
Comparison of semi-structured data on MSSQL
and Postgresql

1Leandro Alves, 1Pedro Oliveira, 1Júlio Rocha, 2Cristina Wanzeller, 4Filipe
Cardoso, 2Pedro Martins, 3Maryam Abbasi

1 Polytechnic of Viseu, Viseu Portugal
2 CISeD - Research Centre in Digital Services, Polytechnic of Viseu, Portugal

3 CISUC - Centre for Informatics and Systems of the University of Coimbra, Portugal
4 Polytechnic of Coimbra, Coimbra, Portugal

1pv23844@alunos.estgv.ipv.pt, 1estgv9081@alunos.estgv.ipv.pt,
1estgv13802@alunos.estgv.ipv.pt, 2cwanzeller@estgv.ipv.pt,
4filipe@isec.pt, 2pedromom@estgv.ipv.pt, 3maryam@dei.uc.pt

Abstract. The present study intends to compare the performance of
two Data Base Management Systems, specifically Microsoft SQL Server
and PostgreSQL, focusing on data insertion, queries execution, and in-
dexation. To simulate how Microsoft SQL Server performs with key-value
oriented datasets we use a converted TPC-H lineitem table. The data set
is explored in two different ways, firsts using the key-value-like format
and second in JSON format. The same dataset is applied to PostgreSQL
DBMS to analyse performance and compare both database engines. After
testing the load process on both databases, performance metrics (execu-
tion times) are obtained and compared. Experimental results show that,
in general, inserts are approximately twice times faster in Microsoft SQL
Server because they are injected as plain text without any type of veri-
fication, while in PostgreSQL, loaded data includes a validating process,
which delays the loading process. Moreover, we did additional indexation
tests, from which we concluded that in general, data loading performance
degrades. Regarding query performance in PostgreSQL, we conclude that
with indexation, queries become three or four percent faster, and six
times faster in Microsoft SQL Server.

Keywords: Key-Value, database, mssql, postgresql, tpc-h, performance,
gin, computed columns

1 Introduction

The purpose of this experiment is to test unrelated data in two relational databases,
and for that we use a dataset converted from the relational model TPC-h[1]. The
reason for this is the need to have a dataset structure in key-value format, which
will be tested in PostgreSQL and MSSQL. What we propose to test how rela-
tional databases handle semi-structured data.
This work summarizes a set of operations over a JSON dataset format on MSSQL

2 C. Wanzeller, F. Cardoso, P. Martins, M. Abbasi

vs. Postgresql, and Key-Value in MSSQL vs. PostgreSQL. Indexes were applied
to these three tables in the different databases. The workloads running on all
databases, indexed and not-indexed, are explained in more detail in the ”Exper-
imental setup” section.
Results show that when using MSSQL, it is important to consider computed
columns for the application of indexes, while PostgreSQL can handle semi-
structured data without major changes/effort.
This paper is organized into five sections. The first section is this introduction,
where the challenge or problem to be solved is addressed and what steps to
follow; the second deals with the related work; the third is related to the ex-
perimental work, where the technologies and practices on these technologies are
presented to solve the challenge/problem; the fourth goes through the presenta-
tion and analysis of the different results and, finally, the fifth section will be for
the conclusions obtained about the present research.

2 Related Work

In research from authors [2], that analyse the performance in the same DBMSs,
PostgreSQL and MSSQL, positioned in the cloud and they concluded, that the
most high-performance DBMS was MSSQL, in all the tests performed, but they
never approach the theme of a data set oriented to key-value, or JSON format.
Another interesting work [3], also does load tests, records and analyses the times
with a data set generated by TPCH, to tables on Oracle and PostgreSQL, and
the results obtained differed depending on the method used for each load test.
Some of the methods presented are used in our paper, like PostgreSQL “COPY”
and ”insert into” method.
Another research [4] demonstrates that performance on non-relational DMBS
is higher, because MySQL includes a lot of complex queries which involves in-
tegrity constraints and joins and NoSQL allows to eke more performance out of
the system by eliminating a lot of integrity checks done by relational databases
from the database tier.
In another research [5], the behavior of relational and non-relational database
engines is also compared, when executing commands ’insert’, ’update’, ’delete’
and ’select’. The comparison is made through the times analyzed when operating
on 4 datasets of 100 records, 1000 records, 10000 records and 100000 records.
According to the data presented, Redis obtains faster results when the volume of
data is greater, specifically in ’delete’ and ’insert’ operations. For ’update’ and
’select’ operations, the results show that MariaDB can be faster than Redis. For
data volumes around 10000 records, the results are very similar.
In another research [6], tests were carried out using ’insert’, ’update’, ’delete’ and
’select’ commands in relational DBMS, such as Oracle, MySQL and MSSQL, and
non-relational DBMS, such as Mongo, Redis, Cassandra and GraphQl, and com-
pared the times in obtaining results over a dataset of 10000 and 100000 records.
To carry out the tests, a database of a railway with all the stations was used,
but, to guarantee the quality of the tests, on a large volume of data, false records

Comparison of semi-structured data on MSSQL and Postgresql 3

were added to the tables. The results show that non-relational database engines
are more efficient, with MongoDB standing out as the fastest in all operations.
In another research [7], MySQL was also compared with MongoDB. In all cases,
with performance or load methods, NoSQL databases have better perform than
relational databases and the reason for that is that MongoDB have a very pow-
erful query engines and indexing features.
Not all operations are more efficient in non-relational databases. The research
[8] compares the performance of relational and non-relational databases, run-
ning complex queries on a large dataset. Results show that ’select’ method is
significantly faster in MongoDB, however some math queries such as aggregate
functions (sum, count, AVG) are better on Oracle RDBMS.

The proposed work differs from the others referenced is the fact that the
performance tests are performed on computed columns in MSSQL. One of the
key variables that needs to be included in the equation is indexing. MSSQL
lacks appropriate NoSQL data indexes and is not JSON friendly. We begin our
quest for a method to make that happen. We discovered a mention of MSSQL
computed columns that ought to serve as the key. We have discovered a method
to use calculated columns and index those columns under this article’s citation
for sql indx [9]. Computed columns don’t actually exist, as far as we know. On
demand, the data is extracted from other derived columns. By including a non-
clustered index in that column, the DBMS can avoid having to parse data again
because the parsed-out information is stored to the index column table.

3 Experimental setup

The main proposal of this experimental is to perform benchmark performance
with NoSQL data on a SQL DBMS environment. MSSQL and PostgreSQL were
used in this work, both working on Windows 10 Operating System. As for the
hardware, the tests in the different DBMS were performed on a laptop com-
puter, with an i7 processor, with 16 GB of RAM, and SSD, whose bandwidth
flow, withstand by the interface, is up to 600 MB/s. Regarding the explored
dataset, it was achieved through the benchmark TPC-H [10], in which eight ta-
bles are generated. However, in our experimental setup we only use one table
(lineitem), the reason is related with the fact that SQL Server is a relational
data model based, and semi-structured data models does not allow tables and
relations, instead, make use of document model hierarchy. In contrast to rela-
tional databases, which store data as rows in a table, document databases store
entities as documents or JSON documents.

After choosing the hardware and DBMS, the workloads starts as describe
above:

– Generate JSON;
– Setup DBMS environment;
– Insert data;

4 C. Wanzeller, F. Cardoso, P. Martins, M. Abbasi

– Query data;
– Update data;

3.1 Generate JSON

To convert data table to data JSON, we used “FOR JSON AUTO” command
[11], that, will produce an array of JSON based on a “SELECT” as show on
listing 1.1. In this script, first, we made a conversion using “FOR JSON AUTO”.
This instruction, format the output of the FOR JSON clause automatically,
based on the structure of the SELECT statement, converting all columns into
JSON properties.

INSERT INTO [l i n e i t em j s o n]
SELECT [value] FROM OPENJSON(

SELECT TOP 1000000 ∗
FROM [l i n e i t em] FOR JSON AUTO

)

Listing 1.1: Convert data table to JSON

3.2 Setup DBMS environment

After generate JSON data, during the last section 3.1, the next step is prepar-
ing the DBMS environment. First, we create a clean database on MSSQL and
another on PostgreSQL. On MSSQL, add two tables, “lineitem no indx” and
“lineitem”. The reason for two tables is, to test workloads with and without
indexes.

On PostgreSQL (hybrid DBMS that allow data-key-value and JSON), was
added four tables. All tables have the same mission, test performance workloads
with JSON and data-key-value, both, with and without indexes.

Indexing is one of the main variables that should be added to the equation.
MSSQL is not JSON friendly and, has no proper indexes for NoSQL data. With
that in mind, we start a research to find a way to accomplish that. We found
a reference to MSSQL computed columns that should be the key. Under this
article [9], we have found a way to use computed columns and, index those
columns. As we know, computed columns do not exist physically. The data is
parsed out on runtime from other derived columns. Adding a non-clustered index
to that column, the parsed-out data is written to the index column table, and
the DBMS does not have to parse data out again. We’ve created a computed
column to each JSON property as showed on fig.1. The improvement is vast, as
we show in the results and analyse section 4. So, with this in mind, we start to
add all JSON properties as computed columns and index the ones used on query
where condition, as non-clustered indexes.

On PostgreSQL, we found the GIN (Generalized Inverted Indexes) index,
specialized for semi-structured data, are quite useful when an index must map
multiple values to a row, and good for array indexing values, as well as full text
search programs.

Comparison of semi-structured data on MSSQL and Postgresql 5

Fig. 1: Example of computed columns in MSSQL

3.3 Insert data

DBMS environment concluded, we perform the scripts to insert the same amount
of JSON in each table, one million registries to be precise. Each insert should
be executed three times. The lowest time registered, should be considered. All
scripts have been executed against the indexed and non indexed tables. To collect
times, turn on time collecting before the script “SET STATISTICS TIME ON”
and turn it off after the insert “SET STATISTICS TIME OFF” as showed on
listing 1.2.

SET STATISTICS TIME ON
i n s e r t i n to [l i n e i t em]
s e l e c t top 1000000 data j s on from [l i n e i t em j s o n]

SET STATISTICS TIME OFF

Listing 1.2: Insert using clause INSERT INTO

Bulk insert is a faster way to insert data on MSSQL. The listing 1.3, is a
script example how it works. First the table is defined on “BULK” instruction,
and then the script point to a CSV file (JSON data generated on section 3.1)
where the data is located. Bulk only allow insertions over a file.

SET STATISTICS TIME ON
BULK INSERT [l i n e i t em]

6 C. Wanzeller, F. Cardoso, P. Martins, M. Abbasi

FROM ’C:\TPC−H\ j s o n p o s t g r e s s . csv ’
WITH (FORMAT = ’CSV ’

,FIRSTROW = 2
,KEEPIDENTITY
,KEEPNULLS
)

SET STATISTICS TIME OFF

Listing 1.3: Insert using clause BULK

For PostgreSQL, the process is identical. First, was made an insertion using
method “INSERT INTO”, as described on 1.4, and a second method, make use
of massive insertion’s instruction “COPY” on PostgreSQL, “BULK” equivalent
on MSSQL as showed on 1.5

INSERT INTO l i n e i t em j s o n (i n f o)
SELECT in f o from l i n e i t em j s o n t o c opy s ou r c e

Listing 1.4: Insert using clause INSERT INTO on PostgreSQL

COPY l i n e i t em j s o n
FROM ’E:\ESTGV\ j s o n p o s t g r e s s . csv ’

DELIMITER ’ , ’ CSV HEADER;

Listing 1.5: Insert using clause COPY on PostgreSQL

3.4 Query data

This section, describes the process adopted to test performance on both DBMS.
After run section 3.3, all tables have been loaded with the exactly same

data. The performed scripts, in the end, should return the exact same results,
with same where conditions “L ShipMode=’TRUCK’ and L LineNumber=1 and
L LineStatus=’O’ and L Quantity between 8 and 60”. As showed on listing 1.6
and 1.7. This is a ’sine qua non’ condition, for a benchmark test.

Since we are using computed columns, as described in section 3.2 and fig.1, no
column’s definition is needed, only “*” to show all. The where condition complies
with criteria defined on beginning of section 3.4, and times will be collected
making use of “SET STATISTICS TIME ON” and “SET STATISTICS TIME
OFF” instructions.

SET STATISTICS TIME ON
s e l e c t ∗ from [l i n e i t em]
where [l sh ipmode] =’TRUCK’

AND [L LineNumber] = 1
and L l i n eS t a tu s=’O’

Comparison of semi-structured data on MSSQL and Postgresql 7

and L Quantity between 8 and 60
order by L ShipDate asc

SET STATISTICS TIME OFF

Listing 1.6: Select on MSSQL

On this script, listing 1.7, we start to define all properties with correspon-
dent data types, with where condition meeting the agreed criteria. To list data
tabularly, we found function ”jsonb to record”, we pass all JSON record data,
define data type for each JSON property, and a tabular view should be listed.
This, has been used for legible proposes.

s e l e c t x .∗
from l i n e i t em j s on ,

j s onb t o r e c o rd (i n f o) as x (
”L OrderKey” int ,
”L PartKey” int ,
”L SuppKey” int ,
”L LineNumber” int ,
”L Quantity ” int ,
”L ExtendedPrice ” decimal ,
”L Discount ” decimal ,
”L Tax” decimal ,
”L ReturnFlag” text ,
” L LineStatus ” text ,
”L ShipDate” date ,
”L CommitDate” date ,
”L ReceiptDate ” date ,
” L Sh ip In s t ruc t ” text ,
”L ShipMode” text ,
”L Comment” text)

where (in fo−>> ’ L ShipMode ’ = ’TRUCK’)
and (in fo−>> ’ L LineNumber ’ = ’ 1 ’)
and (in fo−>> ’ L LineStatus ’ = ’O’)
and (in fo−>> ’ L Quantity ’) : : numeric between ’ 8 ’ and ’ 60 ’

order by (in fo−>> ’ L Quantity ’)

Listing 1.7: Select on PostgreSQL

3.5 Update data

The last workload section updates, have been performed with the same where
conditions and same changes. Where condition, “L ShipMode = ’MAIL’”. Changes,
update all ”L ShipMode” equal to ”MAIL” to ”TRUCKKKKKK”. In the end,
all results have been verified.

8 C. Wanzeller, F. Cardoso, P. Martins, M. Abbasi

On MSSQL listing 1.8, we make use of “JSON MODIFY” function, to navi-
gate through JSON data on field ”json data” and perform changes as listed on
listing 1.8.

SET STATISTICS TIME ON
UPDATE U
SET data j son =

JSON MODIFY(data j son , ’ $. L ShipMode ’ , ’TRUCKKKKKK’)
FROM AEABD. dbo . [l i n e i t em] as U
WHERE L ShipMode = ’MAIL ’
SET STATISTICS TIME OFF

Listing 1.8: Update data on MSSQL

On PostgreSQL listing 1.9, same changes have been performed. First, we
filtered all registries where property “L ShipMode” value equal to “MAIL”, and
change it to “TRUCKKKKKK”.

UPDATE l i n e i t em j s o n
SET in f o = i n f o | | ’ {”L ShipMode ” :”TRUCKKKKKK”} ’
WHERE (in fo−>> ’ L ShipMode ’ = ’MAIL ’)

Listing 1.9: Update data on PostgreSQL

4 Results and analysis

4.1 Tables sizes

On Table.1 and Fig.2, it is clear that MSSQL, because is not optimized for
unstructured data, spend more space to accommodate same data. The performed
test only have been done in one table and the difference is huge.

Another evidence was on indexed tables. Because the indexes require space
to organize and split table data, all indexed tables in all DBMS’s, are heavier
than the ones without indexes. This means, performance improvement, will pay
a high storage price.

Table 1: Tables Sizes
Table Name Rows SQL PG-KEY-VALUE PG-JSONb

LineItem 1 000 000 988.21 MB 678 MB 726 MB

LineItem no indx 1 000 000 835.38 MB 493 MB 691 MB

Comparison of semi-structured data on MSSQL and Postgresql 9

Fig. 2: Databases size

4.2 Inserts

The data, loaded via “BULK” or “COPY”, was slower than “INSERT INTO”
or “SELECT INTO”.

In the “INSERT INTO”, the data was loaded from a select that already
resides in memory due to DBMS optimizations. “SELECT INTO” is the fast
one. When the script runs, the target table should not exist and will be created
without any indexes. So, in the “INSERT INTO”, the table already exists with
the primary key; consequently, the primary key has a clustered index by default.
The DBMS needs to manage it, creating a delay during the process, as revealed
in Fig.3.

All indexed tables are slowest, as shown in Fig.4, again, because of the need
to manage all indexes. Therefore, adding indexes always be a trade-off, if many
updates or inserts need to be executed on the Database. We should not add
unnecessary indexes to tables. The reason is related to the fact that, more in-
dexes means more work, rebuilding and reorganize them during the insertions
or updates and consequently more time-consuming.

On Fig. 5 we can figure out that PostgreSQL is much time-consuming during
the inserts than MSSQL. MSSQL doesn’t do any validation during the process,
while PostgreSQL verify each insertion to validate data. For that reason, has a
poor performance.

4.3 Selects

All selects exposed a better performance on PostgreSQL than in MSSQL. Post-
greSQL is optimized for unstructured data. That is a fact and is visible in Fig.6.
On MSSQL, the selects are prolonged on tables without indexes. On the other
hand, MSSQL revealed, despite a worse performance, been not too far from
PostgreSQL, when indexed.

4.4 Updates

This section reveals the statistics against indexed and non-indexed tables during
the update process. The problem mentioned above, regarding the management of
the indexes, gets highlighted in Fig.7. As we can see, all updates in both DBMS

10 C. Wanzeller, F. Cardoso, P. Martins, M. Abbasi

Fig. 3: Inserts not indexed tables

Fig. 4: Inserts in indexed tables

Fig. 5: Inserts in indexed and not indexed tables

Comparison of semi-structured data on MSSQL and Postgresql 11

Fig. 6: Queries

on indexed tables get worst and worst performance every time a new index has
been added. In conclusion, indexes are powerful, but we should moderate the
way we add them to databases, since we can solve query performance issues,
and get new ones on updates/inserts.

Fig. 7: Updates

5 Conclusions

MSSQL revealed a worse performance during the selects, but not so bad, when
using indexes. This means, MSSQL made good improvements, in last years,
getting better results, making use of new features that we’ll explain above.

The insertions in MSSQL are generally faster, since the DBMS doesn’t do
any validation, but this, could be a problem under production environments,

12 C. Wanzeller, F. Cardoso, P. Martins, M. Abbasi

since not well-formatted data could be inserted, triggering exceptions, causing a
huge pain on development teams.

Storage could be an issue too. MSSQL is not optimized for this kind of data,
taking up much more space than PostgreSQL.

Generally speaking, PostgreSQL should be the right choice for accommodat-
ing semi-unstructured data, faster, and better storage space managed.

Our major research, during this test case, was at MSSQL performance level,
when we start to indexing computed columns. MSSQL, doesn’t have a way to
index NoSQL data as PostgreSQL. The way to accomplished that, was indexing
computed columns. Since all JSON data inserted on MSSQL, are treated as text,
we try to find a method to convert the data into tabular structure. Recurring
to computed columns, as explained on section 3.2, we have a chance to index
does columns. At this level, the benefit was huge. The same query, made an
improvement 82.4% faster than without indexes as showed on fig.6.

Acknowledgements

”National Funds fund this work through the FCT—Foundation for Science and
Technology, IP, within the scope of the project Ref UIDB/05583/2020. Further-
more, we would like to thank the Research Centre in Digital Services (CISeD),
the Polytechnic of Viseu, for their support.”

References

[1] TPC-H. visited on 2022-06. url: https://www.tpc.org/tpch/.
[2] I. S. Vershinin and A. R. Mustafina. “Performance Analysis of PostgreSQL,

MySQL, Microsoft SQL Server Systems Based on TPC-H Tests”. In: 2021
International Russian Automation Conference (RusAutoCon). 2021, pp. 683–
687. doi: 10.1109/RusAutoCon52004.2021.9537400.

[3] Pedro Martins et al. “A performance study on different data load methods
in relational databases”. In: 2019 14th Iberian Conference on Information
Systems and Technologies (CISTI). 2019, pp. 1–7. doi: 10.23919/CISTI.
2019.8760615.

[4] Relational V S Key Value Stores Information Technology Essay. visited on
2022-06. 2018. url: https://www.ukessays.com/essays/information-
technology / relational - v - s - key - value - stores - information -

technology-essay.php.
[5] Wittawat Puangsaijai and Sutheera Puntheeranurak. “A comparative study

of relational database and key-value database for big data applications”.
In: 2017 International Electrical Engineering Congress (iEECON). 2017,
pp. 1–4. doi: 10.1109/IEECON.2017.8075813.

Comparison of semi-structured data on MSSQL and Postgresql 13

[6] Roman Čerešňák and Michal Kvet. “Comparison of query performance in
relational a non-relation databases”. In: Transportation Research Procedia
40 (2019). TRANSCOM 2019 13th International Scientific Conference on
Sustainable, Modern and Safe Transport, pp. 170–177. issn: 2352-1465.
doi: https://doi.org/10.1016/j.trpro.2019.07.027. url: https://
www.sciencedirect.com/science/article/pii/S2352146519301887.

[7] Benymol Jose and Sajimon Abraham. “Performance analysis of NoSQL
and relational databases with MongoDB and MySQL”. In: Materials To-
day: Proceedings 24 (2020). International Multi-conference on Computing,
Communication, Electrical & Nanotechnology, I2CN-2K19, 25th & 26th
April 2019, pp. 2036–2043. issn: 2214-7853. doi: https://doi.org/10.
1016/j.matpr.2020.03.634. url: https://www.sciencedirect.com/
science/article/pii/S2214785320324159.

[8] Azhi Faraj, Bilal Rashid, and Twana Shareef. “Comparative study of re-
lational and non-relations database performances using Oracle and Mon-
goDB systems”. In: International Journal of Computer Engineering and
Technology (IJCET) 5.11 (2014), pp. 11–22.

[9] One SQL Cheat Code For Amazingly Fast JSON Queries. url: https:
//bertwagner.com/posts/one- sql- cheat- code- for- amazingly-

fast-json-queries/.
[10] Transaction Processing Performance Council. “TPC-H benchmark spec-

ification”. In: Published at http://www. tcp. org/hspec. html 21 (2008),
pp. 592–603.

[11] Microsoft. Format JSON Output Automatically with AUTO Mode (SQL
Server). url: https://docs.microsoft.com/en-us/sql/relational-
databases/json/format-json-output-automatically-with-auto-

mode-sql-server?view=sql-server-ver16.

