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a b s t r a c t

In this work, a generalized Fisher equation with a space–density diffusion term is analyzed
by applying the theory of symmetry reductions for partial differential equations. The study
of this equation is relevant in terms of its applicability in cell dynamics and tumor invasion.
Therefore, classical Lie symmetries admitted by the equation are determined. In addition,
by using the multipliers method, we derive some nontrivial conservation laws for this
equation. Finallywe obtain a direct reduction of order of the ordinary differential equations
associated and a particular solution.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Reaction–diffusion equations are a fundamental part in modeling the spread of biological populations. The Fisher
equation and its extensions are a family of reaction–diffusion models arising in population dynamics problems [1,2],
most prominently in cancer modeling [3,4], applications to brain tumor dynamics [5], in the description of propagating
crystallization/polymerization fronts [6], chemical kinetics [7], geochemistry [8] and many others fields. These equations
have already been deeply analyzed in the literature [1,9,10], in relation to their solutions and traveling waves for the case of
the Fisher equation:

ut = Duxx + µu(1 − u). (1)

A plausible generalization for this model has been studied in [1], where growth factor and diffusion were density-
dependent:

ut =
(
D(u)ux

)
x + f (u). (2)

In fact, this equation is not only interesting for cancer models and mutating cells, but also in biochemical reaction kinetics
such as the effect of haemoglobin and myoglobin in blood [1].

The study of this kind of equations is interesting in terms of finding exact solutions. In [11], for example, a numerical
analysis was performed. To do so, the Lie classical method is useful to obtain reductions to ODEs and if it is possible, families
of exact solutions.

Lie symmetries of the density dependent reaction–diffusion equation (2) were calculated in [12], as well as the optimal
system of one-dimensional subalgebras of the invariant equation. Several reductions and exacts solutions were also
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obtained. In [13], some nontrivial conservation laws were constructed for the generalized Fisher equation (2) associated
with symmetries of the differential equations. A non-linear multidimensional reaction–diffusion system with variables
diffusivities was also considered in [14]. In this paper, the classical Lie symmetry of this system is calculated.

Over the last decades a lot of attention has been paid on using Lie point symmetry methods to exploit the invariance of
the generalized equation

ut = (A(u)ux)x + B(u)ux + C(u). (3)

In the case A = 1, B = C = 0, the classical heat equation was firstly studied by S. Lie in [15] in terms of maximal invariance
algebra. A complete Lie symmetry classification for the non-linear heat equation (3) with B = C = 0 was described in [16].
Moreover, for the case B = 0 in Eq. (3) the Lie symmetry was completely described in [17]. Later, the Lie symmetries of Eq.
(3) were fully described in [18].

In [19], a class of variable coefficient nonlinear diffusion–convection equations of the form

f (x)ut = (c(x)g(u)ux)x + K (u)ux (4)

was considered. The authors performed group classification and constructed exact solutions of such equations. In other
work, a group classification of a class of variable coefficient reaction–diffusion equations with exponential nonlinearities is
obtained [20].

A generalization of the prior equation,

ut =
1

c(x)

(
c(x) · g(u)ux

)
x + f (u), (5)

has also been intensively studied: in [21] some nontrivial conservation laws associated to the symmetries were obtained for
g = k·fu and f , c arbitrary functions; in [22] the classical Liemethodwas applied to derive some nontrivial conservation laws
for this equation. Symmetry reductions and exact solutions for (5) were obtained using classical and potential symmetries
in [23].

When c(x) = x, the equation in (5) turns into the generalized Fisher equation

ut =
1
x

(
x · g(u)ux

)
x + f (u), (6)

which was studied in [24], where some nontrivial conservation laws were obtained.
Generalizations of the Fisher equation are necessary to accurately model diffusion and reaction effects. Therefore, we

consider a generalized Fisher equation with density–space-dependent diffusion in the present manuscript as

ut =
(
g(u)c(x)ux

)
x + f (u) (7)

which arises in a broad range of biological processes [10] and specifically in cancer modeling problems [11]. To illustrate the
latter, a particular case of this mathematical model (7) was introduced by [3] to study the complex geometry of the brain
and to allow diffusion (or cell motility). Furthermore, Eq. (7) has also been studied in [5] for a space-dependent diffusion
term, in order to describe malignancy of gliomas as an invasion of gray matter.

The structure of this work goes as follows: firstly, we apply the Lie classical method to Eq. (7) in order to obtain a group
classification. This is done in Section 2. In Section 3, conservations laws for the generalized Fisher equation (7) are obtained,
which are useful in case numerical methods were applied to it. Finally, we have focused on a case with a special biological
meaning, and then obtained some exact solutions for (7). The family of one-parametric solutions found illustrate this process.

2. Lie symmetries and reductions

Lie classical method is based on the determination of the point symmetry group of a differential equation, i.e., the largest
group of transformations acting on dependent and independent variables of the equation so that it maps solutions of the
equation into other solutions.

In order to apply Lie classical method to Eq. (7) we consider the one-parameter Lie group of infinitesimal transformations
in (x, t, u), given by

x∗
= x + ϵ ξ (x, t, u) + O(ϵ2), (8)

t∗ = t + ϵ τ (x, t, u) + O(ϵ2), (9)
u∗

= u + ϵ η(x, t, u) + O(ϵ2), (10)

where ϵ is the group parameter. The point symmetry group of Eq. (7) will be given by the set of vector fields of the form

v = ξ (x, t, u)∂x + τ (x, t, u)∂t + η(x, t, u)∂u. (11)

Eq. (7) admits a Lie point symmetry provided that

pr (2)v(∆) = 0 when ∆ = 0,
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where ∆ = ut − f (u) − (g(u)c(x)ux)x and pr (2)v is the second prolongation of the vector field (11). We obtain a set of
determining equations for the infinitesimals ξ = ξ (x, t, u), τ = τ (x, t, u) and η = η(x, t, u). From the determining system,
we get that ξ = ξ (x, t), τ = τ (t), where η, τ , ξ, g, f and c must satisfy the following equations:

c gu η + c τt g − 2 c ξx g = 0,
c g ηu u + c gu ηu + c gu u η + c τt gu − 2 c ξx gu = 0,
2 c gu ηx + 2 c g ηu x + cx gu η + cx τt g − c ξx x g − cx ξx g + ξt = 0,
−c g ηx x − cx g ηx + f ηu + ηt − fu η − τt f = 0.

(12)

After solving the determining equations, we can distinguish different cases in which the symmetries are admitted by
Eq. (7) for functional forms of c(x), f (u) and g(u), where c ′

̸= 0, f ′
̸= 0, g ′

̸= 0. We distinguish as well the corresponding
generators and group transformations, which are given below:

Case 1. For c = c(x), f = f (u) and g = g(u) arbitrary functions we get the generator

X1 = ∂t . (13a)

(x∗, t∗, u∗) = (x, t + ϵ, u) time translation. (13b)

Case 2. For f = f (u), g = g(u) arbitrary functions and c(x) =
1
4

(c1 x + c2)2 we get the generator X1 and besides

X2 = (c1x + c2)∂x. (14a)

(x∗, t∗, u∗) =

(
ec1 ϵ

(
x +

c2
c1

)
−

c2
c1

, t, u
)

scaling and shift. (14b)

Case 3. For f (u) = f2(g2 − u)−f1 , g(u) = g3(g2 − u)g1 and c(x) = c3(c2 − x)c1 with arbitrary values of the constants f1, g1, such
that f1 + g1 + 1 ̸= 0, Eq. (7) admits the generator X1 and the following:

X3 =(c2 − x)∂x +
(c1 − 2)(f1 + 1)t

f1 + g1 + 1
∂t +

(c1 − 2)(u − g2)
f1 + g1 + 1

∂u. (15a)

(x∗, t∗, u∗) =

(
e−ϵ (x − c2) + c2, exp

(
(c1 − 2)(f1 + 1)
f1 + g1 + 1

ϵ

)
t, (15b)

g2 + exp
(

c1 − 2
f1 + g1 + 1

ϵ

)
(u − g2)

)
scaling and shift.

3.1. If f1 + g1 + 1 = 0 then Eq. (7) admits X1 as a generator for c(x) an arbitrary function.

Case 4. For f (u) = f1 (u − g2) + f2 (g2 − u)g1+1, g(u) = g3(g2 − u)g1 and c = c(x) an arbitrary function with arbitrary values
of the constants f1, g1, g2 such that g1, f1 ̸= 0, Eq. (7) admits the generator X1 and the following:

X4 = e−f1 g1 t∂t + e−f1 g1 t f1 (u − g2) ∂u. (16a)

(x∗, t∗, u∗) =

(
1

f1g1
ln
⏐⏐ef1 g1 t

+ f1g1ϵ
⏐⏐ , x, (16b)

g2 + exp
(

f1 ϵ

f1 g1 ϵ + ef1 g1 t

)
(u − g2)

)
time dilation and shift.

4.1. If f1 = 0, with f (u) = f2 (g2 − u)g1+1, g(u) = g3(g2 − u)g1 and arbitrary c(x), then Eq. (7) admits the generator X1 and
as g1 ̸= 0,

X4a = t ∂t +
(u − g2)

g1
∂u (17a)

(x∗, t∗, u∗) =

(
eϵ t, x, exp

(
ϵ

g1

)
(u − g2) + g2

)
scaling and shift. (17b)

Case 5. For f (u) = f2 (g2 − u)−f1 , g(u) = g3(g2 − u)g1 , with arbitrary values of the constants f1, f2, g1, g2, g3, we consider the
following subcases:



692 S. Chulián, M. Rosa and M.L. Gandarias / Journal of Computational and Applied Mathematics 354 (2019) 689–698

5.1. For c(x) =

(
(2 g1 +3)(c1 x+c2)

3 g1+4

) 3 g1+4
2 g1+3

with arbitrary values of the constants c1, c2 such that f1+g1+1 ̸= 0, g1 ̸= 0, − 4
3 , −

3
2 ,

Eq. (7) admits the following generator X1, and besides:

X5 =(c1 x + c2)∂x +
(f1 + 1) (g1 + 2)c1 t

(2 g1 + 3) (g1 + f1 + 1)
∂t+ (18a)

−
(g2 − u) (g1 + 2)c1

(2 g1 + 3) (g1 + f1 + 1)
∂u.

(x∗, t∗, u∗) =

(
ec1 ϵ

(
x +

c2
c1

)
−

c2
c1

, exp
(

c1(g1 + 2)(f1 + 1)
(2g1 + 3)(g1 + f1 + 1)

ϵ

)
t, (18b)

g2 + exp
(

c1(g1 + 2)
(2g1 + 3)(g1 + f1 + 1)

ϵ

)
(u − g2)

)
scaling and shift.

5.2. We consider c (x) = c2 exp(c1x) for arbitrary values of the constants c1, c2. If g1 = −
3
2 , and f1 ̸=

1
2 then Eq. (7) admits

the generator X1 and

X5b =
−2 t (f1 + 1) c1

2 f1 − 1
∂t + ∂x + 2

(g2 − u) c1
2 f1 − 1

∂u. (19a)

(x∗, t∗, u∗) =

(
t exp

(
−2 (f1 + 1) c1ϵ

2 f1 − 1

)
, x + ϵ, (19b)

exp
(

−
2 c1ϵ

2 f1 − 1

)
(u − g2) + g2

)
scaling and shift.

5.3. We consider c (x) = c2 exp(c1x) for arbitrary values of the constants c1, c2. If g1 = −
3
2 , and f1 =

1
2 then Eq. (7) admits

the generator X1 and

X5c =
c1 t
2

∂t + ∂x + c1 (u − g2)∂u. (20a)

(x∗, t∗, u∗) =

(
t e

c1 ϵ

2 , x + ϵ, ec1 ϵ(u − g2) + g2
)

scaling and shift. (20b)

5.4. If g1 = −
4
3 or f1 + g1 + 1 = 0 , then Eq. (7) admits the generator X1 for c(x) an arbitrary function.

Case 6. For f (u) = f2 (g1 u + g2)
f1
g1 , g(u) =

(
−

4
3 (g1 u + g2)−1) 4

3 and c(x) = c3 (c2 − x)c1 with arbitrary values of the
constants f1, f2, g1, g2, c1, c2, c3 such that 3f1 + g1 ̸= 0, g1 ̸= 0, c1 ̸= 0, Eq. (7) admits the generator X1 and the following:

X6 =(c2 − x)∂x +
3 (c1 − 2) (f1 − g1) t

3 f1 + g1
∂t (21a)

−
3 (u + g2) (c1 − 2) g1

3 f1 + g1
∂u.

(x∗, t∗, u∗) =

(
e−ϵ (x − c2) + c2, exp

(
3 (c1 − 2) (f1 − g1)

3 f1 + g1
ϵ

)
t, (21b)

exp
(

−3 (c1 − 2) g1
3 f1 + g1

ϵ

)
(u + g2) − g2

)
scaling and shift.

6.1. If 3f1 + g1 = 0 then Eq. (7) admits the generator X1 and

X6∗ = t ∂t + 3
(u − g2)

4
∂u (22a)

(x∗, t∗, u∗) =

(
eϵ t, x, exp

(
3ϵ
4

)
(u − g2) + g2

)
scaling and shift. (22b)
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Case 7. For c = c(x) an arbitrary function, f (u) = f1
(
u +

g2
g1

)
+ f2

(
u +

g2
g1

)−
1
3
and g(u) =

(
−

4
3 (g1 u + g2)−1) 4

3 , with

arbitrary values of the constants f1, f2, g1, g2 such that g1 ̸= 0, Eq. (7) admits the generator X1 and the following:

X7 = e−
4
3 f1 t∂t −

f1 (g1 u + g2) e−
4
3 f1 t

g1
∂u. (23a)

(x∗, t∗, u∗) =

(
−3
4 f1

ln
⏐⏐⏐⏐e−

4
3 f1 t

−
4
3
f1ϵ
⏐⏐⏐⏐ , x, (23b)

exp
(
f1

(
4
3
f1ϵ − e−

4
3 f1 t

)
ϵ

)(
u +

g2
g1

)
−

g2
g1

)
exponential dilation and shift. (23c)

Case 8. For f (u) = f1 (u − g2) + f2(u − g2)g1+1 and g(u) = g3(g2 − u)g1 , we consider arbitrary values of the constants f1, f2,
g1, g2, and g3. We distinguish the following subcases:

8.1. We consider c(x) =

(
(2 g1 +3)(c1 x+c2)

3 g1+4

) 3 g1+4
2 g1+3

for arbitrary values of the constants c1, c2. If f2 = 0 and g1 ̸=

−2, − 4
3 , −

3
2 , −1, then Eq. (7) admits the generators X1, X4 and also

X8a =
g1 (2 g1 + 3) (c1 x + c2)

c1 (g1 + 2)
∂x + (u − g2)∂u, (24a)

(x∗, t∗, u∗) =

((
x +

c2
c1

)
exp

(
g1(2 g1 + 3)

g1 + 2
ϵ

)
−

c2
c1

, (24b)

t, eϵ(u − g2) − g2

)
scaling and shift.

and

X8b =
2

g1 c1
(2 g1 + 3)(c1 x + c2)

(
x +

c2
c1

)−
g1+1
2 g1+3

∂x (25a)

+
2
c1

(g1 + 1)(u − g2)
(
x +

c2
c1

)−
g1+1
2 g1+3

∂u.

(x∗, t∗, u∗) =

(⎛⎝(x +
c2
c1

) g1+1
2 g1+3

+ 2ϵ +
2ϵ
g1

⎞⎠
2 g1+3
g1+1

−
c2
c1

, t, (25b)

e

⎛⎜⎝ 2
c1

(g1+1) g1 ϵ

⎛⎝(x+ c2
c1

) g1+1
2 g1+3 g1+2ϵ (g1+1)

⎞⎠−1
⎞⎟⎠
(u − g2) + g2

)
exponential dilation and shift.

8.2. We consider c (x) = −
f1 g2 x2

2 g3
+ c1 x + c2 for arbitrary values of the constants c1, c2. If f2 = 0 and g1 = −1, then Eq. (7)

admits the generators X1, X4 and X8c for K =

√
g3
(
c12g3 + 2 c2 f1 g2

)
with

r(x) = arctanh
(
c1 g3 − f1 g2 x

K

)
(26)

and

X8c =
1
2
r (x)

(
f1 g2 x2 − 2 g3 (c1 x + c2)

)
∂x (27a)

+ (g2 − u) ((f1 g2 x − c1 g3) r (x) + K ) ∂u.

(x∗, t∗, u∗) =
1

f1 g2

((
− tanh

(
e1/2 Kϵr(x)

)
K + c1 g3

)
, t, (27b)
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(u − g2) e
−

(
− tanh

(
e
Kϵ
2 r(x)

)
Karctanh

(
tanh

(
e
Kϵ
2 r(x)

))
+K

)
ϵ

+ g2

)
oscillatory dilation and shift.

8.3. If f2 = 0 and g1 = −2, then Eq. (7) admits the generators X1, X4a and X8d and X8e for any c(x) that verifies

c ′′(x) =
c ′(x)2 g3 − 4 c(x)f1

2 g3 c(x)
(28)

with

X8d =∂x +
(u − g2)c ′(x)

2 c(x)
∂u. (29a)

(x∗, t∗, u∗) =

(
x + ϵ, t, exp

(
ϵ c ′(x + ϵ)
2 c(x + ϵ)

)
(u − g2) + g2

)
(29b)

scaling and shift.

and

X8e =x ∂x + (u − g2)
(
x c ′(x)
2 c(x)

− 1
)

∂u. (30a)

(x∗, t∗, u∗) =

(
eϵx, t, exp

(
ϵ (x + ϵ) c ′(x + ϵ)

2 c(x + ϵ)
− ϵ

)
(u − g2) + g2

)
(30b)

scaling and shift.

8.4. We consider c (x) = c2 exp(c1x) for arbitrary values of the constants c1, c2. If f2 = 0 and g1 = −
3
2 , then Eq. (7) admits

the generators X1, X4 and

X8f =
3

2 c1
∂x + (u − g2)∂u. (31a)

(x∗, t∗, u∗) =

(
x +

3
2 c1

ϵ, t, eϵ(u − g2) + g2

)
scaling and shift. (31b)

8.5. If f2 = 0 and g1 = −
4
3 then Eq. (7) admits X1 and X4 as generators with c(x) an arbitrary function.

8.6. If f2 ̸= 0 then Eq. (7) admits X1 and X4 as generators with c(x) an arbitrary function.

Case 9. For f (u) = f1 (u − g2) + f2(u − g2)g1+1, g(u) = g3(g2 − u)g1 we distinguish the following subcases:

9.1. For c(x) = −
(c1−x)2

2(2+g1)
, with g1 ̸= −2, − 4

3 , −1, and f1 ̸= 0, we obtain the generators X1, 1
f1
X4 and the following:

X9 =
x − c1

√
−2(2 + g1)

∂x. (32a)

(x∗, t∗, u∗) =

(
exp

(
ln |x − c1| +

ϵ
√

−2(2 + g1)

)
+ c1, t, u

)
(32b)

exponential dilation and shift.

9.2. If f1 ̸= 0 and g1 = −2, − 4
3 , −1, we obtain the generators X1, and X4 for arbitrary c(x).

9.3. If f1 = 0 we obtain the generators X1 and X4a for arbitrary c(x).

Case 10. For f (u) = f1
(
u +

g2
g3

)
+ f2

(
u +

g2
g3

)−
1
3
, g(u) =

(
−

4
3 (g3 u + g2)−1) 4

3 and c(x) =
1
4

(c1 x + c2)2 with arbitrary
values of the constants f1, f2, g3, g2, c1, c2 we distinguish the following subcases:

10.1. If g3 = −1 then we obtain for Eq. (7) the generators X1, X4 for g1 = −
4
3 , and

X10a =
1
2

(
x +

c2
c1

)
∂x. (33a)

(x∗, t∗, u∗) =

(
exp

( ϵ

2

)(
x +

c2
c1

)
−

c2
c1

, t, u

)
scaling and shift. (33b)
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10.2. If g3 ̸= −1 then we obtain the generators X1 and X7

Case 11. For f (u) = f2 ef1 u, g(u) = g2 eg1 u, c(x) = c2 ec1 x with arbitrary values of the constants f1, f2, g3, g2, c1, c2 we
distinguish the following subcases:

11.1. If f1 ̸= g1, then we obtain the generator X1 and the following

X11a =
c1 f1 t
f1 − g1

∂t + ∂x −
c1

f1 − g1
∂u. (34a)

(x∗, t∗, u∗) =

(
exp

(
c1 f1

f1 − g1
ϵ

)
t, x + ϵ, u −

c1
f1 − g1

ϵ

)
scaling and shift. (34b)

11.2. If f1 = g1, then we obtain the generator X1 and the following

X11b =t ∂t −
1
f1

∂u (35a)

(x∗, t∗, u∗) =

(
eϵ t, x, u −

1
f1

ϵ

)
scaling and shift. (35b)

3. Conservation laws and some exacts solutions

We will obtain conservation laws for the generalized Fisher equation (7) by applying the general multiplier method
[25–28]. Conservation laws are also of basic importance in the study of evolution equations because they provide physical,
conserved quantities for all solutions u(x, t), and they can be used to check the accuracy of numerical solution methods
[29,30].

A local conservation law for Eq. (7)is a continuity equation

DtC1
+ DxC2

= 0, (36)

that holds for the whole set of solutions u(x, t), where the conserved density C1 and the spatial flux C2 are functions of x, t ,
u, and derivatives of u [30]. Here Dt ,Dx denote total derivatives with respect to t and x respectively. The pair of expressions
(C1, C2) is called a conserved current.

Two local conservation laws are considered to be equivalent [28] if they differ by a trivial conservation law C1
= DxΘ ,

C2
= −DtΘ , where C1 and C2 are evaluated on the set of solutions of Eq. (7), andΘ is some function of x, t , u, and derivatives

of u.
We begin by observing that Eq. (7) has a Cauchy–Kovalevskaya form. Consequently, the results in [25,27] show that all

non-trivial conservation laws arise from multipliers. Specifically, when we move off of the set of solutions of Eq. (7), every
non-trivial local conservation law (36) is equivalent to one that can be expressed in the characteristic form

Dt C̃1
+ DxC̃2

=
(
ut − f (u) −

(
g(u)c(x)ux

)
x

)
Q , (37)

where Q (x, t, u, ux, ut , . . .) is a multiplier, and where (C̃1, C̃2) differs from (C1, C2) by a trivial conserved current. On the set
of solutions u(x, t) of Eq. (7), the characteristic form (37) reduces to the conservation law (36).

In general, a function Q (x, t, u, ux, ut , . . .) is a multiplier if it is non-singular on the set of solutions u(x, t) of Eq. (7), and
if its product with Eq. (7) is a divergence expression with respect to t and x.

The determining equation to obtain all multipliers is

δ

δu

((
ut − f (u) −

(
g(u)c(x)ux

)
x

)
Q
)

= 0. (38)

This equation must hold off of the set of solutions of Eq. (7). Once the multipliers are found, the corresponding non-trivial
conservation laws are obtained either by using a homotopy formula [25–27] or by integrating the characteristic equation
(37) [30].

In order to obtain local conservation laws of physical interest for nonlinear diffusion–reaction equations, we typically
focus on low-order multipliers [28,31]. The general form of a low-order multiplier Q in terms of u and derivatives of u is
given by variableswhich can be differentiated to obtain a leading derivative of the equation. The leading derivatives of Eq. (7)
consist of ut and uxx. Clearly, ut can be obtained by differentiation of u, while uxx can be obtained by differentiation of u and
uxx. We determine

Q (x, t, u, ux), (39)

as the general form of a low-order multiplier for the diffusion–reaction equation (7). The determining Eq. (38) splits with
respect to the variables ut , utx, uxx.
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This yields a linear determining system for Q (x, t, u, ux) which can be solved by the same algorithmic method used to
solve the determining equation for infinitesimal symmetries. By using Maple we solve this determining system subject to
the classification conditions f ′

̸= 0, g ′
̸= 0, c ′

̸= 0.
We obtain the following results:

Case 1: For f (u) nonlinear and g = k2f ′
+ k1 for k1, k2 arbitrary constants we get the following multiplier:

Q1(t, x) = F ′(x)e
k1t
k2 (40)

with F (x) satisfying

k2F ′′(x)c(x) + F (x) + k3 = 0, (41)

for k3 an arbitrary constant. We obtain the corresponding conserved density and flux:

C1
= F ′(x)e

k1t
k2 u, (42)

C2
=

(
(k1u + k2f (u))F ′′(x) − (k1 + f ′(u)k2)F ′(x)ux

)
e

k1t
k2 c(x). (43)

Case 2: For f (u) = k u with k a constant and g(u) arbitrary, we get the following multiplier:

Q2(t, x) = F (x)e−kt , (44)

with

F (x) = k1 + k2

∫
1

c (x)
dx, k1, k2 ∈ R. (45)

We obtain the corresponding conserved density and flux:

C1
= F (x)e−k tu, (46)

C2
= e−k tc (x)

(
−g (u) F (x) u2 + F ′(x)

∫
g (u) du

)
. (47)

For both cases, at t = 0, (42) and (46) are simply the mass density weighted by a factor that compensates for the non-
homogeneity c(x) in (7).

4. Some reductions and exact solutions

In this section we will focus on case 4 from Section 2, as function c = c(x) is arbitrary, and functions f (u) = f1 (u − g2)+

f2 (g2 − u)g1+1 and g(u) = g3(g2 −u)g1 have a biological interest in terms of modeling, respectively, cancer cell proliferation
as a Verhulst’s law of growth [1,3,32], and the diffusion term as a typical glioma invasion [1,32–34]. By using the generator
X4, we obtain the similarity variable and similarity solution

z = x, u = ef1 t h(z) + g2, (48)

and the ODE4

hzz +
g1 h2

z

h
+

cz hz

c
−

f2 h
c g3

= 0. (49)

If we set h(z) = −
√

v(z), we obtain that (49) is equivalent to

vzz −
v2
z

2 v
(g1 − 1) +

cz vz

c
−

2 f2 v

g3 c
. (50)

We set g1 = 1 as it provides us a linear density diffusion term, which is a Malthusian rate of growth [35]. Then, Eq. (50) is
transformed into

vzz +
cz vz

c
−

2 f2 v

g3 c
= 0. (51)

It can be easily proved that a first integral of Eq. (51) is the Riccati equation

wz + w2
+

cz
c

w − 2
f2
g3 c

= 0, (52)

with w = w(z) and the change v(z) = exp(α(z)) for α′(z) = w(z).
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Fig. 1. Population density solutions (56) are shown for, g2 = 1, K1 = 1, K2 = −1 over different times t and displacement x given. The asymptotic behavior
can be observed.

Besides, we want c = c(x) to have an asymptotic behavior (for large x) related to tanh(x), which has biological interest as
it models single and multiple sharp transition regions [11]. With g1 = 1, we search a solution of (52) such as

w(z) =
1
K1

tanh
(
z + K2

K1

)
, K1 ̸= 0, (53)

so that c = c(x) becomes

c(x) =
2 f2 K1

2

g3
+

K3

√
1 −

(
tanh

(
x+K2
K1

))2
tanh

(
x+K2
K1

) − K4, K1 ̸= 0, x ≥ 0. (54)

where K4 = arctanh
(

K3 g3√
4 f22K14+K32g32

)
K1 − K2 as the diffusion term cannot be negative [1]. In this case, the asymptotic

behavior of c = c(x) is the following:

lim
x→∞

c(x) =
2 f2 K1

2

g3
− K4. (55)

Therefore we have provided a one-parameter family of exact solutions of Eq. (7)

u(x, t) = g2 −
ef1 t

4

√
1 − tanh

(
x+K2
K1

)2 , (56)

for each K1 ̸= 0 and c = c(x) as in (54).
The carrying capacity in this equation can be seen as g2, and we obtained for the solution (56) that, for f1 < 0,

lim
t→∞

u = g2. (57)

This implies that in any region of the space the solutions assume the value of the limit concentration of cells. This is shown
in Fig. 1. Correspondingly, the density-diffusion and growth function asymptotically disappear, this is

lim
t→∞

f = 0, lim
t→∞

g = 0. (58)
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5. Conclusions

A Fisher equation (7)with a density–space dependent reaction–diffusion termwas presented,which can be considered as
an essential part of cancer modeling and cell dynamics. By applying the classical Lie groupmethod, we obtained a symmetry
classification for Eq. (7).

We have also constructed some nontrivial conservation laws for this generalized Fisher equation, by considering the Anco
and Bluman multipliers method. Finally, we have obtained a reduction of order of the ODE4 derived from (7). In particular,
we have found a one-parameter family of solutions with biological meaning.
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