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Abstract

In order to begin an approach to the structure of arbitrary Leibniz
algebras, (with no restrictions neither on the dimension nor on the base
field), we introduce the class of split Leibniz algebras as the natural ex-
tension of the class of split Lie algebras. By developing techniques of
connections of roots for this kind of algebras, we show that any of such
algebras L is of the form L = U +

∑
j

Ij with U a subspace of the abelian

subalgebra H and any Ij a well described ideal of L, satisfying [Ij , Ik] = 0
if j ̸= k. In the case of L being of maximal length we characterize the
simplicity of the algebra in terms of connections of roots.
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1 Introduction and previous definitions

Throughout this paper, Leibniz algebras L are considered of arbitrary dimension
and over an arbitrary field K. It is worth to mention that, unless otherwise
stated, there is not any restriction on dimLα, the products [Lα,L−α], or {k ∈
K : kα ∈ Λ, for a fixed α ∈ Λ}, where Lα denotes the root space associated to
the root α, and Λ the set of nonzero roots of L.

Leibniz algebras were introduced as a nonantisymmetric analogue of Lie al-
gebras by Loday [16]. The structure of this kind of algebras has been considered
in the frameworks of low dimensional algebras, nilpotence and related problems
[3, 6, 7, 8, 11, 15, 14], the simple case being introduced in [1, 2] where some
results concerning special cases of simple Leibniz algebras were also obtained.

*Supported by the PCI of the UCA ‘Teoŕıa de Lie y Teoŕıa de Espacios de Banach’, by the
PAI with project numbers FQM298, FQM2467, FQM3737 and by the project of the Spanish
Ministerio de Educación y Ciencia MTM2007-60333.
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All of these works necessarily concern finite dimensional Leibniz algebras. In the
present paper we try to give an approach to the structure of infinite dimensional
Leibniz algebras by introducing the class of split Leibniz algebras of arbitrary
dimension as the natural extension of the class of split Lie algebras.

In §2 we develop techniques of connections of roots in the framework of split
Leibniz algebras so as to show that L is of the form L = U +

∑
j

Ij with U a

subspace of the abelian subalgebra H and any Ij a well described ideal of L
satisfying [Ij , Ik] = 0 if j ̸= k. In §3 we concrete on split Leibniz algebras of
maximal length L by centering our attention on the simplicity of this kind of
algebras. As a main result we give a characterization of the simplicity of L in
terms of connectivity on the set of its nonzero roots.

Definition 1.1. A Leibniz algebra L is a vector space over a field K endowed
with a bilinear product [·, ·] satisfying the Leibniz identity

[[y, z], x] = [[y, x], z] + [y, [z, x]],

for all x, y, z ∈ L.

Clearly Lie algebras are examples of Leibniz algebras.
For any x ∈ L, consider the adjoint mapping adx : L −→ L defined by

adx(z) = [z, x]. Observe that Leibniz identity is equivalent to assert that adx
is a derivation for any x ∈ L. An ideal I of L is a vector subspace such that
[I,L] + [L, I] ⊂ I.

Let L be a Leibniz algebra, the ideal I generated by {[x, x] : x ∈ L} plays an
important role in the theory since it determines the (possible) non-Lie character
of L. From the Leibniz identity, this ideal satisfies

[L, I] = 0. (1)

Let us introduce the class of split algebras in the framework of Leibniz alge-
bras. We recall that given an element x of a Lie algebra L, and by denoting also
ad(x) for the adjoint mapping ad(x)(y) := [y, x]. A splitting Cartan subalgebra
H of a Lie algebra L is defined as a maximal abelian subalgebra, (MASA), of L
satisfying that the adjoint mappings ad(h) for h ∈ H are simultaneously diago-
nalizable. If L contains a splitting Cartan subalgebra H, then L is called a split
Lie algebra, (see [9, 18]). This means that we have a root spaces decomposition
L = H ⊕ (

⊕
α∈Λ

Lα) where Lα = {vα ∈ L : [vα, h] = α(h)vα for any h ∈ H} for a

linear functional α ∈ H∗ and Λ := {α ∈ H∗\{0} : Lα ̸= 0}. The subspaces Lα

for α ∈ H∗ are called root spaces of L and the elements α ∈ Λ∪ {0} are called
roots of L. We introduce the concept of split Leibniz algebra in a analogous
way. Given a subalgebra S of a Leibniz algebra L, we say that S is abelian if
[S, S] = 0.

Definition 1.2. Denote by H a maximal abelian subalgebra of a Leibniz algebra
L. For a linear functional α : H −→ K, we define the root space of L, (respect
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to H), associated to α as the subspace

Lα = {vα ∈ L : [vα, h] = α(h)vα for any h ∈ H}.

The elements α ∈ H∗ satisfying Lα ̸= 0 are called roots of L respect to H and
we denote Λ := {α ∈ H∗\{0} : Lα ̸= 0}. We say that L is a split Leibniz
algebra, respect to H, if

L = H ⊕ (
⊕
α∈Λ

Lα).

We also say that Λ is the root system of L.

Split Lie algebras are examples of split Leibniz algebras. Hence, the present
paper extends the results in [9].

It is clear that the root space associated to the zero root satisfies H ⊂ L0.

Conversely, given any v0 ∈ L0 we can write v0 = h +
n∑

i=1

vαi
with h ∈ H

and vαi
∈ Lαi

for i = 1, ..., n, being αi ∈ Λ with αi ̸= αj if i ̸= j. Hence

0 = [h+
n∑

i=1

vαi
, h′] =

n∑
i=1

αi(h
′)vαi

for any h′ ∈ H. So, taking into account the

direct character of the sum and that αi ̸= 0, we have that any vαi
= 0 and then

v0 ∈ H. Consequently
H = L0.

The below lemma is an immediate consequence of Leibniz identity.

Lemma 1.1. If [Lα,Lβ ] ̸= 0 with α, β ∈ Λ ∪ {0}, then α + β ∈ Λ ∪ {0} and
[Lα,Lβ ] ⊂ Lα+β.

Definition 1.3. A root system Λ of a split Leibniz algebra L is called symmetric
if it satisfies that α ∈ Λ implies −α ∈ Λ.

2 Decompositions

In the following, L denotes a split Leibniz algebra with a symmetric root system
Λ and L = H ⊕ (

⊕
α∈Λ

Lα) the corresponding root decomposition. We begin by

developing connections of roots techniques in this setting.

Definition 2.1. Let α and β be two nonzero roots. We say that α is connected
to β if there exist α1, ..., αn ∈ Λ such that

1. α1 = α.

2. {α1, α1 + α2, α1 + α2 + α3, ....., α1 + · · ·+ αn−1} ⊂ Λ.

3. α1 + · · ·+ αn−1 + αn ∈ ±β.

We also say that {α1, ..., αn} is a connection from α to β.
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Observe that {α} is a connection from α to itself and to −α and so α is
connected to ±α.

The next result shows the connection relation is of equivalence.

Proposition 2.1. The relation ∼ in Λ defined by α ∼ β if and only if α is
connected to β is of equivalence.

Proof. {α} is a connection from α to itself and therefore α ∼ α.
Let us see the symmetric character of ∼: If α ∼ β, there exists a connection

{α1, α2, α3..., αn−1, αn} ⊂ Λ

from α to β. Then α1 = α,

{α1, α1 + α2, ..., α1 + α2 + · · ·+ αn−1} ⊂ Λ, (2)

and α1 + α2 + · · · + αn−1 + αn ∈ {β,−β}. Hence, we can distinguish two
possibilities. In the first one

α1 + α2 + · · ·+ αn−1 + αn = β

and in the second one

α1 + α2 + · · ·+ αn−1 + αn = −β. (3)

Suppose we have the first one. By the symmetry of Λ, we can consider the set
of nonzero roots

{α1 + α2 + · · ·+ αn−1 + αn,−αn,−αn−1, ...,−α3,−α2} ⊂ Λ.

By equation (2), this family of elements in Λ clearly satisfy

α1 + α2 + · · ·+ αn−1 + αn = β,

(α1 + α2 + · · ·+ αn−1 + αn)− αn = α1 + α2 + · · ·+ αn−1 ∈ Λ,

(α1 + α2 + · · ·+ αn−1 + αn)− αn − αn−1 = α1 + α2 + · · ·+ αn−2 ∈ Λ,

...

(α1 + α2 + · · ·+ αn−1 + αn)− αn − αn−1 · · · − α3 = α1 + α2 ∈ Λ

and

(α1 + α2 + · · ·+ αn−1 + αn)− αn − αn−1 · · · − α3 − α2 = α1 = α.

From here, β is connected to α, that is, β ∼ α.
Suppose now we are in the second possibility given by equation (3). In this

case we have as above that {−α1 − α2 − · · · − αn−1 − αn, αn, αn−1, ..., α2} is a
connection from β to α and ∼ is symmetric.

Finally, suppose α ∼ β and β ∼ γ, and write {α1, ..., αn} for a connection
from α to β and {β1, ..., βm} for a connection from β to γ. If m > 1, then
{α1, ..., αn, β2, ..., βm} is a connection from α to γ in case α1+ ...+αn = β, and
{α1, ..., αn,−β2, ...,−βm} in case α1 + ... + αn = −β. If m = 1, then γ ∈ ±β
and so {α1, ..., αn} is a connection from α to γ. Therefore α ∼ γ and ∼ is of
equivalence.
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Given α ∈ Λ, we denote by

Λα := {β ∈ Λ : β ∼ α}.

Clearly if β ∈ Λα then −β ∈ Λα and, by Proposition 2.1, if γ /∈ Λα then
Λα ∩ Λγ = ∅.

Our next goal is to associate an (adequate) ideal IΛα
to any Λα. For Λα,

α ∈ Λ, we define

HΛα
:= spanK{[Lβ ,L−β ] : β ∈ Λα} ⊂ H,

and
VΛα

:=
⊕
β∈Λα

Lβ .

We denote by LΛα
the following subspace of L,

LΛα
:= HΛα

⊕ VΛα
.

Proposition 2.2. Let α ∈ Λ. Then the following assertions hold.

1. [LΛα
,LΛα

] ⊂ LΛα
.

2. If γ /∈ Λα then [LΛα
,LΛγ

] = 0.

Proof. 1. Taking into account H = L0 and Lemma 1.1, we have

[LΛα ,LΛα ] = [HΛα ⊕ VΛα , HΛα ⊕ VΛα ] ⊂ VΛα +
∑

β,δ∈Λα

[Lβ ,Lδ]. (4)

If δ = −β then
[Lβ ,Lδ] ⊂ HΛα . (5)

If δ ̸= −β, by Lemma 1.1 we have that in case [Lβ ,Lδ] ̸= 0 then β + δ ∈ Λ.
From here, if {α1, ....., αn} is a connection from α to β then {α1, ....., αn, δ} is
a connection from α to β + δ in case α1 + ...+ αn = β and {α1, ....., αn,−δ} in
case α1 + ...+ αn = −β. Hence δ + β ∈ Λα and so

[Lβ ,Lδ] ⊂ VΛα
. (6)

From equations (4), (5) and (6) we conclude [LΛα ,LΛα ] ⊂ LΛα .
2. We have

[LΛα ,LΛγ ] = [HΛα⊕VΛα , HΛγ⊕VΛγ ] ⊂ [HΛα , VΛγ ]+[VΛα , HΛγ ]+[VΛα , VΛγ ]. (7)

Consider the above third summand [VΛα
, VΛγ

] and suppose there exist β ∈ Λα

and η ∈ Λγ such that [Lβ ,Lη] ̸= 0. As necessarily β ̸= −η, then β + η ∈ Λ. So
{β, η,−β} is a connection between β and η. By the transitivity of the connection
relation we have γ ∈ Λα, a contradiction. Hence [Lβ ,Lη] = 0 and so

[VΛα
, VΛγ

] = 0. (8)
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Consider now the first summand [HΛα
, VΛγ

] in equation (7) and suppose there
exist β ∈ Λα and η ∈ Λγ such that [[Lβ ,L−β ],Lη] ̸= 0. By Leibniz identity we
get either [Lβ ,Lη] ̸= 0 or [L−β ,Lη] ̸= 0. From here [VΛα

, VΛγ
] ̸= 0 in any case,

what contradicts equation (8). Hence

[HΛα
, VΛγ

] = 0.

Finally, we note that the same above argument shows

[VΛα
, HΛγ

] = 0.

By equation (7) we conclude [LΛα ,LΛγ ] = 0.

Proposition 2.2-1 let us assert that for any α ∈ Λ, LΛα
is a subalgebra of L

that we call the subalgebra of L associated to Λα.
The usual definition of simple algebra lack of interest in the case of Leibniz

algebras because would imply the ideal I = L or I = 0, being so L an abelian
or a Lie algebra respectively. Abdykassymova and Dzhumadil’daev introduced
in [1, 2] the following adequate definition.

Definition 2.2. A Leibniz algebra L is said to be simple if its product is nonzero
and its only ideals are {0}, I and L.

It should be noted that the above definition agrees with the definition of
simple Lie algebra, since I = {0} in this case.

Theorem 2.1. The following assertions hold.

1. For any α ∈ Λ, the subalgebra

LΛα
= HΛα

⊕ VΛα

of L associated to Λα is an ideal of L.

2. If L is simple, then there exists a connection from α to β for any α, β ∈ Λ
and H =

∑
α∈Λ

[Lα,L−α].

Proof. 1. Since [LΛα
, H] + [H,LΛα

] = [LΛα
,L0] + [L0,LΛα

] ⊂ VΛα
, taking into

account Proposition 2.2 we have

[LΛα ,L] = [LΛα , H ⊕ (
⊕
β∈Λα

Lβ)⊕ (
⊕
γ /∈Λα

Lγ)] ⊂ LΛα

and
[L,LΛα

] = [H ⊕ (
⊕
β∈Λα

Lβ)⊕ (
⊕
γ /∈Λα

Lγ),LΛα
] ⊂ LΛα

.

2. The simplicity of L implies LΛα
∈ {I,L} for any α ∈ Λ. If some α ∈ Λ is

such that LΛα
= L, then Λα = Λ. Hence, L has all its nonzero roots connected

and H =
∑
α∈Λ

[Lα,L−α]. Otherwise, if LΛα = I for any α ∈ Λ then Λα = Λβ for

any α, β ∈ Λ and so Λα = Λ. We also conclude that L has all its nonzero roots
connected and H =

∑
α∈Λ

[Lα,L−α].
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Theorem 2.2. For a vector space complement U of spanK{[Lα,L−α] : α ∈ Λ}
in H, we have

L = U +
∑

[α]∈Λ/∼

I[α],

where any I[α] is one of the ideals LΛα of L described in Theorem 2.1-1, satis-
fying [I[α], I[β]] = 0 if [α] ̸= [β].

Proof. By Proposition 2.1, we can consider the quotient set Λ/ ∼:= {[α] : α ∈
Λ}. Let us denote by I[α] := LΛα

.We have I[α] is well defined and by Theorem
2.1-1 an ideal of L. Therefore

L = U +
∑

[α]∈Λ/∼

I[α].

By applying Proposition 2.2-2 we also obtain [I[α], I[β]] = 0 if [α] ̸= [β].

Definition 2.3. The annihilator of a Leibniz algebra L is the set Z(L) = {x ∈
L : [x,L] + [L, x] = 0}.

Corollary 2.1. If Z(L) = 0 and [L,L] = L, then L is the direct sum of the
ideals given in Theorem 2.1-1,

L =
⊕

[α]∈Λ/∼

I[α].

Proof. From [L,L] = L it is clear that L =
∑

[α]∈Λ/∼
I[α]. The direct character of

the sum now follows from the facts [I[α], I[β]] = 0, if [α] ̸= [β], and Z(L) = 0.

3 Split Leibniz algebras of maximal length. The
simple case.

In this section we focus on the simplicity of split Leibniz algebras by centering
our attention in those of maximal length. This terminology is taking borrowed
from the theory of gradations of Lie and Leibniz algebras, (see [4, 5, 12, 13]).
See also [5, 9, 10, 18] for examples. From now on char(K) = 0.

Definition 3.1. We say that a split Leibniz algebra L is of maximal length if
dimLα = 1 for any α ∈ Λ.

Our target is to characterize the simplicity of L in terms of connectivity
properties in Λ. We begin with a series of lemmas which hold for arbitrary split
Leibniz algebras over a field of characteristic zero.

Lemma 3.1. Let L be a split Leibniz algebra with Z(L) = 0 and I an ideal of
L. If I ⊂ H then I = {0}.
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Proof. Suppose there exists a nonzero ideal I of L such that I ⊂ H. We have
[I,H] + [H, I] ⊂ [H,H] = 0. We also have [I,

⊕
α∈Λ

Lα] + [
⊕
α∈Λ

Lα, I] ⊂ I ⊂ H.

Then, taking into account H = L0, we get [I,
⊕
α∈Λ

Lα] + [
⊕
α∈Λ

Lα, I] ⊂ H ∩

(
⊕
α∈Λ

Lα) = 0. From here I ⊂ Z(L) = 0, a contradiction.

Lemma 3.2. Let L be a split Leibniz algebra. For any α, β ∈ Λ with α ̸= ϵβ,
ϵ ∈ K, there exists hα,β ∈ H such that α(hα,β) ̸= 0 and β(hα,β) = 0.

Proof. As α ̸= 0, there exists h ∈ H \ {0} such that α(h) ̸= 0. If β(h) = 0 we
take hα,β := h. Suppose therefore β(h) ̸= 0 and let us write ϵ = α(h)β(h)−1.
As α ̸= ϵβ, there exists h′ ∈ H such that α(h′) ̸= ϵβ(h′). We can take hα,β :=
β(h′)h− β(h)h′.

Lemma 3.3. Let L = H ⊕ (
⊕
α∈Λ

Lα) be a split Leibniz algebra. If I is an ideal

of L then I = (I ∩H)⊕ (
⊕
α∈Λ

(I ∩ Lα)).

Proof. Let x ∈ I be. We can write x = h0 +
m∑
j=1

vαj with h0 ∈ H, vαj ∈ Lαj

and αj ̸= αk if j ̸= k. Let us show that any vαj ∈ I. If vα1 = 0 then vα1 ∈ I.
Suppose then vα1 ̸= 0. For any αkr ̸= ϵα1, ϵ ∈ K and kr ∈ {2, ...,m}, Lemma
3.2 gives us hα1,αkr

∈ H satisfying α1(hα1,αkr
) ̸= 0 and αkr

(hα1,αkr
) = 0. From

here,

[[...[[x, hα1,αk2
], hα1,αk3

], ..., ], hα1,αks
] =

ϵ1vα1
+

p∑
t=1

ϵµt
vµtα1

∈ I, (9)

ϵ1, µt ∈ K− {0}, µt ̸= 1, ϵµt
∈ K.

If any ϵµt
= 0, t = 1, ..., p, then ϵ1vα1

∈ I and so vα1
∈ I. Let us suppose

some ϵµt
̸= 0 and write equation (9) as

ϵ1vα1
+

r∑
t=1

ϵµt
vµtα1

∈ I, (10)

with ϵ1, µt, ϵµt
∈ K− {0}, µt ̸= 1, r ≤ p.

Let h ∈ H be such that α1(h) ̸= 0, then

[ϵ1vα1
+

r∑
t=1

ϵµt
vµtα1

, h] = ϵ1α1(h)vα1
+

r∑
t=1

ϵµt
µtα1(h)vµtα1

∈ I,

and so

ϵ1vα1
+

r∑
t=1

ϵµt
µtvµtα1

∈ I, µt ̸= 1. (11)
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From equations (10) and (11) it follows easily that

κ1vα1
+

s∑
t=1

κqtvqtα1
∈ I (12)

with κ1, κqt ∈ K−{0}, qt ∈ {µt : t = 1, ..., r} and s < r. Following this process,
(multiply equation (12) with h and compare the result with equation (12) taking
into account qt ̸= 1, and so on), we obtain vα1 ∈ I. The same argument holds
for any αj , j ̸= 1. From here, we deduce I = (I ∩H)⊕ (

⊕
α∈Λ

(I ∩Mα)).

Let us return to a split Leibniz algebra of maximal length L. In fact, from
now on L = H ⊕ (

⊕
α∈Λ

Lα) denotes a split Leibniz algebra of maximal length.

We begin by observing that in this case the previous lemma let us assert that
given any nonzero ideal I of L then

I = (I ∩H)⊕ (
⊕
α∈ΛI

Lα) with ΛI ⊂ Λ . (13)

In the particular, (an important), case I = I, we get

I = (I ∩H)⊕ (
⊕
α∈ΛI

Lα). (14)

From here, we can write
Λ = ΛI∪̇Λ¬I, (15)

where
ΛI := {α ∈ Λ : Lα ⊂ I}

and
Λ¬I := {α ∈ Λ : Lα ∩ I = 0}.

As consequence

L = H ⊕ (
⊕

α∈Λ¬I

Lα)⊕ (
⊕
β∈ΛI

Lβ). (16)

We note that the fact L = [L,L], the split decomposition given by equation
(16) and equation (1) show

H =
∑

α∈Λ¬I

[Lα,L−α]. (17)

Now, observe that the concept of connectivity of nonzero roots given in
Definition 2.1 is not strong enough to detect if a given α ∈ Λ belongs to ΛI or
to Λ¬I. Consequently we lose the information respect to whether a given root
space Lα is contained in I or not, which is fundamental to study the simplicity
of L. So, we are going to refine the concept of connections of non-zero roots in
the setup of maximal length split Leibniz algebras. The symmetry of ΛI and
Λ¬I will be understood as usual. That is, ΛΥ, Υ ∈ {I,¬I}, is called symmetric
if α ∈ ΛΥ implies −α ∈ ΛΥ.

9



Definition 3.2. Let α, β ∈ ΛΥ with Υ ∈ {I,¬I}. We say that α is ¬I-
connected to β, denoted by α ∼¬I β, if there exist

α2, ..., αn ∈ Λ¬I

such that

{α1, α1 + α2, ..., α1 + · · ·+ αn−1, α1 + · · ·+ αn−1 + αn} ⊂ ΛΥ,

α1 = α and α1 + · · ·+ αn ∈ ±β. The set {α1, ..., αn} is called a ¬I-connection
from α to β.

Proposition 3.1. The following assertions hold.

1. If Λ¬I is symmetric, then the relation ∼¬I is of equivalence in Λ¬I.

2. If L = [L,L] and ΛI is symmetric, then the relation ∼¬I is of equivalence
in ΛI.

Proof. 1. can be proved in a similar way to Proposition 2.1.
2. Let β ∈ ΛI. Since β ̸= 0, equation (17) gives us that there exists α ∈ Λ¬I

such that [Lβ , [Lα,L−α]] ̸= 0. By Leibniz identity, either [[Lβ ,Lα],L−α] ̸= 0
or [[Lβ ,L−α],Lα] ̸= 0. In the first case, the ¬I-connection {β, α,−α} gives
us β ∼¬I β while in the second one the ¬I-connection {β,−α, α} gives us the
same result. Consequently ∼¬I is reflexive in ΛI. The symmetric and transitive
character of ∼¬I in ΛI follows as in Proposition 2.1.

Let us introduce the notion of root-multiplicativity in the framework of split
Leibniz algebras of maximal length, in a similar way to the ones for split Lie
algebras and split Lie triple systems, (see [9, 10] for these notions and examples).

Definition 3.3. We say that a split Leibniz algebra of maximal length L is
root-multiplicative if the below conditions hold.

1. Given α, β ∈ Λ¬I such that α+ β ∈ Λ then [Lα,Lβ ] ̸= 0.

2. Given α ∈ Λ¬I and γ ∈ ΛI such that α+ γ ∈ ΛI then [Lγ ,Lα] ̸= 0.

Another interesting notion related to split Leibniz algebras of maximal length
L is those of Lie-annihilator. Write L = H ⊕ (

⊕
α∈Λ¬I

Lα) ⊕ (
⊕

β∈ΛI

Lβ), (see

equation (16)).

Definition 3.4. The Lie-annihilator of a split Leibniz algebra of maximal length
L is the set

ZLie(L) = {x ∈ L : [x,H ⊕ (
⊕

α∈Λ¬I

Lα)] + [H ⊕ (
⊕

α∈Λ¬I

Lα), x] = 0}.

Clearly the above definition agrees with the definition of annihilator of a Lie
algebra, since in this case ΛI = ∅. We also have Z(L) ⊂ ZLie(L).
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Proposition 3.2. Suppose L = [L,L] and L is root-multiplicative. If Λ¬I has
all of its roots ¬I-connected, then any ideal I of L such that I ⊈ H ⊕I satisfies
I = L.

Proof. By equations (13) and (15) we can write

I = (I ∩H)⊕ (
⊕

αi∈Λ¬I,I

Lαi)⊕ (
⊕

βj∈ΛI,I

Lβj ) (18)

with Λ¬I,I ⊂ Λ¬I and ΛI,I ⊂ ΛI. As I ⊈ H ⊕ I we have Λ¬I,I ̸= ∅ and so we
can fix some α0 ∈ Λ¬I,I such that

Lα0 ⊂ I. (19)

For any β ∈ Λ¬I, β ̸= ±α0, the fact that α0 and β are ¬I-connected gives us a
¬I-connection {γ1, ...., γr} ⊂ Λ¬I from α0 to β such that

γ1 = α0,

γ1 + γ2, γ1 + γ2 + γ3, ..., γ1 + γ2 + γ3 + · · ·+ γr−1 ∈ Λ¬I

and
γ1 + γ2 + γ3 + · · ·+ γr ∈ ±β.

Consider α0 = γ1, γ2 and γ1 + γ2. Since γ1, γ2 ∈ Λ¬I, the root-multiplicativity
and maximal length of L show [Lα0

,Lγ2
] = Lα0+γ2

, and by equation (19)

Lα0+γ2
⊂ I.

We can argue in a similar way from α0 + γ2, γ3 and α0 + γ2 + γ3 to get

Lα0+γ2+γ3
⊂ I.

Following this process with the ¬I-connection {γ1, ...., γr} we obtain that

Lα0+γ2+γ3+···+γr
⊂ I

and so either Lβ ⊂ I or L−β ⊂ I. That is,

Lϵβ ⊂ I for some ϵ ∈ ±1 and any β ∈ Λ¬I.

Since H =
∑

β∈Λ¬I

[Lβ ,L−β ], (see equation (17)), we get

H ⊂ I. (20)

Now, given any δ ∈ Λ, the facts δ ̸= 0, H ⊂ I and the maximal length of L
show

[Lδ, H] = Lδ ⊂ I. (21)

From equations (20) and (21) we conclude I = L.
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Proposition 3.3. Suppose L = [L,L], Z(L) = 0 and L is root-multiplicative.
If Λ¬I, ΛI are symmetric and ΛI has all of its roots ¬I-connected, then any
nonzero ideal I of L such that I ⊂ I satisfies either I = I or I = I ⊕K with K
an ideal of L.

Proof. By equations (13), and (15) we can write

I = (I ∩H)⊕ (
⊕

αi∈ΛI,I

Lαi)

with ΛI,I ⊂ ΛI. Observe that the fact Z(L) = 0 implies

I ∩H = {0}. (22)

Indeed, [L, I ∩ H] + [I ∩ H,Lα] ⊂ [L, I] = 0 for any α ∈ ΛI, [I ∩ H,H] ⊂
[H,H] = 0 and [I ∩ H,Lβ ] = 0 for any β ∈ Λ¬I because in the opposite case
Lβ ⊂ I, being then β ∈ ΛI. From here I ∩H ⊂ Z(L) = 0. Hence, we can write

I =
⊕

αi∈ΛI,I

Lαi ,

with ΛI,I ̸= ∅, and so we can take some α0 ∈ ΛI,I such that Lα0
⊂ I. We

can argue with the root-multiplicativity and the maximal length of L as in
Proposition 3.2 to conclude that given any β ∈ ΛI, there exists a ¬I-connection
{γ1, ...., γr} from α0 to β such that

[[· · · [Lα0 ,Lγ2 ], · · · ],Lαn ] ∈ L±β

and so Lϵβ ⊂ I for some ϵ ∈ ±1. That is

ϵββ ∈ ΛI,I for any β ∈ ΛI and some ϵβ ∈ ±1.

Suppose −α0 ∈ ΛI,I . Then we also have that {−γ1, ....,−γr} is a ¬I-connection
from −α0 to β satisfying

[[· · · [L−α0 ,L−γ2 ], · · · ],L−αn ] = L−ϵββ ⊂ I

and so Lβ + L−β ⊂ I. Equations (14) and (22) let us now conclude I = I.
Now suppose there is not any α0 ∈ ΛI,I such that −α0 ∈ ΛI,I . Equation

(15) let us write ΛI = ΛI,I ∪̇(−ΛI,I) and, (joint with equations (14) and (22)),
assert that by denoting K =

⊕
αi∈ΛI,I

L−αi
we have

I = I ⊕K.

Let us finally show that K is an ideal of L. We have [L,K] ⊂ [L, I] = 0 and

[K,L] ⊂ [K,H] + [K,
⊕

β∈Λ¬I

Lβ ] + [K,
⊕
γ∈ΛI

Lγ ] ⊂ K + [K,
⊕

β∈Λ¬I

Lβ ].
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Let us consider the last summand [K,
⊕

β∈Λ¬I

Lα] and suppose there exist αi ∈

ΛI,I and β ∈ Λ¬I such that [L−αi ,Lβ ] ̸= 0. Since L−αi ⊂ K ⊂ I, we get
−αi + β ∈ ΛI. By the root-multiplicativity of L, the symmetries of Λ¬I and
ΛI, and the fact Lαi

⊂ I we obtain 0 ̸= [Lαi
,L−β ] = Lαi−β ⊂ I, that is

αi − β ∈ ΛI,I . Hence, −αi + β ∈ −ΛI,I and so [L−αi
,Lβ ] ⊂ K. Consequently

[K,
⊕

β∈Λ¬I

Lα] ⊂ K and K is an ideal of L.

We introduce the definition of primeness in the framework of Leibniz algebras
following the same motivation that in the case of simplicity (see Definition 2.2
and the above paragraph).

Definition 3.5. A Leibniz algebra L is said to be prime if given two ideals I,
K of L satisfying [I,K] + [K, I] = 0, then either I ∈ {0, I,L} or K ∈ {0, I,L}.

We also note that the above definition agrees with the definition of prime
Lie algebra, since I = {0} in this case.

Under the hypotheses of Proposition 3.3 we have:

Corollary 3.1. If furthermore L is prime, then any nonzero ideal I of L such
that I ⊂ I satisfies I = I.

Proof. Observe that, by Proposition 3.3, we could have I = I ⊕ K with I,K
ideals of L, being [I,K]+ [K, I] = 0 as consequence of I,K ⊂ I. The primeness
of L completes the proof.

Proposition 3.4. Suppose L = [L,L], ZLie(L) = 0 and L is root-multiplicative.
If Λ¬I has all of its roots ¬I-connected, then any ideal I of L such that I ⊈ I
satisfies I = L.

Proof. Taking into account Proposition 3.2 we just have to study the case in
which

I = (I ∩H)⊕ (
⊕

βj∈ΛI,I

Lβj
),

with I ∩H ̸= 0 (see equation (18)). But this possibility never happens. Indeed,
observe that [I ∩ H,Lα] + [Lα, I ∩ H] = 0 for any α ∈ Λ¬I. Indeed, in the
opposite case Lα ⊂ I and so α ∈ Λ¬I∩ΛI,I ⊂ Λ¬I∩ΛI = ∅. Since we also have
[I∩H,H]+[I∩H,H] ⊂ [H,H] = 0 we get I∩H ⊂ ZLie(L) = 0, a contradiction.
Proposition 3.2 completes the proof.

Given any α ∈ ΛΥ, Υ ∈ {ΛI,Λ¬I} we denote by

ΛΥ
α := {β ∈ ΛΥ : β ∼¬I α}.

If α ∈ ΛΥ, let us write HΛΥ
α
:= spanK{[Lβ ,L−β ] : β ∈ ΛΥ

α} ⊂ H, and VΛΥ
α
:=⊕

β∈ΛΥ
α

Lβ . We denote by LΛΥ
α
the following subspace of L, LΛΥ

α
:= HΛΥ

α
⊕ VΛΥ

α
.

Lemma 3.4. If L = [L,L], then LΛI
α
is an ideal of L for any α ∈ ΛI.
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Proof. By equation (17) we get HΛI
α
= 0 and so

LΛI
α
=

⊕
β∈ΛI

α

Lβ .

We have [L,LΛI
α
]+[LΛI

α
, I] ⊂ [L, I] = 0 and [LΛI

α
, H] ⊂ LΛI

α
. Finally [LΛI

α
,Lγ ] ⊂

LΛI
α
for any γ ∈ Λ¬I

α . Indeed, given any β ∈ ΛI
α such that [Lβ ,Lγ ] ̸= 0 we have

β+ γ ∈ ΛI and so {β, γ} is a ¬I-connection from β to β+ γ. By the symmetry
and transitivity of ∼¬I in ΛI we get β + γ ∈ ΛI

α. Hence [Lβ ,Lγ ] ⊂ LΛI
α
, taking

into account equation (16) we conclude LΛI
α
is an ideal of L.

Theorem 3.1. Suppose L = [L,L], ZLie(L) = 0 and L is root-multiplicative. If
Λ¬I, ΛI are symmetric then L is simple if and only if it is prime and Λ¬I, ΛI

have all of their roots ¬I-connected.

Proof. Suppose L simple. If ΛI ̸= ∅ and we take α ∈ ΛI, Lemma 3.4 gives us
LΛI

α
is a nonzero ideal of L and so, (by simplicity), LΛI

α
= I =

⊕
β∈ΛI

Lβ (see

equations (14) and (22)). Hence, ΛI
α = ΛI and consequently

ΛI has all of its roots ¬I-connected.

Consider now any γ ∈ Λ¬I and the subspace LΛ¬I
γ

. Let us denote by I(LΛ¬I
γ

)
the ideal of L generated by LΛI

γ
. Observe that the fact I is an ideal of L let us

assert that I(LΛ¬I
γ

) ∩ (
⊕

δ∈Λ¬I

Lδ) is contained in the linear span of the set

{[[· · · [vγ′ , vα1
], · · · ], vαn

]; [vαn
, [· · · [vα1

, vγ′ ], · · · ]];

[[· · · [vα1 , vγ′ ], · · · ], vαn ]; [vαn , [· · · [vγ′ , vα1 ], · · · ]] with 0 ̸= vγ′ ∈ LΛ¬I
γ

,

0 ̸= vαi
∈ Lαi

, αi ∈ Λ¬I and n ∈ N }.

By simplicity I(LΛ¬I
γ

) = L. From here, given any δ ∈ Λ¬I, the above observation

and Leibniz identity give us we can write δ = γ′ +α1 + · · ·+αm with γ′ ∈ Λ¬I
γ ,

αi ∈ Λ¬I and being the partial sums nonzero. Hence {γ′, α1, ..., αm} is a ¬I-
connection from γ′ to δ. By the symmetry and transitivity of ∼¬I in Λ¬I we
deduce γ is ¬I-connected to any δ ∈ Λ¬I. Consequently, Proposition 3.1 let us
assert

Λ¬I has all of its roots ¬I-connected.

Finally, since L is simple then is prime.
The converse is consequence of Corollary 3.1 and Proposition 3.4.

References

[1] Abdykassymova, S.: Simple Leibniz algebras of rank 1 in the characteristic
p. Ph. D. thesis, Almaty State University, (2001).

14



[2] Abdykassymova, S., Dzhumaldil’daev, A.: Leibniz algebras in characteris-
tic p. C. R. Acad. Sci. Paris Ser. I Math. 332(12), 1047–1052, (2001).

[3] Albeverio, S., Omirov, B.A., Rakhimov, I.S. Varieties of nilpotent complex
Leibniz algebras of dimension less than five. Comm. Algebra 33(5), 1575–
1585, (2005).

[4] Albeverio, S., Ayupov, Sh.A., Omirov, B.A., Khudoyberdiyev, A.Kh.: n-
Dimensional filiform Leibniz algebras of length (n−1) and their derivations.
J. Algebra 319(6), 2471-2488, (2008).

[5] Avitabile, M., Mattarei, S.: Diamonds of finite type in thin Lie algebras.
J. Lie Theory 19(3), 483–505, (2009).

[6] Ayupov, Sh.A., Omirov, B.A.: On 3-dimensional Leibniz algebras. Uzbek
Math. J. 1, 9-14, (1999).

[7] Ayupov, Sh.A., Omirov, B.A.: On some classes of nilpotent Leibniz alge-
bras. Siberian Math. Journal 42(1), 18-29, (2001).
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de Leibniz. L’Ens. Math. 39, 269–293, (1993).

[17] Rakhimov, I.S., Sozan, J.: Description of nine dimensional complex filiform
Leibniz algebras arising from naturally graded non Lie filiform Leibniz al-
gebras. Int. J. Algebra(5), 271-280, (2009).

[18] Stumme N.: The structure of Locally Finite Split Lie Algebras, J. Algebra.
220, 664-693, (1999).

15


