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Abstract

This paper proposes a novel, data-agnostic, model poisoning attack on Federated Learning (FL), by designing a
new adversarial graph autoencoder (GAE)-based framework. The attack requires no knowledge of FL training data
and achieves both effectiveness and undetectability. By listening to the benign local models and the global model,
the attacker extracts the graph structural correlations among the benign local models and the training data
features substantiating the models. The attacker then adversarially regenerates the graph structural correlations
while maximizing the FL training loss, and subsequently generates malicious local models using the adversarial
graph structure and the training data features of the benign ones. A new algorithm is designed to iteratively train
the malicious local models using GAE and sub-gradient descent. The convergence of FL under attack is rigorously
proved, with a considerably large optimality gap. Experiments show that the FL accuracy drops gradually under the
proposed attack and existing defense mechanisms fail to detect it. The attack can give rise to an infection across
all benign devices, making it a serious threat to FL.
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Abstract—This paper proposes a novel, data-agnostic,
model poisoning attack on Federated Learning (FL), by
designing a new adversarial graph autoencoder (GAE)-based
framework. The attack requires no knowledge of FL training
data and achieves both effectiveness and undetectability. By
listening to the benign local models and the global model, the
attacker extracts the graph structural correlations among the
benign local models and the training data features substanti-
ating the models. The attacker then adversarially regenerates
the graph structural correlations while maximizing the FL
training loss, and subsequently generates malicious local
models using the adversarial graph structure and the training
data features of the benign ones. A new algorithm is designed
to iteratively train the malicious local models using GAE and
sub-gradient descent. The convergence of FL under attack
is rigorously proved, with a considerably large optimality
gap. Experiments show that the FL accuracy drops gradually
under the proposed attack and existing defense mechanisms
fail to detect it. The attack can give rise to an infection across
all benign devices, making it a serious threat to FL.

Index Terms—Federated learning, model poisoning attack,
graph autoencoder, feature correlation.

I. INTRODUCTION

The use of mobile edge computing is increasingly preva-
lent, especially in catering to user devices that come
with a multitude of sensors. These sensors produce vast
amounts of data, like images recording human activities or
the real-time locations of vehicles, as seen in smart city
scenarios [1], [2]. However, transferring this training data
from the user’s device to a server can pose a threat to data
privacy leakage. Federated Learning (FL) is an emerging
distributed machine learning approach that gains traction as
a solution to mitigate data privacy concerns [3]. With FL,
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user devices can jointly train a machine learning model
without having to disclose their private data to a server.
The user devices, acting as clients, iteratively train their
local models on their private data and send the local model
updates to a server. At the server, a global model is updated
without collecting private data from the user devices. The
global model is then sent back to the user devices, allowing
them to continue training their local models based on the
global model and their local data [4]. This process helps
to support data privacy and allows for real-time processing
capabilities at the edge of networks, making FL a significant
aspect of mobile edge computing.

Despite the fact that FL. can help prevent attackers from
accessing the private data of user devices, an attacker (in
most cases, a malicious user device) can potentially launch
model poisoning or data poisoning attacks to manipulate
FL and propagate the attacks into benign user devices [5],
[6], resulting in a failure of FL training. Specifically, model
poisoning aims to send malicious local model updates to
the server during an aggregation process. The malicious
update can introduce specific vulnerabilities in the global
model or simply degrade FL performance. By contrast,
data poisoning attempts to inject malicious data or modify
existing data on user devices to misguide local model
training, thus compromising local model updates. Existing
data poisoning attacks generally require an attacker to have
some knowledge of the datasets used for FL training [7], so
that it can extract and manipulate the features of the datasets
for effective attacks [8]. By launching model poisoning
attacks [9] or data poisoning attacks [10], an attacker could
manipulate either the hyperparameters of the local models
or the training datasets of benign users to compromise
learning accuracy.

Much less constrained and potentially more threatening
model poisoning attacks on FL would result if they could
be based solely on the benign local models overheard by
an attacker and the global models broadcast by the aggre-
gator; i.e., when the attacker has no access to the training
data. However, without training data, it is challenging for
the malicious local models to strike a balance between
effectiveness and undetectability [11]. To the best of our
knowledge, such attacks are new and have not been reported
in the literature.

In this paper, we propose a new, data-agnostic, model
poisoning attack on FL systems, where an adversarial
graph autoencoder (GAE) [12], [13] is designed to generate
malicious local models solely based on the benign local



models overheard and capturing the correlation features of
the benign local and global models. Specifically, an attacker
overhears the benign local models uploaded by the user
devices, and the global model broadcast by the server.
GAE is adept at capturing complex relationships and struc-
tures inherent in graph-structured data. It can efficiently
encode graph information into a lower-dimensional latent
space, while preserving the essential topological features
of a graph. Using GAE, the attacker extracts the graph
structure capturing the correlations between the benign
local models (that could be transmitted over a transport
layer security (TLS) protocol), and decouples the graph
structure from underlying data features substantiating the
local models. The attacker first regenerates manipulatively
the graph structure to retain the structural features of the
local models and maximize the FL training loss using the
GAE, and then generates malicious local models using
the regenerated graph structure to the data features of
the benign local models. As a result, the malicious local
models can effectively compromise the global model, while
remaining compatible with the benign models and hence
reasonably undetectable.

The contributions of the paper are summarized below.

o A new design of data-agnostic, malicious local models,
which manipulates the correlations of benign local
models and retains the genuine data features substan-
tiating the benign local models;

+ A new GAE framework, which is trained together with
sub-gradient descent to regenerate manipulatively the
correlations of the local models while keeping the
malicious local models undetectable; and

e A rigorous analysis, which proves the convergence
of the global model under attack, but to an inferior
optimality gap.

o The proposed GAE-based attack is implemented ex-
perimentally based on the standard MNIST, fashion-
MNIST, and CIFAR-10 datasets. It is shown that the
GAE-based attack significantly compromises the FL
performance, where the training accuracy falls below
50% at the user devices. The source code of the
proposed GAE-based, data-agnostic, model poisoning
attack is available on GitHub.

Extensive experiments indicate that the FL accuracy drops
gradually under the proposed attack, and the existing poi-
soning defense mechanisms can hardly detect the attack.
Since the malicious local models are uploaded to the server
for global model aggregation, the proposed attack gives rise
to an epidemic infection across all benign devices.

The proposed GAE-based attack on FL involves attackers
intentionally poisoning malicious local models, aiming to
degrade or manipulate the performance of the global model.
The attack challenges the security, privacy, and robustness
of FL. While security is threatened by unauthorized ac-
cess or malicious insiders tampering with local models,
privacy concerns arise when the attackers try to reverse-
engineer or glean information about the benign devices’
data. Moreover, robustness, which is the ability of FL to

TABLE I: Notation and definition

Notation Definition

J The total number of benign user devices

wy(t) The global model of FL in the ¢-th commu-
nication round

wy(t) The global model under attack

fi(w;(t); x;., y;) The training loss function of device j

Fj(w;(t)) The local loss function of device j

F(w;(t)) The weighted loss function of FL

n The learning rate of the local model

Ty, The number of training iterations per FL
communication round

Euclidean distance threshold

The adjacency matrix for the local models of
user devices

The feature matrix

The reconstructed adjacency matrix gener-
ated at the decoder

The Laplacian matrix based on the benign
weights

The Laplacian matrix regenerated by the at-
tacker

The malicious local model
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consistently produce reliable and accurate results, can be
directly undermined, as poisoned local models compromise
the integrity and efficacy of FL. To this end, the proposed
GAE-based attack poses a comprehensive threat to the
security, privacy, and robustness of FL.

The rest of this paper is organized as follows. Section II
introduces the background of adversarial attacks against
wireless systems and FL. Section III discusses FL with
benign user devices and server, as well as the eavesdrop-
ping model. The proposed GAE-based epidemic attack is
delineated in Section IV. Performance analysis is conducted
in Section V. Section VI concludes the paper. Table I lists
the notation used in the paper.

II. RELATED WORK

This section reviews the literature on adversarial attacks
against wireless systems as well as FL, including model
and data poisoning attacks. On the one hand, because of
their broadcast nature, wireless channels are particularly
vulnerable to eavesdropping attacks. An attacker is likely
to overhear the local model updates transmitted by the other
benign users in wireless FL. On the other hand, the model
poisoning attack considered in this paper has not been
studied in the literature. Instead, existing attacks on wireless
FL have focused primarily on building an adversarial data
classification/label model for attackers, according to the
data packets and features overheard, e.g., [14] and [15].
There is clearly an opportunity for the new attack to strike.

A. Adversarial Attacks on Wireless Systems

In [16], an adversarial attack was studied to manipulate
the measurement of smart meters in residential homes.
Smart meter data could inform residents of which appli-
ances consumed the most electricity and adjust energy
production. The attacker employed deep learning to train
a power usage pattern classification model and generated
malicious data that was indistinguishable from the true



data. In [14], machine learning was used to generate an
adversarial attack for targeting data fusion or aggregation.
The attacker infiltrated some devices and learned the de-
cision process and data fusion settings by observing data
exchanges between the devices and the data center.

In [17], the authors analyzed targeted adversarial attacks
that aimed to manipulate the output of a convolutional
neural network (NN)-based classifier. They also evaluated
non-targeted adversarial attacks against convolutional NN-
based device identification. To evaluate these attacks, the
authors used combined indicators of logits to increase the
perturbation levels and iterative steps, resulting in a high
success rate of adversarial attacks. In [18], researchers
used deep learning to recognize COVID-19 symptoms by
training on medical data from user devices. They evaluated
several adversarial attacks that aimed to falsify the data
and symptom recognition. The study found that existing
deep learning algorithms were vulnerable to these attacks,
highlighting the need for advanced security measures.

In [15], an adversarial attack was developed to deacti-
vate graph-based intrusion detection in a targeted wireless
system. The attack began by building a shadow graph
based on overheard data packets and features. A random
walk algorithm was then used to evaluate each node in
the attacker’s graph, selecting the node with the largest
weight to attack. The attack would perturb data features and
alter classification labels. In [19], an adversarial attack was
developed to utilize graph embedding and augmentation to
misclassify system malware samples as benign. The graph-
based attack aimed to embed a target malware sample into
benign software. By combining the benign code sample
and the target malware sample in the graph, the adversarial
attack could learn complex features, resulting in a high
misclassification rate at the user device.

In [20], a study was conducted on a Sybil-based data
poisoning attack against deep reinforcement learning-based
service placement in the Internet of Vehicles (IoV). The
attack targeted the agent that is responsible for learning the
service quality and deciding on service placement based on
delay. A Sybil attacker, which is a malicious vehicle, used
data poisoning techniques to masquerade as a legitimate
vehicle by stealing or borrowing its identity. The attacker
then maliciously sent false data to other vehicles.

Unfortunately, it is difficult for the attacker to formulate
the adversarial data classification/label model in FL systems
since the benign user devices can collaboratively conduct
model training without sharing their private data.

B. Poisoning Attacks on FL

In order to corrupt the FL, the attacker can launch
either a data poisoning or a model poisoning attack. In the
data poisoning attack, the attacker injects fake data with
manipulated features and flips labels into the benign user
devices. In the model poisoning attack, the attacker submits
malicious local models to the server. Both attacks aim to
corrupt the FL by introducing false information.

In [11], the authors systematically categorized the ex-
isting threat models associated with poisoning attacks on

FL, where practical boundaries of numerous parameters
pertinent to FL robustness were delineated. An array of
untargeted model and data poisoning attacks on FL was an-
alyzed to encompass the existing attack strategies. A model
poisoning attack was developed using gradient ascent to
fine-tune the global model and increase its loss on benign
data. The model poisoning attack adjusts the Lo-norm of
the poisoned model update to circumvent the robustness
criterion of the model aggregation.

In [21], an adversarial attack mitigation scheme based
on clustering was studied. The scheme aimed to protect FL
by using unsupervised weight training to split and merge
weight clusters at the server to filter out malicious local
models that were uploaded by the user devices without
identity verification. In [22], malicious local models were
derived from mislabeled data to manipulate the global
model. The study found that this attack could result in a
significant drop in classification accuracy, and that it was
difficult to detect due to its negative impact on the target
device and minimal impact on other benign devices.

In [23], an inference model was formulated to take
local models as input and output the categories of data.
A malicious local model based on a differential selection
strategy was used to select two adjacent categories. To
approximate the benign local model, a category inference
attack was studied, in which the attacker learns the data
features underlying benign local models.

The authors of [24] presented a backdoor attack against
FL in mobile edge computing (MEC), which targeted the
tail of the input data distribution at the local devices.
The attack used projected gradient descent to maintain the
distance between the malicious local model and the global
model, to misclassify the targeted samples and bypass
defense mechanisms.

In [25], generative adversarial networks (GANs) were
utilized to construct data poisoning attacks against FL. The
attacker trained the GAN to replicate the local data of the
benign devices. Since the attacker had no information about
the local data, the GAN-based data poisoning updated the
global model to re-select the potential targeted devices.
In [26], a GAN-based FL poisoning attack was studied,
where the attacker posed as one of the benign devices and
trained the GAN to mimic the dataset of the benign devices.
The malicious data generated by the attacker were trained
to compromise the global model. In [27], a malicious server
deployed a GAN-based reconstruction attack against FL
to tamper with the private data of the user devices. The
malicious server discriminated the devices’ identities and
data representatives to supervise the training of GANs and
generate malicious data for each specific device. In [28],
the authors focused on a device-level privacy leakage attack
launched by a malicious server. A GAN-based framework
was presented to discriminate the data category and device’s
identity and recover the private data of the device. The
attack could associate the data features from different
devices to re-identify the local models.

Unfortunately, the existing data poisoning or model poi-
soning attacks have not exploited the implicit relationship



between local models [29], [30]. Moreover, the existing
poisoning attacks generally require the attacker to have the
knowledge of (part of) the datasets used for FL training.

III. SYSTEM MODEL

In this section, we first describe an FL training process,
e.g., for image classification. Next, we present the threat
model, where malevolent devices can act as attackers. An
attacker creates and uploads malicious local model updates
to progressively contaminate the global model of the FL. At
last, we describe an attacker detection model that the server
can adopt to discern malicious local models by measuring
the Euclidean distances between the models.

A. Federated Learning

We assume there are J benign user devices and an
authorized (legitimate) but malicious user device (or an
attacker) in the FL training process. A benign user de-
vice j € [1,J] has D;(r) amount of data at the 7-
th iteration. Let z and y denote the input of the cap-
tured images and the output of the FL model at device
J, respectively. @ € [1,D;(7)]. A training loss function
of device j, denoted by f;(w;(7);2%,y}), captures ap-
proximation errors over the input z and the output y;.
Here, w;(7) is the weight parameter of the loss func-
tion in the model being trained by the FL. For instance,
filw;(7); 2%, y%) can be modeled by linear regression,
Le. filw;(T);xh,yl) = F(w;(r)Tzt — yi)?; or logistic
regression, i.e., fi(w;(7);x%,y5) = y’log (1 + exp (—
wj(T)Tx;»)) —(1—y;)log (1 T oo o) (_Lj(t)%}) ) Here,
() denotes transpose. Given D;(7), the local loss function
of the FL at device j for the 7-th iteration is

Dy(r)
Ffus ()= 55 D iy ) oty ), (1)

where g(-) is a regularizer function that represents the
effect of the local training noise, and p € [0,1] is a
coefficient [31].

The local model of user device j is updated by

wi(1T+1) =w;i(r) = nVFjw;(1)), 2)

where 7 is the learning rate.

After every T, local updates (or iterations), there is a
communication round where the benign user devices upload
their local models to a server. The server aggregates the
local models to update the global model and broadcasts
the global model to all user devices. While selecting the
user devices with large training datasets can help improve
the learning accuracy of FL, it often results in the fast
depletion of the batteries at the user devices. On the other
hand, selecting the user devices with small datasets can
save the battery energy of the devices, but the accuracy of
the global model could suffer. Existing resource allocation
policies, such as those developed in [32] and [33], can be
applied to balance the learning accuracy of FL and the
energy consumption of the user devices.

B. Threat Model

We consider a new data-agnostic model poisoning attack,
where malicious local models are generated solely based
on the benign local models overheard and the correlation
features of the benign local and global models. This attack
could be particularly severe in FL systems under wireless
settings, due to the broadcast nature of radio. As shown
in Fig. 1, an attacker within the vicinity of benign user
devices and equipped with radio transceivers can passively
eavesdrop on the local models transmitted by some (if not
all) of the benign user devices, extracting their features and
generating malicious local models. A similar threat model
has also been considered in the recent literature [34]-[36],
where an attacker within proximity of benign user devices
overhears the local and global models in an attempt to
recover, at least partially, the private data of the benign user
devices. Although cryptography can prevent eavesdropping
to some extent, existing techniques, such as those developed
in [37]-[39], have demonstrated the possibility of decipher-
ing encrypted information with limited initial data.

The attacker creates and uploads a malicious local model,
denoted by w®(t), to contaminate the global model w(t),
and subsequently the local models of the benign users, i.e.,
w;(t), Vj € [1,J], where ¢ indicates the ¢-th communi-
cation round. w®(¢) is adversarially created based on the
benign local model parameters overheard by the attacker in
the ¢-th communication round.

Unaware of the ill-intentioned attacker, the server ag-
gregates the local models of all user devices, including
both the benign and malicious local models, and unin-
tentionally creates a contaminated global model, denoted
by wg(t), at the ¢-th communication round. The total
size of the local training data reported to the server is
D(t) = ijl D;(t) + D,(t), where D,(t) is the claimed
data size of the attacker at the ¢-th communication round.
Then, the contaminated global model is given by

J
i) = Y Py o) + el
j=1

The server broadcasts wg(t) to all user devices.

To this end, the FL training process in essence trains the
global model based on the local datasets of all user devices,
including the nonexistent dataset claimed by the attacker,
by minimizing the following global loss function:

J
min Fw(1) =Y %‘(%) 5 @)+ g Falw3 1)

wg (t)

“)
where F,(-) is the claimed local loss function of the
attacker, which is claimed to conform to (1).

To attack the FL training process, the attacker aims to
maximize F'(w(t)), while keeping w®(t) undetectable by
the server that typically constantly assesses the similarities
among all local models and rules out those substantially
different from the rest, e.g., Krum or multi-Krum [40]. As
a result, the attacked global model diverges in a direction
opposite to the one intended in the absence of the attack.
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Fig. 1: The proposed data-agnostic model poisoning attack, where
the attacker overhears the global model and the local models
uploaded by the benign user devices. Next, the attacker generates
a malicious local model to contaminate the global model and the
benign local models.

At the t-th communication round, the attacker formulates
a data-agnostic, model poisoning attack problem:

max Flwy(t)) (5)
st d(w?(t),wi(t)) < dr, (5b)

where d(w*(t),w(t)) evaluates the Euclidean distance be-
tween w®(t) and wy(t), and dr is a pre-specified threshold
that ensures the generated malicious local model is close
to the global model in the Euclidean space to escape the

scrutiny of the server.

C. Defense Model for Attacker Detection

In response to the prevalent threat of model poisoning
in FL, an attacker detection model residing on the server
can be applied, which leverages the Euclidean distance
metric to discern malicious local models, for instance, [8]
and [41]. By measuring the straight-line distance between
each incoming local model and the aggregated global
model, this model aims to identify anomalous deviations
indicative of malicious intent. The underlying rationale is
that genuine local models from benign devices are expected
to cluster within a certain proximity in the model space,
while malicious local models, designed to sabotage the
global model’s integrity, would exhibit more pronounced
deviations. By setting a distance threshold, local models
that exceed this threshold can be flagged or discarded,
effectively isolating and mitigating the impact of malicious
local models on the global model’s integrity. This server-
side defense mechanism underscores the potential of geo-
metric measures, like Euclidean distance, as powerful tools
in safeguarding FL systems from adversarial attacks.

IV. PROPOSED DATA-AGNOSTIC MODEL POISONING
ATTACK ON FL

In this section, we elaborate on the proposed data-
agnostic model poisoning attack, where adversarial GAE
is designed to extract the feature correlation among the

local models of the benign user devices and reconstruct an
adversarial adjacency matrix. With the adjacency matrix,
the attacker trains the GAE to generate malicious local
models without being detected by the server.

A. GAE Model for Data-Agnostic Model Poisoning

The arbitrary features of w®(¢) and those of the benign
local models may have a low feature correlation, which can
be potentially detected by the server. To address this, we
develop a new GAE model for the novel, data-agnostic,
model poisoning attack.

The optimization problem in (5) can be transformed
using the Lagrangian method [42]. Let A denote the dual
variable. The Lagrange function is given by

Lw"(t), \) =F(wg(t)) + AMdr — d(w”(t),wy(t))). (6)

The Lagrange dual function is

D(A) = max L(w®(t), \). )

we(t)
The dual problem of the problem in (5) is given by

inD(N). 8
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At the ¢-th communication round, given A = A(¢), the pri-

mary variable w®(¢) of the data-agnostic model poisoning
attack can be optimized by solving

W' (1)" = ang masc{F (@ (1)) ~ MO (1).w5(0)). ©)

With obtained w®(t)", the sub-gradient descent method can
be taken to update A(t) by solving the dual problem (8).
Specifically, A(t) is updated by [43]

At +1) = [ME) — & (dw (1), wi (1) —dr)] T,
where ¢ is the step size, 7 is the index to the iterations, and
[2]* = max (0,z). At initialization, A(t) is non-negative,
ie., A(1) > 0, to ensure (10) converges.

We propose to solve (9) by developing a new GAE
model, followed by the sub-gradient descent to update (10).
These two steps are performed in an alternating manner, as
illustrated in Fig. 2. Specifically, we propose to decompose
the local model parameters of the benign devices into a
graph capturing the correlations (or similarity) between the
benign local models, and the underlying spectral-domain
data features that the local models capture. Then, we re-
generate the graph with the GAE in a manipulative manner
and subsequently compose malicious local models with the
regenerated graph and the original, genuine data features.
The rationale of this design is provided as follows.

(10)

o By regenerating the graph with the GAE, we retain
and manipulate the correlations between the local
models, and also deter the convergence of the global
model, i.e., by maximizing (9). The decoder of the
GAE reproduces the correlations while satisfying con-
straint (5b). This suppresses structural dissimilarity
between the malicious and benign local models.
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w;(t), Vj and applies the GCN-based encoder to create 2ZM The output of the encoder, i.e., the feature representations, is input to

the decoder for feature reconstruction.

o By using the genuine underlying spectral-domain data
features, the malicious local models are substantiated
by the genuine data features. Hence, they are less
likely to be detected by the server.

1) GAE for Malicious Model Generation: The attacker
aims to construct w®(t) without knowing any data of the
benign devices. As illustrated in Fig. 2, a graph, denoted by
GV, E,F), is used to formulate the benign local models
in FL, where V, E, and F represent vertexes, edges, and
the feature matrix of the graph, respectively.

Let F = [wi(t),--- ,w;(t),w*(t)] collect all local mod-
els of both benign and malicious devices. w,(t),w®(t) €
R™P Vj. Also, let A € R7*7 denote the adjacency
matrix that describes the correlation among the local mod-
els of the user devices. At the ¢-th communication round
of the FL, the (j,j’)-th element of A, denoted by wj j/
(4,j' € [1,J]), measures the inner product between w;(¢)
and wj (t) [44], as given by

w;(t) - wj (t)
Jlws ()1} -l (£

According to A, the topological structure of the graph G
can be constructed.

The GAE consists of an encoder and a decoder, where
the encoder encodes the graph data with the features and
the decoder takes the encoder’s output as the input to
reconstruct G(V, E, F) [45].

e Encoder: The encoder in the proposed GAE is re-
sponsible for mapping G(V, E, F) to a lower-dimensional
representation. We build the encoder based on an M-layer
graph convolution