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Abstract

The strong resolving graph GSR of a connected graph G was introduced in
[Discrete Applied Mathematics 155 (1) (2007) 356–364] as a tool to study the
strong metric dimension of G. Basically, it was shown that the problem of
finding the strong metric dimension of G can be transformed to the problem
of finding the vertex cover number of GSR. Since then, several articles on
the strong metric dimension of graphs which are using this tool have been
published. However, the tool itself has remained unnoticed as a properly
structure. In this paper, we survey the state of knowledge on the strong
resolving graphs, and also derive some new results regarding its properties.

Keywords: Strong resolving graph, strong metric dimension, graphs
transformations.
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1. Introduction

Graphs are basic combinatorial structures, and transformations of struc-
tures are fundamental to the development of mathematics. Particularly, in
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graph theory, some elementary transformations generate a new graph from
an original one by some simple local changes, such as addition or deletion of
a vertex or of an edge, merging and splitting of vertices, edge contraction,
etc. Other advanced transformations create a new graph from the original
one by complex changes, such as complement graph, line graph, total graph,
graph power, dual graph, strong resolving graph, etc.

Some of these transformations of graphs emerged as a natural tool to
solve practical problems. In other cases, the problem of finding a specific
parameter of a graph has become the problem of finding another parameter
of another graph obtained from the original one. This is the case of the
strong resolving graph GSR of a connected graph G which was introduced in
Oellermann and Peters-Fransen (2007) as a tool to study the strong metric
dimension of G. Basically, it was shown that the problem of finding the
strong metric dimension of G can be transformed to the problem of finding
the vertex cover number of GSR. Since then, several articles dealing with
the strong resolving graph have been published. However, in almost all these
works the results related to the strong resolving graph are not explicit, as
they implicitly appear as a part of the proofs of main results concerning
the strong metric dimension. In this sense, this interesting construction has
passed in front of researchers’s eyes without the attention that should require.
In this paper, we would like to motivate the graph theory community to have
a deeper look into this graph transformation. Accordingly, herein we survey
the state of knowledge on the strong resolving graph and also derive some
new results.

For a graph transformation, there are two general problems Grünbaum
(1969), which we shall formulate in terms of strong resolving graphs:

• Realization Problem.1 Determine which graphs have a given graph
as their strong resolving graphs.

• Characterization Problem. Characterize those graphs that are strong
resolving graphs of some graphs.

The majority of results presented in this paper concerns the above men-
tioned problems. Basically, we focus on the following graph equation

GSR
∼= H, (1)

1This problem was called Determination Problem in Grünbaum (1969).
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i.e., the goal is to find all pairs of graphs G and H satisfying (1).
The remainder of the paper is structured as follows. Subsection 1.1 covers

general notation and terminology. Subsection 1.2 is devoted to introduce
the strong metric dimension, whereas Subsection 1.3 introduces the strong
resolving graph. In Section 2 we study the realization problem for some
specific families of graphs, while in Section 3 we collect the known results
related to the characterization problem of product graphs. We close our
exposition with a collection of open problems to be dealt with.

1.1. Notation and Terminology

We continue by establishing the basic terminology and notations which
is used throughout this work. For the sake of completeness we refer the
reader to the books Diestel (2005); Hammack et al. (2011); West (1996).
Graphs considered herein are undirected, finite and contain neither loops
nor multiple edges. Let G be a graph of order n = |V (G)|. A graph is
nontrivial if n ≥ 2. We use the notation u ∼ v for two adjacent vertices u
and v of G. For a vertex v of G, NG(v) denotes the set of neighbors that
v has in G, i.e., NG(v) = {u ∈ V (G) : u ∼ v}. The set NG(v) is called
the open neighborhood of a vertex v in G and NG[v] = NG(v) ∪ {v} is called
the closed neighborhood of a vertex v in G. The degree of a vertex v of G is
denoted by δG(v), i.e., δG(v) = |NG(v)|. The open neighborhood of a set S
of vertices of G is NG(S) =

⋃
v∈S NG(v) and the closed neighborhood of S is

NG[S] = NG(S) ∪ S.
We use the notation Kn, Cn, Pn, and Nn for the complete graph, cycle,

path, and empty graph, respectively. Moreover, we write Ks,t for the complete
bipartite graph of order s+t and in particular K1,n for the star of order n+1.
A vertex of degree one in a tree T is called a leaf and the number of leaves
in T is denoted by l(T ).

The distance between two vertices u and v, denoted by dG(u, v), is the
length of a shortest path between u and v in G. The diameter, D(G), of G
is the largest distance between any two vertices of G and two vertices u, v ∈
V (G) such that dG(u, v) = D(G) are called diametral. If G is not connected,
then we assume that the distance between any two vertices belonging to
different components of G is infinity and, thus, its diameter is D(G) = ∞.
A graph G is 2-antipodal if for each vertex x ∈ V (G) there exists exactly one
vertex y ∈ V (G) such that dG(x, y) = D(G). For instance, even cycles and
hypercubes are 2-antipodal graphs.
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We recall that the complement of G is the graph Gc with the same vertex
set as G and uv ∈ E(Gc) if and only if uv /∈ E(G). The subgraph induced by
a set X is denoted by 〈X〉. A vertex of a graph is a simplicial vertex if the
subgraph induced by its neighbors is a complete graph. Given a graph G, we
denote by σ(G) the set of simplicial vertices of G.

A clique in G is a set of pairwise adjacent vertices. The clique number
of G, denoted by ω(G), is the number of vertices in a maximum clique in
G. Two distinct vertices u, v are called true twins if NG[u] = NG[v]. In
this sense, a vertex x is a twin if there exists y 6= x such that they are true
twins. We say that X ⊂ V (G) is a twin-free clique in G if the subgraph
induced by X is a clique and for every u, v ∈ X it follows NG[u] 6= NG[v],
i.e., the subgraph induced by X is a clique and it contains no true twins. The
twin-free clique number of G, denoted by $(G), is the maximum cardinality
among all twin-free cliques in G. So, ω(G) ≥ $(G). We refer to a $(G)-
set in a graph G as a twin-free clique of cardinality $(G). Figure 1 shows
examples of basic concepts such as true twins and twin-free clique.

G :

a

b

c

d

e

fg

H :

a b

cd

e

f g

h

Figure 1: The set {d, e, f} ⊂ V (G) is composed by true twin vertices in G. Notice that
b and g are true twin vertices in G which are not simplicial, while f and d are true twin
and simplicial vertices. The set {e, f, g, h} ⊂ V (H) is a twin-free clique in H.

For the remainder of the paper, definitions will be introduced whenever
a concept is needed.

1.2. Strong Metric Dimension of Graphs

A vertex w ∈ V (G) strongly resolves two different vertices u, v ∈ V (G) if
dG(w, u) = dG(w, v) + dG(v, u) or dG(w, v) = dG(w, u) + dG(u, v), i.e., there
exists some shortest w − u path containing v or some shortest w − v path
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containing u. A set S of vertices in a connected graph G is a strong metric
generator for G if every two vertices of G are strongly resolved by some vertex
in S. The minimum cardinality among all strong metric generators for G is
called the strong metric dimension and is denoted by dims(G). A strong
metric basis of G is a strong metric generator for G of cardinality dims(G).

Several researches on the strong metric dimension of graphs have recently
been developed. For instance, the trivial bounds 1 ≤ dims(G) ≤ n − 1 are
known from the first works as well as characterizations on whether they are
achieved. Moreover, it has been noticed that the strong metric dimension of
several graphs can be straightforwardly computed for some basic examples
which we next remark.

Observation 1.

(a) dims(G) = 1 if and only if G is isomorphic to the path Pn on n ≥ 2
vertices.

(b) dims(G) = n − 1 if and only if G is isomorphic to the complete graph
Kn on n ≥ 2 vertices.

(c) For any cycle Cn of order n, dims(Cn) = dn/2e.

(d) For any tree T with l(T ) leaves, dims(T ) = l(T )− 1.

(e) For any complete bipartite graph Kr,t, dims(Kr,t) = r + t− 2.

The strong metric dimension is a relatively new parameter (defined in
2004). Since then, this parameter has been investigated for several classes of
graphs. For instance, we cite the works on Cartesian product graphs Kratica
et al. (2012b); Oellermann and Peters-Fransen (2007); Rodŕıguez-Velázquez
et al. (2014), Cartesian sum graphs Kuziak et al. (2015a), corona graphs
Kuziak et al. (2013), direct product graphs Kuziak et al. (2017); Rodŕıguez-
Velázquez et al. (2014), strong product graphs Kuziak et al. (2015b), lexi-
cographic product graphs Kuziak et al. (2016), Cayley graphs Oellermann
and Peters-Fransen (2007), Sierpiński graphs Estaji and Rodŕıguez-Velázquez
(2017), distance-hereditary graphs May and Oellermann (2011), and convex
polytopes Kratica et al. (2012a). Also, some Nordhaus-Gaddum type results
for the strong metric dimension of a graph and its complement are known Yi
(2013). Besides the theoretical results related to the strong metric dimension,

5



a mathematical programming model Kratica et al. (2012a) and metaheuris-
tic approaches Kratica et al. (2008); Mladenović et al. (2012) for finding this
parameter have been developed. Some complexity and approximation re-
sults are also known from the works Oellermann and Peters-Fransen (2007)
and DasGupta and Mobasheri (2017), respectively. On the other hand, a
fractional version of the strong metric dimension has been studied in Kang
(2016); Kang et al. (2016); Kang and Yi (2013). In these three works the
strong resolving graph is also used as an important tool. For more informa-
tion we refer the reader to the survey Kratica et al. (2014) and the Ph.D.
thesis Kuziak (2014).

1.3. The Strong Resolving Graph

In Oellermann and Peters-Fransen (2007), the authors have developed an
approach which transforms the problem of finding the strong metric dimen-
sion of a graph to the problem of computing the vertex cover number of some
other related graph. This relationship arises in connection with the following
definitions.

A vertex u of G is maximally distant from v if for every vertex w ∈ NG(u),
dG(v, w) ≤ dG(u, v). We denote by MG(v) the set of vertices of G which
are maximally distant from v. The collection of all vertices of G that are
maximally distant from some vertex of the graph is called the boundary of
the graph, see Brešar et al. (2008); Cáceres et al. (2005), and is denoted by
∂(G).2 If u is maximally distant from v and v is maximally distant from u,
then u and v are mutually maximally distant (from now on MMD for short).

Remark 2. ∂(G) = {u ∈ V (G) : there exists v ∈ V (G) such that u, v are
MMD}.

Proof. On the one hand, if u is maximally distant from v, and v is not
maximally distant from u, then v has a neighbor v1, such that dG(v1, u) >
dG(v, u), i.e., dG(v1, u) = dG(v, u) + 1. It is easily seen that u is maximally
distant from v1. If v1 is not maximally distant from u, then v1 has a neighbor
v2, such that dG(v2, u) > dG(v1, u). Continuing in this manner we construct
a sequence of vertices v1, v2, . . . such that dG(vi+1, u) > dG(vi, u) for every i.

2In fact, the boundary ∂(G) of a graph was defined first in Chartrand et al. (2003) as
the subgraph of G induced by the set mentioned in our work with the same notation. We
follow the approach of Brešar et al. (2008); Cáceres et al. (2005) where the boundary of
the graph is just the subset of the boundary vertices defined in this article.
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Since G is finite this sequence terminates with some vk. Thus for all neighbors
x of vk we have dG(vk, u) ≥ dG(x, u), and so vk is maximally distant from u
and u is maximally distant from vk. Hence every boundary vertex belongs
to the set S = {u ∈ V (G) : there exists v ∈ V (G) such that u, v are MMD}.
On the other hand, certainly every vertex of S is a boundary vertex.

For some basic graph classes the boundary is simply the whole vertex
set. For instance, this happens for all 2-antipodal graphs and for all vertex
transitive graphs (complete graphs Kn, complete bipartite graphs Kr,s, cycles
Cn and hypercube graphs Qk as some examples). The boundary of a tree
consists of its leaves. Also, it is readily seen that every simplicial vertex is a
boundary vertex, that is σ(G) ⊆ ∂(G).

Figure 2 shows examples of basic concepts such as maximally distant ver-
tices, MMD vertices and boundary. As a direct consequence of the definition
of MMD vertices, we have the following.

a

b

c

d

e

f

g

hij

Figure 2: The set {a, f, g, h} is composed by simplicial vertices and its elements are MMD
between them. Also, b and j (d and i) are MMD. Thus, the boundary of G is ∂(G) =
{a, b, d, f, g, h, i, j}. Now, MG(d) = {a, f, g, h, i} is the set of vertices which are maximally
distant from d. Nevertheless, the vertex d is maximally distant only from the vertex i.

Remark 3. For every pair of MMD vertices x, y of a connected graph G and
for every strong metric basis S of G, it follows that x ∈ S or y ∈ S.

By using the concepts of boundary of a graph and MMD vertices, the
notion of strong resolving graph was introduced in Oellermann and Peters-
Fransen (2007) in the following way. The strong resolving graph of G has
vertex set of V (G) and two vertices u, v are adjacent if and only if u and
v are MMD in G. Observe that the vertices belonging to V (G) − ∂(G) are
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isolated vertices in the strong resolving graph. According to this fact, in this
work we use two slightly different versions of it, which are next stated.

The first version is denoted as GSR while the second one is denoted by
GSR+I . The graph GSR has vertex set ∂(G), while GSR+I has vertex set
V (G). Clearly, the difference between GSR and GSR+I is the existence of
isolated vertices in GSR+I , when V (G)−∂(G) 6= ∅ and notice that the graph
GSR+I coincides with the original definition presented in Oellermann and
Peters-Fransen (2007). The concept of the strong resolving graph GSR is
used in this work rather than that of GSR+I . The main reason of this fact
is to have a simpler notation and more clarity while proving the results.
Figure 3 shows the strong resolving graphs GSR and GSR+I of the graph G
illustrated in Figure 2.

GSR :

b d

a

f

g

h

ij

GSR+I :

b d c

e

a

f

g

h

ij

Figure 3: GSR and GSR+I of the graph G illustrated in Figure 2.

There are several families of graphs for which the strong resolving graph
can be relatively easily described. We next state some of these cases.

Observation 4.

(a) If ∂(G) = σ(G), then GSR
∼= K|∂(G)|. In particular, (Kn)SR ∼= Kn and

for any tree T , TSR ∼= Kl(T ).

(b) For any 2-antipodal graph G of order n, GSR
∼=

⋃n
2
i=1K2. In particular,

(C2k)SR ∼=
⋃k

i=1K2.

(c) For odd cycles (C2k+1)SR ∼= C2k+1.
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(d) For any complete k-partite graph G = Kp1,p2,...,pk such that pi ≥ 2, i ∈
{1, 2, . . . , k}, GSR

∼=
⋃k

i=1Kpi.

Recall that a set S of vertices of G is a vertex cover of G if every edge of
G is incident with at least one vertex of S. The vertex cover number of G,
denoted by β(G), is the minimum cardinality among all vertex covers of G.
We refer to a β(G)-set in a graph G as a vertex cover of cardinality β(G).

As shown in Oellermann and Peters-Fransen (2007), the problem of find-
ing the strong metric dimension of a connected graph G can be transformed
to the problem of finding the vertex cover number of GSR+I .

Theorem 5. (Oellermann and Peters-Fransen (2007)) For any connected
graph G, dims(G) = β(GSR+I).

Now, it is readily seen that β(GSR+I) = β(GSR). Therefore, an analogous
theorem to the one above can be stated by using GSR instead of GSR+I .

Theorem 6. For any connected graph G, dims(G) = β(GSR).

Figure 4 illustrates this theorem, which has proved its high usefulness in
several situations.

G :
a

b
c

d

ef

g
h

GSR :

ac
d

e

f

h

Figure 4: The set {a, c, d, h} ⊂ V (G) forms a strong metric basis of G. Also, the set
{a, c, d, h} ⊂ V (GSR) is a vertex cover of GSR. Thus, dims(G) = β(GSR) = 4.

Recall that an independent set of a graph G is a subset S ⊆ V (G) such
that no two vertices in S represent an edge of G. The cardinality of a
maximum independent set of G is called the independence number of G and
is denoted by α(G). We refer to an α(G)-set in a graph G as an independent
set of cardinality α(G). The following well-known result, from Gallai (1959),
states the relationship between the independence number and the vertex
cover number of a graph.
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Lemma 7. (Gallai (1959)) For any graph G of order n,

α(G) + β(G) = n.

Thus, by using Theorem 6 and Lemma 7 we immediately obtain that for
any graph G,

dims(G) = |∂(G)| − α(GSR).

2. Realization Problem

In this section we study the realization problem for some specific families
of graphs, i.e., we study the graph equation GSR

∼= H where H is isomorphic
to Kn, K1,r, Cn, Pn and Gc. In addition, the characterization problem of
graphs of diameter two is considered. We begin with the characterization of
graphs whose strong resolving graph is complete. To this end, we need the
following two lemmas.

Lemma 8 (Müller et al. (2008); Müller et al. (2011)). Each shortest path in
a graph G extends to a shortest path between two boundary vertices.

Lemma 9. Let G be a graph and let v ∈ ∂(G) \ σ(G). Then there exist
a, b ∈ ∂(G) \ {v} such that va, vb are not edges of GSR.

Proof. Let v1, v2 ∈ N(v) be such that d(v1, v2) = 2. Then P = v1vv2 is a
shortest path and, by Lemma 8, there exist a, b ∈ ∂(G) \ {v} and a shortest
path between them that extends P . So v lies on a shortest path between a
and b and, in particular, v is not maximally distance from any of them. This
means that v is not a neighbor of a nor of b in GSR.

With these tools we obtain the following characterization.

Theorem 10. Let G be a connected graph. Then GSR
∼= K|∂(G)| if and only

if ∂(G) = σ(G).

Proof. If ∂(G) = σ(G), it is clear that GSR
∼= K|∂(G)|. Conversely, assume

now that σ(G)  ∂(G) and let v ∈ ∂(G) \ σ(G). By Lemma 9, there exist
a ∈ ∂(G) \ {v} such that v is not a neighbor of a in GSR, so GSR is not a
complete graph.

If G is a connected graph of order n, then σ(G) = V (G) if and only if
G ∼= Kn. Hence, the following result is a direct consequence of Theorem 10.
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Corollary 11. Let G be a connected graph of order n ≥ 2. Then GSR
∼= Kn

if and only if G ∼= Kn.

Another particular case of Theorem 10 is Proposition 13, which can be
deduced from the next lemma. We recall that a cut vertex in a graph G is a
vertex when removed (together with its adjacent edges) from G results in a
new graph with increased number of connected components.

Lemma 12. (Estaji and Rodŕıguez-Velázquez (2017)) Let G be a connected
graph. If v is a cut vertex of G, then v 6∈ ∂(G).

Proposition 13. Let G be a connected graph and let ε(G) be the number
of vertices of degree one. If every vertex of degree greater than one is a cut
vertex of G, then GSR

∼= Kε(G).

In order to present the next result we need to introduce some more ter-
minology. Given a graph G, we define G∗ as the graph with vertex set
V (G∗) = V (G) such that two vertices u, v are adjacent in G∗ if and only if
either dG(u, v) ≥ 2 or u, v are true twins. If a graph G has at least one iso-
lated vertex, then we denote by G− the graph obtained from G by removing
all its isolated vertices. In this sense, G∗− is obtained from G∗ by removing
all its isolated vertices. Notice that if G is true twin-free, then G∗ ∼= Gc.

Proposition 14. For any graph G of diameter two, GSR
∼= G∗−.

Proof. Assume that G has diameter two and let u, v be two different vertices
of G. If u 6∼ v or NG[u] = NG[v], then u and v are MMD in G. Now, if u ∼ v
and NG[u] 6= NG[v], then there exists, w ∈ V (G) \ {u, v} such that either
(w ∼ u and w 6∼ v) or (w 6∼ u and w ∼ v), which implies that u and v are
not MMD. Therefore, the result follows.

Theorem 15. (Estrada-Moreno et al. (2016)) Let G be a connected graph.
Then GSR

∼= Gc if and only if D(G) = 2 and G is a true twin-free graph.

We next show that star graphs and complete bipartite graphs K2,r are
not realizable as the strong resolving graph of any graph.

Proposition 16. Let G be a connected graph of order n ≥ 2 and let r ≥ 1
be an integer. Then the following statements hold.

• GSR
∼= K1,r if and only if G ∼= Pn and r = 1.
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• The graph equation GSR
∼= K2,r has no solution.

Proof. Obviously, (Pn)SR ∼= K2
∼= K1,1. Now, if GSR

∼= K1,r, then dims(G) =
β(GSR) = 1, which implies that G ∼= Pn, by Observation 1 (a), and so r = 1.
Therefore, the first statement holds.

Now, assume that GSR is a complete bipartite graph (U1 ∪U2, E), where
|U1|, |U2| ≥ 2. Since the subgraph of GSR induced by σ(G) is a clique,
|U1 ∩ σ(G)| ≤ 1 and |U2 ∩ σ(G)| ≤ 1. Hence, Lemma 9 immediately leads
to |U1| ≥ 3 and |U2| ≥ 3, which implies that the graph equation GSR

∼= K2,r

has no solution.

By Proposition 16 we learned that the graph equations GSR
∼= K1,r and

GSR
∼= K2,r, for r ≥ 2, have no solution. Based on these facts, we propose

the following conjecture.

Conjecture 17. The graph equation GSR
∼= Kr,s has no solution for any

r, s ≥ 2.

It is worth mentioning that, concerning Proposition 16, although no star
graph K1,r, r ≥ 2, is a strong resolving graph, there are graphs G for which
GSR contains a component isomorphic to a star graph K1,r for any r ≥ 2.
To see this, consider the family F of graphs Gr constructed in Kang et al.
(2016) as follows.

• Consider r + 1 paths aibici with i ∈ {0, . . . , r}.

• Add the edges aia0, bib0 and cic0 for every i ∈ {1, . . . , r}.

• Add a vertex x and the edges xa0 and xc0.

An example of a graph in F and its strong resolving graph is given in
Figure 5.

We can easily notice the following.

• The vertex ai is MMD only with the vertices cj such that j 6= 0, i.

• Similarly, the vertex ci is MMD only with the vertices aj such that
j 6= 0, i.

• The vertex bi is MMD only with the vertex x and viceversa.

• The vertices a0, b0, c0 are not MMD with any vertex in Gr.
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a1

a2

a3

a4

c1

c2

c3

c4

x

b1

b2

b3

b4

x

a0 b0 c0

a1 b1 c1

a4 b4 c4

a2 b2 c2

a3 b3 c3

G4 (G4)SR

Figure 5: The graph G4 ∈ F and its strong resolving graph.

As a consequence of the facts above it clearly happens that (Gr)SR contains
two connected components. One of them isomorphic to a star graph S1,r

with r leaves, and the second one isomorphic to a complete bipartite graph
Kr,r minus a perfect matching.

Our next result concerns the equation GSR
∼= Pn, with n 6= 3. To this

end, we consider the family FP of graphs Gn
P with n ≥ 5 given as follows.

• We begin with a path on n− 1 vertices v1v2 . . . vn−1.

• If n is even, then

– add n−2
2

vertices a1, a2, . . . , a(n−2)/2 and n−2
2

vertices b1, b2, . . . , b(n−2)/2,

– add the edges aiv2i−1, aiv2i+1 with i ∈ {1, . . . , (n−2)/2}, the edges
biv2i, biv2i+2 with i ∈ {1, . . . , (n−4)/2} and the edges b(n−2)/2vn−2,
b(n−2)/2vn−1.

• If n is odd, then

– add n−1
2

vertices a1, a2, . . . , a(n−1)/2 and n−3
2

vertices b1, b2, . . . , b(n−3)/2,

– add the edges aiv2i−1, aiv2i+1 with i ∈ {1, . . . , (n − 3)/2}, the
edges a(n−1)/2vn−2, a(n−1)/2vn−1 and the edges biv2i, biv2i+2 with
i ∈ {1, . . . , (n− 3)/2}.

Examples of the graphs of family FP are given in Figure 6.
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a1 a2 a3 a4

b1 b2 b3

v2 v4 v6
v8v1

v3 v5 v7

b1 b2 b3a1 a2 a3 a4 v1 v8

G9
P

(G9
P )SR

a1 a2 a3 a4

b1 b2 b3 b4

v2 v4 v6 v8
v1

v3 v5 v7
v9

b1 b2 b3 b4a1 a2 a3 a4 v1 v9

G10
P

(G10
P )SR

Figure 6: The graphs G9
P and G10

P in FP and their strong resolving graphs.

Proposition 18. For any integer n ≥ 2 and n 6= 3, there exists a graph G
such that GSR

∼= Pn.

Proof. If n = 2, then any path Pt satisfies that (Pt)SR ∼= P2. If n = 3, then
by Proposition 16 we know there is no graph G such GSR

∼= G. If n = 4,
then consider the join graph K1 + P4, for which it is not difficult to see that
(K1 + P4)SR ∼= P4. If n ≥ 5, then we consider a graph Gn

P ∈ FP , where the
following facts are observed. Assume n is even.

• Every vertex ai, with i ∈ {2, . . . , (n − 2)/2}, is only MMD with the
vertices bi and bi−1.

• The vertex a1 is only MMD with the vertex b1.

• Every vertex bi, with i ∈ {1, . . . , (n − 4)/2}, is only MMD with the
vertices ai and ai+1.

• The vertex b(n−2)/2 is only MMD with the vertices a(n−2)/2 and v1.

• The vertices v1 and vn−1 are MMD between them.
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• No vertex vi, with i ∈ {2, . . . , n− 2}, belongs to the boundary of Gn
P .

According to the items above it clearly follows that (Gn
P )SR is isomorphic to

the path Pn = a1b1a2b2 · · · a(n−2)/2b(n−2)/2v1vn−1. A similar procedure can be
used for the case n odd, which completes the proof.

Our next result concerns the realization of cycles Cn as strong resolving
graphs. From Observation 4 (iii) we know that for any odd cycle C2k+1, it
follows (C2k+1)SR ∼= C2k+1. Also, from Proposition 16, the cycle C4

∼= K2,2

is not realizable as the strong resolving graph of any graph. In general, the
following can be stated.

Proposition 19. For any integer n ≥ 3 and n 6= 4, there exists a graph G
such that GSR

∼= Cn.

Proof. If n = 3, then clearly (C3)SR ∼= C3. Consider a cycle graph of order
n ≥ 5. Since Cc

n is a twin-free graph and has diameter two, by Theorem 15,
(Cc

n)SR ∼= (Cc
n)c ∼= Cn. That is, the complement of a cycle of order n gives

a strong resolving graph isomorphic to the cycle Cn, which completes the
realization.

More in general, since D(G) ≥ 4 leads to D(Gc) = 2, the following result
is a direct consequence of Theorem 15.

Corollary 20. Any false twin-free graph of diameter greater than or equal to
four is the strong resolving graph of a true twin-free graph of diameter two.

A summary of the results we obtained related to the Realization Problem
can be found in Table 1.

Kn K1,r K2,r Ks,r Pn Cn

(n ≥ 2) (r ≥ 1) (r ≥ 1) (r ≥ 3) (n ≥ 2) (n ≥ 3)

= GSR n ≥ 2 r = 1 none unknown n 6= 3 n 6= 4

6= GSR none r ≥ 2 r ≥ 1 unknown n = 3 n = 4

Table 1: Notable graphs families and the Realization Problem
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3. Strong Resolving Graphs of Product Graphs

We begin this section with a brief overview on those products of graphs
that will be further considered. According to the two books Hammack
et al. (2011); Imrich and Klavžar (2000), a graph product of the graphs
G and H means a graph whose vertex set is defined on the cartesian prod-
uct V (G) × V (H) of the vertex sets of G and H, and edges are determined
by a function on the edges of G and H. The graphs G and H are called
the factor graphs. Considering such mentioned rules, there are exactly 256
possible products. However, according to several their properties such as
associativity, commutativity, complementarity, etc., the most common and
well investigated are the Cartesian product, the direct product, the strong
product, and the lexicographic product, which are also known as the standard
products Hammack et al. (2011); Imrich and Klavžar (2000). Nonetheless,
there exist other less known operations with graphs which are interesting for
some investigations, for instance we could mention the Cartesian sum graph
and the corona product graphs, among other ones.

Studies on finding relationships between properties of product graphs and
properties of the factors have attracted several researchers in the last recent
year. The case of strong metric generators has not escaped to this and several
investigations have been published concerning this. In such researches a
powerful tool has been deducing the structure of the strong resolving graph
of a product from that of its factors. In this section we precisely survey some
results concerning the structure of the strong resolving graphs of product
graphs. To this end, we first gives some background on the definitions and
some basic properties of product graphs.

The direct product of two graphs G and H is the graph G×H, such that
V (G × H) = V (G) × V (H) and two vertices (g, h), (g′, h′) are adjacent in
G×H if and only if gg′ ∈ E(G) and hh′ ∈ E(H).

The direct product is also known as the Kronecker product, the tensor
product, the categorical product, the cardinal product, the cross product, the
conjunction, the relational product or the weak direct product. This product
is commutative and associative in a natural way Hammack et al. (2011);
Imrich and Klavžar (2000). The distance and connectedness in the direct
product are more subtle than for other products. The formula on the vertex
distances in the direct product is the following.

Remark 21. (Kim (1991)) For any graphs G and H and any two vertices
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(g, h), (g′, h′) of G×H,

dG×H((g, h), (g′, h′)) = min{max{deG(g, g′), deH(h, h′)},max{doG(g, g′), doH(h, h′)}},

where deG(g, g′) means the length of a shortest walk of even length between g
and g′ in G, and doG(g, g′) the length of a shortest odd walk between g and g′

in G. If such a walk does not exist, we set deG(g, g′) or doG(g, g′) to be infinite.

On the other hand, the connectedness in the direct product of two graphs
relies on the bipartite properties of the factor graphs, namely, the result
presented at next.

Theorem 22. (Weichsel (1962)) A direct product of nontrivial graphs is
connected if and only if both factors are connected and at least one factor is
nonbipartite.

In contrast to distances, the direct product is the most natural product
for open neighborhoods:

NG×H(g, h) = NG(g)×NH(h). (2)

The Cartesian product of two graphs G and H is the graph G�H, such
that V (G�H) = V (G) × V (H) and two vertices (g, h), (g′, h′) ∈ V (G�H)
are adjacent in G�H if and only if either (g = g′ and hh′ ∈ E(H)), or
(gg′ ∈ E(G) and h = h′). The Cartesian product is a straightforward and
natural construction, and is in many respects the simplest graph product
Hammack et al. (2011); Imrich and Klavžar (2000).

The Cartesian product is a commutative and associative operation. More-
over, it is connected whenever the factors are both connected. The distance
between any two of its vertices is given by

dG�H((g, h), (g′, h′)) = dG(g, g′) + dH(h, h′)

while the neighborhood of a vertex (g, h) ∈ V (G�H) is

NG�H(g, h) = (NG(g)× {h}) ∪ ({g} ×NH(h)).

The strong product of two graphs G and H is the graph G � H such
that V (G�H) = V (G)× V (H), and two vertices (g, h), (g′, h′) ∈ V (G�H)
are adjacent in G � H if and only if either (g = g′ and hh′ ∈ E(H)), or
(gg′ ∈ E(G) and h = h′), or (gg′ ∈ E(G) and hh′ ∈ E(H)).
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Similarly to the Cartesian product, the strong product is a commutative
and associative operation and, it is connected if and only if the factors are
both connected. The distance between any two of its vertices is computed
by using the following formula

dG�H((g, h), (g′, h′)) = max{dG(g, g′), dH(h, h′)}.

On the other hand, the neighborhood of a vertex (g, h) ∈ V (G�H) is given
by

NG�H(g, h) = NG[g]×NH [h].

The lexicographic product of two graphs G and H is the graph G◦H with
vertex set V (G ◦H) = V (G)×V (H) and two vertices (g, h) ∈ V (G ◦H) and
(g′, h′) ∈ V (G ◦H) are adjacent in G ◦H if and only if either gg′ ∈ E(G), or
(g = g′ and hh′ ∈ E(H)).

Note that the lexicographic product of two graphs is the only not com-
mutative operation among the four standard products. Moreover, G ◦ H is
a connected graph if and only if G is connected. The distances and neigh-
borhoods in the lexicographic product are obtained as the following known
results show.

Theorem 23. (Hammack et al. (2011)) Let G and H be two nontrivial graphs
such that G is connected. Then the following assertions hold for any g, g′ ∈
V (G) and h, h′ ∈ V (H) such that g 6= g′.

(i) NG◦H(g, h) = ({g} ×NH(h)) ∪ (NG(g)× V (H)).

(ii) dG◦H((g, h), (g′, h′)) = dG(g, g′).

(iii) dG◦H((g, h), (g, h′)) = min{dH(h, h′), 2}.

The Cartesian sum of two graphsG andH, denoted byG⊕H, is the graph
with vertex set V (G ◦H) = V (G)× V (H), where (g, h)(g′, h′) ∈ E(G⊕H)
if and only if gg′ ∈ E(G), or hh′ ∈ E(H).

This notion of graph product was introduced in Ore (1962). Nevertheless
it has passed almost unnoticed and just few results (for instance Čižek and
Klavžar (1994); Scheinerman and Ullman (1997)) have been presented about
this. The Cartesian sum is also known as the disjunctive product Scheiner-
man and Ullman (1997) and it is a commutative and associative operation
Hammack et al. (2011).

Next result summarizes some properties about the diameter of the Carte-
sian sum graph.
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Proposition 24. (Kuziak et al. (2015a)) Let G and H be two nontrivial
graphs such that at least one of them is noncomplete and let n ≥ 2 be an
integer. Then the following assertions hold.

(i) D(G⊕Nn) = max{2, D(G)}.

(ii) If G and H have isolated vertices, then D(G⊕H) =∞.

(iii) If neither G nor H has isolated vertices, then D(G⊕H) = 2.

(iv) If D(H) ≤ 2, then D(G⊕H) = 2.

(v) If D(H) > 2, H has no isolated vertices and G is a nonempty graph
having at least one isolated vertex, then D(G⊕H) = 3.

The neighborhood of a vertex (g, h) ∈ V (G⊕H) is

NG⊕H(g, h) = (NG(g)× V (H)) ∪ (V (G)×NH(h)).

The corona product G�H is defined as the graph obtained from G and
H by taking one copy of G and n = |V (G)| copies of H and joining by an
edge each vertex from the ith-copy of H with the ith-vertex of G. We denote
by V = {g1, g2, . . . , gn} the set of vertices of G and by Hi = (Vi, Ei) the copy
of H such that gi ∼ v for every v ∈ Vi. Observe that G � H is connected
if and only if G is connected. The concept of corona product of two graphs
was first introduced in Frucht and Harary (1970).

The following expression for the distance between two vertices x and y of
G�H is a direct consequence of the definition of corona product graph.

dG�H(x, y) =



dG(x, y), x, y ∈ V ;

dG(gi, gj) + 1, x = gi, y ∈ Vj;

dG(gi, gj) + 2, x ∈ Vi, y ∈ Vj, i 6= j;

min{dHi
(x, y), 2}, x, y ∈ Vi.

(3)

3.1. Cartesian Product and Direct Product of Graphs

The next result establishes an interesting connection between the strong
resolving graph of the Cartesian product of two graphs and the direct product
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of the strong resolving graphs of its factors. Such result was a powerful tool
used in Rodŕıguez-Velázquez et al. (2014) while studying the strong metric
dimension of Cartesian product graphs.

Theorem 25. (Rodŕıguez-Velázquez et al. (2014)) Let G and H be two con-
nected graphs. Then

(G�H)SR ∼= GSR ×HSR.

Figure 7 illustrates the Cartesian product of two cycles of order three
and its strong resolving graph. Since the strong resolving graph of C3 is
isomorphic to C3, we can easily observe that (C3�C3)SR is isomorphic to
(C3)SR × (C3)SR.

a1

a2

a3

b1

b2

b3

c1

c2

c3

a1

a2

a3

b1

b2

b3

c1

c2

c3

Figure 7: Cartesian product graph C3�C3 and its strong resolving graph (C3�C3)SR.

A matching of a graph G is a set of edges of G such that no two edges
share a vertex in common. A matching is maximum if it has the maximum
possible cardinality. Moreover, if every vertex of the graph is incident to
exactly one edge of the matching, then it is called a perfect matching.

The next result, implicitly deduced in (Rodŕıguez-Velázquez et al., 2014,
Proof of Theorem 6), deals with graphs whose strong resolving graphs are
bipartite with a perfect matching.

Theorem 26. Let G and H be two connected graphs such that HSR is bi-
partite with a perfect matching. Let Gi, i ∈ {1, . . . , k}, be the connected
components of GSR. If for each i ∈ {1, . . . , k}, Gi is Hamiltonian or Gi has
a perfect matching, then (G�H)SR is bipartite and has a perfect matching.

Proof. Since HSR is bipartite, GSR × HSR is bipartite. We show next that
GSR×HSR has a perfect matching. Let ni be the order of Gi, i ∈ {1, . . . , k},
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and let {x1y1, x2y2, . . . , x|∂(H)|/2y|∂(H)|/2} ⊂ E(HSR) be a perfect matching of
HSR. We distinguish two cases.
Case 1: Gi has a perfect matching. If {g1g′1, g2g′2, . . . , gni/2g

′
ni/2
} ⊂ E(Gi) is

a perfect matching of Gi, then the set of edges

{(g1, y1) (g′1, x1), (g′1, y1) (g1, x1), . . . , (gni/2, y1) (g′ni/2
, x1),

(g′ni/2
, y1) (gni/2, x1), (g1, y2) (g′1, x2), (g′1, y2) (g1, x2), . . . ,

(gni/2, y2) (g′ni/2
, x2), (g′ni/2

, y2) (gni/2, x2), . . . ,

(g1, y|∂(H)|/2) (g′1, x|∂(H)|/2), (g′1, y|∂(H)|/2) (g1, x|∂(H)|/2), . . . ,

(gni/2, y|∂(H)|/2) (g′ni/2
, x|∂(H)|/2), (g′ni/2

, y|∂(H)|/2) (gni/2, x|∂(H)|/2)}

is a perfect matching of Gi ×HSR.
Case 2: Gi is Hamiltonian. Let g1, g2, . . . , gni

, g1 be a Hamiltonian cycle of
Gi. If ni is even, then Gi has a perfect matching and this case coincides with
Case 1. So we suppose that ni is odd. In this case, the set of edges

{(g1, x1) (g2, y1), (g2, x1) (g3, y1), . . . , (gni−1, x1) (gni
, y1), (gni

, x1) (g1, y1),

(g1, x2) (g2, y2), (g2, x2) (g3, y2), . . . , (gni−1, x2) (gni
, y2), (gni

, x2) (g1, y2), . . . ,

(g1, x|∂(H)|/2) (g2, y|∂(H)|/2), (g2, x|∂(H)|/2) (g3, y|∂(H)|/2), . . . ,

(gni−1, x|∂(H)|/2) (gni
, y|∂(H)|/2), (gni

, x|∂(H)|/2) (g1, y|∂(H)|/2)}

is a perfect matching of Gi ×HSR.
According to Cases 1 and 2 the graph

⋃k
i=1Gi ×HSR

∼= GSR ×HSR has
a perfect matching.

Since 2-antipodal graphs have strong resolving graphs that are bipartite
with a perfect matching, the next result follows from the previous theorem
and Observation 4.

Corollary 27. Let G be a 2-antipodal graph. If H is a 2-antipodal graph
or it is connected and ∂(H) = σ(H), then (G�H)SR is bipartite and has a
perfect matching.
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The next well known result characterizing whether Cartesian product
graphs are direct product graphs give also an interesting consequence for
describing some strong resolving graphs.

Lemma 28. (Miller (1968)) Let G and H be two connected graphs. Then,
G�H ∼= G×H if and only if G ∼= H ∼= C2k+1 for some positive integer k.

The characterization above, Theorem 25 and Observation 4, allow us to
immediately determine the strong resolving graph of C2k+1 × C2k+1.

Remark 29. For any positive integer k, (C2k+1×C2k+1)SR ∼= C2k+1×C2k+1.

It is not difficult to check that (Kr × Kt)
c ∼= Kr�Kt and Kr × Kt is a

true twin-free graph of diameter two for r, t ≥ 3. Hence, Theorem 15 leads
to the following result.

Proposition 30. (Rodŕıguez-Velázquez et al. (2014)) For any positive inte-
gers r, t ≥ 3,

(Kr ×Kt)SR ∼= Kr�Kt.

From Theorem 25 and Proposition 30 we obtain the following.

Proposition 31. For any positive integers r, t ≥ 3,

((Kr ×Kt)SR)SR
∼= Kr ×Kt.

We now describe the structure of the strong resolving graphs of some
particular cases of direct product graphs, which in contrast to Cartesian
product graphs, becomes more challenging and tedious. Moreover, the results
are not stated for general direct product graphs, since it is quite frequently
not a connected graphs. From now on, we say that a graph G is 2-MMD
free, or 2MMF for short, if there exists no pair of MMD vertices u and v
with dG(u, v) = 2. Clearly diameter two graphs are not 2MMF graphs.

We start the first particular case while describing the structure of the
strong resolving graph of G×Kn for any connected graph G. From now on
we use the following notation. Consider a set of vertices V and two graphs
G and H defined over the sets of vertices U1 ⊆ V and U2 ⊆ V , respectively.
The graph G t H is defined over the set of vertices V (G t H) = U1 ∪ U2

and E(G t H) = E(G) ∪ E(H). Note that U1 and U2 are not necessarily
disjoint, as well as E(G) and E(H). For example, consider a set of seven
vertices v1, v2, . . . , v7, the cycle C6 = v1v2 . . . v6v1 and the star S1,6 with

22



central vertex in v7 and v1, v2, . . . , v6. Thus, the wheel graph W1,6 can be
obtained as the graph C6 t S1,6. Another interesting example is for instance
the strong product graph G�H which can be obtained as (G�H)t (G×H)
(notice that in this case the set of vertices of G�H and G×H coincide).

The following result was recently presented in Kuziak et al. (2017). How-
ever, the published version of the result has a mistake, as G has to be a
noncomplete graph. Here we present the correct version of the result.

Theorem 32. (Kuziak et al. (2017)) Let G be a connected noncomplete
2MMF graph of order at least three and let the integer n ≥ 3. If W is the
subset of V (G) which contains all vertices belonging to a triangle in G, N|W |
is the empty graph with vertex set W and the graphs Kn, Nn are defined over
the same set of vertices, then

(G×Kn)SR ∼= (G�Nn) t (GSR ◦Nn) t (N|W |�Kn).

In Figure 8 we exemplify the theorem above. There we give a direct
product graph and its strong resolving graph, drawn in such way we can see
all the three subgraphs appearing in the union given in Theorem 32.

The following result was also implicitly deduced in (Rodŕıguez-Velázquez
et al., 2014, Proof of Theorem 37), although we now present part of it by using
the ideas of Theorem 32. To this end, given an odd cycle Cn = v0v1 . . . vnv0,
by C∗n we mean the cycle v0vbn/2cv2·bn/2cv3·bn/2c . . . v(n−1)·bn/2cv0 where the mul-
tiplication operation x · bn/2c with x ∈ {1, . . . , n− 1} is done modulo n.

Proposition 33. Let r ≥ 4 and t ≥ 3 be positive integers. Let V (Kt) =
V (Nt) = {g1, g2, . . . , gt} and Cr = h0h1 . . . hr−1h0 Then the following asser-
tions hold.

(i) If r ∈ {4, 5}, then (Cr ×Kt)SR ∼=
⋃t

i=1Kr.

(ii) If r ≥ 6 is even and K
(i)
2 is a complete graph on the two vertices

ui, ui+r/2 with i ∈ {0, . . . , r/2− 1}, then

(Cr ×Kt)SR ∼= (Cr�Nt) t

r/2−1⊔
i=0

(K
(i)
2 ◦Nt)

 .

(iii) If r ≥ 7 is odd, then

(Cr ×Kt)SR ∼= (Cr�Nt) t (C∗r ◦Nt).
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Figure 8: The direct product H7×K3 and its strong resolving graph, where H7 is obtained
from a path P7 = abcdefg by adding the edge ce. According to Theorem 32, notice that
W = {c, d, e}. In the strong resolving graph (H7 ×K3)SR: the edges in bold correspond
to the subgraph H7�N3 (N3 has vertex set {1, 2, 3}); the dashed edges to the subgraph
N3�K3 (N3 has vertex set W = {c, d, e}); and the remaining edges to the subgraph
((H7)SR ◦N3) ∼= (K3 ◦N3) (K3 has vertex set {a, d, g}).

Proof. Let V (Kt) = {h1, h2, . . . , ht} and V (Cr) = {g0, g1, . . . , gr−1}, where
gi ∼ gi+1 for every i ∈ {0, . . . , r − 1} and gr−1 ∼ g0. From now on all the
operations with the subscript of a vertex gi of Cr are expressed modulo r.
Let (gi, hj), (gl, hk) be two distinct vertices of Cr ×Kt.

(i) Let r = 4 or 5. We differentiate four cases.
Case 1: gi = gl. Hence, dCr×Kt((gi, hj), (gl, hk)) = 2. Since (gi, hj) ∼
(gi−1, hk), if k 6= j and dCr×Kt((gi−1, hk), (gl, hk)) = 3, then it follows that
(gi, hj) and (gl, hk) are not MMD in Cr ×Kt.
Case 2: hj = hk. If l = i+ 1 or i = l + 1, then without loss of generality we
suppose l = i+1 and we have that dCr×Kt((gi, hj), (gl, hk)) = 3 = D(Cr×Kt).
Thus, (gi, hj) and (gl, hk) are MMD in Cr×Kt. On the other hand, if l 6= i+1
and i 6= l + 1, then dCr×Kt((gi, hj), (gl, hk)) = 2. Since for every vertex
(g, h) ∈ NCr×Kt(gi, hj) we have that dCr×Kt((g, h), (gl, hk)) ≤ 2 and also for
every vertex (g, h) ∈ NCr×Kt(gl, hk) we have that dCr×Kt((g, h), (gi, hj)) ≤ 2,
we obtain that (gi, hj) and (gl, hk) are MMD in Cr ×Kt.
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Case 3: gi 6= gl, hj 6= hk and (gi, hj) ∼ (gl, hk). So, there exists a ver-
tex (g, h) ∈ NCr×Kt(gl, hk) such that dCr×Kt((g, h), (gi, hj)) = 2 and, as a
consequence, (gi, hj) and (gl, hk) are not MMD in Cr ×Kt.
Case 4: gi 6= gl, hj 6= hk and (gi, hj) 6∼ (gl, hk). Hence, we have that
dCr×Kt((gi, hj), (gl, hk)) = 2. We can suppose, without loss of generality,
that l = i+ 2. Since

• (gi, hj) ∼ (gl−1, hk) and (gl, hk) ∼ (gl−1, hj) and also,

• dCr×Kt((gi, hj), (gl−1, hj)) = 3 and dCr×Kt((gl, hk), (gl−1, hk)) = 3,

we obtain that (gi, hj) and (gl, hk) are not MMD in Cr × Kt. Hence the
strong resolving graph (Cr ×Kt)SR is isomorphic to

⋃t
i=1Kr.

The cases (ii) and (iii) are direct consequences of Theorem 32.

The first item of next result was implicitly deduced in (Rodŕıguez-Velázquez
et al., 2014, Proof of Theorem 38).

Proposition 34. Let r ≥ 2 and t ≥ 3 be positive integers. Then the following
assertions hold.

(i) If r ∈ {2, 3}, then (Pr ×Kt)SR ∼=
⋃t

i=1Kr.

(ii) If r ≥ 4, Pr = g0g1 . . . gr−1 and P2 = g0gr−1, then (Pr × Kt)SR ∼=
(Pr�Nt) t (P2 ◦Nt).

Proof. Let V (Kt) = {h1, h2, . . . , ht} and V (Pr) = {g0, g1, . . . , gr−1}, where
gi ∼ gi+1 for every i ∈ {0, . . . , r − 1}.

If r = 2, then a vertex (gi, hj) in P2 ×Kt is MMD only with the vertex
(gl, hj), where i 6= l. So, (P2 ×Kt)SR ∼=

⋃t
m=1K2.

If r = 3, then a vertex (gi, hj) in P3×Kt is MMD only with those vertices
(gl, hj), where i 6= l. Thus, (P3 ×Kt)SR ∼=

⋃t
m=1K3.

If r ≥ 4, then the result is a particular case of Theorem 32.

We next deal with the direct product of a complete bipartite graph and
a complete graph. In contrast with Theorem 32, in this case all the MMD
vertices of the complete bipartite graph are at distance two.

Theorem 35. (Kuziak et al. (2017)) For any r, t ≥ 1 and any n ≥ 3,

(Kr,t ×Kn)SR ∼=
n⋃

i=1

Kr+t.

25



Now we present some results for graphs of diameter two as factors of a
direct product. Since it is necessary to be careful with connectedness of the
direct product, the results are separated with respect to whether one factor
is bipartite or not. It is not hard to see that the only bipartite graphs of
diameter two are the complete bipartite graphs Kk,`, where max{k, `} ≥ 2.

Another important measure for the strong resolving graphs of a direct
product of two graphs of diameter two is when the factors are triangle free
and moreover, when every pair of vertices is on a five-cycle. Hence, we call
a graph in which every pair of vertices is on a common five-cycle, a C5-
connected graph. Clearly, a C5-connected graph has diameter at most two.
Moreover, if G is a triangle free C5-connected graph, then its diameter equals
two. The Petersen graph is C5-connected triangle free graph. The graph G
of Figure 9 is an example of a triangle free graph of diameter two in which u
and v are not on a common five-cycle and G is not C5-connected. The graph
H of the same figure is a triangle free C5-connected graph of diameter two.

HG

u v

Figure 9: Two triangle free graphs of diameter two.

The next two results were implicitly deduced in (Kuziak et al., 2017,
Proofs of Theorem 13 and 14).

Proposition 36. Let G be a nonbipartite triangle free graph of order n ≥ 2
and let max{k, `} ≥ 2. If G is C5-connected, then

(G×Kk,`)SR ∼= Nn�Kk+`.

Proof. Assume that V (G) = {g1, . . . , gn} and U(Kk,`) = U1 ∪U2 where U1 =
{u1, . . . , uk} and U2 = {v1, . . . , v`}. Clearly, deKk,`

(ui, vj) =∞, doKk,`
(ui, vj) =

1, doKk,`
(vi, vj) =∞ and doKk,`

(ui, uj) =∞ for any i and j. Also, deKk,`
(ui, uj) =
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2 and deKk,`
(vi, vj) = 2 for every i 6= j. Conversely, by C5-connectedness of G,

deG(gi, gj) and doG(gi, gj) always exist. Moreover, deG(gi, gj) is between 0 and 4,
while doG(gi, gj) is between 1 and 5. Hence, by the distance formula presented
in Remark 21 we can have the distances between 0 and 5 in G×Kk,`. Again,
by this distance formula, it is easy to see that dG×Kk,`

((g1, u1), (g1, vj)) =
5 for any j ∈ {1, . . . , `} and that dG×Kk,`

((g1, u1), (g1, uj)) = 2 for any
j ∈ {2, . . . , k}. We show that vertices satisfying these equalities above are
the only neighbors of (g1, u1) in the strong resolving graph (G × Kk,`)SR.
Clearly, (g1, u1) and (g1, vj) are MMD, since they are diametral vertices for
any j ∈ {1, . . . , `}. Since NKk,`

(u1) = NKk,`
(uj), for any j ∈ {2, . . . , k},

by equation (2) that describes neighborhoods in the direct product, we see
that (g1, u1) and (g1, uj) have the same neighborhood and therefore, they are
MMD.

Next we show that no other vertex of G × Kk,` is MMD with (g1, u1).
In this case, we reduce it to a five-cycle, since G is C5-connected. We may
assume that g1g2g3g4g5g1 is a five-cycle. By the symmetry of a five-cycle we
need to present the arguments only for g2 and g3. For every j ∈ {1, . . . , `}
and i ∈ {2, . . . , `} they are as follows:

• (g2, vj) ∼ (g3, u1) and (g2, vj) is closer to (g1, u1) than (g3, u1);

• (g2, ui) ∼ (g1, v1) and (g2, ui) is closer to (g1, u1) than (g1, v1);

• (g3, vj) ∼ (g2, u1) and (g3, vj) is closer to (g1, u1) than (g2, u1);

• (g3, ui) ∼ (g4, v1) and (g3, ui) is closer to (g1, u1) than (g4, v1).

See the graph C5 ×K1,2
∼= C5 × P3 on the left part of Figure 10, where the

distances from (g1, u1) are marked. Thus, the vertex (g1, u1) is adjacent to
all vertices of {g1}× (V (Kk,`)−{u1}) in (G×Kk,`)SR. Notice that the same
argument also holds when min{k, `} = 1. We can use the same arguments for
any vertex of G×Kk,` and therefore, we have (G×Kk,`)SR ∼= Nn�Kk+`.

Theorem 37. For any nonbipartite triangle free C5-connected graphs G and
H of diameter two,

(G×H)SR ∼= G�H.

Proof. Let V (G) = {g1, . . . , gn} and V (H) = {h1, . . . , hk}. Note that G and
H are C5-connected graphs, which implies that their even and odd distances
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Figure 10: Situations from the proofs of Theorems 36 and 37. The label of each vertex
corresponds to the distance of each vertex to the vertex (g1, u1) in the left side, and to
(g1, h1) in the right side.

between arbitrary vertices always exist. Moreover, the even distances are
between 0 and 4, while the odd distances are between 1 and 5. Now, accord-
ing to Remark 21, the distances in G × H are between 0 and 4. We may
assume that g1g2g3g4g5g1 and h1h2h3h4h5h1 are induced five-cycles of trian-
gle free C5-connected graphs G and H, respectively. Again, by this distance
formula, it is easy to see that dG×H((g1, h1), (g1, hj)) = 4 for j ∈ {2, 5} and
that dG×H((g1, h1), (gj, h1)) = 4 for j ∈ {2, 5}. We show that these are the
only neighbors of (g1, u1) in (G × H)SR. Clearly, these pairs are mutually
maximally distant since they are diametral vertices.

We now show that (g1, u1) is not MMD with any other vertex of G×Kk,`.
By the symmetry of a five-cycle and the commutativity of the direct product
we need to present the arguments only for g1, g2 and g3 and for h1, h2 and
h3. They are as follows:

• (g1, h3) ∼ (g2, h4) and (g1, h3) is closer to (g1, h1) than (g2, h4);

• (g2, h2) ∼ (g3, h1) and (g2, h2) is closer to (g1, h1) than (g3, h1);

• (g2, h3) ∼ (g1, h2) and (g2, h3) is closer to (g1, h1) than (g1, h2);

• (g3, h1) ∼ (g4, h2) and (g3, h1) is closer to (g1, h1) than (g4, h2);
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• (g3, h2) ∼ (g2, h1) and (g3, h2) is closer to (g1, h1) than (g2, h1);

• (g3, h3) ∼ (g2, h4) and (g3, h3) is closer to (g1, h1) than (g2, h4).

See the graph C5 × C5 on the right part of Figure 10, where the distances
from (g1, h1) are marked. So, the vertex (g1, h1) is adjacent to the vertices
(g1, h2), (g1, h5), (g2, h1) and (g5, h1) in (G × Kk,`)SR. Continuing with the
same arguments, we obtain that (g1, u1) is adjacent to all vertices of ({g1}×
NH(h1)) ∪ (NG(g1)× {h1}) in (G×H)SR. By using the same arguments for
any vertex of G × H we obtain (G × H)SR ∼= G�H, which completes the
proof.

3.2. Cartesian Sum and Strong Product Graphs

The description of the strong resolving graphs for some cases of G ⊕ H
can easily be obtained from Proposition 14 and Proposition 24.

Proposition 38. (Kuziak et al. (2015a)) Let G and H be two nontrivial
graphs such that at least one of them is noncomplete. If D(G) ≤ 2 or neither
G nor H has isolated vertices, then

(G⊕H)SR ∼= (G⊕H)∗−.

Proof. We assume that D(G) ≤ 2 or neither G nor H has isolated vertices.
Then, by Proposition 24 we have D(G⊕H) = 2 and hence, by Proposition 14,
(G⊕H)SR ∼= (G⊕H)∗−.

We now describe the structure of the strong resolving graph of G�H.

Lemma 39. (Kuziak et al. (2015b)) Let G and H be two connected nontrivial
graphs. Let g, g′ be two vertices of G and let h, h′ be two vertices of H. Then
(g, h) and (g′, h′) are MMD vertices in G � H if and only if one of the
following conditions holds:

(i) g, g′ are MMD in G and h, h′ are MMD in H;

(ii) g, g′ are MMD in G and h = h′;

(iii) h, h′ are MMD in H and g = g′;

(iv) g, g′ are MMD in G and dG(g, g′) > dH(h, h′);

(v) h, h′ are MMD in H and dG(g, g′) < dH(h, h′).
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We need to introduce more notation. Let G = (V,E) and G′ = (V ′, E ′)
be two graphs. If V ′ ⊆ V and E ′ ⊆ E, then G′ is a subgraph of G and
we denote that by G′ v G. Notice that Lemma 39 leads to the following
relationship.

Theorem 40. (Kuziak et al. (2015b)) For any connected graphs G and H,

GSR+I �HSR+I v (G�H)SR+I v GSR+I ⊕HSR+I .

3.3. Lexicographic Product Graphs

From the next lemmas we can describe the structure of the strong resolv-
ing graph of G ◦H.

Lemma 41. (Kuziak et al. (2016)) Let G be a connected nontrivial graph
and let H be a nontrivial graph. Let g, g′ ∈ V (G) be such that they are not
true twin vertices and let h, h′ ∈ V (H). Then (g, h) and (g′, h′) are MMD in
G ◦H if and only if g and g′ are MMD in G.

Lemma 42. (Kuziak et al. (2016)) Let G be a connected nontrivial graph,
let H be a graph of order n ≥ 2, let g, g′ ∈ V (G) be two distinct true twin
vertices and let h, h′ ∈ V (H). Then (g, h) and (g′, h′) are MMD in G ◦H if
and only if both, h and h′, have degree n− 1.

The strong resolving graph of the lexicographic product can be described
using graphs G∗ and G∗− already defined in Section 2.

Remark 43. (Kuziak et al. (2016)) Let G be a connected graph of diameter
D(G), order n and maximum degree ∆(G).

(i) If ∆(G) ≤ n− 2, then G∗ ∼= (K1 +G)SR.

(ii) If D(G) ≤ 2, then G∗−
∼= GSR.

(iii) If G has no true twins, then G∗ ∼= Gc.

Lemma 44. (Kuziak et al. (2016)) Let G be a connected nontrivial graph.
Let h, h′ ∈ V (H) be two distinct vertices of a graph H and let g ∈ V (G).
Then (g, h) and (g, h′) are MMD vertices in G ◦H if and only if g and h are
adjacent in H∗.
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Proposition 45. (Kuziak et al. (2016)) Let G be a connected graph of order
n ≥ 2 and let H be a noncomplete graph. If G has no true twin vertices, then

(G ◦H)SR ∼= (GSR ◦H∗) ∪
n−|∂(G)|⋃

i=1

H∗−.

Figure 11 shows the graph P4 ◦P3 and its strong resolving graph. Notice
that (P3)

∗
−
∼= K2, (P3)

∗ ∼= K2 ∪ K1 and (P4)SR ∼= K2. So, (P4 ◦ P3)SR ∼=
K2 ◦ (K2 ∪K1) ∪K2 ∪K2.
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b3

c1

c2

c3

d1

d2

d3

a1

a2

a3

b1

b3

d1

d2

d3

c1

c3

Figure 11: The graph P4 ◦ P3 and its strong resolving graph

Since Lemmas 41, 42 and 44 describe the structure of the strong resolv-
ing graph of lexicographic product graphs, they are important tools used in
Kuziak et al. (2016) to deduce results like the following one.

Proposition 46. (Kuziak et al. (2016)) For any connected nontrivial graph
G and any integer n′ ≥ 2,

(G ◦Kn′)SR ∼= (GSR ◦Kn′) ∪
n−|∂(G)|⋃

i=1

Kn′ .

We have studied the case in which the second factor in the lexicographic
product is a complete graph. Since this product is not commutative, we now
consider the case in which the first factor is a complete graph.

Proposition 47. (Kuziak et al. (2016)) Let n ≥ 2 be an integer and let H
be a graph of order n′ ≥ 2. If H has maximum degree ∆(H) ≤ n′ − 2, then

(Kn ◦H)SR ∼=
n⋃

i=1

H∗.
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We define the TF-boundary of a noncomplete graph G = (V,E) as a set
∂TF (G) ⊆ ∂(G), where x ∈ ∂TF (G) whenever there exists y ∈ ∂(G), such
that x and y are MMD in G and NG[x] 6= NG[y] (which means that x, y are
not true twins). The strong resolving TF-graph of G is a graph GSRS with
vertex set V (GSRS) = ∂TF (G), where two vertices u, v are adjacent in GSRS

if and only if u and v are MMD in G and NG[x] 6= NG[y]. Since the strong
resolving TF-graph is a subgraph of the strong resolving graph, an instance of
the problem of transforming a graph into its strong resolving TF-graph forms
part of the general problem of transforming a graph into its strong resolving
graph. From Oellermann and Peters-Fransen (2007), it is known that this
general transformation is polynomial. Thus, the problem of transforming a
graph into its strong resolving TF-graph is also polynomial.

Proposition 48. (Kuziak et al. (2016)) Let G be a connected noncomplete
graph of order n ≥ 2 and let H be a graph of order n′ ≥ 2. If H has maximum
degree ∆(H) ≤ n′ − 2, then

(G ◦H)SR ∼= (GSRS ◦H∗) ∪
n−|∂TF (G)|⋃

i=1

H∗.

Figure 12 shows the graph (K1 + (K1 ∪K2)) ◦P4 and its strong resolving
graph. Notice that (P4)

∗ ∼= P4 and (K1 + (K1 ∪K2))SRS
∼= P3. So, ((K1 +

(K1 ∪K2)) ◦ P4)SR ∼= (P3 ◦ P4) ∪ P4.
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Figure 12: The graph (K1 + (K1 ∪K2)) ◦ P4 and its strong resolving graph
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3.4. Corona Product Graphs

The structure of the strong resolving graph of the corona product can be
easily described. By equation (3), that shows the distance between vertices
in the corona product, we deduce that ∂(G�H) =

⋃n
i=1 Vi and two vertices

x, y are adjacent in (G�H)SR if and only if either x ∈ Vi and y ∈ Vj, where
i 6= j, or x, y ∈ Vi and they are adjacent in H∗, that is, they are true twins
in H or they are adjacent in Hc. Therefore (G�H)SR is obtained from the
complete graph of vertex set ∂(G �H) =

⋃n
i=1 Vi by removing the edges of

each copy of H connecting two non-true twin vertices. So we can deduce the
following result.

Remark 49. Let G, H be two graphs, then (G�H)SR is a complete graph
if and only if H is either a complete graph or an empty graph.

An interesting example of a strong resolving TF-graph defined in Section
3.3 can be obtained from the corona graph G � Kn′ , n′ ≥ 2, where G has
order n ≥ 2. Notice that any two distinct vertices belonging to any two
copies of the complete graph Kn′ are MMD, but if they are in the same copy,
then they are also true twins. Thus, in this case ∂TF (G�Kn′) = ∂(G�Kn′),
while we have that (G �Kn′)SR ∼= Knn′ and (G �Kn′)SRS is isomorphic to
a complete n-partite graph Kn′,n′,...,n′ .

4. Open Problems

The strong resolving graph GSR of a graph G is still not enough known as
an interesting and very useful construction. In this sense, some of the next
problems would be worthwhile to be dealt with.

• It is already known that constructing the strong resolving graph GSR

of a graph G can be done in polynomial time. However, not much is
known on deciding whether a given graph H is the strong resolving
graph of a graph G. Some partial results are given in this work, but
still much more is required to get a complete characterization.

• Is it possible to describe some properties of the strong resolving graph
GSR based on some properties of the graph G? Can we state for in-
stance whether GSR is connected, bipartite or hamiltonian? Can we
assert which is the diameter or the girth of GSR based on some prop-
erties of G?
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• In Proposition 16 we proved that no star graph K1,r, r ≥ 2, represents
the strong resolving graph of a graph. However, we also proved that
there are graphs G for which GSR contains a component isomorphic
to a star graph K1,r for any r ≥ 2. Moreover, in Proposition 16 we
proved that no complete bipartite graph K2,r, r ≥ 2, represents the
strong resolving graph of a graph. Could we similarly find a graph G
for which GSR contains a component isomorphic to K2,r for any r ≥ 2?

• Prove or disprove Conjecture 17. In the case Conjecture 17 would be
true, could it be possible to find a graph G for which GSR contains a
component isomorphic to Kr,t for any r, t ≥ 2?

• Is it possible to find some forbidden subgraphs in a given graph that
avoid its realization as the strong resolving graph of other graph?

• Is it possible to characterize the family of graphs G for which GSR
∼= G?

• Given a graph G, is it possible to find all the graphs H such that
HSR

∼= G?

• Is there any other usefulness of the strong resolving graph distinct from
that of computing the strong metric dimension?
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of generalized Sierpiński graphs with pendant vertices. Ars Mathematica
Contemporanea 12 (1), 127–134.
URL http://amc-journal.eu/index.php/amc/article/view/813

Estrada-Moreno, A., Garćıa-Gómez, C., Ramı́rez-Cruz, Y., Rodŕıguez-
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Grünbaum, B., 1969. Incidence patterns of graphs and complexes. In: The
Many Facets of Graph Theory (Proc. Conf., Western Mich. Univ., Kala-
mazoo, Mich., 1968). Springer, Berlin, pp. 115–128.

35

http://www.sciencedirect.com/science/article/pii/S0012365X02005678#
http://www.sciencedirect.com/science/article/pii/S0012365X02005678#
http://www.sciencedirect.com/science/article/pii/0012365X93E0056A
http://www.sciencedirect.com/science/article/pii/0012365X93E0056A
http://amc-journal.eu/index.php/amc/article/view/813
http://dx.doi.org/10.1007/s40840-015-0268-0
http://dx.doi.org/10.1007/BF01844162
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