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Abstract 
Context  Rice, India’s most widely grown crop, suf-
fers substantial and increasing yield loss to insect 
pests. Insectivorous bats are known suppressors of 
insect pests, providing significant economic value to 
agricultural systems worldwide, yet their ecology in 
Indian agricultural landscapes is poorly understood.
Objectives  We assess the influence of key biotic and 
abiotic factors on the activity of insectivorous bats 
over the growing season and within a night in a rice 
cultivation landscape.
Methods  Passive acoustic recorders were used to 
track bat activity in a rice field in the Sonitpur district 

of Assam, India. We used generalised linear mixed 
models to analyse the effect of temperature, insect 
activity, and moonlight intensity on the activity of six 
bat sonotypes. We also used a multimodal analysis 
to describe the within-night activity patterns of these 
sonotypes.
Results  Minimum nightly temperature and moon-
light intensity had a positive and negative influence, 
respectively, on the activity of six bat sonotypes, 
while the activity of four bat sonotypes increased 
with insect activity. Within-night activity showed 
one of two patterns: three sonotypes displayed a dusk 
peak in activity, while the three other sonotypes were 
active through the night.
Conclusion  The potential to maximise natural pest 
control in agricultural landscapes can only be realised 
through understanding the ecology of natural enemies 
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in these landscapes. Our findings suggest that bats 
in rice fields are tracking insects over a season and 
within a night, pointing to a valuable ecosystem ser-
vice in Indian agriculture that is yet to be quantified.

Keywords  Acoustics · Agricultural landscapes · 
Bats · Ecosystem services · Pest control · Rice

Introduction

Rice is consumed as a staple food by over half the 
world’s population (IRRI 2019). Varying with geog-
raphy, climate change is predicted to decrease global 
rice yields by 3.2 ± 3.7% per degree Celsius increase 
in mean surface temperature (Zhao et  al. 2017). In 
addition, the increased action of insect pests, which 
already have severe effects on yield (Pathak and Khan 
1994), is predicted to decrease global rice yield by 
19% for a 2° Celsius increase in mean temperatures 
(Deutsch et al. 2018).

Insect pests are hard to control. For many centu-
ries, pest control relied heavily on chemical insecti-
cides (Smith and Secoy 1976), a strategy long recog-
nised as being unsustainable due to the build-up of 
resistance, biomagnification of chemicals, and a range 
of health impacts on humans and the ecosystem (Rip-
per 1956; Baker et  al. 2020). One method to reduce 
our dependence on chemical pesticides is Integrated 
Pest Management, a cornerstone of which is the use 
of natural enemies to control pest numbers (Naranjo 
et al. 2015). Although not widely adopted for a num-
ber of reasons, including time and cost effectiveness 
(Savary et  al. 2012; Lou et  al. 2013), the control of 
agricultural pests by augmenting natural enemy pop-
ulations of parasitoids (Sharma et  al. 2019), birds 
(Long et al. 2013; Karp and Daily 2014; Maas et al. 
2016), and fish (Halwart et  al. 2012) has been used 
for many decades. Only in the last decade and a half, 
however, have insectivorous bats been widely recog-
nised for their role in insect control (Cleveland et al. 
2006; Boyles et al. 2011; Maas et al. 2013).

Synchronous cropping, heavy insecticide use 
and homogenous landscapes that are characteristic 
of Asian rice fields disproportionately affect the 
arthropod natural enemies of rice pests (Settle et al. 
1996; Bottrell and Schoenly 2012). Unlike most 
predatory arthropods, many insectivorous bats are 
opportunistic generalists that can change hunting 

grounds during the fallow period between seasons, 
and, during a season, commute long distances from 
their roost sites to rice fields every night (Marques 
et  al. 2004; Popa-Lisseanu et  al. 2009; McCracken 
et  al. 2012). Furthermore, insectivorous bats can 
consume anywhere from 25% to over 100% of 
their bodyweight in insects every night (Kunz et al. 
2011), and roost in very high densities, some in 
colonies of over a million individuals (Ghanem and 
Voigt 2012). Their generalist diet also makes insec-
tivorous bats potential buffers against non-native 
pest species, against which pre-existing pest control 
measures may be ineffective. These characteristics 
make insectivorous bats exceptionally well suited 
for the control of rice pests. However, it is only by 
understanding the drivers of bat activity and dis-
tribution—spatial, biotic and abiotic—that we can 
hope, through targeted conservation, to maximise 
the ecosystem services they perform.

Insectivorous bats have been shown to eat pests of 
cotton (Federico et al. 2008; Kolkert et al. 2020), corn 
(Maine and Boyles 2015), rice (Puig-Montserrat et al. 
2015; Kemp et al. 2019), cacao (Cassano et al. 2016), 
coffee (Classen et  al. 2014), and a number of other 
crops (Whitaker et al. 1996). Economic valuations of 
this service have produced estimates from hundreds 
of thousands to billions of dollars per year (Cleveland 
et al. 2006; Boyles et al. 2011; Wanger et al. 2014), 
to say nothing of the secondary ecological and eco-
nomic benefits that occur further down-stream (Kunz 
et al. 2011). Despite the increasing interest in the pest 
control service of bats, there remains a dearth of stud-
ies examining this service in the context of rice (but 
see Wanger et al. 2014, Puig-Montserrat et al. 2015, 
Kemp et al. 2019, Sedlock et al. 2019). With a view 
to maximising the pest control ecosystem service, an 
economic estimate alone is insufficient unless com-
plemented by a thorough understanding of the biol-
ogy and ecology of insectivorous bats. This knowl-
edge is sorely lacking in India (Wordley et al. 2015, 
2017; Ongole et al. 2018), which boasts 127 species 
of bats, of which 113 are insectivores (Talmale and 
Saikia 2018). Our study seeks to address that gap, 
by describing some of the main temporal drivers of 
insectivorous bat activity over a rice-dominated land-
scape in Assam (India), a state which, in 2018, grew 
rice on 2.43 million hectares of land (Directorate of 
Economics and Statistics 2019).
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Optimal foraging theory postulates that animals 
employ foraging strategies that maximise net energy 
gain while minimising risk (Pyke et  al. 1977; Lima 
and Dill 1990). These strategies—a combination of 
instinctive and learned behaviours—drive decisions 
behind what to eat, when, where, and for how long. 
Bats, with their unusual combination of powered 
flight, high metabolic rates and slow life histories, 
face a unique set of conditions that influence their 
foraging behaviour (Barclay and Harder 2003; Wel-
bergen 2006; Prat and Yovel 2020). Powered flight 
involves high energetic demands and rapid evapora-
tive water loss, significantly so when temperatures are 
high (Studier 1970). While bats are heterothermic and 
able to enter torpor to conserve energy, insects, their 
prey, are ectothermic. Low temperatures significantly 
decrease the availability of insects, forcing bats either 
to enter torpor (Yuan et al. 2011; Jonasson and Willis 
2012; Stawski et al. 2014) or migrate to warmer cli-
mates (Fleming 2010) when their prey is scarce.

Many bats also display an aversion to moonlight, 
termed ‘lunar phobia’ (Morrison 1978). Lunar phobia 
is driven by the increased risk of predation from visu-
ally hunting nocturnal birds, a risk which increases on 
brighter nights and disproportionately affects those 
bats which can be caught by these predators (Lima 
and O’Keefe 2013; Saldaña-Vázquez and Munguía-
Rosas 2013).

Other abiotic factors such as rain (Voigt et  al. 
2011) and wind speed (Smith and McWilliams 2016) 
also affect bat activity levels by increasing the ener-
getic costs of flight, but the most important driver of 
insectivorous bat activity is prey abundance (Egert-
Berg et  al. 2018; Hałat et  al. 2018). Bats go where 
there is food. For generalist species aiming to maxim-
ise energy intake, this means changing not just loca-
tion but also target prey. To what extent bats use rice 
fields to hunt is all but unknown, as is their relation-
ship to most rice pests.

Rice in Asia goes through three broad stages of 
growth: vegetative, reproductive, and maturing or rip-
ening stages (Moldenhauer and Slaton 2001). Arthro-
pods found in rice fields, including pests, follow 
patterns of population growth tied to their mode of 
feeding. Detritivores arrive first and peak early (Way 
and Heong 1994; Sedlock et  al. 2019). Herbivores 
arrive later, to feed on the root, stem, flower, and leaf 
of the plant, suck sap, or bore into the stem (Hein-
richs and Aguda 1994). Different species peak at 

different points in the season, after which their popu-
lation declines (Settle et al. 1996). Of the herbivores, 
the brown planthopper (Nilaparvata lugens) and the 
white-backed planthopper (Sogatella furcifera) are 
worth mentioning for being major pests of rice (Cati-
ndig et  al. 2009) and for being preyed upon by bats 
(Leelapaibul et al. 2005; Srilophan et al. 2018). Both 
species peak in population during the late vegetative 
or reproductive stages of rice growth (Zhong-xian 
et al. 2006; Sharma et al. 2018).

Given the generalist diets of many insectivorous 
bats, we hypothesise that pest abundance will be the 
primary driver of bat activity over rice fields. We fur-
ther hypothesise that bat activity will increase with 
increasing temperature and decrease with greater 
moonlight intensity. Herein, we report the results of 
a season-long study of bat activity patterns over a rice 
field in Assam, India.

We identify temporal drivers of bat activity—
insect activity, moonlight, and nightly temperature—
and infer from these drivers the nature of the rela-
tionship between insectivorous bats and atmospheric 
conditions, and predation pressure, and insect pests of 
rice over a rice growing season.

We also examine the patterns of bat activity 
through the night to further illustrate the influence of 
rice pests on bat behaviour. Studies such as this, in 
combination with habitat suitability models, exclu-
sion experiments, and economic evaluations, can be 
used to shape policy to maximise the value of the pest 
control service provided by bats in the agricultural 
landscape.

Methods

Study area

This study was carried out in Puthimari, a village 
in the Sonitpur district of Assam (26°38′43.0″N, 
92°39′55.7″E), and the rice fields adjacent to it. Rice 
is a major crop in Assam, grown on 2.43 million hec-
tares of land (Directorate of Economics and Statistics 
2019). The rice in this village is grown as a mosaic 
of different strains, with different levels of pesticide 
and fertiliser use. No fertiliser or inorganic pesticide 
was added to the crop at the locations of this study. 
Data on chemical use on neighbouring patches were 
unavailable. Three rice crops, Ahu, Boro, and Sali, 
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are planted in this village each year in the autumn, 
summer, and winter, respectively. Our field season 
was conducted over the Sali/winter rice season. While 
planting began at the end of July and continued until 
mid-August, the rice at the six sites used in this study 
was planted by the 1st of August.

Data Collection

Acoustic data were collected from dusk until between 
4:00  am and 4:30  am (beyond which we ran the 
risk of equipment theft) at the same six locations 
(Fig.  1) simultaneously over 48 non-consecutive 
nights between 27 August and 9 December 2019. Six 
recorders operating simultaneously over the 48 nights 
collected a total of 2576.5 h of data. Recordings were 
made using Audiomoth 1.0.0 full spectrum recorders 
(Hill et al. 2018). The recorders were put into plastic 
zip-locked bags and placed in shallow (4 cm) baskets 
attached to bamboo poles, with their microphones 
pointing upward. The sampling rate was set to the 
detectors’ maximum of 384 kHz, the gain at medium, 
and the recorders were programmed to record for ten-
min intervals, separated by a one second break.

The six selected locations were east of the village. 
Each recorder was placed at a height of 1 m, at least 
100 m from its closest neighbour, and also from the 
nearest forest line. Rice fields extended for over 1 km 
to the north, south and east of the sites. The impact of 
artificial light was minimal as the sites were at least 
100 m from the nearest house, which were obscured 
from view by trees. Incidences of shorter record-
ing periods due to logistical or technical issues were 
accounted for in the analysis. Between 30 September 
and 1 December 2019, bats were captured in four Avi-
net mist nets with the help of two Peersonic bat lures. 
These bats were weighed and photographed and they 
were recorded with a Pettersson D240X recorder set 
to ‘Time Expansion’ mode upon release. Permission 
for this was granted by the Office of the Divisional 
Forest Officer, Sonitput West Division, Tezpur. Ani-
mal ethics approval was granted by the Institutional 
Animal Ethics Committee (IAEC) of the National 
Centre for Biological Sciences. The IAEC approval 
number is NCBS-IAE-2018/01(ME).

Acoustic data analysis

The raw acoustic data were processed using custom 
written code in Python version 2.7 (Rossum et  al. 
1995) to isolate bat calls and extract key measure-
ments of the call, as follows. (1) Frequency of maxi-
mum energy (FMAXE): the frequency containing the 
most energy in the call (Wordley et al. 2014). (2) Min-
imum and maximum frequencies: calculated as the 
lowest and highest frequencies that contained 5% of 
FMAXE. (3) Bandwidth: the difference between the 
minimum and maximum frequency. (4) Call length: 
the time between when the call first crosses 5% 
FMAXE, and when it last crosses 30% FMAXE. (5) 
Average amplitude: the average amplitude of the call. 
Once extracted, calls were classified into sonotypes 
using a MatLab Classification learner (The Math-
Works Inc. 2019). Training data for each sonotype 
were created by extracting the parameters of manu-
ally identified calls. These training data were used by 
the classification learner in a linear discriminant anal-
ysis to classify all the extracted calls into sonotypes. 
Following this, the classified calls were run through 
a final round of processing in R version 3.63 (R Core 
Team 2020), where hard limits on FMAXE and band-
width were used to reclassify calls that had been mis-
classified into a similar sonotype. The calls were then 
filtered to exclude undesirable sections of the audio, 
such as during heavy rain, instrumental failure result-
ing in static, or bats recorded prior to the recorders 
being in position.

Due to the absence of a complete acoustic library 
for Indian insectivorous bats, calls were classified to 
the sonotype level instead of species. Sonotypes were 
defined based on FMAXE and bandwidth into the fol-
lowing classes: (1) Constant Frequency calls (CF), 
and (2) Frequency modulated-Quasi Constant fre-
quency calls (FM-QCF). One pure QCF sonotype was 
detected but could not be distinguished from a similar 
FM-QCF call. The two sonotypes were merged into 
one FM-QCF sonotype. Pure FM, and FM-CF-FM 
calls were not recorded. Constant frequency calls, 
although detected in the data, were not included in 
the analysis due to the inability of the classifier to 
separate them from ultrasonic insect noises, which 
occurred at the same frequency. Taken forward for 
analysis were six FM-QCF sonotypes, which were 
identified by FMAXE values at 20  kHz, 31  kHz, 
34 kHz, 38 kHz, 48 kHz, and 65 kHz, respectively.
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The classification of calls was performed using the 
classification learner app in MATLAB (The Math-
Works Inc. 2019), using a template created by manu-
ally identifying calls and extracting relevant param-
eters. Every recording was divided into five second 
intervals and a bat pass was defined as any interval 
with more than two calls of the same sonotype (Mil-
lon et al. 2015). We undertook a manual check of 10% 
of the ~ 20,000 extracted passes, selected by a random 
number generator, to verify the accuracy of the classi-
fication. The classifier accurately identified over 90% 
of all passes. Code for the classifier can be found at 
https://​github.​com/​Iqbal​Bhalla/​BatCl​assif​ier.​git.

Statistical analysis

All statistical analysis was conducted in R. We used 
generalised linear mixed model (GLMM) to analyse 
the relationship between bat activity and its driv-
ers (McCullagh and Nedler 2019). A total of 267 
sampling units were used in each statistical model 
(6 recorders over 48 nights, minus nights where the 
recorders failed) Prior to building the model, outliers 
in the response variable ‘bat activity’ were identified 
and deleted using the ’check outliers’ function from 
the ’Performance’ R package (Lüdecke et  al. 2020). 
All the variables were then standardised to zero mean 
and unit variance before analysis so that their effect 
sizes were comparable (Schielzeth 2010).

The following variables were considered relevant 
drivers of bat activity. (1) Temperature: minimum 
nightly temperature was included to test for the effect 
of temperature on bat activity. For those sonotypes 
which showed a quadratic relationship between activ-
ity and minimum nightly temperature, minimum 
nightly temperature squared was included as a vari-
able in their supermodel. (2) Moonlight: the percent-
age of the moon visible on each night, was included to 
test for the effect of moonlight intensity on bat activ-
ity. Cloud cover would impact moonlight intensity, 
but as we were unable to quantify this at a relevant 
resolution, we included percentage of the moon vis-
ible as a measure that strongly correlated with bright-
ness. Temperature and moonlight data for Puthimari 
village were obtained, with permission, from the 
World Weather Online database (WorldWeatherOn-
line.com). (3) Sampling effort: the recorders failed 
unexpectedly throughout the field season, leaving 
gaps in the dataset ranging from one to ten hours. 

To account for this, and for the logistical challenges 
that prevented the recording from starting on time on 
some nights, the total number of minutes sampled on 
any night was included as the factor ‘sampling effort’. 
(4) Ambient insect noise: since the recorders were 
placed in the middle of rice fields, ambient noise 
above 5 kHz was made up primarily of insects (frogs 
dominated frequencies below 5  kHz). Natural and 
anthropogenic noise, such as bird calls and firecrack-
ers, were occasional, and vastly outweighed by the 
continuous insect noise. This measure was therefore 
included as a proxy for the activity of vocal insects. 
The ambient noise of each night was calculated by 
taking the mean amplitude between 5 and 24  kHz, 
aggregated from all six recorders, and divided by the 
sampling effort of that particular night. (5) Day of the 
season: the number of days from 1st August 2019, 
which was the date by which rice at all six sites had 
been planted. This variable reflects the linear effect 
of rice maturity on bat activity, and seasonal changes 
in bat activity. Several major pests of rice—includ-
ing leafhoppers and planthoppers—which are known 
prey of bats, are not vocal. Because these pests are 
known to peak in the middle growth stages of the rice 
(Heong et al. 1992; Zhong-xian et al. 2006), we also 
included in the model the quadratic transformation of 
the ‘Day of the season’ variable—‘Day of the season 
squared’—to capture a possible activity pattern that 
was high in the middle of the season and low at either 
end.

Two-way interactions between predictors were 
included in our analysis on an a priori basis when 
there was a biological reason to do so (Harrison et al. 
2018). These were interactions between: (1) moon-
light and minimum temperature, (2) moonlight and 
ambient insect noise, and (3) minimum temperature 
and ambient insect noise. Also included in the global 
model was the random effect of ‘site’—the six loca-
tions that the recorders were placed in—to account 
for non-independence of datapoints collected from 
the same location over multiple days.

Prior to running the model, all explanatory vari-
ables were tested for collinearity using Spearman’s 
rank correlation, with a threshold of |0.7| to determine 
whether one factor had to be dropped (Dormann et al. 
2013). Day of the season was highly correlated with 
minimum nightly temperature (Spearman’s rank cor-
relation: r = − 0.79), while day of the season squared 
was highly correlated with ambient insect noise 

https://github.com/IqbalBhalla/BatClassifier.git
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(Spearman’s rank correlation: r = − 0.90). Therefore, 
both day of the season and its quadratic—‘day of the 
season squared’—as well as all relevant interactions 
were removed from further analysis.

The remaining variables and interactions were 
included in a global model implemented with the 
‘glmmTMB’ package (Brooks et  al. 2017). The 
model was initially tested with a Poisson error distri-
bution, since the response variable took the form of 
count data, but this was changed to a quasi-Poisson 
when the model tested positive for overdispersion 
(Bolker et al. 2009).

An information theoretic approach was then imple-
mented to capture the best set of variables explaining 
bat activity by fitting all possible models and calculat-
ing Akaike’s information criterion corrected for sam-
ple size (AICc) for each model; the best model being 
the one with the smallest AICc (Burnham and Ander-
son 2002). This was done using the ‘dredge’ function 
from the ‘MuMIn’ package (Bartoń 2022), which 
compared all possible combinations of variables in 
the global model. Note that during the selection pro-
cedure, an interaction was included in a model only 
if its composite variables were also included, even 
if the variables independently were not statistically 
significant. All models with a ΔAICc value < 2 (the 
difference between each model’s AICc and the low-
est AICc) were considered as receiving equal statisti-
cal support (Burnham and Anderson 2002). When the 
‘dredge’ function returned more than one model hav-
ing an AICc within two units of the best model, the 
model with fewest variables was chosen (Symonds 
and Moussalli 2011). The top ten models of each 
sonotype can be found in Supplementary Material 
Table S.I–S.VII.

One ‘best model’ was identified for each sonotype, 
as well as one model for all the sonotypes together. 
All best models were tested for overdispersion and 
zero inflation using the ‘testZeroInflation’ and ‘test-
Dispersion’ functions from the DHARMa package 
(Hartig 2022). The residuals were analysed using the 
‘simulateResiduals’ function, also from the DHARMa 
package. Residuals were checked for obvious patterns 
(heteroscedasticity, linear/quadratic trends), as well as 
deviance in the Kolgomorov–Smirnov test. A pseudo 
R-squared value based on the likelihood ratio test 
was calculated using the function ‘r.squaredLR’ from 
the ‘MuMIn’ package. Finally, for a given model, 
the absolute values of the standardised regression 

coefficients were rescaled to sum to one to derive a 
measure of relative importance for each predictor.

Temporal distribution of nightly activity

Bat activity was also analysed for patterns over the 
night. Each sonotype was analysed separately, with 
calls being aggregated into ten-min intervals starting 
from dusk.

First, a clustering algorithm based on a param-
eterised finite Gaussian mixture model was fitted to 
the data to identify clusters within the nightly activ-
ity data using the package and function ’Mclust’ 
in R (Scrucca et  al. 2016). Second, the mean and 
sigma of each cluster recovered from the previous 
analyses were then used in multimodal analyses to 
fit multiple normal distributions that best describe 
the nightly activity pattern of each sonotype. This 
was implemented with the ‘mix’ function from the 
‘MixDist’ package (Macdonald and Pitcher 1979; 
Macdonald and Du 2018). To standardise for chang-
ing dusk times, data from each night were clipped to 
begin 20 min post-dusk and end 620 min post-dusk. 
This technique was developed originally to analyse 
the size frequency distribution of a population with 
overlapping age groups (Kell and Kell 2011). This, to 
the best of our knowledge, is the first time that this 
approach has been implemented to study temporal 
patterns in nightly bat activity.

Results

We identified a total of 18,890 passes from six sono-
types over a period of 48 nights of recording. All six 
sonotypes were FM-QCF and featured FMAXE val-
ues around 20 kHz, 31 kHz, 34 kHz, 38 kHz, 48 kHz, 
and 65 kHz, respectively. Henceforth these sonotypes 
will be referred to using ‘S’ followed by their identi-
fying frequency (e.g. S20).

The most common sonotype was S38, account-
ing for 40.1% percent of all passes, followed by S48 
(21.1%), S34 (15.3%), S65 (9.1%), S31 (8.9%), and 
S20 (5.3%). Nightly activity of all sonotypes peaked 
between 25 September and 28 October—which cor-
responded to the late vegetative/reproductive stages 
of rice growth—with all but S34 peaking between the 
15th and 28th of October.
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Variables affecting bat activity

Overall, our models showed low to moderate 
R-squared values (0.166–0.389), which was to be 
expected given the many interacting factors that influ-
ence bat activity. Total bat activity over rice fields 
(best supported model R2 = 0.262, Supplementary 
Material Table S.VIII) increased with sampling effort 
(estimate = 0.291), ambient insect noise (0.237), min-
imum nightly temperature (0.164) and the interaction 
between ambient insect noise and moonlight intensity 
(0.100), but decreased with the interaction between 
ambient insect noise and minimum temperature 
(−  0.213) and moonlight intensity (−  0.126; Table 
S.VIII).

The activity of all six sonotypes increased with 
sampling effort, indicating that more bats were 
recorded when the number of hours sampled in a 
night was higher. The activity of three sonotypes 
(S31, S34, and S48) increased with ambient insect 
noise, a proxy for vocal insect activity. For sonotype 
S38, ambient insect noise was significant only as part 
of an interaction with minimum nightly tempera-
ture. Minimum nightly temperature was a significant 
and positive driver of the activity of all sonotypes, 
apart from S48, for which minimum nightly tem-
perature was only significant as part of the interac-
tion with ambient insect noise (Fig.  2). The activity 
of S31 decreased with minimum nightly temperature 
squared, indicating that activity was lower during 
both very high and very low temperatures. Finally, the 
activity of every sonotype, apart from S31, decreased 
with moonlight intensity (Fig. 2).

Minimum nightly temperature squared had a sig-
nificant and negative effect in the best model of S31, 
indicating that activity was lower during both very 
high and very low temperatures. Moonlight intensity 
was a significant and a negative driver of the activity 
of five sonotypes (S20, S34, S38, S48, and S65).

The effect of the interaction between ambient 
insect noise and minimum nightly temperature was 
significant and negative in the models of four out 
of six sonotypes. On cold nights—the left end of 
Fig. 3b–e—bat activity was significantly higher when 
ambient insect noise was higher. On warm nights (the 
right end of Fig.  3b–e), when the energetic costs of 
flight are lower, activity increased when insects were 
scarce.

The interaction of ambient insect noise and moon-
light intensity was significant and positive in the 
model for S48. High levels of insect activity reduced 
the effect of bright nights on the activity of S48 
(Fig.  3f). The interaction between moonlight and 
minimum nightly temperature was significant and 
positive for one sonotype. The activity of S20 was 
lower with the combination of low temperatures and 
high moonlight than it was with less extreme values 
of either variable (Fig. 3a).

Temporal distribution of nightly activity

The multimodal analysis of nightly activity patterns 
of each sonotype produced two broad patterns. The 
first, exhibited by S31, S34 and S38 (Fig.  4b–d), 
show a primary peak early in the night, at 32, 38, 
and 88 min past dusk, respectively, followed by one 
to three smaller peaks through the night. The second 
pattern, seen in S20, S48 and S65 (Fig.  4a, e, and 
f), exhibited a more even distribution through the 
night, with the second or third peak being the high-
est. Details of the locations and standard error of each 
peak, as well as results of the chi-square goodness 
of fit test can be found in Supplementary Material 
(Table S.IX).

Discussion

We describe the activity of insectivorous bats forag-
ing over rice fields, both over a rice season, and over 
the course of the night. In addition, we identify how 
biotic and abiotic drivers influence bat activity over 
the rice season.

Activity over the season

Few studies have considered bats in rice-dominated 
landscapes. Most that do so focus on bat diet and 
have established clear links between insectivorous 
bats and rice pests (Leelapaibul et  al. 2005; Puig-
Montserrat et al. 2020). Kemp et al. (2019) showed 
that insectivorous bats in Madagascar hunted over 
rice fields preferentially compared to nearby for-
ested areas. Similarly, Puig-Montserrat et al. (2015) 
found that insectivorous bats in Iberian rice fields 
significantly increase their activity when moth 
activity increases. The moth in question was the 
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rice stem borer (Chilo supressalis), one of the most 
significant rice pests in Asia (Yao et al. 2017). Puig-
Montserrat et  al. (2015) went further and installed 
bat boxes to increase the resident populations of 
insectivorous bats. After ten years, pest control by 
bats was so effective that the need for pesticides 
was eliminated. The direct financial value placed on 
this service was 21 Euros per hectare per annum. It 
is only the second valuation of the bat pest control 
service on rice, after Wanger et al. (2014) estimated 

this service to be worth 1.2 million USD per annum 
in Thailand. Our results indicate that three out of 
six sonotypes, which account for 67.4% of insectiv-
orous bat activity in the study area, were positively 
influenced by our proxy of insect activity over the 
rice season. We started the analysis intending to use 
two proxies for insect activity: ambient insect noise 
and the quadratic function of day-of-the-season. 
The latter represented population growth patterns of 
important rice pests that were documented prey of 

Fig. 2   The standardized estimate (circle) and 95% confidence 
interval (wings) of all factors (standardised) and interactions 
in the best model for each sonotype. Generalised linear mixed 
models for each sonotype were built on data from 48 nights of 
sampling at six locations in a rice field in Puthimari, Assam. 

‘Best’ models were identified by comparing subsets of a global 
model using AICc. Solid circles indicate p-value < 0.05, hol-
low circles indicate p-value > 0.05. ‘x’ symbols indicate vari-
ables included in the global models that were not present in the 
‘best’ models of each sonotype



2956	 Landsc Ecol (2023) 38:2947–2963

1 3
Vol:. (1234567890)

bats (Zhong-xian et  al. 2006; Sharma et  al. 2018). 
We were forced to drop this term due to the high 
covariation with ambient insect noise. The same 
covariation, however, implied one of two things. 
Either the two variables were acting as a proxy 
for the same insect community, or since many of 
the major rice pests are not vocal, alternatively the 
vocal insects, which may be pests themselves, have 

similar population growth patterns to non-vocal 
rice pests such as planthoppers and leafhoppers. It 
is ecologically parsimonious to assume that they 
grow more abundant as the rice matures, peaking in 
the middle stages of rice growth, after which their 
population declines (Heong et al. 1992; Zhong-xian 
et  al. 2006; Sharma et  al. 2018). The mid-season 
peak, documented in pests and now seen in vocal 

Fig. 3   The effects of two-way interactions on bat activity. 
Generalised linear mixed models for each sonotype were built 
on data from 48 nights of sampling at six locations in a rice 
field in Puthimari, Assam. Plots a to f show how the interac-
tions between fixed effects in the model (minimum nightly 

temperature, moonlight intensity, and ambient insect noise) 
influence bat activity in those models where interactions are 
significant. All three variables are standardized, as they are in 
the model



2957Landsc Ecol (2023) 38:2947–2963	

1 3
Vol.: (0123456789)

insects, was tracked by bats belonging to the sono-
types S31, S34, and S48. The strength of this effect 
suggests that the bats recorded at our sites were 
responding to changes in rice pest abundance by 
preferentially hunting over rice fields when insect 
activity was high.

While insect activity was a major driver of bat 
activity, it was not the only one. Although temporal 
heterothermy in Indian bats has not been studied, 
data from other tropical and subtropical bats suggest 
that insectivorous bats are likely to be heterother-
mic and capable of entering torpor to reduce energy 

Fig. 4   The temporal distribution of nightly activity of six 
sonotypes. Data were collected at six locations over 48 nights 
of sampling in a rice field in Puthimari, Assam. Every night 
was divided into ten-min intervals starting at dusk and ending 
ten hours post dusk (blue bars). The number of passes of each 
sonotype in each ten-min post-dusk interval was summed up 
over all 48 nights of sampling. Nightly activity was clipped 

from 20 min post dusk until 620 min post dusk. Composite 
normal distributions that best fit the overall pattern of nightly 
activity of each sonotype (red lines) were fit using the ‘mix’ 
function, verified using a Chi-square goodness of fit test. S20 
has an additional peak caused by the outlier at 190 min that is 
not visible due to a small standard deviation
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expenditure on cold nights (Stawski et al. 2014). Tem-
peratures at our field site fell to a minimum of 11 °C. 
Studies have shown that bats can have normothermic 
ranges above 20 °C, below which metabolic rates and 
resting activity patterns are affected (Soriano et  al. 
2002; Currie et al. 2014). While no such studies have 
focussed on Indian bats, it is reasonable to expect that 
bats in our study site, where summer temperatures 
regularly exceed 30  °C have a high normothermic 
range, and in temperatures approaching 11 °C would 
exhibit sub-normothermic behaviour (Ramos Pereira 
et al. 2022). In addition, such low temperatures also 
affect insect activity (Stejskal et  al. 2019)⁠, which in 
turn would influence bat activity.

Whether the effect is direct or indirect, given that 
this pattern has been extensively documented before 
(Scanlon and Petit 2008; Barros et al. 2014; Wolbert 
et al. 2014; Appel et al. 2019), we predicted that bat 
activity would be positively correlated with tempera-
ture. This was true for five out of six sonotypes. The 
sixth sonotype, S31, was influenced by minimum 
nightly temperature squared, indicating that its activ-
ity is reduced at both low and high temperatures, pre-
sumably on either side of its normothermic range.

The field site hosted an abundance of owls (Iqbal 
Bhalla, personal observation). We hypothesised that 
these nocturnal avian predators—would impose pre-
dation pressure on slower bat species that they could 
hunt, and that the risk of predation would be greater 
on brighter nights. This is especially true in the open 
landscape of a rice field, where bats are more vis-
ible against the monotonous backdrop and have less 
cover due to a lack of trees. Similar to previous stud-
ies (Morrison 1978; Meyer et  al. 2004; Lima and 
O’Keefe 2013; Appel et  al. 2017), we found that 
five out of six sonotypes decrease their activity on 
brighter nights. While factors such as temperature, 
moonlight, and insect activity individually affect each 
of these considerations, our analysis suggests that 
combinations of them can shift the cost-risk-benefit 
balance. This has been suggested before (Appel et al. 
2019), but rarely investigated. The interaction terms 
of our models explored these combinations.

To maximise fitness, a bat must employ a foraging 
strategy that efficiently weighs the cost-benefit trade-
off between the risk of predation and the reward of 
successful hunting. Bright moonlight imposes a sig-
nificant predation risk on bats, reducing their activity. 
However, as seen in Fig. 3f, bright nights suppress the 

activity of S48 to a lesser degree when there is greater 
insect activity, implying that this sonotype is more 
likely to risk high levels of predation when the nutri-
tional gains or prey detectability are higher. This, in 
part, concurs with recent studies which described bats 
increasing their activity, or moving to open spaces, on 
moonlit nights to maximise hunting success (Roeleke 
et al. 2018; Kolkert et al. 2020). A similar pattern is 
seen for sonotype S20, where the activity is lower 
with increasing moonlight, but this effect is less pro-
nounced when temperatures are high. The activity of 
each of S31, S34, S38, and S48 was lower when tem-
peratures and insect activity were low, pointing to an 
additive effect prompting reduced bat activity when 
insects are both less vocal and less active.

Nightly activity patterns

The activity patterns of the six sonotypes through 
the night are consistent with two primary foraging 
modes. The dusk peaks seen in three sonotypes (S31, 
S34, and S38) are characteristic of bats hunting cre-
puscular insects that also show dusk peaks in activ-
ity (Rydell et al. 1996; O’Donnell 2000). While these 
insects may peak in activity earlier than bats, preda-
tion pressure from diurnal raptors delays the emer-
gence of many bats, which then have a short window 
to maximise their feeding (Speakman 1991). Both 
planthoppers and leafhoppers, as well as other rice 
pests, which show a peak in population size during 
the middle of the rice growing season, exhibit daily 
peaks in activity around dusk (MacQuillan 1975; 
Kersting and Başpmar 1995; Zhu et al. 2017; Mazza 
et al. 2020). Both patterns of activity—over a season 
and within a night—were also seen in two sonotypes, 
S31 and S34, lending support to the argument that 
they are tracking these insect pests.

The second broad pattern in nightly activity points 
to bats that hunt nocturnal prey that are active, or 
can be caught by gleaning, for a significant propor-
tion of the night (Jones and Rydell 1994). Without 
the incentive to emerge early and risk predation by 
diurnal predators, these bats emerge later and have a 
less skewed activity pattern over the night. Although 
nocturnal predators still impose predation pressure, 
this risk is more evenly distributed through the night. 
As a result, the three sonotypes which exhibited this 
pattern, S20, S48, and S65, had a more even nightly 
activity pattern, with only S20 exhibiting a clear peak 
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around midnight. However, it is important to note 
that we did not have confirmed bat species identifica-
tion on our sonotypes, or information on roost loca-
tion, and therefore cannot be certain about the impact 
of distance from roosts on the observed patterns of 
activity.

Conclusion

Bats in India are under-studied. Despite evidence 
from around the world of their importance as bioindi-
cators (Jones et al. 2009) and providers of ecosystem 
services (Kunz et  al. 2011), only a handful of stud-
ies have investigated the ecology of insectivorous 
bats in India (Wordley et al. 2015, 2017; Ongole et al. 
2018). Any attempt to maximise the ecosystem ser-
vices of insectivorous bats can only be made through 
an understanding of the requirements, limitations, and 
drivers of their distribution and activity. As shown in 
Fig. 1, the six recorders used in this study were placed 
in a rice field adjacent to a village, with each recorder 
being at least 100 and no more than 150 m from its 
nearest neighbour. Moving further away from the vil-
lage, would create a gradient of increasing distance 
to the nearest treeline, and all the associated micro-
habitat conditions created by a patch of semi-forested 
area. This would undoubtedly influence insect activity 
between the recorders, and in turn bat activity, both 
as a consequence of the above factors and because of 
the insect activity itself. While the current study did 
not assess microclimatic conditions or record insects 
to the species level, future studies should examine 
the influence of the surrounding landscape on insect 
activity, particularly the effect of distance to the near-
est treeline, in parallel to bat activity. With species or 
genera level information on insect activity, one can 
infer the relationship between specific pests and the 
bats that might hunt them, which would be extremely 
valuable to furthering our understanding of pest con-
trol by bats.

This study contributes to our understanding of 
the role of bats in pest control by demonstrating how 
insectivorous bats hunting in rice-dominated land-
scapes are influenced by insect activity, temperature 
and moonlight. Our findings that bats and insects have 
similar activity patterns in agricultural fields, not just 
over a season but also over the night, suggest that bats 

hunt insect populations over rice fields, and are there-
fore likely to provide pest control ecosystem services. 
The contribution of bats to pest control in rice fields 
is supported by the findings of an exclusion experi-
ment conducted in the same fields, which showed that 
rice health, but not total yield, is negatively affected 
by the exclusion of bats (Bhalla et al. 2023).
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