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Abstract: Current-day volcanic activity in the Azores archipelago is characterized by seismic events
and secondary manifestations of volcanism. Remote sensing techniques have been widely employed
to monitor deformation in volcanic systems, map lava flows, or detect high-temperature gas emissions.
However, using satellite imagery, it is still challenging to identify low-magnitude thermal changes
in a volcanic system. In 2010, after drilling a well for geothermal exploration on the northern flank
of Fogo Volcano on São Miguel Island, a new degassing and thermal area emerged with maximum
temperatures of 100 ◦C. In the present paper, using the ASTER sensor, we observed changes in the
near-infrared signals (15 m spatial resolution) six months after the anomaly emerged. In contrast, the
thermal signal (90 m spatial resolution) only changed its threshold value one and a half years after the
anomaly was recognized. The results show that wavelength and spatial resolution can influence the
response time in detecting changes in a system. This paper reiterates the importance of using thermal
imaging and high spatial resolution images to monitor and map thermal anomalies in hydrothermal
systems such as those found in the Azores.

Keywords: thermal anomalies; remote sensing; hydrothermal system; geothermal

1. Introduction

Sudden thermal changes in a volcanic system may constitute a precursor sign of
eruption [1]. A recent study [2] highlighted that subtle long-term increases in heat flux
could precede magmatic and phreatic eruptions. These observations demonstrated the
importance of continuous and broad monitoring of active volcanic areas. Remote Sensing
(RS) has been playing an important role in observing these systems [3], such as moni-
toring programs AVO [4], MODVOLC [5], HOTSAT [6], HOTVOLC [7], AVHotRR [8],
VoltSatView [9], RSTVOLC [10], MIROVA [11], HOTMAP [12], AVTOD [13], MOUNTS [14],
and NHI [15].

Several studies have applied RS techniques to study high temperature (>100 ◦C)
fumarolic fields (e.g., [16–18]); however, the identification of hydrothermal (<100 ◦C)
fumaroles has been challenging [19]. Nevertheless, a few studies have already shown the
use of satellite data to recognize anomalous thermal zones in hydrothermal systems, such
as the studies carried out at the Nisyros (Greece) [20] and Solfatara (Italy) [21] volcanoes.
Changes in the hydrothermal system of the Yellowstone Volcano (USA) were detected
through thermal images in 2007; however, visible spectrum images allowed for the first
signs of change in vegetation to be identified in 2001 [22] using high-resolution images.
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This case highlights the relevance of associating thermal and visible data for monitoring
remote areas.

The fumarolic fields found in the Azores archipelago show maximum temperatures
around 100 ◦C, similar to the fumaroles that characterize the above-mentioned volcanic
areas. At Fogo Volcano, on São Miguel Island, manifestations of secondary volcanism com-
prise hydrothermal fumaroles, thermal and cold CO2-rich springs, and diffuse degassing
areas. In addition, a geothermal exploration area is located on the volcano’s northern
flank [23].

In this research, Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) sensor data were used to understand the sensor’s sensitivity in detecting changes
that occurred after the emergence of a thermal anomaly next to a geothermal well in the
Fogo Volcano area.

This anomaly appeared in 2010 after drilling a geothermal well near the Caldeiras da
Ribeira Grande site on the northern flank of Fogo Volcano, accompanied by the progressive
burning of vegetation. Considering that this was the first significant thermal change in the
Azores archipelago after the launch of the ASTER, this study aims to evaluate the response
time of this sensor in the near-infrared, red, and thermal infrared, considering the different
spatial resolutions.

Due to the difficulty in quantitatively measuring the surface temperature due to pixel
saturation problems or atmospheric attenuation, some studies are based on determining
pixel value thresholds by isolating the background temperature found in each image. The
anomalous pixel value may be above average plus a standard deviation (σ), as in [24],
above average +2σ [25], or with multiple thresholds [26], since a maximum temperature in
one image can represent a normality scenario in another [16,27].

In this work, we evaluated the ASTER data from 2010 to 2012 to monitor the growth
of the fumarolic field and the sensor’s response time.

Research Constraints and Challenges

Some thermal sensors have been used for monitoring temperature in volcanic sys-
tems, such as the Meteosat Second Generation-Spinning Enhanced Visible and InfraRed
Imager (MSG-SEVIRI); the Advanced Very High-Resolution Radiometer (AVHRR); the
Moderate Resolution Imaging Spectroradiometer (MODIS); the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER); the Landsat; the Sentinel-2; and the
Sentinel-3 (e.g., [15,28]). The ASTER is a sensor with thermal bands that has the highest
spatial resolution among open-source sensors. However, its average temporal resolution
is 16 days, but its ability to be directed to areas of interest may result in an increase or
decrease in this interval [29].

Applying RS techniques to detect thermal anomalies is particularly challenging in
low-temperature areas. Several factors may interfere with detecting thermal anomalies
using remote sensing, such as the effect of sunlight, which can mask thermal anomalies.
Consequently, nighttime images should minimize this effect by isolating thermal anomalies
from the background temperature [26]. Urban areas can also mask thermal anomalies since
they are responsible for heat island effects. Land-use maps are thus relevant tools that
complement the produced thermal maps [25].

Another critical factor is the relationship between the temperature of a thermal
anomaly and the brightness temperature measured in a pixel, which is directly related
to the fraction of a pixel occupied by this anomaly [19,30]. Low-temperature thermal
anomalies, such as the hydrothermal systems found in the Azores, constitute an important
challenge for remote thermal sensing.

2. Study Area

São Miguel Island is one of the nine Azorean volcanic islands (Portugal). The island
comprises seven volcanological units, including the Fogo Volcano [31]. The Fogo Volcano is
a polygenetic system, with secondary volcanism manifested in cold CO2-rich and thermal
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springs [32–34], low temperature (<100 ◦C) fumarolic fields, and diffuse degassing areas,
essentially located on the northern flank [35].

In 2010, after drilling a well (RG4) for geothermal energy exploration close to the
Caldeiras da Ribeira Grande site (Figure 1), a new degassing area emerged that was
accompanied by a thermal anomaly with a maximum temperature of 100 ◦C [36].
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Figure 1. Land-use map (based on [37] and the geographic location of the Ribeira Grande geothermal
field) with the existing geothermal wells (based on the studies of [23,38,39]), the main fumarolic
emissions [35], and fault type (based on [40]).

According to the authors of [36], in 2009, the drilling of the RG4 geothermal well began
in an area near the Caldeiras da Ribeira Grande, reaching about 470 m in depth. However,
the drilling intercepted a superficial aquifer at about 230 to 250 m, which conditioned its
execution. It was posteriorly sealed and abandoned in February 2010. Before February
2010, the only existing gas emission and thermal anomaly in the area were circumscribed to
Caldeiras da Ribeira Grande fumarole (highlighted as a star in Figure 1). Gas and tempera-
ture measurements began periodically in the area after February 2010, and a new fumarolic
field (with maximum temperatures around 100 ◦C and hydrothermal compositions) de-
veloped in the area after May 2010 (Figure 2). Since early 2012, the spatial distribution of
the main gas emissions (essentially CO2) and anomalous thermal areas remained quite
stable [41].

This study focused on the anomaly discussed above since it offered a new opportunity
to explore an anomaly using RS-based approaches. As mentioned above, it constitutes the
first significant anomaly to emerge after the launch of the ASTER, enabling the evaluation
of the effectiveness of this sensor for monitoring changes in hydrothermal areas, such as
those existing in the Azores archipelago.

Figure 3 shows the difference between the background temperature and the anomaly
in an oblique thermal image acquired using a FLIR Systems Therma CAM™ SC640 thermal
infrared camera in 2010.
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Figure 2. Location of the study area highlighting the surrounding area of the RG4 well (signed as a
black triangle). (A) São Miguel DEM; (B) orthophoto map of the RG4 surrounding area in 2006, before
the thermal anomaly; and (C) UAV RGB image after the thermal anomaly, 2020 (Source: CIVISA). The
red line corresponds to the area with the highest concentration of anomalies and visible alteration
of vegetation.
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Figure 3. Oblique aerial photo of the degassing area located next to the RG4 well with altered
vegetation. (A) The visible image shows the altered vegetation associated with the thermal anomaly,
and (B) the thermal image acquired with a FLIR Therma CAM™ SC640 thermal infrared camera
(thermal and visible image provided by IVAR/CIVISA acquired on July 21, 2010).
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3. Materials and Methods

Degassing areas with medium or high temperatures are commonly analyzed using RS
due to the significant difference between the background temperature and the temperature
of fumaroles. However, hydrothermal systems are still a challenge, considering the factors
that can interfere with their identification, such as the small difference between the bottom
temperature and the temperature of fumaroles.

The ASTER instrument is a high-resolution multispectral space sensor aboard NASA’s
Earth satellite launched in December 1999, and it began data acquisition in March 2000 [42].
Table 1 presents the main features of the ASTER instrument [29]. For this work, only spectral
bands 2, 3N (for NDVI), and 13 were used. Band 13 was used due to less interference from
the atmosphere [43].

Table 1. The ASTER bands features [29].

Operational Dates Band Reflected Range (µm) Spatial Resolution (m) Band Explanation/Uses

Dec 1999 to Present
1 0.52–0.60 15 m Visible and Near-Infrared
2 0.63–0.69 15 m Visible and Near-Infrared

3N 0.78–0.86 15 m Visible and Near-Infrared

Dec 1999 to April 2008

4 1.600–1.700 30 m Shortwave Infrared
5 2.145–2.185 30 m Shortwave Infrared
6 2.185–2.225 30 m Shortwave Infrared
7 2.235–2.285 30 m Shortwave Infrared
8 2.295–2.365 30 m Shortwave Infrared
9 2.360–2.430 30 m Shortwave Infrared

Dec 1999 to Present

10 8.125–8.475 90 m Thermal Infrared
11 8.475–8.825 90 m Thermal Infrared
12 8.925–9.275 90 m Thermal Infrared
13 10.25–10.95 90 m Thermal Infrared
14 10.95–11.65 90 m Thermal Infrared

The images used in this work (Table 2) were provided by the USGS EarthExplorer
platform (https://earthexplorer.usgs.gov/, accessed on 22 February 2022). For the thermal
analyses, only nighttime data were used to minimize the effects of topography and surface
insolation [25–27,44].

Table 2. Satellite images considered for the analysis.

Data Acquisition Dates (Day/Night)

25 February 2010 Day
29 March 2010 Night
23 April 2010 Day
24 June 2010 Night

13 August 2010 Day
5 September 2010 Day
21 September 2010 Night

16 March 2011 Day
14 August 2011 Night
12 April 2012 Day
9 August 2012 Night

It was not possible to use completely cloud-free images in this work due to the
significant and almost permanent cloud coverage, which constitutes a relevant challenge
for the RS applicability in most small oceanic islands [45], usually resulting in a low number
of available images.

The criterion for defining thresholds should be made according to the sensor and
available imagery by separating the background temperature. The present work used the

https://earthexplorer.usgs.gov/
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brightness temperature, which consists of the radiance obtained by the satellite, represent-
ing the temperature of a blackbody emitting radiation [46]. Thus, converting the Digital
Numbers (DN) of the image to radiance with Equation (1) [29]:

Lλ = (DN − 1)× UCC (1)

where Lλ is the spectral radiance; DN is the thermal infrared band digital numbers; and
UCC is the published Unit Conversion Coefficient (0.005225 w/m−2/sr−1/µm−1).

Temperature (measured in degrees Celsius) is then given by Equation (2):

Tk = K2/ ln
(

K1

Lλ
+ 1

)
− 275.15 (2)

where K1 (641.32) and K2 (1271.22) are constants derived from Planck’s radiance function.
As demonstrated by the authors of [26], different thresholds may be used in the same

image to identify thermal anomalies. This study categorized the thresholds into three
classes: below the +2σ mean, above the +2σ mean, and above the +3σ mean for greater
clarity of the different temperatures identified in the ASTER data.

It is commonly accepted that degassing can influence vegetation [47]. Thus, the
Normalized Difference Vegetation Index (NDVI) was also applied, as it is related to the
amount of biomass, vigor, and photosynthetic activity [48–50]. NDVI was used to ana-
lyze the time required for detecting the anomaly using near-infrared and red (with 15 m
spatial resolution).

The NDVI was calculated using band 2 (red) and band 3 (NIR), as shown in the
following expression (Equation (3)):

NDVI =
NIR − RED
NIR + RED

(3)

The NDVI is an index ranging from −1 to +1. Values close to +1 are commonly related
to areas with great vegetative vigor, while −1 is related to ice, and 0 is associated with
bare soil. This index has a high sensitivity to changes in vegetation cover, which may be
a relevant driver for identifying changes in hydrothermal systems related to vegetation
burning, as in the case study. The NDVI ranges were classified into five classes [51,52], as
presented in Table 3.

Table 3. Classification of NDVI ranges.

NDVI Ranges Class of Vegetation Vigor

−1–0.2 Very Low
0.2–0.4 Low
0.4–0.6 Moderately Low
0.6–0.8 Moderately High
0.8–1 High

4. Results and Discussion

The statistical analysis performed in this work aimed to minimize the effects of data
seasonality since the available RS data were not obtained in the same seasons, and the
temperature variability was significant throughout the different periods of the year.

Five images covering part of the geothermal exploration area were analyzed. The se-
lected study site (Figure 4) was chosen from the total geothermal exploration area (Figure 1)
and aimed at minimizing the influence of the different land uses and altimetry.
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Figure 4. Part of the Geothermal Concession Area: (A) the ASTER nighttime thermal infrared image
from 29 March 2010, (B) normal temperatures (below average temperature + 2σ) presented in green,
above average temperatures + 2σ in orange, and above average + 3σ in red, and (C) framing of the
area near the RG4 well, where it was not possible to identify thermal anomalies; (D) the ASTER
nighttime thermal infrared image from 24 June 2010, (E) normal temperatures presented in green,
above average temperatures + 2σ in orange, and above average + 3σ in red, and (F) framing of the
area near the RG4 well, where it was not possible to identify thermal anomalies; (G) the ASTER
nighttime thermal infrared image from 21 September 2010, (H) normal temperatures presented in
green, above average temperatures + 2σ in orange, and above average + 3σ in red, and (I) framing of
the area near the RG4 well, where it was not possible to identify thermal anomalies; (J) the ASTER
nighttime thermal infrared image from 14 August 2011, (K) normal temperatures presented in green,
above average temperatures + 2σ in orange, and above average + 3σ in red, and (L) framing of the
area near the RG4 well, where it was possible to identify thermal anomalies; (M) the ASTER nighttime
thermal infrared image from 09 August 2012, (N) normal temperatures presented in green, above
average temperatures + 2σ in orange, and above average + 3σ in red, and (O) framing of the area
near the RG4 well, where it was possible to identify thermal anomalies.
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The results show that on 29 March 2010, only a few areas near the already ongoing
geothermal wells had a brightness temperature above the average +2σ and the average +3σ.
It is worth mentioning that on this date, the only problems had been found in the drilling of
the well, without significant changes in the soil temperature. Anomalous soil temperatures
were detected with in situ measurements in May 2010. Despite the anomalies associated
with RG4, other anomalous areas were found, essentially associated with the location of the
geothermal wells, confirming the adequacy of this methodology to detect anomalous areas
with temperatures up to 100 ◦C, as measured by the authors of [53,54] in the areas of the
wells and the Pico Vermelho fumarolic field. This pattern on the thermal images remained
until 14 August 2011, when the ASTER detected an anomaly near the RG4 well area for the
first time, showing brightness temperatures above the average +2σ and the average +3σ.

The brightness temperature near the RG4 well remained above the +2σ average and the
+3σ average in 2012 and widened in area. Figure 5 consists of the temperatures measured
in the soil on January 2012 at about 12 cm depth by F. Viveiros (personnel communication).
Figure 5B shows the thermal anomalies found in the image of 08 September 2012.
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Figure 5. Comparison map with (A) in situ soil temperature map (data from January 2012) (Source: F.
Viveiros, IVAR/CIVISA, 2012) and (B) thermal anomalies on 08 August 2012.

Despite the seven months between the measurements performed in the field and the
ASTER imaging, it is important to highlight that the degassing and thermal anomalies
that developed in the field after May 2010 have been quite stable since early 2012 [41].
Nevertheless, as observed in Figure 5A, some of the anomalous thermal zones are smaller
than the anomaly that developed in the northwestern area of RG4. This area was mostly
detected with the ASTER data (Figure 5B). As mentioned, there are areas mapped in
the thermal anomaly map resulting from the field measurements that do not appear in
the ASTER image. Some differences could eventually explain this as being due to the
interval between the date of the field measurement and the satellite image. However,
measurements carried out in 2016 [41] still show the same general spatial distribution of
anomalous thermal areas. The most probable explanation relates to the influence of the
sub-pixel area [44] since the areas identified by the ASTER correspond to the more extensive
in situ degassing area, as shown in Figure 5.
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Recognition of thermal anomalies is thus highly dependent on the sub-pixel area,
and Figure 6 shows one example that may contribute to a better understanding of one
of the difficulties involved in identifying thermal zones using satellite data, especially in
low-temperature fumarolic fields, as the ones observed in the Azores archipelago.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 18 
 

 

between the date of the field measurement and the satellite image. However, measure-

ments carried out in 2016 [41] still show the same general spatial distribution of anoma-

lous thermal areas. The most probable explanation relates to the influence of the sub-pixel 

area [44] since the areas identified by the ASTER correspond to the more extensive in situ 

degassing area, as shown in Figure 5. 

Recognition of thermal anomalies is thus highly dependent on the sub-pixel area, and 

Figure 6 shows one example that may contribute to a better understanding of one of the 

difficulties involved in identifying thermal zones using satellite data, especially in low-

temperature fumarolic fields, as the ones observed in the Azores archipelago. 

 

Figure 6. Comparison between temperature (A) in the soil at a depth of 10 cm (Pacheco, 2013), (B) 

on the ground surface in situ (Pacheco, 2013), and (C) measured using the ASTER sensor in the area 

comprising the Furnas hydrothermal fumaroles. 

Figure 6 shows the comparison between the soil temperature at 10 cm depth, the sur-

face soil temperature measured in situ, and the ASTER brightness temperature in a 

Figure 6. Comparison between temperature (A) in the soil at a depth of 10 cm (Pacheco, 2013), (B) on
the ground surface in situ (Pacheco, 2013), and (C) measured using the ASTER sensor in the area
comprising the Furnas hydrothermal fumaroles.

Figure 6 shows the comparison between the soil temperature at 10 cm depth, the
surface soil temperature measured in situ, and the ASTER brightness temperature in a
fumarolic field at the Furnas volcano, on São Miguel Island, in August of 2012. It is possible
to observe that the pixel with the highest brightness temperature coincides with the area
with the highest concentration of thermal anomalies measured on the surface, which shows
that a pixel needs to have a large part of its area occupied by an anomaly to allow the
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detection of the anomaly. This constraint explains the identification of only the major
anomalous zone at the Caldeiras da Ribeira Grande site.

Considering that the thermal anomaly originated changes in vegetation vigor, as
shown in Figure 3, an NDVI-based analysis was performed to confirm this evolution
(Figure 7). Figure 7 highlights that in February 2010 and April 2010, it was not yet possible
to identify changes in vegetation vigor based on the NDVI. This is, in fact, in agreement
with the in situ observations since, at that time, no increase in soil temperature had yet
been identified; only a drilling problem was diagnosed.

Figure 7. Part of the northern flank of Fogo Volcano: the ASTER RGB composite image (bands 3, 2,
1), the NDVI map of the study area, and framing of the NDVI map near the RG4 well, respectively,
for the following dates: 25 February 2010 (A,B,C); 23 April 2010 (D,E,F); 5 September 2010 (G,H,I);
16 March 2011 (J,K,L); 12 April 2012 (M,N,O).

In September 2010, at the end of the summer season (a period with lower rainfall),
there was a significant increase in areas with low NDVI values around the RG4 well.
Almost a year after, in March 2011, the surrounding vegetation began regenerating with
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the potential effect of rainfall and the adaption of the plants. However, the anomaly area
continued to have low NDVI values and remained so until April 2012.

Precipitation is an important influence factor on thermal radiation [55] and vegetative
vigor. The summer on São Miguel Island coincides with lower rainfall values [56]. Never-
theless, the high rainfall index on this island returns an increased vegetative vigor, allowing
healthy vegetation to regenerate quickly. However, the area with a thermal anomaly shows
an NDVI value below 0.6, even after periods of intense rainfall.

Thus, as in the case of thermal bands, where nighttime images allowed a better
separation between hot pixels and background temperature, changes in vegetation vigor
associated with thermal anomalies were also easier to identify on NDVI maps created with
non-summer images.

According to the Köppen Climate Classification, the temperate and rainy climate
of the Azores enhances vegetative vigor. This factor also highlights the relevance of the
current study since, despite some effect of seasonality on the vigor of natural vegetation,
the maintenance of low NDVI values can constitute important signs of permanent change
on the surface related to the deep-derived contribution, as evidenced in volcanoes such
as Yellowstone [22] and Hawai’i [57], where alterations in vegetation vigor due to thermal
anomalies were detected. Identifying and understanding the land use dynamics in the
study area are essential to minimize evaluation errors as mentioned above. For instance, in
our study area that was dominated by pastureland, changes in vegetative vigor might also
have been related to drought [58], use of herbicides [59], and grazing [60,61]. Therefore, we
overlaid the pixels showing the lowest NDVI values of 12 April 2012, with the respective in
situ temperatures (measured on January 2012 at 10 cm depth), as shown in Figure 8
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Figure 8 shows that areas with thermal anomalies were generally associated with
NDVI values below 0.6. Although the ideal would be to compare both datasets acquired
on the same date, even with a three-month difference, it is possible to observe a noticeable
overlap between areas with higher soil temperatures and lower vegetative vigor.
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To verify the pertinence of using the NDVI for another hydrothermal system, the
thermal anomaly documented by the authors of [26] at the Yellowstone volcano was
checked. Figure 9 shows the vegetative vigor measured from the NDVI with the ASTER
before and after the appearance of the aforementioned anomaly.
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Figure 9. Yellowstone new thermal anomaly near Tern Lake: the ASTER RGB composite image (bands
3, 2, 1) and the NDVI map, respectively, for the following dates: 16 August 2000 (A,E); 28 August 2001
(B,F); 14 September 2007 (C,G); 28 August 2022 (D,H). The black line corresponds to the new thermal
anomaly area.

The thermal anomaly in the Yellowstone volcano hydrothermal system was first
identified in 2019. However, when investigating historical images, the authors of [22] found
that in nighttime thermal images, the anomaly only significantly changed in radiation in
2007. In visible images, it was observed that the vegetation already showed signs of stress
in 2001. The same can be seen in Figure 9, showing high vegetative vigor in 2000, followed
by a slight decrease in 2001 and a significant decrease in 2007, with about 30,000 m2 in 2022.

Nevertheless, as the NDVI was not created explicitly for detecting hydrothermal
anomalies, the future development of this methodological approach might benefit from
using simultaneous ratio bands, other sensors’ data (namely, nighttime LANDSAT data,
which currently are not available for the Azores archipelago) with higher spatial resolutions,
and other visible wavelengths to create thresholds able to identify volcanic-related changes.
Using more wavelengths in addition to thermal infrared might constitute an effective
methodological approach for monitoring hydrothermal systems since the case study’s
results show that the spatial resolutions of the thermal bands are not high enough to detect
changes in a shorter period. In this particular case, the vegetation in the study site was a
positive aspect, since the vegetation vigor changes contributed to identifying the thermal
anomalies. A similar non-vegetated area could be more challenging to identify due to the
dimensions of the thermal anomaly.
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5. Conclusions

As far as we know, this is the first time thermal RS images have been tested in the
Azorean fumarolic fields. The selected test site resulted from a new thermal anomaly that
extended the Caldeiras da Ribeira Grande geothermal area, in the north flank of Fogo
Volcano (São Miguel Island), after 2010.

Applying RS techniques to hydrothermal areas (maximum 100 ◦C) is challenging,
as shown in other similar degassing areas (e.g., the Nisyros, Solfatara, and Yellowstone
volcanoes). The main objective of this research was to analyze the effectiveness of the
ASTER data for identifying surface changes in hydrothermal systems after the appearance
and development of a thermal anomaly at the Caldeiras da Ribeira Grande geothermal
area. The ASTER data showed promising results, as it was possible to identify the thermal
anomalies with band 13 (90 m of spatial resolution) around one year and a half after the
in situ visible manifestations. Nevertheless, using near-infrared and red bands (15 m
spatial resolution) for the NDVI map computation, it was possible to detect the surface
changes within four months, highlighting the importance of using both thermal and visible
multispectral images to detect thermal anomalies in hydrothermal systems.

This case study confirms the need for new thermal sensors with higher spatial and
temporal resolutions to increase the effectiveness of early detection of anomalies in vol-
canic areas. Although the current study highlighted the high strategic relevance of in situ
measurements, this methodological approach effectively identified the thermal anomaly.
Application of this methodology to other hydrothermal areas may constitute a complemen-
tary tool for the volcano monitoring observatories.
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