
unlikely that the performance would be any worse, since an
entire clique is still a quasi-clique, and our algorithm can
identify all of them, as well as the original FIND2 algorithm.

One significant caveat of our approach is that it may not
find any dependencies if prior filtering has been applied to
only one of the two relations (i.e., signal to noise filtering).
This is a limitation of the validation step. This issue was also

recognized on the original FIND2 proposal [13].
All the necessary code to reproduce our tests, our mea-

surements, and figures, are publicly available4.

8 CONCLUSIONS AND FUTURE WORK

Finding sets of equally-distributed dependencies between
numerical datasets is a similar problem to that of finding In-
clusion Dependencies between tables in a relational model.
However, the statistical nature of tests, with their potential
uncertainties, can make more difficult their finding and con-
siderably degrade the performance of existing algorithms.
This problem can be mapped to finding quasi-cliques, as
the IND problem can be mapped to finding full cliques.

In this paper, we have introduced the concept of EDD,
similar to the IND from the relational domain. We have
proposed PRESQ, a new algorithm based on the search of
maximal quasi-cliques on hyper-graphs. We have proven
that by limiting the quasi-cliques by the number of missing
edges, and the degree of the nodes, our algorithm can
successfully identify shared sets of attributes.

In general, comprehensive approaches will be needed
to find very high arity EDDs, given the complexity of the
IND/EDD discovery problem. For further work, we can
envision three main routes:

Improving the finding of quasi-cliques in hypergraphs Via
novel algorithms or by generalizing some of the many
existing techniques [37].

Data-aware algorithms For instance, the correlation matrix
on both sides of the EDD is likely to be similar. Perhaps this
kind of information can be used to augment the algorithms,
or inform the traversal.

4. https://doi.org/10.5281/zenodo.6865856

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3198252

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on September 08,2022 at 08:54:25 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.5281/zenodo.6865856

14

0

1000

2000

3000

Co
un

t

KEEL Dataset

0

1000

2000

3000

Ti
m

e
(s

)

200 400
0%

50%

100%

Ti
m

eo
ut

s
0

200

400

600
ChEMBL Database

0

100

200

300

300 400
Columns

0%

50%

100%

Sampling 1-EDD 2-EDD n-EDD n-EDD (grow)

0

500

1000

1500

2000
Waveform Generator

0

1000

2000

20 40
0%

50%

100%

Fig. 8. Scalability of PRESQ with respect to the number of columns. The top row corresponds to the number of EDDs with arities 1, 2, and n ≥ 3.
The middle row shows the time spent on each stage: sampling, searching, and testing for the different arities. Note that the two n-EDDs variants are
stacked over the previous stages, displaying the total run-time. The last row shows the percentage of runs timed out at 50 minutes. Each data-point
summarizes between 10 and 13 randomized runs.

Dimensionality reduction Searching for quasi-cliques in-
volves exponential time complexity on the number of
nodes. Thus, applying a dimensionality reduction before-
hand would reduce the total run-time and also decrease the
noise. Nonetheless, a complication arises from the premise
that we do not know which attributes are shared.

ACKNOWLEDGMENTS

This research was funded by the Spanish AEI
(DOI:10.13039/501100011033) through the project CRÊPES
(ref. PID2020-115844RB-I00) with ERDF funds.

REFERENCES

[1] A. Alawini, “Identifying relationships between scientific datasets,”
Ph.D. dissertation, Portland State University, 2016. [Online].
Available: https://pdxscholar.library.pdx.edu/open_access_etds/
2922/

[2] Y. Zhang and Y. Zhao, “Astronomy in the big data era,”
Data Science Journal, vol. 14, 2015. [Online]. Available: https:
//datascience.codata.org/articles/10.5334/dsj-2015-011/

[3] S. Idreos, O. Papaemmanouil, and S. Chaudhuri, “Overview
of Data Exploration Techniques,” in Proceedings of the 2015
ACM SIGMOD International Conference on Management of
Data - SIGMOD ’15, 2015, pp. 277–281. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2723372.2731084

[4] A. Alvarez-Ayllon, M. Palomo-Duarte, and J. M. Dodero,
“Interactive Data Exploration of Distributed Raw Files: A
Systematic Mapping Study,” IEEE Access, vol. 7, pp. 10 691–10 717,
2019. [Online]. Available: https://ieeexplore.ieee.org/document/
8540356/

[5] V. Silva, D. de Oliveira, P. Valduriez, and M. Mattoso, “Analyzing
related raw data files through dataflows,” Concurrency and
Computation: Practice and Experience, vol. 28, no. 8, pp. 2528–2545,
2016. [Online]. Available: http://dx.doi.org/10.1002/cpe.3616

[6] K. D. Borne, “Data Mining in Astronomical Databases,” in
Mining the Sky. Springer, 2000, pp. 671–673. [Online]. Available:
http://dx.doi.org/10.1007/10849171_88

[7] Z. Abedjan, L. Golab, and F. Naumann, “Profiling relational
data: a survey,” The VLDB Journal, vol. 24, pp. 557–581, 2015.
[Online]. Available: https://link.springer.com/article/10.1007%
2Fs00778-015-0389-y

[8] M. Kantola, H. Mannila, K.-J. Räihä, and H. Siirtola, “Discovering
functional and inclusion dependencies in relational databases,”
International journal of intelligent systems, vol. 7, pp. 591–607,
1992. [Online]. Available: https://onlinelibrary.wiley.com/doi/
10.1002/int.4550070703

[9] F. Dürsch, A. Stebner, F. Windheuser, M. Fischer, T. Friedrich,
N. Strelow, T. Bleifuß, H. Harmouch, L. Jiang, T. Papenbrock, and
F. Naumann, “Inclusion dependency discovery: An experimental
evaluation of thirteen algorithms,” in Proceedings of the 28th ACM
international conference on information and knowledge management.
Association for Computing Machinery, 2019, pp. 219–228.
[Online]. Available: https://doi.org/10.1145/3357384.3357916

[10] J. Kossmann, T. Papenbrock, and F. Naumann, “Data dependen-
cies for query optimization: A survey,” The VLDB Journal, vol. 31,
no. 1, pp. 1–22, 2022.

[11] F. De Marchi, S. Lopes, and J.-M. Petit, “Efficient algorithms
for mining inclusion dependencies,” in International conference
on extending database technology. Springer, 2002, pp. 464–476.
[Online]. Available: https://link.springer.com/chapter/10.1007%
2F3-540-45876-X_30

[12] F. De Marchi and J.-M. Petit, “Zigzag: a new algorithm for
mining large inclusion dependencies in databases,” in Third
IEEE international conference on data mining. IEEE, 2003, pp. 27–
34. [Online]. Available: https://ieeexplore.ieee.org/document/
1250899

[13] A. Koeller and E. A. Rundensteiner, “Discovery of high-
dimensional inclusion dependencies,” in Proceedings 19th interna-
tional conference on data engineering). IEEE, 2003, pp. 683–685. [On-
line]. Available: https://ieeexplore.ieee.org/document/1260834

[14] A. Rostin, O. Albrecht, J. Bauckmann, F. Naumann, and U. Leser,
“A machine learning approach to foreign key discovery.” in

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3198252

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on September 08,2022 at 08:54:25 UTC from IEEE Xplore. Restrictions apply.

https://pdxscholar.library.pdx.edu/open_access_etds/2922/
https://pdxscholar.library.pdx.edu/open_access_etds/2922/
https://datascience.codata.org/articles/10.5334/dsj-2015-011/
https://datascience.codata.org/articles/10.5334/dsj-2015-011/
http://dl.acm.org/citation.cfm?doid=2723372.2731084
https://ieeexplore.ieee.org/document/8540356/
https://ieeexplore.ieee.org/document/8540356/
http://dx.doi.org/10.1002/cpe.3616
http://dx.doi.org/10.1007/10849171_88
https://link.springer.com/article/10.1007%2Fs00778-015-0389-y
https://link.springer.com/article/10.1007%2Fs00778-015-0389-y
https://onlinelibrary.wiley.com/doi/10.1002/int.4550070703
https://onlinelibrary.wiley.com/doi/10.1002/int.4550070703
https://doi.org/10.1145/3357384.3357916
https://link.springer.com/chapter/10.1007%2F3-540-45876-X_30
https://link.springer.com/chapter/10.1007%2F3-540-45876-X_30
https://ieeexplore.ieee.org/document/1250899
https://ieeexplore.ieee.org/document/1250899
https://ieeexplore.ieee.org/document/1260834

15

0

102

103

104

C
o

u
n

t

1-EDD

2-EDD

n-EDD

0

1000

2000

3000

T
im

e
(s

)

100 200 300 400 500 600 700 800 900 1000

Sample size

0

100

T
im

eo
u

ts
(%

)
Waveform Generator

Fig. 9. Scalability of PRESQ with respect to the number of samples
for the Waveform datasets. Note that for the top row the y axis is
linear between 0 and 100, and logarithmic afterwards. Each data-point
summarizes 10 randomized runs.

WebDB, 2009.
[15] M. Zhang, M. Hadjieleftheriou, B. C. Ooi, C. M. Procopiuc, and

D. Srivastava, “On multi-column foreign key discovery,” Proc.
VLDB Endow., vol. 3, no. 1–2, pp. 805–814, 2010.

[16] L. Jiang and F. Naumann, “Holistic primary key and foreign key
detection,” Journal of Intelligent Information Systems, vol. 54, no. 3,
pp. 439–461, 2020.

[17] M. Hallin, G. Mordant, and J. Segers, “Multivariate goodness-of-fit
tests based on Wasserstein distance,” Electronic Journal of Statistics,
vol. 15, no. 1, pp. 1328–1371, 2021.

[18] M. A. Casanova, R. Fagin, and C. H. Papadimitriou, “Inclusion
dependencies and their interaction with functional dependencies,”
Journal of Computer and System Sciences, vol. 28, pp. 29 –
59, 1984. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/0022000084900758

[19] R. H. Randles and D. A. Wolfe, “Introduction to the theory of
nonparametric statistics,” John Wiley, Tech. Rep., 1979.

[20] A. Alvarez-Ayllon, M. Palomo-Duarte, and J.-M. Dodero,
“Inference of common multidimensional equally-distributed
attributes,” 2021. [Online]. Available: https://arxiv.org/abs/2104.
09809

[21] M. Brunato, H. H. Hoos, and R. Battiti, “On effectively finding
maximal quasi-cliques in graphs,” in International conference on
learning and intelligent optimization. Springer, 2007, pp. 41–55.
[Online]. Available: https://link.springer.com/chapter/10.1007%
2F978-3-540-92695-5_4

[22] J. L. Hodges, “The significance probability of the smirnov two-
sample test,” Arkiv för Matematik, vol. 3, no. 5, pp. 469–486, 1958.

[23] S.-V. Sanei-Mehri, A. Das, and S. Tirthapura, “Enumerating
top-k quasi-cliques,” in 2018 IEEE international conference on
big data (big data), 2018, pp. 1107–1112. [Online]. Available:
https://ieeexplore.ieee.org/document/8622352

[24] T. Uno, “An efficient algorithm for solving pseudo clique
enumeration problem,” Algorithmica, vol. 56, pp. 3–16, 2010.
[Online]. Available: https://link.springer.com/article/10.1007/
s00453-008-9238-3

[25] I. Tomescu, “Le nombre maximum de cliques et de
recouvrements par cliques des hypergraphes chromatiques
complets,” Discrete Mathematics, vol. 37, no. 2, pp. 263–

277, 1981. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0012365X81902259

[26] N. Henze, “A multivariate two-sample test based on the
number of nearest neighbor type coincidences,” The Annals of
Statistics, vol. 16, no. 2, pp. 772–783, 1988. [Online]. Available:
http://www.jstor.org/stable/2241756

[27] M. F. Schilling, “Multivariate two-sample tests based on
nearest neighbors,” Journal of the American Statistical Association,
vol. 81, no. 395, pp. 799–806, 1986. [Online]. Available:
https://www.jstor.org/stable/2241756

[28] S. Kruse, T. Papenbrock, C. Dullweber, M. Finke, M. Hegner,
M. Zabel, C. Zöllner, and F. Naumann, “Fast approximate
discovery of inclusion dependencies,” in Datenbanksysteme
für business, technologie und web (BTW 2017). Gesellschaft
für Informatik, Bonn, 2017, pp. 207–226. [Online]. Available:
https://dl.gi.de/handle/20.500.12116/629

[29] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. García,
L. Sánchez, and F. Herrera, “Keel data-mining software tool: data
set repository, integration of algorithms and experimental analysis
framework.” Journal of Multiple-Valued Logic & Soft Computing,
vol. 17, 2011.

[30] G. Euclid Collaboration: Desprez, S. Paltani, J. Coupon, and
et al., “Euclid preparation. X. The Euclid photometric-redshift
challenge,” Astronomy & Astrophysics, vol. 644, p. A31, Dec.
2020. [Online]. Available: https://www.aanda.org/articles/aa/
abs/2020/12/aa39403-20/aa39403-20.html

[31] Y. Gheraibia, S. Kabir, K. Aslansefat, I. Sorokos, and
Y. Papadopoulos, “Safety+AI: a novel approach to update
safety models using artificial intelligence,” IEEE Access,
vol. 7, pp. 135 855–135 869, 2019. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8839038

[32] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[33] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification
And Regression Trees. Routledge, 1984. [Online]. Available:
https://doi.org/10.1201/9781315139470

[34] A. Gaulton, A. Hersey, M. Nowotka, A. P. Bento, J. Chambers,
D. Mendez, P. Mutowo, F. Atkinson, L. J. Bellis, E. Cibrián-
Uhalte, M. Davies, N. Dedman, A. Karlsson, M. P. Magariños,
J. P. Overington, G. Papadatos, I. Smit, and A. R. Leach,
“The ChEMBL database in 2017,” Nucleic Acids Research,
vol. 45, no. D1, pp. D945–D954, 11 2016. [Online]. Available:
https://doi.org/10.1093/nar/gkw1074

[35] A. Koeller and E. A. Rundensteiner, “Heuristic strategies for
the discovery of inclusion dependencies and other patterns,”
in Journal on Data Semantics V. Springer, 2006, pp. 185–210.
[Online]. Available: https://link.springer.com/chapter/10.1007%
2F11617808_7

[36] F. Campelo and F. Takahashi, “Sample Size Estimation for Power
and Accuracy in the Experimental Comparison of Algorithms,”
Journal of Heuristics, vol. 25, no. 2, pp. 305–338, Apr. 2019.
[Online]. Available: https://link.springer.com/article/10.1007%
2Fs10732-018-9396-7

[37] Q. Wu and J.-K. Hao, “A review on algorithms for maximum
clique problems,” European Journal of Operational Research, vol.
242, no. 3, pp. 693–709, 2015. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0377221714008030

Alejandro Alvarez-Ayllon is a PhD student at
the University of Cádiz, where he received the
Master degree on Computer Science Engineer-
ing in 2010. He is currently combining his studies
with a full time position as a Software Engineer
at the Astronomy Department of the University of
Geneva since the beginning of 2018. He formerly
worked at the European Organization for Nu-
clear Research (CERN) between 2009 and 2018
on different Data Management components for
the LHC Computing Grid.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3198252

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on September 08,2022 at 08:54:25 UTC from IEEE Xplore. Restrictions apply.

http://www.sciencedirect.com/science/article/pii/ 0022000084900758
http://www.sciencedirect.com/science/article/pii/ 0022000084900758
https://arxiv.org/abs/2104.09809
https://arxiv.org/abs/2104.09809
https://link.springer.com/chapter/10.1007%2F978-3-540-92695-5_4
https://link.springer.com/chapter/10.1007%2F978-3-540-92695-5_4
https://ieeexplore.ieee.org/document/8622352
https://link.springer.com/article/10.1007/s00453-008-9238-3
https://link.springer.com/article/10.1007/s00453-008-9238-3
https://www.sciencedirect.com/science/article/pii/0012365X81902259
https://www.sciencedirect.com/science/article/pii/0012365X81902259
http://www.jstor.org/stable/2241756
https://www.jstor.org/stable/2241756
https://dl.gi.de/handle/20.500.12116/629
https://www.aanda.org/articles/aa/abs/2020/12/aa39403-20/aa39403-20.html
https://www.aanda.org/articles/aa/abs/2020/12/aa39403-20/aa39403-20.html
https://ieeexplore.ieee.org/abstract/document/8839038
http://archive.ics.uci.edu/ml
https://doi.org/10.1201/9781315139470
https://doi.org/10.1093/nar/gkw1074
https://link.springer.com/chapter/10.1007%2F11617808_7
https://link.springer.com/chapter/10.1007%2F11617808_7
https://link.springer.com/article/10.1007%2Fs10732-018-9396-7
https://link.springer.com/article/10.1007%2Fs10732-018-9396-7
https://www.sciencedirect.com/science/article/pii/S0377221714008030
https://www.sciencedirect.com/science/article/pii/S0377221714008030

16

Manuel Palomo-Duarte is an Associate Profes-
sor of Computer Systems & Languages at the
University of Cadiz. He has a Computer Science
MSc from the University of Seville and a Com-
puter Engineering PhD from University of Cadiz.
His main research interests are creative com-
puting, serious games and collaboration, fields
in which he has published different contributions
in indexed peer-reviewed journals and research
conference proceedings.

Juan-Manuel Dodero is a Full Professor of
Computer Systems & Languages at the Uni-
versity of Cádiz. He has a Computer Science
BSc and MSc from the Polytechnic University of
Madrid and a Computer Engineering PhD from
Carlos III University. He has worked before as a
Lecturer for other Spanish universities and as an
R&D consultant for ICT companies.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3198252

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on September 08,2022 at 08:54:25 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related works
	n-INDs finding algorithms
	Foreign Key Discovery

	Background
	Equally Distributed Dependencies
	Uniform n-Hypergraphs and quasi-cliques

	Inferring common multidimensional data
	Uni-dimensional EDDs
	Multidimensional EDDs
	PresQ algorithm
	Parameters

	Experiments
	Experimental design
	(Quasi-) clique search
	Real-world datasets

	Environment
	Results
	(Quasi-) clique search
	Real-world datasets
	Scalability tests

	Discussion
	Threats to validity
	Conclusions and future work
	References
	Biographies
	Alejandro Alvarez-Ayllon
	Manuel Palomo-Duarte
	Juan-Manuel Dodero

