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ABSTRACT The widespread use of smartphones and other low-cost equipment as recording devices, the
massive growth in bandwidth, and the ever-growing demand for new applications with enhanced capabilities,
made visual data a must in several scenarios, including surveillance, sports, retail, entertainment, and
intelligent vehicles. Despite significant advances in analyzing and extracting data from images and video,
there is a lack of solutions able to analyze and semantically describe the information in the visual scene
so that it can be efficiently used and repurposed. Scientific contributions have focused on individual
aspects or addressing specific problems and application areas, and no cross-domain solution is available
to implement a complete system that enables information passing between cross-cutting algorithms. This
paper analyses the problem from an end-to-end perspective, i.e., from the visual scene analysis to the
representation of information in a virtual environment, including how the extracted data can be described
and stored. A simple processing pipeline is introduced to set up a structure for discussing challenges and
opportunities in different steps of the entire process, allowing to identify current gaps in the literature.
The work reviews various technologies specifically from the perspective of their applicability to an end-
to-end pipeline for scene analysis and synthesis, along with an extensive analysis of datasets for relevant
tasks.

INDEX TERMS Computer vision, datasets, scene analysis, scene reconstruction, visual scene understanding.

I. INTRODUCTION
Starting from a real-world scene and extracting its structure
to obtain a virtual scene that accurately reproduces it is
a long-standing computer vision challenge. This process,
of scene understanding for 3D synthesis, can enable many
exciting applications in sports, entertainment, and telepres-
ence, to name a few: viewers of sports events can follow
their favorite players by placing a virtual camera in the
reconstructed scene; movie creators can obtain new camera
views in post-production, or remote participants can visit a

The associate editor coordinating the review of this manuscript and
approving it for publication was Byung-Gyu Kim.

real-world location (for training purposes, for example) in
virtual reality or even interact with other users in the location
wearing augmented reality devices.

The pervasive nature of image and video-capture devices
in our lives, coupled with increasing processing capabilities
and algorithmic advances in machine learning, is fueling
a renewed interest in performing automated scene under-
standing for 3D synthesis, with a vast amount of literature
dedicated to its different sub-problems, such as analyzing
and extracting data, and 3D content synthesis. To analyze
and extract data from a scene, current approaches aim
to efficiently detect visual structures and understand the
inherent scene structure and the context of the information
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extracted [1]. This might include extracting fine-grained
geometry details as well as contextual information such
as relative locations and object categories. For 3D content
synthesis, we find methodologies often tailored for specific
tasks. For instance, human parametric models can be used to
model and generate human-like avatars that can be adapted
to multiple situations while preserving human characteristics
and anatomic coherence [2]. In addition, recent research on
neural radiance fields has also enabled detailed and rich
representations of natural scenes throughmultiple viewpoints
of a scene [3], [4].

These different advances highlight the complexity of
creating solutions for scene understanding and synthesis,
and the extensive literature already available. Although there
are advances in many research areas, which culminate in
new forms of applications that leverage both visual analysis
and scene representation/synthesis to create coherent virtual
environments such as video games or even virtual meeting
rooms, there is still a lack of unified pipelines that incorporate
scene analysis with the interpretation of semantic information
of the scene for a more detailed and accurate scene represen-
tation. As we move towards photo-realistic 3D scene under-
standing, semantic information allows expressing meaning
and relationship of and between entities on the scene,
thus improving perception by providing a more detailed
analysis of the underlying scene. We argue that obtaining
reliable and meaningful semantic information from the scene
becomes essential, and representing this information to allow
efficient storage, access, and interpretation is fundamental for
handling the data extracted from a visual scene.

This work discusses visual scene understanding as a means
to transition between the scene analysis and a posterior virtual
synthesis, exploring the steps required for such transition
while presenting an exploratory survey of recent works
and their applicability to such a scenario. We structure
the discussion around a cross-domain pipeline intended to
analyze and extract human activity and interactions, with the
ultimate goal of obtaining the underlying scene description
that enables a richer posterior 3D synthesis of the scene. The
pipeline (depicted in Figure 1) while high-level, introduces
an end-to-end approach that enables information passing
between cross-cutting algorithms. Advances in independent
areas, for example, human body tracking, can be leveraged
to correctly establish coherent spatio-temporal semantic
representations in the scene, enhancing the representation of
the underlying observed data. This cross-domain perspective
potentiates the use of information from scene analysis (e.g.,
human position, facial data, gait), in the form of a compact
and flexible description that can be stored or sent across the
network, and enables the posterior synthesis and recreation
for visualization under different points of view or with
varying levels of detail. To this end, it is critical that the scene
description is flexible to adequately capture the required
information.

The pipeline depicted in Figure 1 shows the three main
domains that guide the presented literature review: (1) Scene
Analysis; (2) Scene Description; (3) Scene Synthesis. The

first area consists of technologies responsible for obtaining
semantic information from a visual scene for posterior
visualization of the data. The second area is responsible
for generating a scene description based on the outcome of
the visual analysis. This description enables the structured
organization of the semantic information extracted from
the scene analysis and allows storing or conveying the
data between algorithms. The final area is responsible for
generating synthetic representations of the underlying scene
based on the information extracted and presented by the
second layer. Following this pipeline enables the usage and
storage of higher-level information used to recreate the
underlying observed data with varying levels of detail, and
can be applied in many different application areas such
as: semantic compression; surveillance and unauthorized
access; sports analysis; data augmentation and synthetic data
generation.

The contributions of the work are guided by the high level
pipeline and are three-fold:

• a cross-domain survey of research required to establish
a transition from scene analysis to a posterior virtual
synthesis, with emphasis on recent research, applicable
to an end-to-end system;

• a comprehensive exploration of applicable datasets, with
a focus on providing an easy-to-access entry-point to
obtain the data;

• a discussion of advantages and research opportunities
emerging from structuring the problem around a cross-
domain approach, highlighting the need for adequate
data representations for interconnection.

This article is structured as follows: Section II explores
areas related to visual scene analysis, based on processing
low-level data, such as images or videos, to obtain semantic
information from the scene; Section III explores methodolo-
gies for organizing semantic information and how high-level
information extracted from the visual scene can be structured;
Section IV targets methods and algorithms designed for scene
synthesis and how to transition between visual data to virtual
representations. Then Section V presents an exploratory
overview of existing and relevant datasets encompassing
this cross-domain analysis while also providing an easy-to-
access resource to obtain more details of the given datasets
and how to obtain the data. Finally, Section VI discusses
the advantages that a cross-domain approach integrating the
explored areas could potentiate, as well as emerging research
opportunities due to the complex nature of such integration.

II. SCENE ANALYSIS AND DATA EXTRACTION
To understand a visual scene through an automatic or semi-
automatic process, it is necessary first to analyze and interpret
the visual information. Due to its importance, this has
been an active research topic with many proposed works.
Furthermore, as a wide variety of applications rely on visual
data, it is also natural for multiple technologies to be derived
and studied. In our exploration of different techniques for
scene analysis, we take a particular interest in methodologies
and algorithms that focus on humans and their interactions,
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FIGURE 1. High level architecture of the proposed visual-virtual translation pipeline.

FIGURE 2. Example of different outputs of various algorithms applied to
analyze a scene. Figure a) depicts the application of pose estimation;
figure b) shows the detection of a person and some semantic knowledge
obtained from the detection; figure c) illustrates the foreground of the
scene.

and overview both classical and modern methods to illustrate
the evolution that different areas within scene analysis have
experienced. Figure 2 illustrates some of the modalities of
scene analysis.

A. OBJECT AND PEOPLE DETECTION
Object detection and, in particular, people detection aims
to determine if an object is present on an image and find
all instances in the image. Detectors typically provide a
bounding box around the detected object and the inherent
problem of training an object detector is mostly seen as a
supervised learning problem, which takes leverage of the vast
amounts of labeled datasets available (see section V for an
overview of multiple datasets). Traditional object detectors
relied on the detection of specific hand-crafted image features
like theViola and Jones [5] or theHoG (Histogram of oriented
Gradients) [6] algorithms. In 2012, AlexNet [7], marked
the re-introduction of convolutional neural networks (CNN)
and deep learning in computer vision, paving the way to
more precise and sophisticated methodologies with increased
accuracy.

Recent object detection approaches fall into three different
types: single-stage; two-stage; and transformer-based. Single

stage detectors perform the joint detection and classification
of objects by using sets of anchor boxes of multiple scales and
aspect ratios to detect all object instances. Two stage detectors
have a specific module for generating candidate regions
which are forwarded to a classifier that localizes and classifies
the objects based on the candidates. Lastly, transformer-based
detectors bring into the vision domain concepts used formerly
inNLP (Natural Language Processing) andwork by capturing
the relationships between different regions of an image.

One of the most widely used single-stage detector is
YOLO [8], which involves a single neural network that is
trained end-to-end to predict object bounding boxes. A major
drawback is the difficulty in detecting small or clustered
objects, and it also lower recall when compared with the
Faster-RCNN [9]. Single Shot MultiBox Detector (SSD) is
also a single-stage detector that was built upon the VGG-16
network by appending progressively smaller convolutions
to the end of the model and it also has difficulties to
correctly detect small objects and requires a large training
set. YOLOR (You Only Learn One Representation) [10]
consists of a network that imitates how the human brain
learns knowledge from normal learning and subconscious
learning. Results show that this proposal is able to achieve
accuracy comparable to state-of-the-art methods with fast
inference speed. YOLOv7 [11] was proposed for real-time
object detection. It derived from YOLOv4 [12], Scaled
YOLOv4 [13] and YOLOR [10], with results surpassing the
state-of-the-art detectors in both speed and accuracy.

Faster R-CNN [9] andMask-RCNN [14] have several sim-
ilarities and are two of the most widely used two-stage object
detectors. Further improvedmethods have also been proposed
for even better accuracy; Cascade R-CNN [15] uses a cascade
of different specialized regressors andG-RCNN [16] includes
the concept of spatio-temporal granulation within a deep
convolutional neural network.

The introduction of Transformers [17] also impacted image
and video processing; for example, Vision Transformer
(ViT) [18] treated images as a sequence of patches to
create an image classifier. Transformers were applied to
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object detection with proposals like ViT-FRCNN [19],
DeTR [20], Swin transformer [21]. More recently, the
usage of non-hierarchical ViT has been explored [22];
Zhang et al. [23] pre-trained transformer encoder-decoders
and Mask-DINO [24] used an extension of DINO [25]
(DETR-like model), adding a mask prediction branch. For a
deeper study of this topic the reader is referred to [26].1

Object detection is a cross-cutting concern in many
research areas and is often a critical step in image processing
pipelines. As a result, many algorithms and methods have
been proposed. Object detection has an important role in
the identification and understanding of the components of a
visual scene; a statement supported by recent surveys [27],
[28], [29]. Moreover, new methods such as YOLOv7 [11],
DeTR [20] or DINO [25] have been demonstrating high
potential, even in complicated scenarios.

B. OBJECT TRACKING
Object tracking is an essential and challenging task in
computer vision, closely related to object detection, that has
also grown significantly. The overall goal is to coherently
establish correspondences between objects in consecutive
frames and, in occlusion situations, infer the object’s position
to recover the tracking when it reapers [30]. Generally,
the typical approach for Multiple Object Tracking (MOT)
is first to apply object detection and then to apply target
association. Many works that delve into these problems and
other associated challenges can be found in the reviews
[28], [31], [32].

As with many other areas, current tracking approaches
rely on deep learning to provide effective and fast methods.
In [33], an early method for combining a CNN for
object detection with a Kalman filter for motion estimation
and the Hungarian algorithm for tracking association was
proposed for real-time tracking. Similar approaches intended
to leverage the power of CNN-based object detectors with
models such asMask-RCNN [34] and SSD [35]. To overcome
failures in detecting targets, Xiang et al. [36] proposed a
combination of CNN+LSTM model that jointly combines
target appearances and motion cues to reconstruct trajectories
where gaps in detection exist.

Ma et al. [37] proposed twomulti-trackingmethods one for
a single camera and another for multiple cameras. For a single
camera, the method starts by generating tracklets for each tar-
get, followed by a Siamese bi-directional gated recurrent unit
(SiaBiGRU) for trajectory post-processing. This approach
cuts and reconnects tracklets to improve consistency and
account for occlusions. Themulti-cameramethod uses a Posi-
tion Projection Network (PPN) that converts the trajectories
from camera coordinates to world-coordinates to connect
trackles from different cameras. In [38], the people detector
Yolov5 is used with the DeepSORT [39] algorithm for data
association to handle occlusions. Graph Convolution Neural

1A particularly useful repository for works related with vision transform-
ers can be found in: https://github.com/IDEA-Research/awesome-detection-
transformer

Networks have also been applied for tracking purposes,
namely for data association with promising results [40],
[41]. Attention mechanisms from Transformers also enabled
relevant improvements [42], [43], [44]. TrackFormer [45]
used transformers for tracking, introducing the tracking-by-
attention paradigm. Frame level features were extracted using
a conventional CNN and self and encoder-decoder attention
is applied through a transformer, achieving state-of-the-art
accuracy in well-known benchmarks; HCAT [46] followed
a similar strategy but with higher inference speed.

Recent works on object tracking have focused on improv-
ing the quality of the acquisition of tracklets and making
the processing in real-time, even when applying very recent
methodologies like transformers. Tracking is important not
only to understand individual behaviors, but also how objects
interact with the scene and with each other, thus assuming
relevance in a scene understanding processing pipeline.

C. PEDESTRIAN ATTRIBUTE RECOGNITION
Pedestrian attribute recognition (PAR) is a sub-field of human
attribute recognition (HAR) and focuses on complete human
body data extracted from surveillance/monitoring scenarios.
This topic targets less restrictive conditions making it
essential when developing a scene understanding system that
can adapt to different situations. In the following overview,
we address different aspects, namely: global image-based
methods, part-based methods, attention-based methods, and
graph-based methods.

Abdulnabi et al. [47] proposed a global method where a
multi-task learning methodology was employed so that CNN
features are also used to estimate corresponding attributes in
humans. Lin et al. [48] also proposed a multi-task network
which simultaneously learns a re-ID embedding and predicts
pedestrian attributes.

Part-based models use both local and global information
to perform more accurate identifications of attributes; works
such as LGNet [49] or PGDM [50] used different types of
networks to jointly combine local and global information for
attribute location and recognition. However, inaccuracies in
the part detection procedure may result in erroneous input
features to the classifiers, which may induce errors. Visual
attention was applied to PAR, e.g., HydraPlus-Net [51] or
DIAA [52], but with limited results. Recently, two types of
visual attention consistency were enforced into a network that
was capable of achieving state-of-the-art performance [53].
Graph-based approaches aim to leverage the connection
between attributes and apply graph concepts. Park et al. [54]
proposed an attribute and-or grammar (A-AOG)model where
human body pose and attributes are inferred in a parse
graph in which attributes are augmented to nodes in the
hierarchical representation. In [55] and [56], HAR is viewed
as a sequential attribute prediction problem and uses Graph
Convolutional Network (GCN) on visual and semantic data.

Human attributes are fundamental for the characterization
of humans in a scene. In scenarios of visual scene recon-
struction, just placing virtual humans without corresponding
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attributes may lead to a less than optimal reconstruction. Fur-
thermore, knowing semantic and visual data from attributes
can also help perceive the inherent semantics of the scene.
Recent works on this topic that achieve high accuracy are
mostly related to either using attentionmechanisms or graphs.
For additional information on PAR and HAR, the reader is
referred to the surveys [57] and [58].

D. POSE ESTIMATION
Pose estimation is a computer vision task to predict and
track the location of a person or object. This is typically
done by identifying and tracking a number of keypoints on
the given object or person. The keypoints are generally the
major human body joints when applied to humans. Pose
estimation has significant application in areas such as human
activity monitoring, augmented reality, or animation. In the
literature, there is a major distinction between 2D and 3D
pose estimation. The first involves using visual inputs such
as images or videos to predict the spatial location of 2D
positions of human body key points, and the latter predicts
the location of the human keypoints in a 3D space.

K-poselets [59] was proposed for 2D pose estimation
and showed that CNN features could also be used for pose
estimation. Deep pose [60] reinforced this by using a deep
neural network that regressed the body joint locations using a
cascade. Later, OpenPose [61] used spatial part affinity fields
to represent the 2D orientation between limbs and achieved
real-time performance, independently from the number of
people in the images. OpenPose and AlphaPose [62] provide
a complete API and have been used extensively. Recently,
OpenPose’s results were vastly improved by including data
augmentation and refinements [63].

Although there has been extensive research in methods for
2D and 3D pose estimation, recent and more sophisticated
approaches have been proposed for 3D pose estimation.
Xu and Takano [64] used a GCN methodology to predict
3D human joint locations in the camera coordinate system
from 2D inputs in the pixel domain. Similarly, in [65] a
transformer-based approach was used to transform sequences
of 2D joint locations to 3D poses. Li et al. [66] introduced
a transformer-based method that proposes multiple pose
hypothesis enabling the generation of plausible 3D human
poses even with occluded body parts. For more details on this
area the reader is referred to [67], [68], and [69].

E. ACTION RECOGNITION
Classifying human actions and activities is a challenging
topic that benefited greatly from improvements in compu-
tational capabilities and neural networks. Action recognition
and activity recognition are often used interchangeably [70].
This task is fundamental for scene understanding to capture
object interactions. As actions are temporal events, it involves
motion trajectory prediction and tracking.

As we have seen in other areas, deep learning has
also vastly contributed to better action recognition systems.
In [71], an RNN with LSTM was used to learn long-term

temporal relationships to achieve spatio-temporal human
action recognition in long videos with overlapping actions.
In [72], a Spatial-Temporal Interaction Network was pro-
posed to generalize action recognition regardless of the
object’s appearance in training. A self-supervised method
named Temporal Contrastive Graph Learning (TCGL) was
proposed in [73], with state-of-the-art performance. Other
spatio-temporal graph-based approaches have also been
proposed with competitive results [74], [75]. As temporal
information is used for action recognition, Transformer-based
methods have also been proposed [76], [77], [78]. A different
interpretation of action recognition was made in [79]; since
an event can be considered an interaction between objects
and actions, actions can be decomposed as spatio-temporal
scene graphs. A recent scene graph approach has also been
proposed for action recognition and obtained state-of-the-
art results in the AVA-Kinetics action localization task of
ActivityNet Challenge 2020 [80].

Ren et al. [81] analyzed several works where action
recognition algorithms are compared in multiple application
scenarios. Pose estimation can also play an important role in
classifying human activity [82], [83]. In [84], 2D skeleton-
based action recognition methods that estimate the pose
of humans from RGB images are compared and assessed.
A similar study but for 3D skeleton-based action recognition
was described in [85]. Further analysis on action recognition
and prediction can be found in recent surveys [82], [86].
Recent works with scene graphs, CGNs and Transformers
show that current proposals can provide exciting results,
which hints that achieving a general scene understandingmay
be within reach.

F. DEPTH ESTIMATION
Depth estimation is an important task for scene under-
standing, allowing to determine the distance and spacial
relations between elements of the scene. Advances in
sensors and computational capabilities helped increase depth
estimation’s role in computer vision, particularly in areas
such as autonomous driving or augmented reality. Traditional
methods for depth estimation involved structure from motion
or stereo vision matching, but this has been changing with the
increased use of deep learning approaches; this is particularly
noticeable in single image or monocular depth estimation,
where a single RGB image is given as input to a system to
estimate a depth map.

Recent works on depth estimation have focused on
increasing accuracy and speed. Additionally, it’s noticeable
that different network structures and techniques used in
other areas are also being adapted for depth estimation.
In [87], wavelet decomposition was applied in an encoder-
decoder approach. A multi-task learning approach where
panoptic segmentation and depth estimation are jointly
learned was presented in [88]; the system decomposes
input images into segments, upon which an independent
depth is predicted, for subsequent construction of a final
complete depth map. In [89], object detection and their
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associated depth are estimated jointly with an architecture
based on YOLOv4. An efficient CNN that includes two
shallow encoder-decoder style subnetworks was presented
in [90], showing that it is possible to achieve state-of-the-art
performance while requiring less computational power and at
a faster speed. Work has also been proposed to achieve depth
estimation using self-supervised methodologies. In [91],
a ViT was used to achieve state-of-the-art performance on
the well-known KITTI dataset. Similarly, in [92], a self-
supervised CNN-GCN auto-encoder was used to estimate
depth maps while presenting high prediction accuracy. For
a more profound overview of past and recent methodologies
for depth estimation, the reader is referred to [93], [94],
and [95].

The usage of deep learning enabled significant accuracy
increases in depth estimation. Even recent methods using self
supervised learning have shown that depth estimation can be
achieved even with small amounts of labeled data.

III. SCENE DESCRIPTION
In recent years, deep neural networks have been vastly used
to achieve an understanding of a visual scene with respect
to multiple tasks, such as Image Recognition [96], [97],
Object Segmentation [98], [99], Object Recognition [100],
[101], as we have seen previously. This resulted in the
definition and development of multiple backbone networks
that are able to extract valuable information from an image.
Nonetheless, it is also essential for the information extracted
to be readily available for storage and use.This section
explores methodologies and ways for information associated
with visual scenes to be represented and stored. It briefly
explores knowledge bases, metadata models, and visual
relationship extraction. Finally, it describes scene graphs,
a useful primitive used in the context of computer vision
which allows to define attributes and the relationships
between objects in a scene.

A. ONTOLOGY-BASED KNOWLEDGE REPRESENTATION
Storing information related to a visual scene in a comparable
way is crucial to many application scenarios, and work has
been proposed toward this end. For instance, a graph-based
approach that follows some of the OWL principles [102] to
provide an information storage layer for the development of
complex driving applications, is presented in [103].

Similarly, a Semantic Scene Graph is proposed in [104],
where the model describes the dynamic elements of a traffic
scene and their relationships in a graph format, which is
then exported to the dot language [105]. An ontology-based
approach is also presented in [106], where three ontologies
are used to generate use cases for autonomous vehicles.
Another graph-based approach is presented in [107], where
the concept of a Road Scene Graph is proposed to provide
a graph that represents traffic information, which is then
used to provide a synthetic traffic scene generator. In this
representation, the nodes correspond to actors and the edges
to relationships between actors, which aid in the definition of
actor’s initial status and trajectories.

Work has also been done on providing representations
for multimedia content using ontologies. For instance,
Video Ontology (VidOnt) [108] provides an ontology
defined in OWL for multimedia content that incorporates
spatio-temporal annotations that integrate, in its vocabulary,
elements from multimedia metadata standards such as
MPEG-7, EBU CCDM, and Dublin Core. The need for intro-
ducing semantics in content descriptors has also been iden-
tified for parliamentary video content understanding [109]
and television broadcasted content [110], where standard
metadata schemas have been translated into ontologies.
An ontology-based fuzzy video semantic content model for
object, event, and concept extraction was also proposed
in [111]. In [112], the problem of populating a multimedia
ontology is addressed, and a multi-modality approach that
combines textual and visual information obtained fromCNNs
is used to automatize the process. A semi-automatic NLP-
guided framework for ontology generation for multimedia
representation and information retrieval is presented in [113],
where spatial, temporal, occurrence-based actions, descrip-
tive verbs, and prepositions are represented in the generated
ontology.

As described above, many works employ graph structures
to store multimedia content. Within these proposals, there is
a notion of a scene graph, which has been defined differently
and applied in different forms in multiple works, which
suggests that there is a problem of standardization of the
terminologies and notions used. This way, it is possible to
create an explicit way to describe image features associated
with objects and their inherent relationships using Scene
Graphs. As seen in Figure 3, a scene graph is able to express
the semantic meaning of an image or part of it. Inherently,
this means that a subgraph can also express portions of an
image.

B. SCENE-GRAPH-BASED KNOWLEDGE
REPRESENTATION
As a scene graph is a structured representation of information
that can be extracted from images, the task of scene graph
generation (SGG) can be defined as the process of generating
a visually-grounded scene graph that accurately associates
a scene graph to an image. With this notion, the nodes
of a scene graph correspond to object instances with their
associated bounding box and category, which is specific to
the scene and to the algorithm used to detect it; and the
edges represent the pair-wise relationships, with either other
objects for intra-object relationships andwith the object itself,
representing attributes. Due to the inherent value of this
semantic data association, scene graphs have been applied to
multiple tasks, such as image captioning [115], [116], visual
question answering [117], [118], image generation [119],
[120]. This review starts by presenting a formal definition of
a scene graph and its generation. It then explores different
SGG methodologies and their associated problems for single
images and videos, exploring current spatio-temporal scene
graph methods.
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FIGURE 3. An example of a scene graph (taken from [114]). In the bottom
there is a full scene graph of a scene, that contains a subgraph that
expresses the semantic information of a portion of the scene, represented
by the image. A scene graph is able to encode Objects (‘‘girl’’) that can
have attributes (‘‘girl is standing’’) and relations (‘‘girl holding racket’’).

Formally, a scene graphG is a data structure of the form of
a directed graph, which can be represented by the tuple G =

(O,E,R), where O = {o1 . . . on} is a set of objects detected
in the image, which can be people (‘‘girl’’, ‘‘boy’’), places
(‘‘street’’, ‘‘balcony’’), parts of objects (‘‘arm’’, ‘‘leg’’),
or things (‘‘shirt’’, ‘‘bottle’’). The objects are represented by
oi = (bi, ci), where bi ∈ R4 is the object bounding box
detected on the image and ci ∈ C is the semantic label of the
object given a pre-defined set of object classesC .R represents
the relationships between pairs of object instances and can
be represented by ri→j, i, j ∈ {1, 2, . . . n}. The edges of the
graph are of the form E ⊆ O × R × O and represent the
connections between the object instances and the relationship
nodes. Thus, the initial graph can have at most n × n edges.
For a more detailed description of the scene graph generation
process, we refer to [121].

Different methods have been proposed for SGG. On one
side, we have two-stage detectors where objects are first
detected using specific object detection networks and the
relationships and the graph generation are made on another
step atop of the detections. On another side, some method-
ologies jointly infer the object classes, localization and their
relationships [122]. When dealing with video, image-based
graph generation applied at frame level does not consider
the temporal aspects. However, benefits from exploring the
temporal information can be foreseen as it can contribute to
correct some inconsistencies at frame level.

Regarding image-based approaches, iterative message
passing was first proposed in [123] for SGG, where contex-
tual information is used to improve object and relationship
estimations. This methodology was revolutionary and is
still used nowadays in many methods. Neural Motifs [124]

were also important contributions, showing that leveraging
reoccurring patterns in scene graphs helps increase per-
formance. Contextual information was also used in [125]
where a Relation Proposal Network (RePN) is proposed to
deal with the dimensionality problem of object relations,
drastically reducing the number of relations that actually need
to be accounted for. As with many other areas, Transformers
have also been successfully used in generating scene graphs
with competent results [126], [127]. A fully convolutional
SGG method was proposed in [128], showing that using a
pre-trained detector is not necessary and good results can
also be obtained, even high zero-shot recall. Another unified
framework named Structured Sparse R-CNN was proposed
in [129], obtaining state-of-the-art results in the well-known
Visual Genome [130] and OpenImages V4/V6 [131] datasets.

One of the main problems of scene graph generation is the
long tail dataset distribution, in which meaningful but rare
relations are often not considered the most probable relations
in trained models, resulting in biased scene graphs. There has
been extensive research on this topic, and recent approaches
have achieved important progress. For instance, in [132],
a confidence-aware bipartite graph neural network with
an adaptive message propagation mechanism is proposed
for unbiased scene graph generation. In [133], a Dynamic
Label Frequency Estimation (DLFE) is also proposed to
treat the bias problem while training a network. Atom
Correlation Based Graph Propagation (AC-GP) was also
proposed in [134] to deal with complex and cluttered visual
relationships, and results showed impressive improvements
in detecting infrequent and missed relationships.

We believe that the proposal presented by
Johnson et al. [135] for scene graphs in the context of still
images can also be used for video content, as it defines a
scene graph as a topological representation of a scene, where
objects, attributes and the relationships between objects in a
scene are established in a data structure such that the semantic
information of the scene can be expressed by it.

C. SCENE-GRAPH-BASED KNOWLEDGE
REPRESENTATION FOR VIDEO CONTENT
While, there has been extensive work done on SGG for
images, the usage of video is still being incorporated nowa-
days. For instance, in [136] a transformer-based approach is
proposed, where information from videoswith exocentric and
egocentric views, as well as individual frames, is used in a 3d
CNN model to improve SGG performance. Cong et al. [137]
proposed a Spatial-temporal Transformer (STTran) for
dynamic scene graph generation that is able to process videos
of varying lengths without clipping them. Teng et al. [138]
targets the task of video scene graph generation (VidSGG)
and proposes a framework for frame-level VidSGG that
can also be applied for video-level VidSGG by incor-
porating a temporal association strategy. Gao et al. [139]
also addresses VidSGG by proposing temporal bipartite
graphs which take a classification-then-grounding framework
instead of the traditional proposal-based framework and
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FIGURE 4. Example synthesis modalities. Among others, we overview
methods to synthesize a 3D scene from parametric models, one or more
images, and text.

obtains competitive results on multiple datasets. Other
approaches using anticipatory pre-training [140], transform-
ers [141] and meta training [142] have also been proposed
for VidSGG. A particularly interesting approach is proposed
in [143], where a tracking-based approach is used to explicitly
associate spatio-temporal contexts thus identifying spatio-
temporal human-object interactions while simultaneously
localizing humans and objects. Additionally, the authors
propose a new simulated dataset that contains consistent
temporal annotation of relationships.

Current approaches for scene graph generation, for both
images and videos are able to achieve competent results in
most datasets. However, they are still not a popular tool
that is applied in many application scenarios. We believe
that the usage of scene graphs as an actual format or
schema to store, maintain and distribute visual and semantic
information extracted from a scene is not being explored and
this could potentiate a step forward on achieving a scene
understanding system or environment that could be adapted
to many application scenarios.

IV. SCENE SYNTHESIS
3D virtual assets are commonly used across various industries
for special effects in movies, computer games, and product
advertisements. However, producing realistic and believable
3D content is challenging and requires a thorough under-
standing of computer graphics. To streamline and automate
this process, researchers have studied algorithmic approaches
to creating 3D virtual content. In this section we overview
several modalities for creating virtual content, from different
types of input data. We depict an example of currently
researched modalities for 3D generation in Figure 4.

Procedural generation was one of the first techniques to
create virtual content. It initially focused on particular graphic
elements such as plants [144], and was applied to create
larges scenes like cities [145], terrains [146] or realistic
buildings [147].

With the growth of machine learning techniques there has
been an increased use of neural networks to automatically
create 3D content. One area of particular interest is the use
of images to generate 3D scenes, with research exploring
the reconstruction of both individual objects and entire
scenes from single or multiple images [148], [149], [150],
[151], [152], [153], [154]. Many of these approaches
focused on category-specific object-level reconstruction from
a single image [148], [149]. However, there have also been
efforts towards category-agnostic methods [150], as well
as the reconstruction of 3D object models from a limited
number of images [151], [152]. In scene-level reconstruction,
researchers have demonstrated the ability to generate 3D
indoor scenes from a single image [153], [154]. These tech-
niques can produce different 3D representations, including
voxels, meshes, and depth maps, and can be useful according
to the specific use cases.

Recent research has focused on the creation of neural
representations of scenes that can predict novel views
from a limited set of images or depth data. The work
in [155] represents the scene geometry and appearance as
continuous functions that map world coordinates to a feature
representation of local scene properties. In [156], authors use
a set of imageswith known cameras to create a neural network
representation of a scene that outputs the volume density and
view-dependent emitted radiance at a spatial location and
uses it to synthesize new views. A neural network was also
used to learn the surface light fields from an input image and
predict unknown views and scene lighting in [157]. Other
recent methods encode signed distance functions (SDFs) with
a large, fixed-size neural network to approximate complex
shapes with implicit surfaces [158], [159].

The generation of digital humans has been the target of
attention for a long time. In particular, human parametric
models are useful because they allow for the creation of
human representations that are highly detailed and accurate,
while also being flexible and customized. These have been
used for multiple scenarios such as 3D human pose and
shape estimation [84], controllable 3D human synthesis [85]
or virtual try-ons of clothing [160]. Graph Convolutional
Networks have also been researched to generate 3D human
shapes with better resolution [161].

A different perspective for generating 3D content is
the ability to create 3D shapes from text. Recent works
[162], [163], [164] explored this idea and used natural
language as input to a network that generates high-quality
3D textured meshes, ranging from cars, animals, and human
characters to buildings. Opposite to these approaches that
focus on finding better modeling assumptions for training on
a fixed dataset, DALL-E [165] proposed a transformer-based
approach that showed good one-shot generalization results
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on tasks the model had not been specifically trained on.
Another approach, combining high-level descriptions and 2D
images [166], presented a memory-efficient methodology
based on octrees.

This overview demonstrates the pervasive use of machine
learning and neural networks to generate 3D content automat-
ically, showcasing multiple application scenarios where 3D
content generation is based on text, images, or models. These
imply a dependency on the techniques applied with the type
of content to be recreated. See [167], [168], [169], [170] to
support the selection of techniques and for further details on
methods and methodologies for 3D object reconstruction.

V. DATASETS
As described in the previous sections,machine learning-based
methods have been assuming increased importance in
different domains. However, applying these methodologies,
particularly the ones based on deep-learning, is accompanied
by a dependency on the datasets used for training, which
must capture scenario-specific characteristics. As a result,
considerable efforts have been made toward preparing and
making datasets available. The following subsections identify
and briefly describe relevant datasets for scene analysis and
scene reconstruction.2

A. DATASETS FOR SCENE ANALYSIS
The richness of visual scenes led to the preparation of
many datasets from different research areas relevant to scene
understanding. This section explores datasets tailored for
many tasks associated with scene analysis to present the
reader with an entry point to help train models for different
application scenarios. This overview addresses datasets and
challenges related to object detection; visual relationship
and scene graph generation; action recognition; human
attribute recognition; 2D and 3D human pose estimation; gait
recognition.

1) OBJECT DETECTION AND TRACKING DATASETS
Object detection and tracking have been a research topic
for many years, with early datasets still being used. These
include the MIT pedestrian dataset [171] for human detection
in images and the INRIA Pedestrian Dataset [6] for detecting
pedestrians in images and videos. Both are composed of small
amounts of images that are considered too small to train deep-
learning models. The Caltech Pedestrian Dataset [172] is also
an image dataset tailored for pedestrian detection and consists
of roughly 10 hours of video taken from a driving car in a
regular urban area.

The PASCAL Visual Object Classes (VOC) Challenges
were a series of competitions running from 2005 to 2012 that
enabled the evaluation and comparison of different computer
vision algorithms, providing both a standardized image
dataset for object class recognition and a common set of
tools for accessing the data sets and annotations. From the

2A searchable list with more information on the mentioned datasets is
available at: http://mct.inesctec.pt/americo-2

TABLE 1. Object detection and tracking datasets.

proposed datasets, the two most used datasets for object
detection are the VOC07 [173] and VOC12 [174], with
amounts of data fairly larger than recent datasets. Another
challenge was the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [175] (2010-2017) for evaluation of
algorithms for object detection and image classification at
a large scale; the images used for training and testing
came from the manually annotated ImageNet [176] dataset,
organized according to the WordNet [177] hierarchy, using
only the nouns. Recently, the Microsoft COCO (MS-COCO)
[178], and Open Images [131] datasets represented a major
shift in the usage of datasets for training models; these
are large datasets that contain millions of labeled instances,
thus providing a great starting point for training algorithms.
MS-COCO contains annotations for detection, segmentation,
and captioning, with 2.5 million labeled instances. The Open
Images dataset contains image-level labels, object bounding
boxes, object segmentation masks, visual relationships, and
localized narratives, with 16 million bounding boxes for
600 object classes on 1.9 million images and 3.3 million
annotations from 1466 distinct relationship triplets used for
visual relationship estimation. An overview of the data format
and size of datasets is provided in Table 1.

2) VISUAL RELATIONSHIP AND SCENE GRAPH GENERATION
The Real-World Scene Graphs Dataset(RWSG) [135] was
the first dataset explicitly created for scene graph generation.
It consists of 5000 images extracted from MS-COCO [178]
and processed by Amazon’s Mechanical Turk [179] to pro-
duce human-generated scene graphs. The Visual Relationship
Dataset (VRD) [180] was constructed for visual relationship
prediction; it has 100 object classes and 37993 relationships.
The Visual Genome Dataset (VGD) [130] dataset and knowl-
edge base connects structured image concepts to English
language terms, with millions of labeled attributes and
relationships. Associated with this dataset is the VG150 [123]
and VrR-VG [181], where the former filters out rare instances
and the latter removes redundant and visually irrelevant
relationships. UnRel Dataset (UnRel-D) [182] is a small
dataset for visual relationships with unusual language triplets
and is considered a good benchmark for testing the general-
ization of models. Similarly, HCVRD [183] is a benchmark
for large-scale human-centered visual relationship detection.
A problem with most of these datasets is the long tail
distribution problem, which essentially translates to common
relationships having a large amount of instances while rare
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TABLE 2. Visual relationship and scene graph generation.

and sometimes more meaningful relationships have minimal
amounts of instances.

ImageNet-VidVRD [184] is a video visual relation-
ship detection dataset composed of 1000 videos from
ILSVRC2016-VID; the VidOR [185] dataset consists of
10,000 videos (98.6 hours) from YFCC100M [186] with
dense annotations for 80 categories of objects and 50 cate-
gories of relation predicates. ActionGenome [79] builds upon
the Charades dataset [187] and is a large-scale video dataset
that provides human-object relationships in multiple videos.

The aforementioned datasets are summarized in in Table 2.

3) ACTION RECOGNITION
Human action recognition requires good quality and large
amounts of training data to obtain reliable models that
can adapt to multiple situations. Moreover, a small num-
ber of actors may introduce bias during training [83].
HMDB51 [188] is an interesting dataset that contains videos
obtained frommultiple sources with different camera settings
and lighting conditions. Sports1M [189] was introduced in
2014 and is considered the first large-scale video dataset for
annotated actions. YouTube8M [190] is a very large-scale
video dataset containing 8 million videos from YouTube;
however, only a portion of the data has human-verified
labels. The Charades [187] dataset was tailored for video
activity recognition and commonsense reasoning for daily
human activities. Available online videos have been used
for many action recognition datasets, namely: the Kinetics
series [191], [192], [193], [194], [195]; AVA Actions [194];
HACS [196]; HVU (Holistic Video Understanding) [197].
Moments in Time(MiT) [198] has been widely used for
recognizing and understanding action in videos; it contains
1 million labeled 3-second videos involving people, animals,
objects, or natural phenomena. BABEL [199] was recently
proposed with language labels describing actions performed
in MOCAP sequences. These datasets contain large amounts
of annotated data, some with human interaction and others
obtained by automatic processes, as the sheer amount of
videos demanded more automated methodologies. To better
understand the magnitude of these datasets, an overview is
presented in Table 3.

4) HUMAN ATTRIBUTE RECOGNITION
Human Attribute Recognition (HAR) datasets focus primar-
ily on cropped human images where the different parts of the
human body are delimited and annotated. Early datasets such
as HAT [200] or Berkeley-Attributes of People (BAP) [201]

TABLE 3. Action recognition datasets.

TABLE 4. Human attribute recognition.

had a small number of attributes (9 and 27, respectively)
annotated and were composed of less than 10000 images.
The PEdesTrianAttribute dataset (PETA) [202] was proposed
in 2014 and contained more data than the previous datasets
and 65 annotated attributes. PARSE-27K [203] addresses
the HAR problem with a different type of data, as it is
composed of 7 video sequences taken from a moving camera
in a city. PA-100K [51] also addressed outdoor environments
and is a large-scale dataset composed of 100k images with
varying resolutions. Recently, RAP-2.0 [204] was proposed
with an even larger attribute count of 72 and was captured by
25 cameras in a surveillance network on an indoor shopping
mall. Table 4 shows an overview of these datasets.

5) 2D AND 3D HUMAN POSE ESTIMATION
The estimation of human pose is a challenging topic that can
be divided into different sub-problems, namely: 2D human
pose estimation; 3D human pose estimation; single person or
multi person pose estimation. Naturally, since the nature of
these problems differs, several datasets became available for
human pose estimation. This section explores a relevant set
of the most known datasets for the above-mentioned topics.

Starting with 2D pose estimation, the Leeds Sports Pose
(LSP) Dataset [205] was proposed in 2010 for single person
pose estimation. MPII Dataset [206] is a large-scale dataset
made by using Amazon Mechanical Turk and contains
2D locations of 16 keypoints, full 3D torso and head
orientations, occlusion labels for keypoints and activity
labels. More recently, CrowdPose [207] was designed for
human pose estimation in crowded scenarios. Joint-annotated
HMDB (J-HMDB) [208], a subset of the HMDB51 database,
as proposed for 2D video pose estimation. More recent
datasets, such as the PoseTrack [209] and Human-in-Events
(HiEve) [210], are large-scale datasets that include multiple
scenarios of varying difficulties.

The topic of 2D pose estimation is currently closely
followed by 3D pose estimation that not only estimates the
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TABLE 5. Pose estimation.

location of human keypoints, but also estimates their location
in 3D. Human3.6M [211] and CMU Panoptic [212] are
examples of early datasets designed for 3D pose estimation.
The dataset 3DPW [213] includes videos captured in multiple
scenarios, including taken from moving phones. Annotations
include 2D and 3D pose information, 3D body scannings
and SMPL parameters. More recently, AMASS [214] was
proposed as a large-scale motion capture (MoCap) dataset
comprised of a unification of 15 MoCap datasets by con-
verting them to the SMPL parameters. MoVi [215] contains
synchronized pose with body mesh and video recordings.
There has also been work done on creating synthetic datasets
with precise 3D pose annotations of humans with datasets
such as SURREAL [216] and Joint Track Auto (JTA) [217].
An overview of pose estimation datasets is summarised in
Table 5.

6) GAIT RECOGNITION
Gait recognition aims at analyzing how people move and has
been an important research topic in vision-based systems,
in areas such as sports or rehabilitation. There have been
proposals of datasets and benchmarks since to 2006 with
CASIA [218], [219]. Ever since, there have been proposals
for datasets with more details and resolution, as well as
greater quantities of labeled data. GAID (TUM Gait from
Audio, Image, and Depth) [220] is a multi-modal gait dataset
that includes RGB, depth, and audio data. As for large-scale
datasets, there have been various proposals. OU-ISIR [221]
includes images captured in indoor halls using four cameras
and OU-MVLP [222] encompasses multi-view data obtained
from a seven-network camera system and its extension;
OUMVLP-Pose [223] was built upon the OU-MVLP dataset,
adding the pose estimations obtained for each of the subjects
using the OpenPose [61] and AlphaPose [62] algorithms.
More recently, GREW [224] was constructed from natural
videos, containing multiple hours of content in open systems.
An overview of gait recognition datasets is present in Table 6.

B. DATASETS FOR SCENE RECONSTRUCTION
With regards to 3D reconstruction there are multiple different
types of datasets, depending on the scope; Some are focused
on humans and others on objects. The provided information

TABLE 6. Gait estimation.

TABLE 7. Scene reconstruction.

is also different and may include depth information
(RGB-D), synthetic data or CADmodels. SUNRGB-D [225]
is a dataset for scene understanding providing RGB-D data,
with 3D bounding boxeswith object orientation, and 3D room
layout and category for the scenes. ScanNet [226] provides
reconstructed surface mesh files and was recently updated
to provide data for tasks such as, 3D object classification
and segmentation; semantic voxel labeling or CAD model
retrieval. The ShapeNet [227] is an ongoing large-scale
dataset of 3D shapes that has richly annotated 3D data using
the WordNet hierarchy. Work was also done in generating 3D
body models for other publicly available datasets, as with
the UP-3D [228], which uses the SMPLify [229] method
to generate the 3D models. Surreal [216] also applies a
similar method; however, in this case, entirety of the data
was generated providing a large-scale synthetic dataset with
synthetic humans rendered photo-realistically under large
variations of shape, texture, viewpoint and pose. For CAD
models, Scan2CAD [230] is a scan to CAD alignment
dataset that pairs CAD models from ShapeNet and their
corresponding objects in ScanNet scans. More recently,
KITTI-360 [231] contains dense semantic and instance
annotations for both 3D point clouds and 2D images captured
from multiple sensors in an urban area from a moving
vehicle. RELLIS-3D [232] is a similar dataset captured in
an off-road environment. Hypersim [233] is a recent dataset
that provides photorealistic synthetic data for holistic indoor
scene understanding. Table 7 summarizes some details about
these datasets.

VI. DISCUSSION
Since the early days of computer vision, we have seen a
constant influx of research to allow more information to
be extracted from visual scenes and improve the accuracy
and quality of the information extracted. Recent advances in
machine learning enabled rapid progress in automatic human
detection and tracking, pose estimation, depth estimation,
action recognition, and many others. Coupled with data
representation and 3D scene reconstruction improvements,
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a complete automatic scene understanding approach for
virtual synthesis is becoming possible. To assess this
possibility, we present a cross-domain analysis of different
techniques and methodologies that can allow a transi-
tion between scene analysis and a posterior 3D virtual
synthesis.

We start this discussion with a brief overview of the main
areas presented in this survey: (i) scene analysis; (ii) scene
representation and (iii) scene synthesis (presented in the
following paragraphs). To finalize, we will describe the
challenges toward a unified scene understanding framework,
discussing the advantages and research opportunities a
cross-domain approach can promote.

1) SCENE ANALYSIS
Early scene analysis algorithms targeting object detection and
tracking relied on hand-crafted features that often produced
erroneous results when applied in unconstrained scenarios,
and a significant amount of work naturally focused on
humans and their behavior. The introduction of machine
learning and deep learning promoted a resurgence of interest,
resulting in new proposals that improved the quality of
human and object detection, tracking, and other areas of
scene analysis. These advances also pushed the definition
and creation of large-scale datasets so that algorithms could
better generalize and produce more accurate results, along
with many benchmarking efforts. Finally, recent research
focused on deeper and more complex network architectures,
such as Transformers or GCNs, and continued to offer steady
improvements.

2) SCENE REPRESENTATION
In terms of information representation, there has also been a
notorious shift toward using neural networks to aid processes.
However, we notice that no particular representation standard
is available to address the needs of a generic scenario.
On the one hand, we have ontologies with vocabulary
definitions and well structured models for representing
data. On another, we have graph-based approaches that
allow complex semantic data to also be structured, but
following less rules and standards. This divergence in
what’s the best practice and what should be applied hinders
the uniformization and unification of methods on more
complex or general application scenarios. We observed that
there has also been a particular interest in the research
community for defining and automatically obtaining scene
graphs for both frame-level and video-level content and
that research primarily focused on how to solve problems
related to the definition and generation of scene graphs
rather than investigating their applicability in different
scenarios.

3) SCENE SYNTHESIS
Scene synthesis has also seen a revival of interest, with
current approaches dedicated to recreating both objects or a
complete 3D scene from one or multiple images. In addition,

recent work creates neural representations, such as radiance
fields or SDFs of scenes, that can predict novel views from
a limited set of images or depth data. Finally, we also see
advances in generating 3D human shapes using deep learning
techniques and reconstructing entire 3D scenes from a text
description.

4) A CROSS-DOMAIN APPROACH
The advances in scene analysis, scene description, and
synthesis described above, suggest that a cross-domain
approach is feasible. A framework that integrates these areas
can provide a unified scene understanding framework that
takes advantage of the continuous algorithmic improvements
we observe in each area, and deliver different information
extracted from scene analysis algorithms in a structured
way so that that information can be interchanged between
algorithms seamlessly. Having data stored and represented in
a well-established structure can also enable the integration
of this framework with other external applications. For
instance, in scenarios where only the semantic knowledge is
meaningful, transmission requirements could be drastically
reduced by only transmitting a compact semantic summary
of the scene and using it on other endpoints to reconstruct
the underlying scene semantics in a virtual environment. The
definition of a well-established data structure also provides
elasticity to the framework by increasing or decreasing
its complexity depending on the detail levels required for
applications that integrate this framework. Data augmentation
and synthetic data generation adaptable to different scenarios
are also possible by processing a visual scene and editing the
underlying semantics.

Although a framework incorporating these concepts could
enable many applications, it would require precise definitions
of the entire framework and the articulation and integration of
many algorithms that required different types of data and have
varying complexity constraints. We believe this framework
could promote multiple research opportunities such as, but
not limited to:

• definition of a unified and standard structure for the
output of algorithms encompassing the different scene
analysis domains to correctly interpret data provided by
different algorithms, ensuring its plasticity and ability to
plug and unplug algorithms;

• complementary data definitions and structures to pro-
vide an adaptable and well-structured data management
and storage strategy;

• automatic virtual synthesis methodologies that are easily
adaptable to such framework;

• methods to scene semantics to correct errors;
• definition of data standards by the scientific community
for better integration of algorithms.

Addressing these challenges enables cross-domain method-
ologies applied to different use cases, and allows taking
advantage of the continuous algorithmic improvements we
observe in scene analysis, scene description, and synthesis
described in this survey.
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