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Abstract

Understanding how the brain processes information and generates simple to complex behav-
ior constitutes one of the core objectives in systems neuroscience. However, when studying
different neural circuits, their dynamics and interactions researchers often assume fixed
connectivity, overlooking a crucial factor - the effect of neuromodulators. Neuromodulators
can modulate circuit activity depending on several aspects, such as different brain states or
sensory contexts. Therefore, considering the modulatory effects of neuromodulators on the
functionality of neural circuits is an indispensable step towards a more complete picture
of the brain’s ability to process information. Generally, this issue affects all neural systems;
hence this thesis tries to address this with an experimental and computational approach to
resolve neuromodulatory effects on cell type-level in a well-define system, the mouse retina.

In the first study, we established and applied a machine-learning-based classification
algorithm to identify individual functional retinal ganglion cell types, which enabled detailed
cell type-resolved analyses. We applied the classifier to newly acquired data of light-evoked
retinal ganglion cell responses and successfully identified their functional types. Here, the
cell type-resolved analysis revealed that a particular principle of efficient coding applies to all
types in a similar way.

In a second study, we focused on the issue of inter-experimental variability that can
occur during the process of pooling datasets. As a result, further downstream analyses
may be complicated by the subtle variations between the individual datasets. To tackle
this, we proposed a theoretical framework based on an adversarial autoencoder with the
objective to remove inter-experimental variability from the pooled dataset, while preserving
the underlying biological signal of interest.

In the last study of this thesis, we investigated the functional effects of the neuromodulator
nitric oxide on the retinal output signal. To this end, we used our previously developed
retinal ganglion cell type classifier to unravel type-specific effects and established a paired
recording protocol to account for type-specific time-dependent effects. We found that certain
retinal ganglion cell types showed adaptational type-specific changes and that nitric oxide
had a distinct modulation of a particular group of retinal ganglion cells.

In summary, I first present several experimental and computational methods that allow to
study functional neuromodulatory effects on the retinal output signal in a cell type-resolved
manner and, second, use these tools to demonstrate their feasibility to study the neuromodu-
lator nitric oxide.
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Zu verstehen wie das Gehirn Informationen verarbeitet und einfaches bis komplexes Verhalten
erzeugt, ist eines der zentralen Ziele der systemischen Neurowissenschaften. Bei der Untersuchung
verschiedener neuronaler Schaltkreise, ihrer Dynamik und ihrer Interaktionen gehen Forscher jedoch
häufig von einer festen Konnektivität aus und übersehen dabei einen entscheidenden Faktor - die
Wirkung von Neuromodulatoren. Neuromodulatoren können die Aktivität von Schaltkreisen in Ab-
hängigkeit von verschiedenen Aspekten modulieren, z.B. von unterschiedlichen Gehirnzuständen oder
sensorischen Kontexten. Die Berücksichtigung der modulierenden Wirkung von Neuromodulatoren
auf die Funktionalität neuronaler Schaltkreise ist daher ein unerlässlicher Schritt auf dem Weg zu
einem vollständigeren Bild der Informationsverarbeitungsfähigkeit des Gehirns. Generell betrifft
dieses Problem alle neuronalen Systeme; daher wird in dieser Arbeit versucht, dieses Problem mit
einem experimentellen und computergestützten Ansatz zu lösen, um neuromodulatorische Effekte auf
Zelltyp-Ebene in einem gut definierten System, der Mausretina, zu klären.

In der ersten Studie haben wir einen auf maschinellem Lernen basierenden Klassifizierungsalgorith-
mus entwickelt und angewendet, um einzelne funktionelle retinale Ganglienzelltypen zu identifizieren,
was detaillierte zelltypaufgelöste Analysen ermöglichte. Wir waren in der Lage, den Klassifikator auf
neu gewonnene Daten von lichtevozierten retinalen Ganglienzellantworten anzuwenden und ihre
funktionellen Typen erfolgreich zu identifizieren. Dabei zeigte die zelltypaufgelöste Analyse, dass ein
bestimmtes Prinzip der effizienten Kodierung für alle Typen in ähnlicher Weise gilt.

In einer zweiten Studie konzentrierten wir uns auf das Problem der interexperimentellen Vari-
abilität, die bei der Zusammenführung von Datensätzen auftreten kann. Daher können weitere
nachgelagerte Analysen aufgrund der subtilen Unterschiede zwischen den einzelnen Datensätzen
erschwert sein. Um dieses Problem zu lösen, haben wir einen theoretischen Ansatz vorgeschlagen, der
auf einem adversen Autoencoder basiert und darauf abzielt, die interexperimentelle Variabilität aus
dem gepoolten Datensatz zu entfernen, während das zugrunde liegende biologische Signal erhalten
bleibt.

In der letzten Studie dieser Arbeit untersuchten wir die funktionellen Auswirkungen des Neuro-
modulators Stickstoffmonoxid auf das retinale Ausgangssignal. Zu diesem Zweck verwendeten wir
unseren zuvor entwickelten Klassifikator für retinale Ganglienzelltypen, um typspezifische Effekte
aufzuschlüsseln, und erstellten ein gepaartes Aufnahmeprotokoll, um typspezifische zeitabhängige
Effekte zu berücksichtigen. Wir fanden heraus, dass bestimmte retinale Ganglienzelltypen adaptive
typspezifische Veränderungen aufweisen und dass Stickstoffmonoxid eine deutliche Modulation einer
spezifischen Gruppe der retinalen Ganglienzellen bewirkt.

Zusammenfassend stelle ich zunächst mehrere experimentelle und computergestützte Methoden
vor, die es ermöglichen, funktionelle neuromodulatorische Effekte auf das retinale Ausgangssignal
zelltypspezifisch zu untersuchen, und zeige dann anhand dieser Instrumente ihre Durchführbarkeit bei
der Untersuchung des Neuromodulators Stickstoffmonoxid.
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Synopsis

Neuromodulation: A Wireless Network

The human brain is one of the fundamental elements of our identity. It enables us to perceive
the world, process information, have subjective experiences, be self-aware, as well as possess
other complex cognitive abilities. For centuries, humankind tried to gain insights into this
biological machinery in all its complexity to understand themselves, but also to advance in
several other aspects of human life, such as curing diseases.

The fundamental building blocks of the brain are the countless sophisticated neural
circuits that process inconceivable amount of information to generate various behaviors. To
unravel the functionality of these circuits, one needs to consider their individual components,
their connections, and interactions with other circuits. Over decades, scientists across all
disciplines of neuroscience sought to study the neural circuits throughout the nervous system
ranging from the associated peripheral and sensory systems to higher brain areas. Studying
and understanding neural circuits in any brain area is very complex as the information
input to each neuron and its output is difficult to define due to the high degree of inter-
connectivity and feedback mechanisms. Here, a keystone direction of research constitutes
‘connectomics’, which aims to elucidate the complexity of neural circuits by mapping entire
connections between every neuron and every synapse of the nervous system (Seung, 2012).
Despite this pioneering work, a crucial aspect that is often neglected when studying the
functionality of neural circuits, yet adds additional layers of complexity, is the influence of
neuromodulators, which can alter and regulate neurophysiological processes (Bargmann, 2012;
Marder, 2012). For example, they have implications and regulatory mechanisms of different
functions within the brain such as learning and motor control (Volkow and Morales, 2015),
and their dysfunction may be the cause of several psychiatric disorders (Yang and Tsai, 2017;
Meder et al., 2019). Therefore, deepening our knowledge of neuromodulators across neural
systems will help us to address various issues from cellular mechanisms to curing diseases.
Since neuromodulators may affect different circuits within a neural system differentially, the
resolution down to cell type-level constitutes an important step towards a detailed functional
understanding of neuromodulatory implications. In the first part of this thesis, I elucidate why
the retina serves as an ideal model system for studying neuromodulation and highlight the
development of a retinal ganglion cell (RGC) type classifier to functionally identify the vast
diversity of the retinal output. In the second part, I address the issue of inter-experimental
variability between recordings of different experiments and datasets and how this may cause
false-positive interpretations, especially when studying neuromodulatory effects. Here, I
provide two possible solutions: (i) a theoretical framework and (ii) an experimental approach.
In the final part of my thesis, I leverage the developed tools in a study to showcase the
neuromodulatory effects of nitric oxide (NO) on various RGC types, while considering inter-
experimental variability to disentangle experimentally-induced from drug-induced effects.
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The Mouse Retina as a Model System for Vision

The choice of an ideal model system to study a particular research question is crucial for
the outcome, interpretation, and translation of the results to other systems. In the context
of studying the functional effects and implications of a neuromodulator on a well-defined
system, the mouse retina constitutes a suitable system for several reasons. As part of the
central nervous system, the retina has the advantage that we can experimentally define
the neural input to the system by displaying light stimuli and directly measuring its neural
output signal to the brain with several physiological techniques. The mammalian retina barely
receives any external input or feedback from the brain (with minor exceptions (Gastinger et al.,
2006a)), other than within the rest of the central nervous system, where feedback mechanisms
and undefined additional inputs from other brain regions contribute to the overall signal.
This characteristic enables the experimenter to manipulate and isolate specific parameters
using neuromodulators to infer their effects on the system. Moreover, the retina releases
neuromodulators endogenously; thus providing an inherent system to study their effects on
information processing. In this section, I will first explain the structure of the mouse retina,
how the signal of the visual environment is processed along the retinal signaling pathways,
and lastly, elaborate the vast repertoire of neuromodulators in the retina.

Early Visual Signal Processing

For an organism to perceive its surrounding environment, it must be able to process various
kinds of information. To this end, organisms developed several sensory system to sense
their environment in order to navigate, hunt, mate, and simply survive. One of the primary
sensory systems for many animals, including humans, is the visual system. To perceive the
visual environment, photons are captured by a thin sheet of neuronal tissue at the back of the
eye, termed the ‘retina’.

One of the major challenges for the retina is to capture the complexity of the visual
environment in all its ecologically relevant facets as a ’neural image’. Such an image of
the natural environment encodes various visual features such as contours, contrast, light
intensity, luminance, color, and many more. Besides that, the visual environment is not
static, but dynamic, so the retina needs to additionally capture and process information about
the temporal domains, such as motion, changes in luminance and other changing image
statistics (Dong and Atick, 1995; Olshausen and Field, 1996; Van Hateren and Schaaf, 1998).
Impressively, despite having a rather simple layered structure and comprising only five main
cell classes, its actual complexity is based on the vast diversity of neuron types within each
of these classes (Wässle and Boycott, 1991; Masland, 2001; Wässle, 2004; Masland, 2012a).
Using this diversity, the retina forms sophisticated and specialized circuits to parallelize the
information processing as well as to operate at different light conditions throughout the day
(Dacey, 2004). Notably, specific parts of circuits are used for various purposes and processing
steps to further broaden the operational capabilities of the retina (Smith et al., 1986). But how
does the information flow through the retinal network and what are the different processing
stages as soon as a stream of photons hits the first sensory neurons within the retina?

In brief, a stream of photons is captured and converted into an electrical signal by the
first sensory neurons, the photoreceptors (PRs), which traverse the signal via bipolar cells
(BCs) to the output neurons, the retinal ganglion cells (RGCs) (Masland, 2012a; Euler et al.,
2014). Then, RGCs sent the signal to various higher brain areas as spike trains (Dhande
and Huberman, 2014; Seabrook et al., 2017). The signal, which is sent along this vertical,
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excitatory-driven pathway, is additionally shaped by two lateral, inhibitory neuron classes
located in the outer and inner retina, namely horizontal cells (HCs) and amacrine cells (ACs),
respectively.

In depth, the first stage of the processing of visual information in the retina constitutes the
event of photon capturing by PRs, which are located in the outer part of the retina, specifically
in the outer nuclear layer (ONL). Within the mouse retina, there are three types of photore-
ceptors specialized for different tasks, namely rods, cones and intrinsically-photosensitive
RGCs (ipRGCs), also called melanopsin-containing RGCs (mRGCs). Importantly, the latter
type forms the basis for non-image forming vision and is not located within the ONL, but in
the ganglion cell layer (GCL) and mainly contributes to the synchronization of the circadian
rhythms (Freedman et al., 1999; Berson et al., 2001; Hattar, 2003), regulation of the pupil
size (Chen et al., 2011) and recently was shown to be a ground luminance detector (Berry
et al., 2022). In contrast to ipRGCs, rods and cones constitute the basis for image-forming
vision. Both types convert the stream of photons into an electrical signal via an intrinsic
phototransduction cascade (Chen, 2005; Yau and Hardie, 2009) and incorporate different
tasks to operate at distinct light conditions with overlapping signalling pathways. While
rods function under scotopic (dim) light conditions due to their high sensitivity, cones, be-
ing less sensitive, operate with increasing luminance towards photopic (bright) conditions.
This is mainly due to their intrinsic properties as rod responses saturate at high luminance
levels, whereas then cones take over as they do not saturate, however, their operational
response range is still limited by their photoisomerization rate (Baylor, 1987). In mice, cones
express distinct wavelength sensitivities by expressing two types of opsins (S- and M-opsins),
whereby S-opsin exhibits a peak sensitivity to short (’S’) wavelength at 360 nm and M-opsins
to medium (’M’) wavelength at 508 nm (Nikonov et al., 2006). In addition, the mouse retina
features a specific adaptation by expressing ’true’ S-cones (exclusively expressing S-opsin) in
the upper visual field and M-opsins co-expressing S-opsins towards the lower visual field
(Applebury et al., 2000; Nadal-Nicolás et al., 2020). These features of cones form the first stage
of color detection.

After the conversion of photons into an electrical signal, the signal is forwarded to BCs.
Here, the signal is shaped by a network of electrically coupled HCs, which provide a variety
of inhibitory feedback mechanisms by forming direct synaptic connections to rods and
cones (Masland, 2001; Kamermans and Spekreijse, 1999; Thoreson and Mangel, 2012). These
feedback mechanisms act locally and globally (Behrens et al., 2022) and serve several functions
such as contrast enhancement, light adaptation, as well as the formation of a center-surround
receptive field structure (Diamond, 2017; Ströh et al., 2018; Drinnenberg et al., 2018). Together,
this network of synaptic connections of PRs, HCs and BCs form the outer plexiform layer
(OPL), which traverses the signal from the ONL (rods and cones) to the inner nuclear layer
(INL; HCs, BCs and ACs). From here, the signal divergences and is parallelized into different
feature channels since rods and cones connect to different BC types (Euler et al., 2014; Behrens
et al., 2016). In mice, the signals transmitted by cones are relayed to 13 different BC types,
the cone BCs (CBCs), whereas rod signals are only relayed to one BC type, the rod BC
(RBC) (Wässle et al., 2009; Shekhar et al., 2016). The signal divergence and parallelization is
based on the different attributes and features of the BC types, resulting in diverse response
patterns (DeVries, 2000; Wässle et al., 2009; Baden et al., 2013). In general, BC types can be
distinguished based on several characteristics: protein expression, axonal stratification depth
in the sublamina of the inner plexiform layer (IPL), and their dendritic and axonal morphology
(Euler et al., 2014). Functionally, BC types can be split into On- and Off-BC types based on
their response polarity, i.e., depolarization in response to light increments or decrements,
respectively (DeVries, 2000). This response polarity depends on the expression of glutamate
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receptors at their dendrites: On-BCs express the metabotropic receptor mGluR6, resulting
in a sign-inverting signal transmission, whereas Off-BCs express sign-conserving ionotropic
receptors (kainate and/or AMPA). Furthermore, functional BC types differ in their temporal
response kinetics to light illumination (Baden et al., 2013), and can be divided in sustained or
transient response types. Additionally, certain BC types carry chromatic information, whereas
others are achromatic (Breuninger et al., 2011; Euler et al., 2014). Interestingly, within the
mammalian retina, BC types have a distinct stratification profile of their axon terminals in
the sublamina of the IPL with Off-types stratifying in the upper and On-types towards the
bottom layers (Wu et al., 2000; Ghosh et al., 2004).

Here, neuron classes of the INL, mainly BCs and ACs, form a dense network of synaptic
connections with dendrites of RGCs, which are located at the innermost layer of the retina,
the GCL. Within the IPL, the excitatory glutamatergic input from BCs is further transferred
to various RGCs types. With more than 40 types in mice (Baden et al., 2016; Goetz et al.,
2022), the functional diversity of RGCs enables the retina to further process the input signal,
perceived by PRs, in parallel and to extract a broad variety of relevant features of the visual
world. The extracted information is then relayed via their axonal projections out of the
retina to different visual brain areas (Seabrook et al., 2017). This functional diversity of
RGC types is based on at least three factors: (i) different intrinsic properties such as receptor
expression (Wienbar and Schwartz, 2022), (ii) distinct and specialized connections with BC
types (Nirenberg and Meister, 1997; Asari and Meister, 2012), and (iii) selective connections
with ACs types (Gollisch and Meister, 2010; Masland, 2012b). Especially the latter ones
additionally shape and modulate the excitatory input from BCs to RGCs (Diamond, 2017).
ACs represent the most diverse and complex class of neurons within the retina. To date,
more than 60 molecularly types were identified (in mice), however, little is known about
many of them (Yan et al., 2020). There are only few well-studied types, such as the AII
(Demb and Singer, 2012; Marc et al., 2014) and starburst AC (Euler et al., 2002; Masland,
2005; Taylor and Smith, 2012), for which their function and mechanism(s) within the retinal
circuitry is identified. In general, ACs have a broad repertoire of mechanisms to increase
the computational capacities of the retina. They provide feedforward inhibition to RGCs,
feedback inhibition to BCs as well as lateral inhibition to other ACs, which are mainly
mediated by their primary inhibitory neurotransmitter, GABA (wide-field ACs) or glycine
(small-field ACs) (Diamond, 2017). Importantly, ACs can be considered to be ’bilingual’:
aside of their fast-acting inhibitory neurotransmitter, they express either another fast-acting
neurotransmitter such as glutamate (e.g., VGluT3 ACs (Haverkamp and Wässle, 2004)) or
one of the many slow-acting neuromodulators, e.g., nitric oxide (Kim et al., 1999; Jacoby et al.,
2018) or dopamine (Dacey, 1990). This breadth and diversity of possibilities expands the
operational capability and computations of the retina to process nearly all conditions of the
visual environment that are relevant to the organism. In the next section, I aim to shine light
on the functionality and diversity of endogenously occurring neuromodulators in the mouse
retina.

A Diverse Cocktail of Neuromodulators

The processing of information within a neural system, such as the mouse retina, is primarily
driven by excitatory and inhibitory neurotransmitters, e.g., glutamate and glycine/GABA,
respectively. Here, the excitatory signals, transmitted by glutamate, are sent from PRs to
RGCs via BCs and is additionally shaped by the inhibitory input from HCs and ACs, releasing
glycine and GABA. However, to adapt to different sensory and contextual states, the retina
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uses another group of molecules that affect the signal processing on a rather slow-acting time-
scale, namely neuromodulators (Diamond, 2017). Unlike neurotransmitters, neuromodulators
modulate the transmitted signal and activity of an existing neural circuit (Bargmann, 2012).
Therefore, they broaden and extend the functionality of ’hard-wired’ neural circuits depending
on the sensory context by affecting multiple neurons and synapses within such a circuit.

Neuromodulators feature a range of distinct mechanisms to modulate the activity within a
neural circuit. For example, they can directly or indirectly activate and bind to receptors or ion
channels, triggering intracellular signaling cascades that influence neuronal excitability and
functionality of synaptic transmission (Harvey and Heinbockel, 2018). Also, neuromodulators
can regulate the strength of a signal and its synaptic transmission by amplifying or dampening
the neurotransmitter release, their sensitivity or reuptake into the synapse (Nishizaki et al.,
2002). Another key mechanism constitutes retrograde signaling in which the activity of the
presynaptic neuron is modulated by a neuromodulator released from the postsynapse (Alger,
2002). Notably, they can also regulate feedback mechanisms of their own release or even of
others to tune and configurate various circuits (Jacoby et al., 2018). By this, neuromodulators
provide a broad spectrum of mechanisms on how to influence the activity of neural circuits.

Overall, the retina contains and releases a vast and diverse repertoire of neuromodu-
lators, comprising at least 20 different types (Diamond, 2017). This diversity ranges from
monoamines (e.g., histamine (Gastinger et al., 2006a), dopamine (Witkovsky and Dearry,
1991)), endocannabinoids (Yazulla, 2008), gasotransmitters such as nitric oxide (NO) (Gold-
stein et al., 1996) and carbon monoxide (CO) (Cao et al., 2000), and neuropeptides (e.g.,
neuropeptide Y (Santos-Carvalho et al., 2014; Santos-Carvalho et al., 2015)). As mentioned
earlier, the majority of these neuromodulators is released by subtypes of ACs in additional to
their primary neurotransmitter, whereas small fractions of them is released outside the retina
by centrifugal fibers, e.g., serotonin and histamine (Gastinger et al., 2006b). In particular,
serotonin is released from neuronal projections originating in the dorsal raphe and histamine
from projections in the hypothalamus. Notably, both have been associated with the arousal
system, thereby modulating the retinal code depending on the arousal state of the animal
(Schröder et al., 2020b; Warwick et al., 2022). Nevertheless, only a few neuromodulators
are partly understood, yet a comprehensive and integrative picture is slowly emerging. For
example, dopamine constitutes one of the better-studied neuromodulators, still the overall
picture is puzzling, despite knowing much about its release site, circuit mechanisms, and
involved cell types (Roy and Field, 2019; Warwick et al., 2023). Dopamine is released from a
specialized ACs within the inner retina, the dopaminergic AC (DAC), which receives input
from various cell types such as CBCs, ipRGCs, AII ACs and other ACs (Zhang et al., 2008;
Prigge et al., 2016; Qiao et al., 2016; Zhao et al., 2017). Interestingly, DACs co-release GABA,
and ATP, in addition to dopamine (Ho et al., 2015; Hirasawa et al., 2015), whereby the release
of these three molecules is triggered by different mechanisms at different release sites along
the dendrites (Pérez-Fernández et al., 2019). Dopamine has been implicated and shown to
exhibit a broad variety of functionality in the retina such as light adaptation (Witkovsky, 2004),
regulation of the circadian rhythm (Nir et al., 2000), and modulation of retinal processing
(Roy and Field, 2019). Despite knowing the release sites, receptors and cellular mechanisms
for various neuromodulators, a comprehensive, systematic, and cell type-resolved overview
of their function on visual signal processing is yet missing.

As a consequence, I sought to tackle this problem by developing an experimental pipeline,
in which we established a RGC type classifier to break down the retinal code in its individual
components and addressed additional issues when studying neuromodulatory effects. In the
next chapter, I provide an overview of approaches to classify RGC types and introduce our
RGC type classifier.
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Functional Cell Type Classification

In the first part of my thesis, I address the need and development of an RGC type classifier
that is easy to use, yet precise in its prediction to map RGCs to their the functional types.
To understand how the functionality of the retinal code, represented by its output neurons,
is modulated by neuromodulators, the disentanglement of the retinal code down to cell
type-level is necessary, otherwise a detailed, yet broad picture of their implications for vision
cannot emerge. In this section, I explain how RGC types were usually classified, how a
large-scale clustering of RGCs set new standards, followed by previous approaches and how
our RGC type classifier makes it possible to identify functional RGC types using only two
short and simple stimuli.

Approaches to Classify RGC Types

To unravel the retinal code, it is essential to dissect it into its individual components due to the
parallelization of the signal into different feature channels. Therefore, the identification and
classification of the different functional RGC types is a necessary consequence. Such a classifi-
cation of RGC types serves multiple purposes: (i) it allows the identification of individual
types and their contribution to specific features and aspects of the visual information process-
ing, (ii) it helps to understand how the visual signal is encoded and processed by the diversity
of RGC types, (iii) it allows to disentangle sub-circuits, and (iv) it helps understanding retinal
diseases that may affect specific and individual RGC types.

RGC types were distinguished based on three main criteria: (i) their morphological
characteristics, (ii) their genetic profile, and (iii) their functional properties (Sanes and Masland,
2015; Vlasits et al., 2019). The morphological classification makes use of different microscopy
techniques, such as light microscopy, confocal microscopy, and electron microscopy (EM),
to reconstruct and characterize the dendritic and axonal structures of individual RGC types.
However, this does not provide any information about their physiology and is subject to
sampling bias. Using these tools, earlier studies identified approx. 20 RGC types (Völgyi
et al., 2009), whereas a more recent study was able to identify >40 anatomical types (Bae et al.,
2018). On the other hand, genetic and molecular approaches aim to classify RGC types based
on their expression of specific genetic markers. Here, researchers make use of techniques such
as immunohistochemistry to identify these markers, transgenic mouse lines to visualize and
study distinct RGC types expressing certain genes, and transcriptomics to assess and analyze
their gene expression patterns. The drawback of these techniques is that they are usually slow
and only target one type or a particular subgroup of types, making it difficult to grasp the
complete diversity of RGC types. With advances in technology, novel high-throughput tools,
such as single-cell transcriptomics, found >40 distinct RGC types (Tran et al., 2019).

Since the overall functional RGC classification and typing may be close to complete, in
this thesis, I focus on the mapping of existing functional types to newly acquired data to
simplify their identification in the form of a supervised classifier. Therefore, I emphasize the
functional classification of RGCs in the remaining part of this section.

Functionally, RGC types were mainly classified based on their light-evoked response
properties to identify how and which features of the visual world are encoded by distinct
RGC types (Lettvin et al., 1959; Werblin and Dowling, 1969). With the discovery of center-
surround receptive fields in certain RGCs by Barlow and Kuffler, they revealed a fundamental
principle and set the foundation for understanding the physiological basis of different RGC
types (Barlow et al., 1957). This principle was extended by the findings from Hubel and
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Wiesel when they identified two types of RGCs (X and Y cells) that exhibited distinct response
properties of their spatial receptive fields and preferences to different stimulus features (Hubel
and Wiesel, 1959; Hubel and Wiesel, 1962). Based on these results, researchers started to
further distinguish types based on their response to light increments and decrements, which
resulted in the classification of ON, OFF or ON-OFF types (Levick, 1967). Additionally, the
temporal response kinetics constituted a crucial feature, meaning if they exhibit a sustained
or transient response to either light increment or decrement (Cleland et al., 1971).

The discovery that RGCs project to various brain regions revealed parallel processing
pathways, which suggested an even broader diversity of RGCs (Roska and Werblin, 2001).
Taking this into account, the spectrum of features to include for the classification broadened
and resulted in a functional diversity of RGCs comprising >40 types to date (Baden et al., 2016;
Goetz et al., 2022). This revealed the identification of distinct cell types, which contribute to
specific visual processes such as direction-selectivity (Weng et al., 2005), local-edge detectors
(Van Wyk et al., 2006), and color-opponent cells (Szatko et al., 2020).

Nowadays, two main techniques are used for functional recordings: (i) electrophysio-
logical tools, such as patch clamp or extracellular recordings (multi-electrode recordings
(MEA)) (Grumet et al., 2000), and (ii) optical methods, such as two-photon calcium imaging
(Euler et al., 2019). Among those techniques, the high-throughput recordings (MEA and
two-photon calcium population imaging) of RGC populations allowed researchers to gain a
comprehensive overview of the functional diversity of RGC types. Both techniques have their
advantages and disadvantages. For example, MEA recordings allow measuring populations
of RGCs with a high temporal resolution, yet it does not provide any information about the
morphology and is prone to sampling bias as cells with no to few spikes are not recognized
(Trapani et al., 2022). Functional calcium imaging, on the other hand, solves this issue by
exciting the inserted or expressed fluorescent indicators in each cell, recording the changes
of calcium activity and therefore making each cell in the recording field visible (Euler et al.,
2019). A downside of this is that calcium only serves as a proxy for spiking activity, and
the relationship between spikes and calcium is nonlinear, which may result in potential
underestimations of specific feature representations (Kerr et al., 2000; Vogelstein et al., 2010;
Baden et al., 2016). Additionally, calcium changes and the indicator kinetics are much slower
than actual spikes; thus certain rapid changes in spiking activity cannot be resolved. Despite
their disadvantages, the overall results leveraged the classification of functional RGCs in a
direction where the picture starts to get complete. Further technical advances, such as voltage
imaging, may enable us to resolve the functional diversity of RGCs in an even more detailed
way to complement missing pieces and information (Knöpfel and Song, 2019; Liu et al., 2022).

In this context, over the last decades, many studies aimed to combine and align the
different classification approaches to provide a coherent and unified picture of the diversity
of RGC types in the mouse retina (Seung and Sümbül, 2014; Kölsch et al., 2021). Recently,
Goetz et al. (2022) addressed this problem by aligning a large dataset of functional RGC
responses with their morphological and genetic markers. Using these three features in a joint
approach, they were able to classify 42 RGC types. With advancing techniques, we will be
able to gain more insights into the diversity of RGC types, including even more features to
further understand their implications for vision.

In the next subsection, I summarize the results of our supervised RGC type classifier and
how a study from 2016 set the foundation for the current classification approach to map
existing types to new data in order to identify RGC types.
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RGC Type Classifier: A Supervised Learning Approach

In 2016, Baden et al. sought to unravel the functional diversity of RGC types in the mouse
retina and set a new standard for such cell type classifications. To this end, they used a
high-throughput approach by performing two-photon calcium imaging of RGC populations
to record their light-evoked activity. To capture the vast diversity of RGC types, they used a
battery of artificial stimuli, e.g., moving bar and full-field chirp, that covered a broad range
of the stimulus feature space. This way, they increased the likelihood of evoking individual
response preferences of each type. Using an unsupervised clustering approach (Gaussian
mixture model) of the dimensionality reduced response features, and additional features e.g.,
soma size and direction-selectivity index, they identified 32 functional RGC and 14 displaced
AC types within the GCL.

Since then, this set a gold standard for functional RGC types and several studies used them
as reference. For example, a publication from 2019 recorded RGC and dLGN responses to map
individual types between these areas (Rosón et al., 2019). To do so, they used a correlation-
based metric, i.e., ‘match index’, with which they identified certain RGC types. Furthermore,
these reference types were also used to identify RGC types recorded with other physiological
tools such as MEA recordings (Shabani et al., 2021; Goldin et al., 2022). To match the reference
types, they convoluted the spike trains with the corresponding fluorescent indicator kernel to
transform the light-evoked spiking patterns into pseudo-calcium responses. Then, using a
correlation-based approach, they identified and matched most RGC types.

To date, the ’match index’ is the only approach that maps functional RGC types using two-
photon calcium imaging based on their response profiles (Rosón et al., 2019). Nevertheless,
this approach had the disadvantage of being biased towards the simple stimulus, i.e., the
moving bar in this case, as both used stimuli (full-field chirp and moving bar) were considered
to be equally important for the type prediction. Due to the complexity of the chirp, exhibiting
a much broader variety of features, the ‘match index’ was unreliable across types. Moreover,
it only included the response quality as an additional parameter, but no other type-specific
features such as soma size or direction selectivity, which led to less precise predictions.
Since various types show similar responses to chirp and/or moving bar, yet are mainly
distinguishable using those features, adding those features would add additional value to
the prediction (Baden et al., 2016). As a consequence, there was the need for a reliable and
feature-based approach to predict RGC types.

To overcome this, we used a supervised machine learning approach, namely a Random
Forest classifier (Ho, 1995), and the previously mentioned dataset comprising the light-
evoked responses of the 32 RGC and 14 dAC types (Baden et al., 2016). In particular, we
used ∼8000 RGC responses to the chirp and moving bar from Baden et al. (2016), projected
them into feature space using the extracted visual feature matrices (20 features for the chirp
and 8 features for the moving bar). For this, we calculated the dot product between the
extracted features and the normalized responses. Additionally, two parameters were used
to distinguish alpha and non-alpha cells, as well as direction-selective and non-direction-
selective cells by adding the soma size and the p-value of the permutation test for direction
selectivity, respectively. Then, the classifier was trained on a subset and validated on a held-
out test dataset. After hyperparameter search and cross-validation, it reached a prediction
accuracy of ∼76% across the 46 GCL types. As output, the classifier returns two parameters:
(i) an array of 46 confidence scores, i.e., the probability of each type predicted by the multiple
decision trees, and (ii) the actual predicted RGC type, namely the one with the highest
confidence score among all types. This output constitutes an advantage as it provides a
probability distribution and not just a single value. Using this, we can adjust and explore the
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trade-off between prediction accuracy and fraction of unclassified cells to improve the overall
prediction performance of the classifier (Fig. 1b,c). In our case, this yielded an improvement
of the prediction performance of the classifier to ∼85% (Fig. 1a). Thus, setting a threshold of
0.3 fulfilled an appropriate balance between these two criteria.

While the original RGC clustering used 40 features in total, including information about
receptive fields and color, our RGC classifier only uses 30 features originating from only two
stimuli and the other two additional parameters. On one side, this may explain why we
were not able to improve the prediction performance of the classifier even further, which may
be one key limitation of the classifier. However, on the other side, we aimed to develop a
classifier that needs minimal input as usually an experimenter wants to display and record
responses to additional stimuli in order to address other scientific questions, and thus only
use the two stimuli to identify the types. Again, this constituted a trade-off between achieving
a marginally improvement of the prediction and performing efficient experiments. Moreover,
prolonged recordings by adding more stimuli for the classification may accelerate the effects of
calcium buffering and photobleaching, which may result in a reduction of the signal-to-noise
ratio of the responses to other stimuli of interest.

Figure 1: Validation of the RGC type classifier performance. (a) Confusion matrix for the RGC type classifier
performance with confidence score threshold of 0.3. Dotted line indicated separation of larger subgroups. Data taken
from Baden et al. (2016). (b) Confidence score distribution of the highest score per cell of the test data. Red dotted
line indicated confidence threshold. (c) RGC type classifier confidence score threshold as a function of the fraction of
unclassified cells.

In the first study, in which the classifier was used, we developed a modeling approach
to predict RGC responses to visual stimuli considering the efficient coding principle and
including statistics from natural scenes (Appendix, Study I). We were able to show that these
aspects allowed a significant improvement in the predictive performance (Fig. 6, Appendix,
Study I). Since we asked whether this principle transfers and affects all RGC types or only
particular types, we used the RGC type classifier to identify the individual RGC types. Because
we identified the individual RGC types, we were able to demonstrate that across all broader
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functional groups, our modeling approach showed superior predictive performance using
natural statistics than previous ones. This study showcased the use of our RGC type classifier
and how it can be applied in such a study where a detailed cell type-resolved level is needed
to demonstrate a general principle.

In summary, we developed an RGC type classifier that can reliably predict RGC types
on recorded data using two-photon calcium imaging. The advantage of this classifier is
that it only needs two distinct stimuli that are part of the standard repertoire used in most
experiments; hence we can now even predict RGC types for previously recorded datasets.
Additionally, the classifier shows an overall good prediction performance, which can be
validated and improved compared to earlier approaches. Using this classifier, researchers can
now perform cell type-resolved analyses on the level of the retinal output by simply using
two short stimuli.
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Removing Inter-experimental Variability

Figure 2: Application of the RGC type classifer on the
first and second control recording. For each recorded
RGC, the cell type was predicted using the RGC type clas-
sifier for both recordings, Control 1 and Control 2, sep-
arately. Sankey plot shows to which broader functional
group each cell was assigned in both recording conditions.

The first approach to analyze the effects of a
neuromodulator on the retinal output signal
was to investigate the overall response sta-
bility and consistency of RGC responses in
the absence of any neuromodulator added to
measure a baseline. Since neuromodulatory
effects may be subtle, a careful control mea-
surement must be employed. To this end, I
recorded a dataset of paired RGC responses
(Ctrl-dataset) under the same conditions as I
would do with adding a neuromodulator to
the system, i.e., each cell was recorded twice
without any pharmacological manipulation.

Then, I applied the RGC type classifier
on the first and second recordings of each
cell separately. We hypothesized that cells
in the Ctrl-dataset would be assigned to
the same type, whereas in a complementary
drug-dataset, certain types may be mapped
to other types as distinct response features
get modulated. This would allow us to track
which RGC types were affected by the drug
as well as to detect which features of a specific type would have been affected in particular.
However, this approach did not seem to work as expected since RGC types in the Ctrl-dataset
were not assigned to the same type consistently; hence we would not be able to separate
those changes from drug-induced ones in the drug-dataset (Fig. 2). Such phenomena may be
expected as related work by Zhao et al. (2020) showed response alterations due to external
factors across recordings. This suggested that recording RGC populations twice without
any pharmacological reagents may cause response changes and variations due to known
and/or unknown experimental and biological factors, which may lead to unexpected and
false-positive results of the data. These phenomena can be caused by external factors such as
adaptation of the tissue, temperature fluctuations, experimental setup, and the experimenter.
In our case, the main source of inter-experimental variability may be light adaptation through-
out the experimental as all experiments were performed by the same experimenter and at the
same setup. In general, there are several scenarios in which this may occur and a removal
may be useful, e.g., pooling datasets and sequential recordings.

In this context, we aimed to address the issue of inter-experimental variability from
two sides: (i) we developed a theoretical framework and showcased the removal of inter-
experimental variability to demonstrate the importance of considering this issue when pooling
datasets, and (ii) we established an experimental approach in which we leverage the knowl-
edge about inter-experimental variability from a Ctrl-dataset onto a Drug-dataset to crystallize
actual drug-induced effects. In the following section, I begin to elaborate on the theoretical
approach, followed by the experimental one.
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A Theoretical Approach to Remove Inter-experimental Variability

Nowadays, the process of pooling and merging datasets to acquire large-scale datasets for
sophisticated analyses has become a standard procedure across disciplines and research
fields (Baden et al., 2016; Franke et al., 2017). However, during this process of pooling data
across several experiments in an iterative or sequential manner, various external biological or
non-biological factors may introduce inter-experimental variability to the dataset, which can
interfere with and distort the outcome of the analyses (Hicks et al., 2018; Zhao et al., 2020;
Shah et al., 2022). In our cases, these factors of influence may originate from recording-related
factors such as calcium buffering, temperature fluctuations, or photobleaching of the tissue.

As a consequence, we sought to address the issue of removing inter-experimental variabil-
ity in a theoretical framework, yet a general approach to make it accessible and applicable for
functional data across systems neuroscience. We showcased our theoretical framework on the
example of merging two large-scale two-photon datasets of retinal BCs in response to various
light stimuli. In brief, we addressed the problem of inter-experimental variability as one of
domain shift and developed our theoretical framework RAVE(+) (Removing, Adversarially,
inter-experimental Variability from Experiments) in a setting of adversarial domain adapta-
tion. We implemented two versions of RAVE(+) for different scenarios: (i) the unsupervised
version (RAVE) can be used in cases where S is unknown and one simply wants to remove the
inter-experimental variability between datasets, and (ii) the semi-supervised version (RAVE+)
can be applied to scenarios where partial information about S is known for at least one of the
datasets.

To remove inter-experimental variability, we implemented RAVE in a setting of an adver-
sarial autoencoder (Fig. 3). Hereby, we want to learn a function f that maps the observation X,
which is composed of the biological signal of interest S and the different domains D (different
datasets or experiments), to a low-dimensional representation Z. This step represents the
encoder of the autoencoder architecture. The function f has two competing objectives: (i) it
should preserve as much information about S in Z as possible, and (ii) it should minimize
information about D in Z at the same time. To do this, we need two additional functions. The
function g performs a reconstruction of X to maximize the information about S in the learned
lower representation Z, while the function h predicts D based on Z. Here, the function g repre-
sents the decoder of the autoencoder setting. The desired outcome is a lower representation
Z learned from the function f from which we get a maximized reconstruction of S using the
function g, while function h should only be able to predict D with chance-level. This would
imply that we get a reconstruction of the signal without inter-experimental variability, as we
cannot tell the domains apart.

Figure 3: Schematic framework of RAVE(+). Solid lines with arrows indicate a given relation. Dash lines with arrows
represent learned and modelled relations. Functions are denoted with small letters and variables with capital ones.
Adapted from Gonschorek et al. (2021).

To demonstrate the functionality of RAVE(+), we used a pooled large-scale dataset of
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light-induced responses of the 14 functional BCs types in the mouse retina (Euler et al., 2014).
This pooled dataset consists of two published and openly-accessible datasets taken from two
different studies (Franke et al., 2017; Szatko et al., 2020). In the following section, I will refer to
the dataset from Franke et al., 2017 as Dataset A and Szatko et al., 2020 as Dataset B. To obtain
those responses, both studies ubiquitously expressed the genetically encoded glutamate-
sensing fluorescent reporter iGluSnFR (Marvin et al., 2013) in the mouse retina. Since the axon
terminals of the distinct BC types stratify at different depths within the inner plexiform layer
(IPL) of the inner retina, they imaged the light-induced responses of the glutamate output
at those axon terminals. Notably, Dataset A identified and classified the 14 functional BC
types using anatomically-guided functional clustering; however, this information was not
available for Dataset B. In addition, even though both datasets used the same visual stimuli,
i.e., local and full-field chirp stimuli, and expressed the same biosensor, they still exhibit slight
differences, which complicates a simple merging of the two datasets.

Figure 4: Embedding of the datasets. Low-dimensional t-SNE embeddings of the raw (left) and corrected (right)
datasets. Color-code indicates datasets (top) and cell type labels (bottom). Adapted from Gonschorek et al. (2021).

Despite the similarity between the two datasets, we found clear evidence that inter-
experimental variability has introduced a domain shift between them as both datasets are not
able to be mixed, as seen by the low-dimensional embedding (Fig. 4; left). Here, the potential
sources of inter-experimental variability originated from at least three external non-biological
factors: (i) to acquire Dataset B, the authors used a slightly modified version of the chirp
stimulus in which the stimulus section of the increasing frequency modulation is minimally
slower compared to the one from Dataset A, (ii) the visual stimuli presented in Dataset A
exhibited marginally different stimulus contrast because their visual stimulator did not use a
gamma correction; thus there was no linearization of the intensity curve employed, and (iii)
both datasets were imaged with different recording configurations, whereby Dataset A was
generated using tangential scan recordings of distinct IPL depths and Dataset B by performing
axial scan recordings and an electrically tunable lens enabling simultaneous recordings of the
entire IPL. As a consequence, the problem can be formulated as the following: the observed
responses of the 14 functional BCs in both datasets are represented as X and arise from
the combination of the biological signal S and information about the domain D, whereas
S is almost identical between Dataset A and Dataset B, yet D differs due to the external
non-biological factors, resulting in inter-experimental variability.
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RAVE+: Semi-supervised Removal of Inter-experimental Variability

For scenarios, in which there is only partial knowledge about the biological signal of interest
available, e.g., cell type labels for only one dataset, yet is obscured by inter-experimental
variability, we developed the semi-supervised version of RAVE (RAVE+). Here, RAVE+ aims to
retain information about S, while minimizing D and predicting cell type labels, to enable an
information transfer to the other dataset without containing inter-experimental variability.

As a first step to validate RAVE+, we simulated two large-scale BC datasets covering the 14
different cell types using the published BC model by Schröder et al. (2020a). To introduce inter-
experimental variability between these datasets, we trained the model on the two versions
of the chirp that were displayed to originally generate Dataset A and Dataset B. Then, we
validated that the two datasets were affected by inter-experimental variability by projecting
them into a low-dimensional t-SNE embedding (Hinton and Roweis, 2002), which showed
that cells from both datasets were not overlapping (Fig 9b, Appendix, Study II). To test if
we can transfer type information, we trained a cell type classifier on the responses of one
dataset and then used this model to predict cell type labels for the other dataset. Since we
have information about the ground-truth type labels of both simulated datasets, we could
validate its prediction accuracy. Here, we found that the classifier only achieved a very
poor prediction accuracy, indicating that the information transfer was strongly influenced by
inter-experimental variability between the two datasets. However, when applying RAVE+ on
the pooled dataset, we found that the cell type distributions overlapped when visualizing the
datasets in a t-SNE embedding (Fig 9c, Appendix, Study II). In addition, by training the cell
type classifier on the output embedding of RAVE+, we achieved a prediction performance of
∼0.99. When investigating the t-SNE embedding, color-coded according to dataset origin and
cell type label, we found that the cell type labels form distinct islands containing cells from
both datasets. Yet, when dealing with real experimental data, having ground-truth cell-type
information available is usually not given. Thus, we needed another metric to validate the
predicted cell type labels. To this end, we made use of the axon terminal stratification profile
of the BC types as this represents a distinct cell type-specific anatomical feature.

To validate the predicted types per IPL depth, we used the electron-microscopy (EM)
dataset comprising the probability distribution of the axon terminal stratification profiles
of the 14 individual BC types (Helmstaedter, 2013; Behrens et al., 2016). We used this EM
dataset as the expected cell type distribution across the IPL depth and compared this with
the predicted type distribution of the raw data, i.e., without the removal, and RAVE+ output.
Across all BC types, we found that the predicted type distributions using RAVE+, compared
to the raw data, matched with the expected distributions from the EM dataset. We further
quantified these results using various metrics. Consequently, we concluded that RAVE+ is
indeed able to remove inter-experimental variability between the datasets and correctly
predicts cell type labels in the simulated dataset (Fig 9d, Appendix, Study II).

After this validation, we applied RAVE+ to the real experimental data using our pooled
large-scale dataset. Here, we also have partial information about the cell type information
provided by Dataset A only. As for the simulated data, we now wanted to use Dataset A to
predict cell type labels for Dataset B (Fig. 4; left). Similar to the simulated data, the t-SNE
embedding of the raw datasets showed that they do not overlap, and when training the
cell type classifier on Dataset A to predict type labels for Dataset B, we also found that this
information was not able to be transferred (Fig. 4; left). Hence, this is a strong indicator of
the presence of inter-experimental variability between these datasets. However, after the
application of RAVE+, the low-dimensional embedding showed a clear mixture of Dataset A and
B, as well as formed distinct cell type-specific islands (Fig. 4; right). As before, we leveraged
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the IPL depth information by comparing the EM type distribution with the predicted ones
from the raw dataset and RAVE+ output. As for the simulated data, RAVE+ showed clear
improvements of type predictions compared to the raw data only (Fig. 5, Appendix, Study
II); hence it allowed us to remove inter-experimental variability, while transferring type
information, making it an appropriate framework for such scenarios.

RAVE: Unsupervised Removal of Inter-experimental Variability

In contrast to the supervised version of RAVE(+), we may not have partial information about S
available for any of the datasets, i.e., no cell type labels. Such scenarios are common practice,
for example, when several experiments with the same or similar conditions are conducted and
pooled as large-scale dataset for further analyses. Here, the pooling process may introduce
inter-experimental variability, which may influence the overall outcome and interpretation of
downstream analyses. To this end, we developed the unsupervised version of RAVE, in which
the framework provides a reconstruction of the functional traces without inter-experimental
variability to simplify the merging process of such datasets.

To showcase the feasibility of such a downstream analysis after the removal of the inter-
experimental variability between Dataset A and Dataset B, we aimed to reproduce a specific
analysis on Dataset B that was previously performed on Dataset A. Here, the analysis revealed
a fundamental biological feature of BCs: visual full-field stimulation causes a decorrelation of
BC type responses in comparison to local stimulation as the inhibitory surround feedback,
driven by ACs, is activated (Franke et al., 2017). This has the consequence that BC types
sharing the same response polarity have high response correlations to a local stimulus, while
exhibiting a decorrelation to the full-field one. As this feature is essential for BC types, we
would expect to find this in Dataset B as well, since they share the underlying biological signal.
However, when training a classifier on the raw data to predict cell type labels for Dataset
B and then replicating the analysis, we did not find the expected feature to be presented,
and therefore failed to replicate the results (Fig. 6, Appendix, Study II). As described and
showed above, the subtle domain differences between the two datasets caused the presence
of inter-experimental variability; thus making it difficult to transfer information from Dataset
A to Dataset B. Yet, after the application of RAVE on the raw traces, we trained the classifier on
the reconstructed traces and repeated the analysis, revealing the existence of the fundamental
feature in Dataset B as expected.

Showcasing this, we were able to demonstrate the usage of RAVE in scenarios without addi-
tional information, such as cell type labels. Due to the successful removal of inter-experimental
variability from functional traces, pooling large-scale datasets in systems neuroscience may
produce more reliable results in the future as the domain shift can be minimized.

An Experimental Approach: Paired Control Recordings

Addressing the problem of inter-experimental variability in a theoretical manner may be
useful for datasets that were already recorded and now need to be pooled for further anal-
yses. Nevertheless, it would be advantageous to minimize and control such factors of
influence as far as possible already during the data acquisition process. In the aforementioned
showcased examples using RAVE(+), we revealed the existence and associated problems
of inter-experimental variability, which causes large discrepancies between datasets con-
taining the same underlying biological signal; thus making it difficult to reliably merge
them. However, studying drug-induced effects adds an extra layer of complexity as the
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expected signal modulation may be diverse and differential depending on the cell types
and the affected neural circuits. Therefore, tackling this issue experimentally may help to
minimize such factors as well as to distill drug-induced effects separately from potential
other factors. As a consequence, I proposed and validated a recording protocol to account for
biological/non-biological external factors and transfer those to drug-induced experiments.

To this end, I generated two datasets of sequentially recorded light-induced RGC re-
sponses, resulting in paired RGC responses: (i) a Ctrl-dataset in which RGC populations
were recorded twice without any pharmacological perturbation (Ctrl 1 & Ctrl 2), and (ii)
a Drug-dataset recorded in the same manner, but in which the drug is perfused to the ex
vivo retina before the second recording (Ctrl 1 & Drug) (Fig. 1, Appendix, Study III). The
Ctrl-dataset served the purpose of investigating if there are systematic and/or non-systematic
changes across RGC types, i.e., if all, only certain, or none of the RGC types show signal
modulations as a consequence of the sequential recordings. Then, the Drug-dataset was
used to study the drug-induced effects of the used pharmacological reagent. Notably, the
Drug-dataset also contains the potential systematic and/or non-systematic modulations in
addition to the drug-induced ones.

To identify functional types and study how each of these is affected, I applied the RGC
type classifier to the light-induced responses of the Ctrl 1 recordings, as these represent
the baseline activity without any additional manipulations. As described earlier, applying
the RGC type classifier on Ctrl 1 and Ctrl 2 of the Ctrl-dataset resulted in a discrepancy of
mapping types. To account for such potential time-dependent effects, I first computed the
differences between the Ctrl 1 and Ctrl 2 recordings of each cell. This provided a baseline
metric of non-drug-induced effects. Then, the same procedure was applied to the Drug-
dataset. Next, I computed the difference of the difference of the Ctrl- and Drug-dataset. Since
we would expect similar time-dependent effects for the same RGC types in both datasets,
computing this difference would eliminate the time-dependent effects from the Drug-dataset
and reveal only the actual drug-induced ones.

Usually, one may claim that this kind of recording procedure may be redundant since one
could simply perform a wash-out recording after the drug application. However, this was
not feasible in our recording setting as a third recording may result in a overall reduction of
the signal-to-noise ratio; thus reliable recordings and conclusions may be difficult to make.
Technically, this procedure can be applied to most functional recording experiments where
one can perform sequential recordings of the same neurons, such as patch-clamp or MEA
recordings. In the case of MEA, the procedure might be more challenging to apply as we do
not know if we deal with the same cells over time. As long as the detected waveforms of the
single neurons remain similar, this does not constitute a big hurdle. But if the application
of a neuromodulator, or any other drug, may influence the shape of the waveform, then the
spike sorting to separate neurons may cause the separation of neurons not by their location
on the array but rather by condition (e.g., Ctrl 1 & Drug) (Buccino et al., 2022). Also, those
time-dependent effects may be a consequence of the ex vivo condition of the tissue. It would
be interesting to test if neurons display such time-dependent changes in the in vivo setting.

In summary, I proposed a recording protocol to account for time-dependent effects by
recording a Ctrl-dataset that grasps cell type-specific effects, which can be transferred to a
Drug-dataset recorded in the same manner. This allows us to untangle such effects from
drug-induced ones. In the next section, I describe and discuss the results of this procedure
on a showcased example of how the neuromodulator nitric oxide (NO) affects the retinal
output, how this recording protocol revealed type-specific time-dependent effects, as well
as why this may be useful for future research on neuromodulatory effects and even other
pharmacological reagents.
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Case Study: Nitric Oxide and its Effects on the Retinal Output

I began this thesis by highlighting the importance of studying neuromodulatory effects on
neural circuits and that we need to investigate them in detail on a systematic level. The so
far presented sections provided the tools to study those effects on the retinal output signal.
Therefore, for the final part of my thesis, I bring together the individual parts of my research
in one case study in which I elaborate on how I use these tools to study the effects of the
neuromodulator NO and its implications on the signal of the diversity of RGC types.

Nitric Oxide: A Double-edged Sword

Nitric oxide (NO) is a gaseous signaling molecule, also termed a gasotransmitter, that exhibits
a broad spectrum of physiological functions across various biological systems (Snyder and
Bredt, 1992; Bruckdorfer, 2005). The most prominent example of its physiological function is
its action as vasodilator to cause a dilation of smooth muscle cells in blood vessels (Knowles
and Moncada, 1992). However, NO is also vastly found across the central and peripheral
nervous system, where it mainly acts as a neuromodulator to alter the activity of neural circuits
(Bredt and Snyder, 1990; Garthwaite, 2008). To synthesize NO, it requires the enzymatic
conversion of L-arginine by nitric oxide synthase (NOS) into NO and L-citrulline (Alderton
et al., 2001; Daff, 2010). For this process, additional cofactors such as NADPH, oxygen and
calcium (depending on the isoform) are required to catalyze this reaction. Overall, there
are three different isoforms of NOS: (i) calcium-dependent neuronal NOS (nNOS), which
is mainly expressed in neurons, (ii) inducible NOS (iNOS) expressed during pathological
and inflammatory states, and (iii) endothelial NOS (eNOS) mostly expressed in the vascular
endothelium such as blood vessels.

Within the retina, nNOS constitutes the dominant isoform in the context of visual signal
processing to produce NO (Dawson et al., 1991; Tsumamoto et al., 2002). The production
of NO via nNOS is triggered by the calcium influx into the cell under the regulation of
calmodulin. The enzyme nNOS is present in various retinal cell classes, although in mice,
nNOS is mainly found in the inner retina (Vielma et al., 2012). In particular, nNOS is primarily
expressed in a subgroup of ACs (Dawson et al., 1991), namely nNOS1-ACs and nNOS2-ACs,
whereby it was shown that nNOS2-ACs are the dominant source of NO in a light-dependent
manner (Jacoby et al., 2018).

NO has two modes of actions to modulate neural activity: (i) NO can activate solu-
ble guanylate cyclase (sGC/NO-GC) and thereby trigger an intracellular signaling cascade
increasing the concentration of the second messenger cGMP, which in turn will cause down-
stream modulations of several target proteins (Garthwaite, 2005), and (ii) S-nitrosylation
(cGMP-independent), in which NO directly binds to and nitrosylates specific receptors, ion
channels and proteins to modulate, for example, neurotransmitter release (Ahern et al., 2002;
Hess et al., 2005; Knott and Bossy-Wetzel, 2009). From these two signaling pathways, the
former one is thought to represent the main mode of how NO operates within the retina.

To date, there is no comprehensive view of the functionality and effects of NO on the
retinal signal processing, even though the signaling pathway was studied in depth (e.g., Blom
et al., 2012). Like the neuromodulator dopamine, the effects of NO are essentially associated
with mechanisms of light adaptation, whereby it was discussed why the retina needs two
light adaptational systems (Jacoby et al., 2018). Researcher hypothesized that dopamine is
responsible for light adaptation on the time-scale of the circadian rhythm, i.e., throughout the
day, whereas NO rather facilitates light adaptation over a short time-scale by affecting and
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modulating the signal transmission between the scotopic and photopic pathways (Nir et al.,
2000). It was shown that NO can regulate these pathways using several mechanisms such
as decoupling of gap junctions between On-CBs and the AII, which is the intersection of the
rod- and cone-pathway (Mills and Massey, 1995). In addition, NO modulates the temporal
response properties of CBCs in scotopic conditions by altering the response gain of Off-CBCs
(Vielma et al., 2014) and increasing the one of On-CBCs to extend their operational response
spectrum (Nawy and Jahr, 1990; Snellman and Nawy, 2004).

In comparison, studies on the effects of NO to modulate the retinal output are rare and
mainly focus on a handful of cells in a more cell type-unspecific way by investigating On-
and Off-RGCs. Here, it was found that NO may decrease the response strength of On- and
Off types, yet not resolved on type-level (Wang et al., 2003).

As a consequence, I sought to tackle this issue and describe a case study in the next section,
in which I analyze NO-induced effects from a global perspective using a population-based
and cell type-resolved approach.

Nitric Oxide Mediates Differential Effects in Mouse Retinal Ganglion Cells

So far, the majority of research studying the effects of neuromodulators in the retina mainly
focused on the localization of producing enzymes, receptors, and circuit mechanisms. How-
ever, studying the functional implications of neuromodulators on the retinal output, i.e., on
RGC level, are rare. A recent publication studied the effects of dopamine on RGC type-level
(Warwick et al., 2023), and other research groups mainly focused on analyzing neuromodula-
tory effects on single-cell level (Wang et al., 2003), however no study investigated the effects
of NO on population level, yet. Since RGCs encode the visual world in a diversity of parallel
feature channels represented by various types and not as a uniform signal, resolving the
retinal output signal down to cell type-level is key to understand early vision. Due to this
vast diversity of RGC types, we hypothesized that NO may have differential effects across
functional types.

To test this hypothesis, I employed two-photon calcium imaging of RGC populations
(Baden et al., 2016; Euler et al., 2019). For this, I expressed the synthetic fluorescent calcium
indicator Oregon Green-BAPTA 1 in the GCL using bulk electroporation (Briggman and
Euler, 2011) and displayed various light stimuli. Here, I mainly used the full-field chirp and
moving bar stimuli as they were needed for the functional classification using the RGC type
classifier. To account of potential time-dependent effects, I employed the earlier described
paired recording protocol, in which I recorded two separated paired datasets: (i) Ctrl-dataset
(Ctrl 1 & Ctrl 2) without pharmacological manipulation, and (ii) NO-dataset (Ctrl & NO),
whereby DETA/NO (NO-donor) was added before the second recording (Fig. 1, Appendix,
Study III). For the functional identification of the different types, I applied the previously
described RGC type classifier exclusively on the responses to the chirp and moving bar
stimulus of the first recordings of both datasets (Ctrl 1, Fig. 2, Appendix, Study III). This was
necessary as these responses represent the baseline activity of the cell types and are neither
influenced by time-dependent nor NO-induced effects (depending on the dataset).

After the cell type classification, the first step was to investigate the response stability
between two recordings in the absence of pharmacological perturbation using the Ctrl-dataset.
To account for systematic and/or specific time-dependent changes, I employed the paired
recording protocol as described earlier. While computing the type-specific differences between
the paired responses of the Ctrl-dataset, I found that the majority of types across all five
larger RGC groups (Off, On-Off, Fast On, Slow On & Uncertain RGCs) exhibited response
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modulations, which we termed adaptational cell type-specific changes (Fig. 3, Appendix, Study
III).

Next, I repeated this analysis for the NO-dataset and compared the results with the
findings of the Ctrl-dataset. Surprisingly, almost all types that displayed such type-specific
changes in the Ctrl-dataset, i.e., an increase or decrease in their activity during the second
recording, also showed the same trend in the NO-dataset. Looking at these results, I saw that
those effects were actually not induced by NO per se. Even if NO did not exhibit a broad,
systematic effect across RGC types, this finding constitutes an important step towards in
studying such drugs as we can now identify apparent drug-induced effects from our data.

However, even if almost all types did not show NO-induced effects, there was still one type
that exhibited stable responses during the control recordings, yet displayed a clear activity
increase during the NO-perfused condition. This type is part of the subgroup ‘Uncertain
RGCs’ and is termed ‘Off suppressed-by-contrast 2’ (G32) (Baden et al., 2016). Its characteristic
feature is a high baseline activity that gets suppressed in the presence of light onsets. To
analyze the adaptational cell type-specific changes and the NO-induced effects on a more
detailed level, I decomposed the responses to the chirp and moving bar into 8 features (six
features for the chirp and two for the moving bar) (Fig. 4, Appendix, Study III). By computing
the feature-wise difference between types for the Ctrl- and NO-datasets, I found that these
adaptational cell type-specific changes were very accurate and replicable. To eliminate, and
thus disentangle the influence of these type-specific changes from the NO-induced effects, I
subtracted the type-wise differences of the Ctrl-dataset from the differences of the NO-dataset.
As a consequence, only NO-induced effects may remain as the time-dependent changes
were supposed to be the same across datasets. Overall, I found that G32 was still the only
candidate exhibiting NO-induced effects across all relevant features. Interestingly, from Baden
et al. (2016), we could speculate that G32 may comprise more than just one type, but three
subtypes due to its coverage factor of >2. As a consequence, I pooled the chirp and moving
bar responses of RGCs classified as G32 of the Ctrl 1 recordings from both the Drug- and
Ctrl-dataset pairs and performed a functional clustering (Fig. 5, Appendix, Study III). To this
end, I extracted the visual features using sparse principal component analysis (Zou et al., 2006)
and then performed Mixture of Gaussian (Reynolds et al., 2009) on the standardized features.
By testing several models with different numbers of clusters, initializing the process multiple
times and computing the average Bayesian Information Criterion (BIC) for each model (Neath
and Cavanaugh, 2012), the model with the lowest BIC was selected. The clustering resulted in
three distinct clusters for G32, matching with the proposed number of clusters in Baden et al.
(2016). Next, I compared each cluster with the Ctrl 2 and DETA/NO condition separately.
Here, I found for the Ctrl-dataset that the three clusters showed stable responses across
recordings, whereas in the NO-dataset the clusters mostly lost their characteristic feature of
being suppressed-by-contrast. However, all three clusters, likely being three RGC subtypes
based on the coverage factor of G32, exhibited different levels of excitation, indicating a more
differential effect of NO on this subgroup of RGCs.

This finding was surprising as NO is vastly prominent in the inner retina, yet only one
distinct type, and its subtypes, is modulated in its response to temporal stimuli. Next, I sought
to investigate if NO may modulate RGC types in their spatial domain by recording their
responses to binary dense noise to compute their spatial receptive fields (sRFs) using spike-
triggered averages (STA) (Chichilnisky, 2001) (Fig. 6, Appendix, Study III). Interestingly, when
comparing sRF diameter and surround index differences between Ctrl and NO conditions of
paired RGC types, I found that they were highly stable across RGC types. Consequently, this
may imply that NO has a distinct modulatory effect on a subgroup of RGCs in their temporal
response domain.
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In summary, I systematically investigated the effects of NO on the RGC signal processing
on cell type-level. For this, we used the RGC type classifier we developed for a previous study
and the paired control recording protocol. The classifier enabled us to resolve those effects on
cell type-level, whereas the recording protocol helped us to identify time-dependent effects
and then disentangle those effects from NO-induced ones. This experimental pipeline can
now be applied to any kind of neuromodulator in the context of the retinal output signal.
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Discussion

In this thesis, the overall aim was to establish an experimental and computational pipeline to
uncover the neuromodulatory effects of NO on the retinal output signal. Neuromodulators
have major influences on neural circuits dynamics, yet with common tools, their contribution
and implications are often neglected, which may cause knowledge gaps when studying such
systems on a functional level. Therefore, the here presented tools and findings shed light on
the importance of their function and potential pitfalls when studying their pathways and
interactions within a system.

In Study I, we developed an RGC type classifier that enables a fast and reliable identifi-
cation of functional RGC types recorded using two-photon calcium imaging and two light
stimuli. In the context of studying neuromodulatory effects in the retina, cell type-resolved
analyses provide a crucial aspect due to the potentially specific and diverse functionality of
neuromodulators on the RGC type diversity. To date, other studies that investigate effects on
RGC type population level either performed clustering approaches followed by matching the
individual clusters to known types using references such as rgctypes.org (Goetz et al., 2022;
Goldin et al., 2022; Warwick et al., 2023) or identified RGC types based on their receptive
field characteristics (Shi et al., 2019). Yet, in most cases, using a more standardized procedure
such as a RGC type classifier as ours would simplify and unify functional RGC typing in a
way that researchers in the field would be able to identify the same types across experimental
approaches.

In Study II, and partly Study III, we addressed the problem of pooling datasets and sequen-
tial recordings of the same cells. Because we studied the effect of a particular neuromodulator,
one has to perform control measurement as baseline and then add the neuromodulator of
interest to observe its effect on the system. Therefore, sequential recordings and pooling of
data are necessary proceedings to conduct. Usually, the majority of studies either perform ad-
ditional wash-out recordings after the drug-perfused one or simply record the drug-condition
without a wash-out, assuming the observed behavior being exclusively induced by the drug.
However, our paired recording protocol clearly showed that, at least under our experimental
conditions, such assumptions would lead to apparent drug-induced effects for the majority
of RGC types, i.e., effects that are not caused by the drug of interest, but the experimental
conditions and adapational effects. Our first approach to remove such inter-experimental
variabilities from a pooled dataset in a theoretical framework using RAVE(+) outperformed
existing algorithms. The framework adds important value to the field of systems neuroscience
as researchers can merge datasets and potentially detect more subtle effects that may be
obscured by inter-experimental variability otherwise. Yet, its application may be limited to
datasets with the same underlying biological signal; hence we were not able to apply RAVE(+)

in its current setting onto the NO-dataset. The biggest drawback here is that the underlying
biological signal of interest, i.e., light-evoked responses, between Ctrl 1 and NO may not
be the same; hence RAVE(+) may remove actual drug-induced effects by trying to match the
datasets. Nevertheless, adapting RAVE(+) in the way that it learns the mapping between
Ctrl 1 and Ctrl 2 of the Ctrl-dataset may support transferring information onto Ctrl 1 and NO
to allow a removal of the underlying inter-experimental variability without the removal of
the drug-induced effects. This approach is partly similar to the paired recording protocol,
yet it does not constitute a linear procedure and could therefore highlight even more subtle
differences. Another approach to resolve drug-induced effects on a continuous time axis in
such a setting would make use of Gaussian processes (GP). In their study, Rogerson et al.
(2019) used this approach to compute the model difference of responses between two similar
stimuli to estimate if and where these signals are different. This is analogous to our recording
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protocol and may enable a precise estimate of which features are affected by time-dependent
and drug-induced effects in a non-linear manner. However, to properly compute GPs, the
sampling rate of the responses need to be higher than the one used in our study, otherwise
it is difficult to estimate the uncertainty in between the single recording points. To solve
this issue, we could employ a different recording configuration as suggested by Rogerson
et al. (2019). However, since we wanted to make use of the RGC type classifier, we had to
record the data in this particular configuration; thus a GP analysis was therefore not easily
possible. Nevertheless, we were able to develop and validate necessary tools to address
several keystone aspects to study neuromodulatory effects in the retina.

In the final part of my thesis, I summarized the results of Study III, in which we put the
previously developed methods together to study the functional effects of the neuromodulator
NO on the retinal output at cell type-resolution, while accounting for time-dependent effects.
In our study, we had two main findings: (i) one third of the RGC types showed cell type-
specific temporal adaptations already without pharmacological manipulation, and (ii) NO
seemed to affect a distinct group of RGC types in a differential manner. The former finding
was discussed above, however, the later one was surprising to us as NO and its receptors are
vastly expressed and released throughout the inner retina (Vielma et al., 2014), yet mainly
affecting the functionality of one particular subgroup. Interestingly, the neuromodulator
dopamine was shown to act via distinct signaling pathways to differentially modulate the
receptive field structures of specific RGC types (Warwick et al., 2023). Even though they
found differential effects across specific types, not all RGC types were affected by dopamine,
indicating type-specific effects, which is in line with our findings on NO. Indeed, we found
NO induced functional modulation operating on a cell type-specific level, yet the underlying
mechanisms remain to be investigated further. Due to the two parallel pathways of NO (sGC-
cGMP and S-nitrosylation), further experiments are needed to disentangle those pathways.
Here, two experimental approaches may be suitable. To investigate if NO functions via
the cGMP-dependent pathway, one may block the sGC/NO-GC receptors using ODQ and
then add the NO-donor to the system. If the previously observed effects still occur, one
could speculate that the neuromodulatory effects are signaled through S-nitrosylation, the
cGMP-independent pathway. Otherwise, the likelihood for the cGMP-dependent pathway as
the main signaling pathway is increased. To verify this, dual-imaging of cGMP and calcium
may be useful. To this end, one could use the specific transgenic mice line cGi500, which
ubiquitously expresses a FRET-based cGMP-sensor (Thunemann et al., 2013), and combines
it with bulk electroporation of a calcium indicator (Briggman and Euler, 2011). The calcium
imaging would allow the identification of different RGC types using the RGC type classifier
as well as to correlate calcium signals with cGMP signal modulations. First preliminary
experiments and data suggest a differential and cell type-specific modulation of cGMP within
the GCL.

An additional aspect to consider is the concentration of the NO-donor, DETA/NO, which
in our study, at the first glance, lays outside the proposed endogenous physiological range
(Eldred and Blute, 2005). Starting such an approach with higher concentrations in this
experimental setting is useful as we had to overcome several barriers to highlight potential
effects. Moreover, one needs to take into account that NO, even though bound as DETA/NO
exhibiting a half-life time of ∼24 hours at normal physiological temperature (Hanson et
al., 1995), is a gas; thus the actual concentration locally in the tissue is likely much lower.
Moreover, since we used a whole-mount preparation of the ex vivo intact retina, NO may take
more time to diffuse into the tissue compared to a vertical slice preparation, which may affect
the final concentration as well, yet it mimics the natural conditions by keeping the entire
retinal network intact.
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To map the individual functional RGC types, we had to make use of two artificial stim-
uli, i.e., chirp and moving bar. In general, the usage of artificial stimuli provides several
advantages such as a standardized stimulus feature space and fairly straightforward analyses.
However, their stimulus space is limited and could be extended by using natural stimuli to
approximate more natural conditions in which neuromodulators are released and function
(Qiu et al., 2021). A recent study by Höfling et al. (2022) used a joint approach, in which they
trained a neural network on RGC responses to natural movies. Here, they showed that a
distinct RGC type is mainly responsible for the visual transition from ground scenes to sky
scenes. Using artificial stimuli, this finding would probably not have been discovered in this
way. To this end, such an approach seems promising and should be employed when studying
neuromodulators in the retina.

In summary, in this thesis, I aimed to shine light on the importance of studying neuromod-
ulators in the context of visual signal processing. Neuromodulators certainly add complexity
to the overall functionality of neural circuits that may be neglected or simplified otherwise.
To this end, I demonstrated how a joint experimental and computational approach enables
a precise analysis of their functional implications for vision considering several experimen-
tal pitfalls. Especially, causing awareness of potential inter-experimental variability when
merging datasets as well as adaptational effects in such pharmacological studies should
contribute to the field in a way that researchers may be careful when interpreting such data.
Further advances in experimental and computational techniques will broaden the picture of
neuromodulators in the future.
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Efficient coding of natural scenes improves neural system iden-
tification

Yongrong Qiu, David A. Klindt, Klaudia P. Szatko, Dominic Gonschorek, Larissa Hoefling,
Timm Schubert, Laura Busse, Matthias Bethge, Thomas Euler (2023). PLOS Computational
Biology, 19(4), e1011037. published, see Appendix, Study I.

Abstract: Neural system identification aims at learning the response function of neurons to
arbitrary stimuli using experimentally recorded data, but typically does not leverage norma-
tive principles such as efficient coding of natural environments. Visual systems, however,
have evolved to efficiently process input from the natural environment. Here, we present
a normative network regularization for system identification models by incorporating, as a
regularizer, the efficient coding hypothesis, which states that neural response properties of
sensory representations are strongly shaped by the need to preserve most of the stimulus
information with limited resources. Using this approach, we explored if a system identifica-
tion model can be improved by sharing its convolutional filters with those of an autoencoder
which aims to efficiently encode natural stimuli. To this end, we built a hybrid model to
predict the responses of retinal neurons to noise stimuli. This approach did not only yield
a higher performance than the ªstand-aloneº system identification model, it also produced
more biologically plausible filters, meaning that they more closely resembled neural rep-
resentation in early visual systems. We found these results applied to retinal responses to
different artificial stimuli and across model architectures. Moreover, our normatively reg-
ularized model performed particularly well in predicting responses of direction-of-motion
sensitive retinal neurons. The benefit of natural scene statistics became marginal, however,
for predicting the responses to natural movies. In summary, our results indicate that effi-
ciently encoding environmental inputs can improve system identification models, at least
for noise stimuli, and point to the benefit of probing the visual system with naturalistic stimuli.

Contributions: Methodology and software development of the retinal ganglion cell type
classifier, data visualization, writing and editing of the manuscript.
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Removing Inter-Experimental Variability from Functional Data
in Systems Neuroscience

Dominic Gonschorek*, Larissa Hoefling*, Klaudia P. Szatko, Katrin Franke, Timm Schubert,
Benjamin Dunn, Philipp Berens, David Klindt, Thomas Euler (2021). Advances in Neural
Information Processing Systems (NeurIPS 2021), 34, 3706-3719. published, see Appendix, Study
II.

Abstract: Integrating data from multiple experiments is common practice in systems neuro-
science but it requires inter-experimental variability to be negligible compared to the biological
signal of interest. This requirement is rarely fulfilled; systematic changes between experi-
ments can drastically affect the outcome of complex analysis pipelines. Modern machine
learning approaches designed to adapt models across multiple data domains offer flexible
ways of removing inter-experimental variability where classical statistical methods often fail.
While applications of these methods have been mostly limited to single-cell genomics, in this
work, we develop a theoretical framework for domain adaptation in systems neuroscience.
We implement this in an adversarial optimization scheme that removes inter-experimental
variability while preserving the biological signal. We compare our method to previous ap-
proaches on a large-scale dataset of two-photon imaging recordings of retinal bipolar cell
responses to visual stimuli. This dataset provides a unique benchmark as it contains biological
signal from well-defined cell types that is obscured by large inter-experimental variability.
In a supervised setting, we compare the generalization performance of cell type classifiers
across experiments, which we validate with anatomical cell type distributions from electron
microscopy data. In an unsupervised setting, we remove inter-experimental variability from
data which can then be fed into arbitrary downstream analyses. In both settings, we find that
our method achieves the best trade-off between removing inter-experimental variability and
preserving biological signal. Thus, we offer a flexible approach to remove inter-experimental
variability and integrate datasets across experiments in systems neuroscience. Code available
at https://github.com/eulerlab/rave.

Contributions: Conceptualization, data analysis, co-development of the theoretical frame-
work, data visualization, writing and editing of the manuscript, manuscript revision.
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Nitric oxide mediates different effects in mouse retinal gan-
glion cells

Dominic Gonschorek, Tom Schwerd-Kleine, Jonathan Oesterle, Ryan Arlinghaus, Zhijan
Zhao, Timm Schubert, Thomas Euler (2023). in preparation, see Appendix, Study III.

Abstract: Neural system identification aims at learning the response function of neurons to
arbitrary stimuli using experimentally recorded data, but typically does not leverage norma-
tive principles such as efficient coding of natural environments. Visual systems, however,
have evolved to efficiently process input from the natural environment. Here, we present
a normative network regularization for system identification models by incorporating, as a
regularizer, the efficient coding hypothesis, which states that neural response properties of
sensory representations are strongly shaped by the need to preserve most of the stimulus
information with limited resources. Using this approach, we explored if a system identifica-
tion model can be improved by sharing its convolutional filters with those of an autoencoder
which aims to efficiently encode natural stimuli. To this end, we built a hybrid model to
predict the responses of retinal neurons to noise stimuli. This approach did not only yield
a higher performance than the ªstand-aloneº system identification model, it also produced
more biologically plausible filters, meaning that they more closely resembled neural rep-
resentation in early visual systems. We found these results applied to retinal responses to
different artificial stimuli and across model architectures. Moreover, our normatively reg-
ularized model performed particularly well in predicting responses of direction-of-motion
sensitive retinal neurons. The benefit of natural scene statistics became marginal, however,
for predicting the responses to natural movies. In summary, our results indicate that effi-
ciently encoding environmental inputs can improve system identification models, at least
for noise stimuli, and point to the benefit of probing the visual system with naturalistic stimuli.
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Abstract

Neural system identification aims at learning the response function of neurons to arbitrary

stimuli using experimentally recorded data, but typically does not leverage normative princi-

ples such as efficient coding of natural environments. Visual systems, however, have

evolved to efficiently process input from the natural environment. Here, we present a norma-

tive network regularization for system identification models by incorporating, as a regulari-

zer, the efficient coding hypothesis, which states that neural response properties of sensory

representations are strongly shaped by the need to preserve most of the stimulus informa-

tion with limited resources. Using this approach, we explored if a system identification model

can be improved by sharing its convolutional filters with those of an autoencoder which aims

to efficiently encode natural stimuli. To this end, we built a hybrid model to predict the

responses of retinal neurons to noise stimuli. This approach did not only yield a higher per-

formance than the “stand-alone” system identification model, it also produced more biologi-

cally plausible filters, meaning that they more closely resembled neural representation in

early visual systems. We found these results applied to retinal responses to different artifi-

cial stimuli and across model architectures. Moreover, our normatively regularized model

performed particularly well in predicting responses of direction-of-motion sensitive retinal

neurons. The benefit of natural scene statistics became marginal, however, for predicting

the responses to natural movies. In summary, our results indicate that efficiently encoding

environmental inputs can improve system identification models, at least for noise stimuli,

and point to the benefit of probing the visual system with naturalistic stimuli.

Author summary

Computational models use experimental data to learn stimulus-response functions of

neurons, but they are rarely informed by normative coding principles, such as the idea
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that sensory neural systems have evolved to efficiently process natural stimuli. We here

introduce a novel method to incorporate natural scene statistics to predict responses of

retinal neurons to visual stimuli. We show that considering efficient representations of

natural scenes improves the model’s predictive performance and produces biologically-

plausible receptive fields, at least for responses to noise stimuli. Generally, our approach

provides a promising framework to test various (normative) coding principles using

experimental data for understanding the computations of biological neural networks.

Introduction

In the past years, advances in experimental techniques enabled detailed, large-scale measure-

ments of activity at many levels of sensory processing [1]. As a consequence, neural system

identification (SI) approaches have flourished (Fig 1a top). They empirically fit the stimulus-

response (transfer) function of neurons based on experimentally recorded data [2–4]. A classic

example is the generalized linear model (GLM, [2, 5]), which consists of a linear filter as a first

order approximation of a neuron’s response function (i.e., its receptive field; [6]), followed by

a point-wise nonlinear function for the neuron’s output. To account for additional non-linear-

ities (e.g., [7, 8]), several extensions, such as linear-nonlinear cascades [9, 10], have been pro-

posed. More recently, deep neural network-based SI approaches inspired by the hierarchical

processing along the visual pathway [11, 12] have been developed (reviewed in [13–17]).

While SI methods became particularly successful in predicting responses of visual neurons

[18–22], they often require large amounts of training data and, more critically, do rarely con-

sider adaptions to the natural environment.

Fig 1. Illustration of our hybrid model combining SI and EC. a. Illustration of two common approaches to studying visual systems: system
identification, symbolized by the green-labeled branch, aims at predicting responses of neuronal circuits (black rectangle) to specific stimuli, whereas
efficient coding (purple-labeled branch) seeks working out principles of the visual system based on environmental statistics. As these two approaches are
rarely combined in a single modeling framework, their potential synergies remain largely unexplored. b.Our hybrid modeling approach combines
system identification (green) and efficient coding (purple) in a single model with shared filters (red circle) to predict neural responses to arbitrary visual
stimuli.

https://doi.org/10.1371/journal.pcbi.1011037.g001
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However, like other senses, vision has evolved to promote a species’ survival in its natural

environment [23], which is thought to have driven visual circuits to efficiently represent infor-

mation under a number of constraints, including metabolic limits and space restrictions [24,

25]. As a consequence, the visual system has adapted to natural statistics, as shown, for exam-

ple, by the fact that the distribution of orientation preferences of visual neurons mirrors the

dominance of cardinal orientations in natural scenes [26–28].

Such adaptations are at the heart of efficient coding (EC) approaches (Fig 1a bottom): They

derive algorithmic principles underlying neural systems from the statistical properties of natu-

ral stimuli and by incorporating biological constraints [15, 24, 25, 29–31]. Here, one popular

strategy starts from the assumption that early visual processing serves to decorrelate the redun-

dant signals in natural environments [32–34]. This theory can reproduce feature selectivity,

e.g., difference-of-Gaussian (DoG) kernels that have similar receptive field (RF) properties as

retinal ganglion cells (RGCs) [35]. Recently, deep neural network-augmented EC approaches

were proposed, such as convolutional autoencoders [36, 37], which are trained to optimally

reconstruct inputs in the presence of an information “bottleneck” (i.e., from a constrained

latent representation). Such convolutional autoencoders have been shown to yield center-sur-

round spatial RFs with similar properties as those observed in RGCs when encoding either

pink (1/f) noise or natural scenes [38, 39]. A downside of EC is that it is not always straightfor-

ward to experimentally measure coding efficiency and feature selectivity predicted by these

approaches in neural systems (discussed in [40, 41]) and, hence, the interpretation of EC mod-

els with respect to the biological underpinnings remains challenging.

Notably, the intersection between EC and SI has long remained largely unexplored but

lately shifted into focus. For instance, Młynarski and colleagues recently proposed a theoretical

framework incorporating normative theories for statistical inference on simulated or pre-fit

neural data [42]. Their framework enables conducting rigorous statistical hypothesis tests of

coding principles, but has not yet been applied to predicting neural responses to arbitrary sti-

muli with minimal assumptions.

Here, we tested whether the EC hypothesis can serve as a useful regularization for learning

the response functions of neurons. To do so, we built a hybrid model combining a SI branch

with an EC branch, forced the two branches to share filters (Fig 1b), and asked if knowledge

about natural scene statistics could help predicting retinal responses. To this end, we experi-

mentally recorded Ca2+ signals of neurons in the mouse retina while presenting it with noise

stimuli. We then used the responses to train the SI branch, which aimed to predict retinal

responses. We used natural movies that we recorded in mouse habitats outdoors to train the

EC branch, which aimed to represent natural scenes efficiently [39]. We found a synergy

between neural prediction and natural scene statistics: First, for noise stimuli, the hybrid

approach had a better predictive performance than a pure SI approach. Second, compared to

the SI model, the hybrid model produced filters with a clearer center-surround RF structure,

akin to RFs at early visual processing stage. However, we did not observe such a synergy for

the prediction of responses to natural movies. Our results demonstrate that predicting sensory

responses, in particular to noise stimuli, benefits from considering adaptations to the natural

environment, and thus highlights the benefits of naturalistic stimuli for vision research.

Materials andmethods

Ethics statement

All procedures were performed in accordance with the law on animal protection issued by the

German Federal Government (Tierschutzgesetz) and approved by the institutional animal wel-

fare committee of the University of Tübingen.
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Animal procedures and retinal activity recordings

Animal procedures. We used n = 5, 5–9 weeks old female C57BL/6 mice (wild-type; JAX

000664, Jackson Laboratory, USA). Due to the exploratory nature of our study, we did not use

any statistical methods to predetermine sample size, nor did we perform blinding or randomi-

zation. Animals were housed under a standard light-dark (12h:12h) cycle. All procedures were

carried out under very dim red illumination (>650 nm). Prior to the start of the experiment,

animals were dark-adapted for�1 h, then anesthetized with isoflurane (Baxter, Germany),

and killed by cervical dislocation.

The eyes were enucleated and hemisected in carboxygenated (95% O2, 5% CO2) artificial

cerebrospinal fluid (ACSF) solution containing (in mM): 125 NaCl, 2.5 KCl, 2 CaCl2, 1

MgCl2, 1.25 NaH2PO4, 26 NaHCO3, 20 glucose, and 0.5 l-glutamine (pH 7.4). Next, the retina

was flat-mounted onto an Anodisc (#13, 0.1 μm pore size, GE Healthcare, Germany) with the

ganglion cell layer (GCL) facing up. To uniformly label the GCL cells, bulk electroporation

was performed with the fluorescent Ca2+ indicator Oregon-Green BAPTA-1 (OGB-1; Invi-

trogen, Germany), as described earlier [43, 44], using 4-mm plate electrodes (CUY700P4E/L,

Xceltis, Germany) and 9 pulses (*9.2 V, 100 ms pulse width at 1 Hz). After electroporation,

the tissue was immediately moved to the microscope’s recording chamber, where it was con-

tinuously perfused with carboxygenated ACSF at*36˚C and left to recover for*30 min

before recordings started. Additionally, Sulforhodamine-101 (SR101, Invitrogen, Germany)

was added to the ACSF (*0.1 μM final concentration) to visualize blood vessels and identify

damaged cells.

Two-photon Ca2+ recordings and light stimulation. We recorded light stimulus-

evoked Ca2+ signals in GCL cells of the explanted mouse retina using a MOM-type two-pho-

ton (2P) microscope [45, 46] from Sutter Instruments (purchased from Science Products,

Germany), as described earlier [44, 47]. In brief, the microscope was powered by a mode-

locked Ti: Sapphire laser (MaiTai-HP DeepSee, Newport Spectra-Physics, Germany) at 927

nm. Two detection pathways allowed simultaneously recording of OGB-1 and SR101 fluores-

cence (HQ 510/84 and HQ 630/60, respectively; both Chroma/AHF, Germany) through a

16x water immersion objective (CFI75 LWD16 /0.8W, DIC N2, Nikon, Germany). A cus-

tom-written software (ScanM, by M. Müller and T.E.) running under IGOR Pro 6.3 for Win-

dows (Wavemetrics, USA) was used to acquire time-lapsed (64x64 pixels) image scans at a

frame rate of 7.8125 Hz. Higher resolution images were acquired using 512x512 pixel scans.

Additionally, to register the scan field positions, the outline of the retina and the optic disc

were traced.

The retinas were presented with color noise stimulus using a visual stimulator tuned to the

spectral sensitivities of mice [48]. This stimulus consisted of independent binary dense noise

(28x28 pixel frames, each pixel covering (0.83˚)2 of visual angle) in the UV and green stimula-

tor channels at 5 or 30 Hz. The stimulus contained 5 different training sequences (96 s each)

interspersed with 6 repeats of a 10 s test sequence (S1(a) Fig).

In total, we used four data sets for modeling: (i) responses of n = 96 GCL neurons to 5-Hz

noise recorded in dorsal retina (n = 2 eyes); (ii) responses of n = 427 GCL neurons to 5-Hz

noise recorded ventrally (n = 5 eyes); in this dataset, we also presented two other stimuli: a

full-field chirp (700 μm in diameter) and a moving bar stimulus (300x1,000 μm bright bar

moving at 8 directions at 1 mm/s). The responses to these latter stimuli were used to function-

ally classify the recorded GCL neurons [47]. (iii) n = 64 GCL neurons to 30-Hz noise recorded

ventrally (n = 2 eyes). (iv) n = 86 GCL neurons to 30-Hz natural movie recorded ventrally

(n = 1 eye). All cell numbers are after quality control (see below).
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Data preprocessing and analysis. For each cell, we calculated a quality index (QI, with 0

� QI� 1) for its responses to each stimulus type as follows:

QI ¼ Var½E½C�r�t=E½Var½C�t�r ð1Þ

where C is a t-by-r response matrix (time samples, t, by repetitions, r). The higher QI, the

more reliable the response and the higher the signal-to-noise ratio. For the noise stimulus,

QInoise was determined based on the test sequence responses. For the following analysis, we

only used cells with QInoise> 0.25; in case chirp and moving bar responses were also recorded,

neurons had to fulfill QIchirp> 0.35 or QIbar> 0.6 to be included.

In case of the noise stimulus, we preprocessed each cell’s Ca2+ signal by Z-normalizing the

raw traces and matching sampling frequency of the recording (7.8125 Hz) to the stimulus fre-

quency (5 or 30 Hz) via linear interpolation. Then, the traces were detrended using a high-pass

filter (> 0.1 Hz) and their 1st order derivatives were calculated, with negative values set to zero.

We used the average of a cell’s responses to the 6 test sequence repeats as ground truth. Exclud-

ing the test sequences, we had per cell a total of 480 s of data, of which we used 440 s (*91%)

for training and the remaining 40 s (*9%) for validation (i.e., to pick the hyperparameters of

the SI model, see below).

For the responses to the natural movie stimulus, we used the average of a cell’s responses to

the 3 test sequence repeats as ground truth. Excluding the test sequences, we had per cell a

total of 540 s of data, of which we used 433 s for training and the remaining 107 s for valida-

tion. Note that as input for the models, we down-sampled the natural movie stimulus to 36x32

pixel frames to match it to the resolution of the noise stimulus.

For chirp and moving bar responses, we first detrended the traces and then normalized

them to [0, 1] [44]. Using these responses, the cells were classified to different functional

groups [47] using RGC type classifier (see below).

To estimate the directional tuning from the moving bar responses, we first performed sin-

gular value decomposition (SVD) on the mean response matrix, resulting in a temporal and a

directional component. We then summed the directional vectors in 2D planes and used the

resulting vector length as direction selectivity index. Next, by shuffling trial labels and comput-

ing the tuning curve for 1,000 times (permutation test), we got the null distribution (no direc-

tional tuning). The percentile of true vector length was used as p-value of directional tuning

[47]. Here, we considered cells with p< 0.05 as direction-selective (DS) and the remaining

ones as non-DS.

RGC type classifier. To predict the functional type of GCL cells, we used a Random For-

est Classifier (RFC; [49]), which was trained on a published mouse dataset [47]. In that study,

features were extracted from the responses to different visual stimuli (e.g., chirp and moving

bar) and used to cluster GCL cells into 32 RGC types and 14 additional dAC types. Here, we

learned a mapping f from response features (20 features from responses to chirp, ϕchirp and 8

features from responses to moving bar stimulus, ϕmb) and two additional parameters Θ =

{θsoma, θDS} to functional cell type labels L by training a RFC for the dataset from [47]:

f : ð�chirp; �bar;YÞ 7! L ð2Þ

where θsoma denotes soma size to distinguish between alpha and non-alpha RGC types and θDS
denotes p-value of permutation test for direction selectivity to distinguish between DS and

non-DS RGC types.

We fit the RFC on a subset of data from [47] and validated its performance on a held-out

test dataset. The classifier had a prediction accuracy of*76% on a held-out test dataset (S5

Fig). To apply the trained classifier to our newly recorded dataset, we projected the RGC
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responses (normalized to [−1, 1]) into the feature space described in [47] by computing the

dot product between the response and the feature matrices. We used the RFC implementation

provided by the python package scikit-learn [50] to train the classifier.

2Dmodels

Stand-alone SI model (2D). As baseline model to predict the responses of neurons to the

noise stimulus, we employed a stand-alone SI model (supervised learning), in which we used

factorized spatial and temporal convolutional filters (cf. Fig 2a; [51, 52]). This SI model con-

sisted of one spatial convolutional layer (16x2x1x9x9, output channels x input channels x depth

x image width x image height), one temporal convolutional layer (16x16x8x1x1, with 8 stimulus

frames preceding an event for noise; 16x16x50x1x1, with 50 stimulus frames preceding an

event for natural movie), and—after flattening the spatial dimension—one fully connected

layer (FC; 96x6,400 for noise stimulus, and 86x10,752 for natural movie, output x input chan-

nels), followed by an exponential function. No padding was used. We tested different filter

channel numbers and found the number = 16, 24, 32 had similar performance (higher than

number = 8) on our datasets. Then we picked a relatively small number = 16 as the autoencoder

models desired large memory in hidden layers (see below). The loss function was defined as:

LSI ¼
X

i

ð~̂ri � ~ri log ~̂ri Þ þ a
1
kwcs
�!k

2
þ a

2
kwct
�!k

2
þ bkwf

!k
1

ð3Þ

Here, the first term is the Poisson loss between predicted responses (~̂ri) and ground truth (ri
!)

(with i denoting the neuron index), the second term is the L2 penalty on the weights of the spa-

tial convolutional filters (wcs
�!) with hyperparameter α1, the third term is the L2 penalty on the

weights of temporal convolutional filters (wct
�!) with hyperparameter α2, and the last term is the

L1 penalty on the FC layer (wf
�!) with hyperparameter β. We note that, compared to the EC

branch of hybrid model, penalty on filter weights could be seen as an implicit form of efficient

energy coding, limiting synaptic transmission and generating kernels akin to representations

in early visual system ([53]).

After performing a grid search for the three hyperparameters, we picked α1 = 10, α2 = 10, β
= 1/16 which yielded the best performance on the validation data. After training, we estimated

the neurons’ spatio-temporal RF filters by computing gradients for each neuron, starting with

a blank image sequence as input. These gradients represent the first-order approximation of

the input that maximizes the neuron’s activation [6]. For visualization, we extracted the spatial

and temporal RFs via SVD.

As a metric of biological plausibility, we calculated the coefficient of determination (R-

squared; [0, 1]) of fitting 2D Gaussian distributions to the spatial (component of) the convolu-

tional filters. We set the R-squared value to 0 if the sigma of the fitted Gaussian was larger than

the size of the filter (i.e., 9 pixels). We calculated this fit quality for the filter of the chromatic

channel with the dominant response. Because the mouse retina is divided into a more green-

sensitive dorsal and a more UV-sensitive ventral retina (e.g., [44]), this meant that for dorsal

neurons we only determined the R-squared for filters for the green stimulus channel, and for

ventral neurons for the UV stimulus channel.

SI-PCAmodel (2D). The spatial convolutional filters of the SI-PCA model were com-

posed from PCA basis functions (W). The model was trained to learn the weights of these

basis functions. The filters were produced by performing PCA transformation on natural

images recorded in mouse habitats [39]:

W ¼ UT ð4Þ
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where U contains the eigenvectors of the covariance matrix of the centered data in each

column.

For example, when using 4 PCA bases, the shape of learnable weight matrix was 16x4

(channel number x basis number), the shape of PCA bases was 4x2x1x9x9 (basis number x

chromatic channel x depth x image width x image height), and the resulted spatial filter had

the shape of 16x2x1x9x9. We varied the number of used basis (hyperparameter) and selected

the one which achieved the best performance on validation data (S1(b) and S3(b) Figs).

SI-DCT model (2D). For the SI-DCT model, its spatial convolutional filters were com-

posed from DCT basis functions, which were defined as:

Fðu; vÞ ¼ aðuÞaðvÞ cos
ð2iþ 1Þp

2N
u

� �

cos
ð2jþ 1Þp

2N
v

� �

ð5Þ

aðuÞ ¼

ffiffiffiffi

1

N

r

u ¼ 0

ffiffiffiffi

2

N

r

u 6¼ 0

8

>
>
>
>
<

>
>
>
>
:

ð6Þ

Fig 2. Hybrid model with shared spatial filters. a,b. Schemata of SI model (a) and ECmodel (b) from [39]. The SI
model branch consists of spatial and temporal convolutional layers, a fully connected (FC) layer and a nonlinear layer
(see Methods). The EC model branch is a convolutional autoencoder, consisting of an encoder and a decoder network.
In the hybrid model, the two branches were trained in parallel with shared spatial filters (all spatial filters were shared;
red). InputSI: 8-frame UV-green noise (t1 . . . t8); OutputSI: predicted GCL cell Ca2+ responses; InputEC: UV-green
natural images; OutputEC: reconstructed InputEC. c. Example for the different inputs (natural images, phase-scrambled
natural images, and noise) for the EC branch in hybrid models (hybrid-natural, hybrid-pha-scr, hybrid-noise). d.Using
PCA filters as basis vectors for spatial convolutional filters of the SI model; SI-PCA learned 16 weight vectors

(w
1

�!:::w
16

�!) with same vector length as the number of PCA basis elements.

https://doi.org/10.1371/journal.pcbi.1011037.g002
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where i and j denote pixel index of the input image (size (N, N)); u and v denote DCT coeffi-

cient index of the DCT filter. Here, we employed DCT basis functions for one-channel gray

images and thus used different bases for each chromatic channel. For example, when using 4

DCT bases, the shape of learnable weight matrix was 16x4x2 (channel number x basis number

x chromatic channel), the shape of basis function was 4x1x9x9 (basis number x depth x image

width x image height), and the resulted spatial filter had the shape of 16x2x1x9x9. Like for

SI-PCA, we varied the number of used basis and picked the one which achieved the best per-

formance on validation data (S1(b) Fig).

Stand-alone EC model (2D). We used a similar EC model architecture (convolutional

autoencoder) and loss function as in [39]. The model’s encoder contained a single convolu-

tional layer (with weights denoted wc
�!) followed by a rectified linear unit (ReLU) function,

one FC layer, and another ReLU function. The decoder contained one FC layer, one ReLU

function, a single deconvolutional layer (with weights denoted wd
�!), and a hyperbolic tangent

(tanh) function to map back to the original data range ([−1, 1]).

As a measure of reconstruction quality, we used mean squared error (MSE; [38, 39]). We

did not use a classical bottleneck with a limited number of units as encoder output layer.

Instead, we added Gaussian noise to the encoder output for redundancy reduction [38, 54, 55]

and an L1 penalty (hyperparameter β) was imposed to its activation (~h) for sparse readouts

[38, 54, 56]. We also applied L2 regularization on the convolutional and deconvolutional layers

to encourage the learning of smooth filters [53, 57, 58]. We used 16 9x9 convolutional and

deconvolutional filters. The activation tensor (16x28x28, output channel x image width x

image height) following the first convolutional layer was flattened to a one-dimensional vector

with 12,544 inputs before feeding into the FC layer. The loss function for the EC model was:

LEC ¼
X

i

ðxi
!� ^xi

!Þ
2
þ aðkwc

!k
2
þ kwd

!k
2
Þ þ bkh

!k
1 ð8Þ

where the first term is the MSE error between the prediction xi
!̂ and ground truth xi

!with

image index i, and the next two terms denote the L2 and L1 penalties. This way, the EC model

learns smooth convolutional filters resembling 2D Gaussians, reminiscent of retinal represen-

tations [38, 39].

Hybrid model (2D). The hybrid (semi-supervised) model consisted of a SI and an EC

branch (for details on the two models’ architectures, see above). These branches were trained

simultaneously, sharing the spatial convolutional filters (wcs
!). The total loss function of the

hybrid model was derived from the loss functions of the two branches as follows:

LHybrid ¼ wLSI þ ð1� wÞLEC ð9Þ

LSI ¼ ð
X

i

ð ^ri
!� ri

!log ^ri
!Þ þ a

1
kwcs
!k

2
þ a

2
kwct
!k

2
=wþ b

1
kwf
!k

1
=wÞ=N

1 ð10Þ
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2
þ a

3
kwd
!k

2
=ð1� wÞ þ b

2
k h
!
k
1
=ð1� wÞÞ=N
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Here, i and j denote neuron and image index, respectively; N1 and N2 the number of neurons

and images, respectively. The weight (w, with 0� w� 1) controlled the impact of each

branch’s loss function on the shared spatial filters. Practically, we used w = 10−8 for LSI and w =

(1 − 10−8) for LEC when w = 0 and w = 1, respectively. Note that we added w to the denomina-

tor of the last two terms to maintain the same regularization for w�!ct and wf
�! in a stand-alone

SI model when varying w. For LEC, similar to LSI, we added (1−w) to the denominator of the

last two terms to keep the same regularization for wd
! and~h in a stand-alone EC model when

varying w. We used different data to train the EC branch of the hybrid model: natural images,

phase-scrambled natural images and noise. All hybrid models were trained for a maximum of

100 epochs (S1(c) and S1(d) Fig); training was stopped early when the prediction on validation

data started decreasing.

Tuning all hyperparameters jointly in a grid search was computationally prohibitive. Hence,

for the SI branch, we varied the hyperparameters around those determined for the stand-alone

configuration (α1 = 10, α2 = 10, β1 = 1/16; see above), while for the EC branch, we varied the

hyperparameters systematically around the values (α3 = 103, β2 = 1/16) used in [39]. To tune w,

we devised a linear search approach by normalizing the loss functions (using N1 and N2). This

way, we were able to compare the pure SI and hybrid models, both with best predictive perfor-

mance, and ensured the performance difference between them came from the EC regularizer.

After training the hybrid model, we estimated the spatio-temporal RFs of all neurons using

a gradient ascent algorithm [6]. We visualized the spatial and temporal component of RFs

using SVD (cf. Fig 3b), and the magnitude of the RF was indicated in the spatial component.

We trained 2D models using all training data (440 s) with a learning rate of μ = 10−4. In

case less data were used (i.e., to evaluate data efficiency), we kept all hyperparameters the same

as for the full data case but doubled the learning rate. This was done because the stand-alone

SI model and the hybrid model could not reach the minimum of validation loss within 100

epochs (when less data were used).

3Dmodels

Stand-alone SI model (3D). The 3D SI model consisted of one spatio-temporal convolu-

tional layer (16x2x8x9x9, output channels x input channels x depth x image width x image

height; depth varied with the frequency of noise stimuli, n = 8 and n = 30 for 5-Hz and 30-Hz

noise, respectively), and—after flattening all dimension—one FC layer (96x6,400, output chan-

nels x input channels; output channel varied with cell numbers n = 96, 64 or 427 for different

data sets; see above), followed by an exponential function. No padding was used. The loss func-

tion was defined as:

LSI ¼
X

i

ð ^ri
!� ri

!log ^ri
!Þ þ akwc

!k
2
þ bkwf

!k
1 ð12Þ

This equation differs from Eq (3) with respect to the L2 penalty, which is here on the

weights of the spatio-temporal convolutional filters (wc
!) with hyperparameter α for the second

term. After performing a grid search for the two hyperparameters, we picked α = 100, β = 1/4

which yielded the best performance on the validation data. After training, we estimated and

extracted the cells’ spatial and temporal RFs via SVD for visualization.
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Fig 3. Neural encoding tasks benefit from natural scene statistics. a. Region-of-interest (ROI) mask of one recording field in dorsal retina (left) and
mean Ca2+ responses (black) of exemplary ROIs in response to 6 repeats of noise stimuli (single trials in gray). b. Three representative GCL cell
responses (gray) to the noise stimulus (cf. Fig 2a, left), together with predictions of best performing models on test data (black, SI; red, hybrid w/ natural
scenes as input to the EC path, i.e., InputEC), and learned spatio-temporal receptive fields (RFs) visualized by SVD. c.Model performance (linear
correlation coefficient, CC; mean for n = 10 random seeds per model) based on validation data for hybrid model with natural scenes (red), with phase-
scrambled scenes (brown), or with noise (magenta) as InputEC, and for different weights. Note that the correlation values for the validation data are
relatively low because these predictions were calculated on a single-trial basis (Methods). d. Best performance (mean for n = 10 random seeds per
model) based on test data for SI, SI-PCA (16 bases), SI-DCT (4 bases), hybrid-natural (w = 0.2), hybrid-pha-scr (w = 0.3) and hybrid-noise (w = 0.4;
p< 0.0001 for SI vs. hybrid-natural, p = 0.0085 for SI-PCA vs. hybrid-natural, p = 0.0011 for hybrid-natural vs. hybrid-pha-scr, two-sided permutation
test, n = 10, 000 repeats). e. Scatter plot for model predictions based on test data for hybrid-natural (w = 0.2) vs. SI at one random seed, with each dot
representing one neuron. f. Representative spatial filters (shared convolutional filters) for hybrid models with different InputEC and different weights.
Upper: with w = 0.5; lower: with optimal w (see (c)) for hybrid models. g.Mean R-squared of fitting a 2D Gaussian to spatial filters (cf. (f)), for hybrid
model with natural scenes (red), with phase-scrambled scenes (brown), or with noise (magenta) as InputEC, and for different w (n = 10 random seeds
per model). h. Representative spatial filters (shared convolutional filters) for SI, SI with PCA filters (16 bases) and SI with DCT filters (4 bases). i.Mean
R-squared of fitting a 2D Gaussian to the spatial filters for one chromatic stimulus channel (green; n = 10 random seeds per model; p< 0.0001 for SI vs.
hybrid-natural, p< 0.0001 for SI-PCA vs. hybrid-natural, p = 0.0074 for hybrid-natural vs. hybrid-pha-scr, two-sided permutation test, n = 10, 000
repeats). Error bars in (c),(d),(g),(i) represent 2.5 and 97.5 percentiles obtained from bootstrapping.

https://doi.org/10.1371/journal.pcbi.1011037.g003
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SI-PCAmodel (3D). For the 3D SI-PCA models, we applied Eq (4) to the movie clips

(2x8x9x9, chromatic channel x depth x image width x image height; depth varied with the fre-

quency of noise stimuli, n = 8 and n = 30 for 5-Hz and 30-Hz noise, respectively). Like for 2D

SI-PCA models, we varied the number of used bases and picked the number for which the

model achieved the best performance on the validation data (S3(a) Fig).

Stand-alone EC model (3D). The 3D EC models used a sequence of frames from a movie

clip as input and featured 3D spatio-temporal convolutional layers (with weights denoted wc
!)

in the encoder. The decoder contained deconvolutional layers with weights wd
!. In the past-

encoding case, we fed an 8-frame clip (frames at t − 7 to t) to the model and aimed at recon-

structing the 7th frame (at t − 1). In the future-prediction case, the goal was to predict the 8th

frame (at t) with the input being the first 7 frames (t − 7 to t − 1) of the clip. The loss functions

was similar to that given by Eq (8) except that (i) wc
! features different a shape (16x2x8x9x9,

output channel x chromatic channel x filter depth x filter width x filter height), and (ii) xi
denotes the 7th frame for the past encoding and the 8th frame for the future prediction model

(S2(b), S2(c) and S2(d) Fig).

Hybrid model (3D). The 3D hybrid models consisted of a SI branch and an EC branch

with shared spatio-temporal convolutional filters (wc
!; see above). Like for the 2D hybrid mod-

els, the total loss function was a weighted sum of losses for the two branches as follows:

LHybrid ¼ wLSI þ ð1� wÞLEC ð13Þ

LSI ¼ ð
X

i

ð ^ri
!� ri

!log ^ri
!Þ þ a

1
kwc
!k

2
þ b

1
kwf
!k

1
=wÞ=N

1 ð14Þ
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X

j

ðxj
!� ^xj

!Þ
2
þ a

2
kwc
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2
þ a

2
kwd
!k

2
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2
kh
!
k
1
=ð1� wÞÞ=N
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Here, i denotes neuron index, jmovie clip index, N1 neuron number, and N2 the number of

movie clips. Again, instead of tuning all hyperparameters jointly via a grid search, we varied

the hyperparameters around the values determined for the stand-alone SI configuration (α1 =

100, β1 = 1/4) for the SI branch. For the EC branch, we varied the hyperparameters systemati-

cally around the values (α2 = 104, β2 = 1/16) used in the stand-alone EC models. We then

tuned w linearly after normalizing the loss functions (using N1 and N2). We also visualized the

spatial and temporal RF components using SVD.

Results

Hybrid system identification and efficient coding models

To test if learning an efficient representation of natural input could help predict neuronal

responses in the early visual system, we employed normative regularization, i.e., statistical reg-

ularization that is informed by normative coding principles, such as the idea that sensory sys-

tems have evolved to efficiently process natural stimuli. Specifically, we used this strategy to

incorporate EC as a regularizer and developed a hybrid model that combines SI-based neural

prediction and EC in a single model. The two model branches are linked by shared convolu-

tional filters (Fig 1b).

The SI branch approximates the response functions of recorded neurons to a visual dense

noise (see below), and was implemented using a convolutional neural network (CNN) (Fig

2a). Here, we used an L2 regularization on the convolutional layers to encourage smooth filters
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[53] and an L1 regularization on the fully connected (FC) layer for sparse readouts ([19]; for

details, see Methods).

The EC branch was trained to efficiently reconstruct input stimuli (i.e., natural scenes) from

a constrained latent representation. For this branch, we used a convolutional autoencoder net-

work that we published before (for details, see [39] and Methods). Also in the EC branch, we

enforced smooth filters by using L2 regularization. In addition, we limited the bandwidth by

adding Gaussian noise and imposing L1 regularization on the hidden activations. The latter

regularization also encourages sparse representations.

In the hybrid model, we implemented interactions between the two branches by shared fil-

ters (symbolized by red circle in Fig 1b). Both branches were trained in parallel, with a

weighted sum of their respective losses (LSI and LEC) used as optimization objective. By chang-

ing the weighting of the two losses, we were able to control the relative contribution of two

branches on shaping the shared filters, and test our hypothesis to which degree efficient repre-

sentations of natural scenes improve neural predictions (Fig 2a and 2b). Specifically, weight w

was used to define the hybrid model’s loss function as LHybrid = w � LSI + (1 − w) � LEC (Meth-

ods). For w = 1, the EC branch had no influence on the shared filters and, hence, the hybrid

model behaved like the pure SI model. Conversely, for w = 0, the SI branch had no influence

on the shared filters and, hence, the hybrid model behaved like the pure EC model. Thus, the

smaller the weight, the more the EC branch contributed to shaping the filters.

To evaluate the influence of stimulus statistics on neural response predictions, we fed not

only natural stimuli to the EC branch, but also phase-scrambled natural stimuli as well as

noise. We refer to these models as hybrid-natural, hybrid-pha-scr and hybrid-noise (Fig 2c).

Moreover, to examine whether the performance improvements could be attributed to simple

low-pass filtering, we trained SI networks using spatial convolutional filters composed of dif-

ferent numbers of basis functions derived from principle component analysis (PCA) on natu-

ral images (Fig 2d), or the discrete cosine transform (DCT). These models are referred to as

SI-PCA and SI-DCT networks.

To train the SI branch of our hybrid framework, we recorded somatic Ca2+ responses from

populations of cells in the ganglion cell layer (GCL) of the ex-vivomouse retina to 9-minute

long noise stimuli using two-photon imaging (Fig 3a; Methods; [44, 47]). The GCL contains

the RGCs, which represent the retina’s output neurons and form in the mouse about 40 paral-

lel feature channels to higher visual brain areas (reviewed in [23]). RGCs gain their specific

response properties by integrating upstream input from distinct sets of bipolar cells and ama-

crine cells. Note that the GCL also contains some “displaced” amacrine cells (dACs; [47, 59]).

If not indicated otherwise, we did not distinguish between these two GCL cell classes in our

datasets. The noise stimulus contained two chromatic components (UV, green) matching the

spectral sensitivities of mouse photoreceptors [60]. We used the data of n = 96 GCL cells that

passed our quality criteria (Methods) to fit a pure SI model with factorized spatial and tempo-

ral convolutional filters, whose predictive performance served as our baseline (Fig 3b left).

Neural system identification benefits from natural scene statistics

First, we measured the predictive performance of the hybrid-naturalmodel on the validation

data (for hyperparameter tuning) by systematically varying the relative impact of the two

branches, i.e., changing the weight w. We found that the performance steadily increased with

increasing EC influence (i.e., decreasing w) up to an optimum (peaking at w = 0.2; Fig 3c, red),

after which the SI had too little influence on the shared filters and the performance dropped.

Next, we replaced the natural input to the EC pathway by phase-scrambled scenes (hybrid-

pha-scr) and white noise across space and chromatic channels (hybrid-noise). Like for the
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hybrid-naturalmodel, the performance of the two control models also increased with increas-

ing EC influence up to a certain point, peaking at w = 0.3 and w = 0.4 for hybrid-pha-scr and

hybrid-noise, respectively (Fig 3c). This indicates that when incorporating EC, all hybrid

model versions showed some improvement up to certain w values, before performance sharply

declined.

To test to what extent simple low-pass filtering contributes to the performance improve-

ment observed for the hybrid-naturalmodel, we quantified the performance of two additional

SI models, one with PCA and the other one with DCT bases. By varying the number of bases

used, we found a maximum in predictive performance at 16 and 4 bases for SI-PCA and

SI-DCT (zig-zag ordering), respectively (S1(b) Fig).

Finally, to compare the performance on the test data across models, we picked for each

model the w or number of bases with the best predictive performance for the validation data.

We found that the hybrid model with natural inputs to the EC branch attained the best perfor-

mance among all tested models (Fig 3d and 3e). The hybrid-naturalmodel’s superior perfor-

mance compared to the hybrid-pha-scrmodel suggests that the benefit of learning natural

scene statistics extends beyond second-order statistics such as the 1/f power spectrum of natu-

ral images. Nevertheless, the hybrid-pha-scrmodel performed better than the hybrid-noise ver-

sion, pointing at a general benefit of learning second-order statistics in the EC branch.

Moreover, the hybrid-naturalmodel was consistently better than low-pass filtering control

models (SI-PCA and SI-DCT), suggesting that simple low-pass filtering does not fully explain

the benefits of sharing kernels with the EC branch trained to efficiently represent natural

stimuli.

Together, our results suggest that normative network regularization—in particular, based

on natural statistics—can improve the performance of neural SI models on predicting

responses to noise.

Hybrid models with natural inputs learn the most “biologically-plausible”
filters

To confirm that our hybrid models capture the properties of the recorded cells, we estimated

their RFs (Fig 3b and S1(f) Fig; Methods). Indeed, we found that the models learned antagonis-

tic center-surround RFs with biphasic temporal kernels, reminiscent of RGC RFs found in

other studies [2, 47]. To get insights to which degree our models resembled biological vision

systems, we next investigated the internal representations by analyzing the filters of the mod-

els’ subunits [18, 61]. To this end, we compared the shared spatial convolutional filters between

our tested models. As neurons in the retina and further upstream in the early visual system

often feature smooth, Gaussian or DoG shaped RFs (e.g., [47, 62, 63]), we refer in the following

to models with such shared filters as more “biological plausible” than those with other filter

organizations.

Interestingly, while the learned neuronal RFs were quite consistent between models (cf. Fig

3b), their shared spatial filters differed considerably (Fig 3f and 3h). When using natural

images in the EC branch (hybrid-natural), filters indeed became smoother and more Gauss-

ian-shaped, which may be due to the regularization by the EC branch on the SI branch and

may have contributed to the performance improvement of predicting responses. This effect

persisted though reduced when phase-scrambled images were used (hybrid-pha-scr). More-

over, for smaller w values (i.e., stronger EC influence), Gaussian-shaped filters became more

frequent in the hybrid-natural but not in the hybrid-noisemodel (Fig 3f, upper vs. lower row).

For the SI models with PCA or DCT basis, we found all filters to be smooth as they profited
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from low-pass filtering of the respective transformation. However, compared to the hybrid-

naturalmodel, their filters were less frequently Gaussian-shaped (Fig 3h).

To quantify these findings, we fit 2D Gaussian functions to the filters and measured the

goodness of the fit via the coefficient of determination (R-squared; Methods). Notably, for all

three hybrid models, the w with the best Gaussian fit was the same w that also resulted in the

best response predictive performance (w = 0.2, w = 0.3, and w = 0.4 for hybrid-natural, hybrid-

pha-scr, and hybrid-noise, respectively; Fig 3g). The filters of the hybrid-naturalmodel resem-

bled smooth 2D Gaussians more than for any other model (Fig 3i), including SI-PCA and

SI-DCT. The difference of fit quality between hybrid-natural vs. hybrid-pha-scr and hybrid-

pha-scr vs. hybrid-noisemay be related to higher-order statistics and second-order statistics of

natural scenes, respectively.

Taken together, our comparisons of the hidden spatial representations suggest that natural

scene statistics promote latent feature representations akin to transformations in the early

visual system.

Efficient coding increases the data efficiency of system identification

Next, we asked if the observed performance increase in the hybrid-natural vs. the baseline SI

model was sensitive to the amount of training data, both with respect to their response pre-

dictions (Fig 4a) and their learned spatial filters (Fig 4b). To this end, we trained the SI and

the hybrid-naturalmodel (w = 0.2) with different amounts of data, ranging from 30% to

100%.

Not unexpectedly, when more training data was used, predictive performance increased for

both models (Fig 4a top). However, we also found that the performance of the hybrid-natural

model was consistently higher than that of the SI model, with the difference becoming signifi-

cant for� 60% and peaking at around 90% training data (Fig 4a bottom). Additionally, for

both models the spatial filters became increasingly more Gaussian-like with more data (Fig

4b). We also observed that the performance difference dropped for large dataset sizes—which,

we expect, is asymptotically near zero in the regime of infinite data.

Together, these results suggest that a hybrid model predicting responses to noise, but with

access to natural statistics requires significantly less training data than the baseline SI model.

Fig 4. Hybrid-naturalmodels have better data efficiency for neural prediction. a.Mean model performance (top)
based on test data for SI and hybrid-natural (w = 0.2; n = 10 random seeds) with different training data sizes and mean
difference between SI and hybrid-natural (bottom). b.Mean R-squared (top) of fitting a 2D Gaussian to spatial filters
for green stimulus channel for SI and hybrid-natural (w = 0.2; n = 10 random seeds) with different training data sizes,
and the mean difference between R-squared for SI and hybrid-natural (bottom). Error bars represent 2.5 and 97.5
percentiles with bootstrapping.

https://doi.org/10.1371/journal.pcbi.1011037.g004
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Hybrid models for testing temporal coding strategies

It has been suggested that early stages of visual processing, rather than encoding a past stimu-

lus (past encoding), aim at predicting future stimuli in their temporal stream of inputs [64].

Such a future prediction strategy is thought to extract information that can be used for guiding

future behavior [65]. Therefore, we next tested if sharing spatio-temporal (i.e., 3D) filters can

further improve the predictive performance of the hybrid model. We implemented both strate-

gies—past encoding and future prediction—in the EC branch, and compared their influence

on the SI task [66].

We modified the 2D SI model to use spatio-temporal (instead of factorized spatial and tem-

poral) convolutional filters to predict neural responses for 8-frame noise movies (3D SI model;

S2(a) Fig). Likewise, we employed spatio-temporal convolutional filters for the EC branch. As

before, the two branches of the resulting hybrid model were trained in parallel, but now shar-

ing spatio-temporal filters. In the past encoding case, the EC branch was trained to reconstruct

the 7th frame (at t − 1) of a continuous 8-frame natural movie clip based on frames at t − 7 to t

(hybrid-natural-past; S2(b) and S2(c) Fig). In the future prediction case, the EC branch was

trained to predict the 8th unseen frame based on the first 7 frames (t − 7 to t − 1) of the clip

(hybrid-natural-future; S2(d) Fig left).

Like for the 2D models, we varied w or the number of bases and then selected the best

model for each condition (3D SI, hybrid-natural-past, hybrid-natural-future, and 3D SI-PCA)

based on validation performance. We next quantitatively compared the different models using

the test data (Fig 5a and 5b; S3c Fig). We found that the 3D SI-PCAmodel outperformed the

3D SI model, presumably because the former profited from the low-pass filtering of the PCA

transformation. Importantly, both hybrid models displayed a better performance than the 3D

SI-PCAmodel. While the hybrid-natural-pastmodel performed slightly better than its hybrid-

natural-future counterpart, this difference was not statistically significant. In summary, both

the past encoding and future prediction strategy in the EC branch turned out to be equally

beneficial for predicting the responses to noise stimuli and, as before, the benefit extended

beyond low-pass filtering effects. However, no performance increase was achieved with respect

to the 2D hybrid-naturalmodel (Fig 5b vs. Fig 3d).

We also analyzed the shared spatio-temporal filters using the same metric as for the 2D

case, which assesses the similarity between spatial filters (after performing a low-rank decom-

position of 3D shared filters into spatial and temporal components; see Methods) and smooth

2D Gaussians (Fig 5c and 5d). Again, we found higher R-squared values for the hybrid models

and the 3D SI-PCAmodel compared to the baseline SI case. Note that here, the 3D SI-PCA

model did not significantly differ from the two hybrid models, possibly due to a large number

of bases (n = 128 vs. n = 16 in the 2D case).

Next, we asked if the fact that we did not see a significant advantage of 3D over 2D could be

because the slow (5 Hz) noise stimulus did not sufficiently drive GCL cell responses. Therefore,

we recorded a dataset (n = 64 cells), in which we presented a 30-Hz dense noise stimulus and

used it with the 3D hybrid models. Like for 5-Hz noise, the hybrid-natural-past and hybrid-

natural-futuremodels performed better than the 3D SI model, both on response prediction

and with higher R-squared values for the learned filters (S4 Fig). But again, the 3D hybrid

models performed only equally well compared to their 2D counterparts.

In summary, the hybrid-naturalmodels achieved a higher performance for different noise

stimuli (5-Hz vs. 30-Hz) and different shared filter organizations (2D vs. 3D) than all other

tested models. Therefore, it is likely that their superior predictive performance for neuronal

responses and their more biologically plausible filters resulted from the EC branch having

access to natural statistics.
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Direction-selective neurons benefit more than others from hybrid models

The retina encodes the visual scene in a number of features that are represented by more than

40 different types of RGC whose outputs are relayed in parallel to higher visual centers in the

brain [47, 67–70]. Thus, we next asked, if access to natural statistics allowed our hybrid models

to predict some cell types better than others (Fig 6). Earlier, it has been shown that motion-rel-

evant properties emerge in the efficient coding framework for both past encoding and future

prediction approaches [66]. Therefore, we employed our 3D hybrid models (cf. Fig 5) and

focused on direction-selective (DS) cells [47, 71].

For this analysis, we used a set of n = 427 GCL neurons, whose responses were recorded not

only to the 5-Hz noise stimulus (for training the models) but also to full-field chirp and mov-

ing bar stimuli. The latter two stimuli (Fig 6a) enabled us to identify the functional type of

each recorded GCL neuron [47] using a cell type classifier (see Methods; S5 Fig).

We observed that for 100% of the data, SI and hybrid model performed similarly well. For

the analysis of cell type-specific performance, we therefore chose a dataset size (30% of total

Fig 5. Past encoding or future prediction strategies using 3D shared filters perform equally well. a. Top row: Responses of three exemplary GCL
cells to 5-Hz noise stimulus (gray) and predictions of best performing models on test data (black, SI; blue, SI with PCA filters; red solid, hybrid for
encoding the past; red dotted, hybrid for predicting the future). Bottom row: Respective learned RFs of the three cells (visualized by SVD). b.Mean
model performance based on test data for SI, SI-PCA (128 bases), hybrid-natural-past, and hybrid-natural-future (both w = 0.4; n = 10 random seeds;
p< 0.0001 for SI vs. hybrid-natural-past, p = 0.0005 for SI-PCA vs. hybrid-natural-past, p = 0.2563 for hybrid-natural-past vs. hybrid-natural-future,
two-sided permutation test, n = 10, 000 repeats). c. Representative shared spatial and temporal filters of 3D models (n = 1 random seed, visualized by
SVD; temporal kernels for UV and green stimulus channels indicated by purple and green, respectively). d.Mean R-squared of fitting a 2D Gaussian to
shared spatial filters (for green stimulus channel; n = 10 random seeds per model; p = 0.0003 for SI vs. hybrid-natural-past, p = 0.4356 for SI-PCA vs.
hybrid-natural-past, p = 0.1895 for hybrid-natural-past vs. hybrid-natural-future, two-sided permutation test, n = 10,000 repeats). Error bars in (b),(d)
represent 2.5 and 97.5 percentiles with bootstrapping.

https://doi.org/10.1371/journal.pcbi.1011037.g005
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recording time) for which the predictive performance difference between the two models was

particularly pronounced. As expected, we found that both hybrid networks (hybrid-natural-

past and hybrid-natural-future) performed significantly better than the SI model, with no sig-

nificant difference between the two hybrid models (cf. Fig 5b, S4(b) Fig).

First, we evaluated if any of the broader functional groups of GCL cells profited more from

natural statistics than others. For this, we sorted the cells into 6 groups based on their response

polarity (ON vs. OFF) and transience, and based on whether they were RGCs or dACs (for

group sizes, see Fig 6 legend). For all 6 groups, the hybrid models showed a better predictive

performance than the SI model (Fig 6b). However, no significant differences were observed

between any pair of groups (p> 0.05 for all pair-wise comparisons, two-sided permutation

test, n = 10,000 repeats; Fig 6c) and the two hybrid models (p> 0.05 for all pair-wise compari-

sons; S6(a) Fig).

Next, we grouped the cells into DS (p< 0.05, direction tuning using a permutation test;

n = 90) and non-DS cells (n = 300) based on their moving bar responses (Fig 6a right). Note

that n = 37 neurons were excluded as they did not pass the quality test for chirp and moving-

bar responses (Methods). We found that the predictive performance for DS cells was signifi-

cantly higher than that of the non-DS cells for both hybrid-natural-past (Fig 6d and 6e;

Fig 6. Direction-selective (DS) neurons benefit more from hybrid models. a. Recorded (gray) and predicted (black, SI; red, hybrid-natural-past;
response amplitude scaled with a constant 1.5 for better visualization) responses to noise, RFs, as well as full-field chirp responses and moving bar
responses (gray, single trials; black, means) of representative DS and non-DS cells. Note that the RFs were dominated by UV stimulus channel because
cells were recorded in ventral retina (see Methods). b.Meanmodel performance based on test data for SI, hybrid-natural-past and hybrid-natural-
future (both w = 0.7; n = 10 random seeds per model; trained with responses of n = 427 GCL cells to 5-Hz noise stimulus; p< 0.0001 for SI vs. hybrid-
natural-past, p = 0.9307 for hybrid-natural-past vs. hybrid-natural-future; two-sided permutation test, n = 10, 000 repeats). Note that compared to Fig
5b, these models had a lower predictive performance, as we used a different dataset, with 30% of data for training. c.Difference in mean performance
between hybrid-natural-past and SI based on test data for 6 broad functional groups of GCL cells (35 OFF, 59 ON-OFF, 49 fast-ON, 38 slow-ON, and
64 uncertain RGCs, as well as 145 dACs; see Methods and Results; n = 10 random seeds per model). d. Like (b) but for n = 90 DS and n = 300 non-DS
cells. e. Cumulative histogram of difference in mean prediction between hybrid-natural-past (w = 0.7) and SI on test data for DS (red) and non-DS cells
(black), at one particular seed. Error bars in (b)–(d) represent 2.5 and 97.5 percentiles with bootstrapping.

https://doi.org/10.1371/journal.pcbi.1011037.g006
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p = 0.0027) and hybrid-natural-future (S6(b) and S6(c) Fig; p = 0.0042). To test whether this

performance difference was merely due to different signal-to-noise ratios in DS vs. non-DS

cells, we compared their response quality indices (QI; Methods). While DS cells had signifi-

cantly higher QI values for moving-bar responses (QIbar) than non-DS cells, we did not find

any significant difference between the two groups with respect to their noise (QInoise) or chirp

responses (QIchirp; S6(e), S6(f) and S6(g) Fig). These results suggest that DS cells benefit more

from the EC branch of the hybrid models than non-DS cells, partially consistent with earlier

findings ([66]; see also Discussion).

In summary, efficient coding of natural statistics served as a beneficial normative regulari-

zation for predicting responses to noise stimuli of all types of mouse GCL cells and in particu-

lar DS cells, suggesting the potential role of motion statistics in the natural environment on

shaping neuronal response properties.

Hybrid models for predicting retinal responses to natural movies

Natural stimuli are thought to drive more diverse neural responses compared to artificial sti-

muli, such as dense noise or drifting bars [72]. As a result, more complex feature transforma-

tions are expected to be required for determining the respective stimulus-response functions

([18, 73], but also see [74]). Therefore, we tested if predicting neural responses to natural mov-

ies would also profit from our hybrid model.

To this end, we used the neural activity of n = 86 ventral GCL neurons that were presented

with 30-Hz natural movies ([39]; Fig 7a left) to train a stand-alone SI model with factorized

spatial and temporal filters. Surprisingly, the SI model learned center-surround RFs with

biphasic temporal components as well as smooth 2D Gaussian spatial filters with high R-

squared values (mean R-squared = 0.96; full training data of 433 s; Figs 7a, 3f, 3h and 4b).

Therefore, we next tested if there was a performance difference between the SI and hybrid

models for less training data (Fig 7b and 7c). Here, we decided to use approx. a quarter of the

data (i.e., 23%, or 15 of 65 mini-batches). As with the models using neural responses to noise,

we tuned the hyperparameters based on validation data (w = 0.4 for hybrid-natural) and fixed

them. We then evaluated the performance of the two models after being trained with different

Fig 7. Predicting neural responses to natural movies does not benefit from efficient coding. a. Recorded (gray) and predicted (black, SI; red, hybrid-
natural) responses to natural movie, RFs, as well as exemplary spatial filters for the SI model trained by full training data. b. Same as (a), but for the SI
model trained by 23% of training data. c. Same as (a), but for the hybrid-naturalmodel trained by 23% of training data. d. Predictive performance (top)
based on test data for SI and hybrid-natural (w = 0.4; n = 10 random seeds) with different training data sizes, and the difference between SI and hybrid-
natural (bottom). e. R-squared (top) of fitting a 2D Gaussian to spatial filters for UV stimulus channel for SI and hybrid-natural (w = 0.4; n = 10
random seeds) with different training data sizes, and the difference between SI and hybrid-natural (bottom). Error bars in (d),(e) represent 2.5 and 97.5
percentiles with bootstrapping.

https://doi.org/10.1371/journal.pcbi.1011037.g007
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amounts of data, ranging from 8% to 100%. As expected, predictive performance of both mod-

els increased with available data. However, compared to the models trained with noise

responses, the hybrid-naturalmodel had similar predictive performance with the SI model,

with only a marginal improvement for small amounts of data (<25%) (Fig 7d; cf. Fig 4a; see

Discussion).

Additionally, the two models had similar R-squared values across different data sizes

(hybrid-naturalmodel with slightly lower values; Fig 7e), indicating that they learned filters

that resembled 2D Gaussians comparably well. We also observed that both models featured fil-

ters with high R-squared values starting from 23% of the data (cf. Fig 4b).

Together, these results suggest that normative network regularization, as implemented in

our hybrid models, offers no additional benefit for predicting responses to natural movies.

Discussion

In this study, we asked if access to natural scene statistics can help predicting neural responses.

To address this question, we combined system identification (SI, [3]) and efficient encoding

(EC, [25]) methods into a normatively regularized (hybrid) modeling framework. Specifically,

we used models that efficiently represent natural scenes recorded in the mouse’ habitat to reg-

ularize models that predict retinal responses to visual stimuli. We analyzed such hybrid models

with shared spatial filters, and found that natural images as input to the EC branch indeed

improved the performance in predicting retinal responses to noise stimuli and allowed the

model to generate filters that resembled RFs found in the early visual system. These improve-

ments extend beyond those gained by simple low-pass filtering or using second-order statistics

of the natural scenes. Our hybrid models with shared spatio-temporal filters performed simi-

larly well as those with shared spatial filters, independently of whether they used a past encod-

ing or a future prediction strategy. Notably, predictions of DS cell responses to noise stimuli

improved the most in the hybrid models with natural input to the EC branch. Interestingly, in

predicting neural responses to natural movies, both hybrid and SI models performed similarly

well. In summary, our results suggest that sourcing information about an animal’s environ-

ment—e.g., through hybrid SI-EC models—can help building more predictive and biologi-

cally-plausible models of neuronal networks—at least when predicting neural responses to

artificial stimuli and/or for limited amounts of data. More generally, our findings lend support

to the idea that knowledge of natural statistics is already encoded in sensory circuits.

Hybrid models improve data efficiency

When predicting responses to noise, the difference in predictive performance between the

hybrid and the baseline SI model was significant and it depended on the amount of available

data, indicating that our hybrid modeling approach increased data efficiency. The data effi-

ciency also depended on the input to the SI branch in the hybrid models: For natural stimuli,

the performance gain was marginal and restricted to the case when data was strongly limited.

Therefore, we expected our hybrid models to improve SI mainly when only little neural data in

response to artificial stimuli is available. It is possible that for those more challenging problems

at downstream visual areas, where neural response functions and, hence, the neural prediction

tasks, become more complex [75], the data efficiency of a hybrid approach and the improve-

ment from natural scene statistics may be higher.

Biological plausibility and temporal coding principles in hybrid models

Regarding the spatial filters, for most learned models the degree of similarity to Gaussian RFs

was positively correlated with their predictive performance (with the exception of the SI-DCT
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models)—whether there is a causal link remains unclear (see below). Note that we used the fil-

ters’ similarity to 2D Gaussian functions as a proxy for biological plausibility, following the

assumption that for RFs in the retina and at early downstream stages of the visual system, a

smooth, Gaussian-like structure is often a suitable approximation (e.g. [47, 62, 63]). Accord-

ingly, the fitted Gaussian shapes had diameters of 4–9 pixels, equivalent to 3.3˚-7.4˚ of visual

angle and, hence, in the range of RF center sizes of mouse RGCs (3˚-13˚; [76–78]). However, it

has been reported that RGCs, for instance, can also feature multiple sensitivity peaks and irreg-

ular non-Gaussian shapes in their RF (e.g., [79]). Therefore, our proxy of biological plausibility

may underestimate the complexity of retinal representations and for future studies, it would

be important to use additional filter properties, such as locality and smoothness, as metrics.

Moreover, a deep, systematic understanding of artificial and neuronal networks and their hid-

den representations likely calls for other methods besides filter inspection, e.g., the evaluation

of temporal curvature ([80, 81]; discussed in [82]). As the natural environment is not static, we

also created hybrid models that acknowledged the time domain by sharing spatio-temporal fil-

ters. Surprisingly, both variants—past encoding and future prediction—behaved quite simi-

larly. Note that our future prediction approach is not the same as “predictive coding“, which

removes redundancy in uniform or correlated inputs by encoding the difference between the

actual input and the internal expectation [24, 83–85]. However, in the stand-alone EC models

(that is, only the EC branch), the temporal components of the filters learned by the future pre-

diction were much more diverse than those of past encoding (S2(c) and S2(d) Fig right). Inter-

estingly, the differences between temporal filters of these stand-alone EC models decreased

with the incorporation of the neural prediction task in the hybrid models.

The filter diversity in our 3D hybrid models is reminiscent of earlier findings by Chalk and

colleagues [66], who reported the emergence of filters sensitive to motion direction and

motion speed in their past encoding and future prediction EC models, respectively. However,

in contrast to their results, we did not see a difference between our hybrid-past and hybrid-

futuremodels with respect to motion-sensitive filters: Both of them performed better in pre-

dicting responses of DS vs. non-DS cells. Further work is needed to understand that partial

(mis)match between our work and that by Chalk et al., and why specifically DS cells profited

from both our 3D hybrid models. It is possible that the better performance for DS cells is

related to the fact that the natural movies we used for training the EC branch are dominated

by global motion [39]. In other words, our EC model may be prone to produce filters that

detect spatio-temporal structures inherent in the training input.

Hybrid models of retinal signal processing

Only for very limited data, our hybrid models displayed a marginal improvement when pre-

dicting neural activity to the natural movie stimulus vs. the noise stimulus. This was surprising,

as we expected that the EC branch supports the learning of complex feature representations

driven by natural stimuli [18, 73]. That the stand-alone SI model trained with natural movie

responses easily learned smooth Gaussian filters may have limited the benefits from the hybrid

model. In turn, this may indicate that, indeed, predictive model performance correlated with

biological filter plausibility. To further explore the interaction between learned filters and pre-

dictive performance, it may be instructive to test a greater variety of stimuli and record

responses to them from the same neurons. Such data may also be useful for characterizing

model generalization (domain transfer, see e.g., [73, 86]) by using responses to natural stimuli

as unseen test data with a hybrid model trained with cell responses to noise stimuli. Here, one

would need to take into account that RGCs may adapt to different stimuli (such as noise vs.

natural movies) by changing their RF properties [84].

PLOS COMPUTATIONAL BIOLOGY Efficient coding for neural system identification

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1011037 April 24, 2023 20 / 29



Many studies have applied EC principles to natural images with different regularization

strategies, such as adding noise (to the input, hidden activation or output), forcing sparsity (of

weights, hidden activation or responses), and encouraging smoothness and spatial locality of

weights. These coding principles produced diverse feature representations, including DoG and

Gabor filters [38, 39, 87–89]. For example, Doi et al. [89] found that the response sparsity and

the spatial locality of filter weights induced oriented and center-surround structures, respec-

tively. In our previous study [39], we tested a convolutional autoencoder using a smoothness

constraint (L2 regularization) on the convolutional/deconvolutional filters, and a sparsity con-

straint (L1 regularization) as well as Gaussian noise on the encoder output. We found that this

model produced center-surround filters when trained with natural images. Similarly, Ocko

et al. [38] trained an autoencoder model with pink noise and obtained DoG filters. Our study

shows that hybrid-natural had a better predictive performance and biological plausibility than

hybrid-pha-scr. In turn, hybrid-pha-scr outperformed hybrid-noise. This suggests that both the

regularization and the statistical properties of the model input we used contributed to the

emergence of center-surround features.

Generally, the effect of normative network regularization depends on many factors, includ-

ing—in our hybrid models—neural prediction tasks (e.g., predicting responses to noise vs. nat-

ural movies), normative principles (e.g., encoding the past vs. predicting the future), stimulus

input of the EC branch (e.g., noise vs. natural scenes), and shared components between two

branches (e.g., filter weights vs. network features). Any of themmay influence the model per-

formance or the learned filter representations. A factor that we did not vary much was nonlin-

earity of the model. For example, that our hybrid approach did not improve the prediction of

responses to natural movies, which are highly non-linear and complex [18, 73], may be due to

limited expressive power of the EC network and shared units.

For our current analysis, we used broad group assignments (e.g., Fast ON RGCs), which

include several functional types of RGC (e.g., ON-step, ON-transient, ON-high-frequency etc;

[47]) or dACs, but did not detect any differences in performance gain except for the DS neu-

rons. Still, it is possible that distinct types of RGC profit more than others from the EC branch

of our hybrid models. For example, the so-called W3 RGCs, for which the best stimulus found

so far is a small dark moving spot [90], may not be “designed” to efficiently represent natural

stimuli but rather to extract survival-relevant features (i.e., detecting aerial predators). Here,

we could build models with different normative regularization or tasks (i.e., detecting preda-

tors in images of the sky) and would expect that this RGC type profits little from efficiently

encoding natural statistics in the hybrid model. In this way, we may be able to discover the

computational functions of specific cell types. Studying coding strategies across RGC types

could contribute an important biological perspective to the perennial debate between efficient

coding [91] and feature detection [67] proponents.

Normative network regularization as a framework for studying neural
coding

In this study, we regularized the filters of a SI model with a normative EC model to predict

visually-evoked responses of cells in the retina, which could be seen as a multitask learning

model [92]. This approach is not limited to a combination of EC and SI, for example, Yamins

et al. [11] used a model trained on an image categorization task for neural prediction in a

sequential way. Some forms of normative regularization have also been discussed and/or

applied in earlier work. For example, Deneve and Chalk [93] discussed the relations between

SI (encoding) models and EC, and argued that the latter may promote shifting the focus in SI

from the single-cell to the population level. The integration of stimulus-oriented approaches
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(such as EC) for discriminative tasks (such as object recognition) was proposed by Turner

et al. [15]. Later, Teti et al. [94] employed sparse coding with lateral inhibition in simulations

of neuronal activation in visual cortex. More recently, Młynarski et al. [42] presented a proba-

bilistic framework combining normative priors with statistical inference and demonstrated the

usefulness of this approach for the analysis of diverse neuroscientific datasets. However, their

work was rather conceptual, with the datasets they used being either simulated or low-dimen-

sional. Notably, they tested their framework on pre-fit retinal RFs, but not directly on actual

RGC stimulus-response data. Compared to their framework, our method does not require

marginalization across all parameter space to estimate optimality and could be applied to more

general or complex inference problems. Hence, our work not only provides further evidence

to the feasibility of combining coding principles for identification of neural response proper-

ties on high-dimensional data, it also demonstrates the benefits of leveraging natural scene sta-

tistics for neural prediction. However, compared to the framework by Młynarski et al., with

our approach it is more difficult to conduct rigorous statistical tests of normative theory.

We expect that our hybrid modeling strategy for prediction of responses to noise stimuli

may also work for different processing stages along the early visual pathway (and potentially

other modalities, e.g., sound). This said, however, one needs to keep in mind that different

stages along the visual pathway have different tasks and constraints, and, thus, likely incorpo-

rate different efficient coding principles: For instance, the retinal hardware is space-limited

and has to encode visual features in view of a bottleneck with limited bandwidth (optic

nerve), whereas the primary visual cortex has comparably abundant resources which might

serve for accurate probability estimation for behavioral tasks, such as novelty detection (dis-

cussed in [24, 95]). It is also worth to note that different visual processing stages (such as pri-

mary visual cortex vs. higher visual areas, or adaptation of visual coding to different

behavioral states) may benefit from the hybrid modeling to a different degree, as efficient

coding approaches learn filters that may be more relevant to stimulus-related features, but

not high-level behavior goals (see discussion in [15]). Additionally, it would be interesting to

compare our hybrid models with SI models regularized with other behavioral tasks such as

object recognition (e.g., [11]) or predator detection (see above) for neural predictions along

the ventral visual stream.

While this study focused on normative regularization for neural prediction task, it would

be also interesting to infer EC principles from stimulus-response data. With our framework, a

possible starting point could be to compare a normative criterion, such as image reconstruc-

tion fidelity, between the hybrid model and a stand-alone EC model. Such analysis could be

extended by either evaluating the difference for coding principles with the use of the same

stimulus-response data, or testing a normative criterion using different experimental datasets.

There is a long tradition of using SI models (reviewed in [3]) in predicting the responses of

neurons to a great variety of stimuli (e.g., [2, 4, 18, 19, 96, 97]). Our results demonstrate how

the EC hypothesis can be successfully leveraged as normative regularization for the identifica-

tion of neural response properties when assessed through noise stimuli. Additionally, predict-

ing the response to naturalistic stimuli may be more beneficial for learning biologically-

plausible filters. More generally, the hybrid framework offers an opportunity to test different

coding principles and unsupervised learning objectives with regards to experimental data for

understanding neuronal processing.

Supporting information

S1 Fig. Training of 2D models. a. The noise stimulus (9 minutes in total) containing train-

ing and validation data (1 repeat) and test data (6 repeats). b.Model performance (mean)
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based on validation data for SI-PCA and SI-DCT with different numbers of basis. SI-PCA

and SI-DCT yielded best performance when using 16 and 4 bases, respectively (each model

for n = 10 random seeds; error bars represent 2.5 and 97.5 percentiles with bootstrapping).

c. Training loss as a function of training epochs for the hybrid model (InputEC, natural

scenes) with different weights (w), indicated by color (right). d.Model performance based

on validation data (with linear correlation coefficient as metric) during the hybrid-natural

model training with different weights (colors as in (c)). As weight decreased from 1 to 0.2,

more training epochs were needed to reach the best performance. The hybrid model per-

formed best for w = 0.2. Note that the hybrid model showed a slower change in correlation

coefficient (CC) around the peak at w = 0.2 (compared to w = 1), demonstrating the regu-

larization effects of the EC branch on the hybrid model. e. Scatter plots for model predic-

tions based on test data at a particular seed (each dot representing one neuron). Hybrid

with natural scenes as inputEC (w = 0.2) vs. SI, SI with PCA basis (16 bases), SI with DCT

basis (4 bases), hybrid-pha-scr (w = 0.3) and hybrid-noise (w = 0.4). f. Upper: Three repre-

sentative GCL cell responses (gray traces) to noise stimulus together with predictions of

the best performing models on test data (black, SI; blue, SI with PCA basis; cyan, SI with

DCT basis; red, hybrid w/ natural scenes as input in EC path; brown, hybrid w/ phase-

scrambled scenes as input in EC path; magenta, hybrid w/ noise as input in EC path).

Lower: Learned spatio-temporal RFs of the example cells, visualized by SVD. Same random

seed as in (e).

(TIF)

S2 Fig. Three-dimensional hybrid networks embedding natural movies. a,b. Illustration of

SI network (a) with 3D spatio-temporal convolutional filter, and EC network (b), reconstruct-

ing the 7th frame (at t − 1) based on 8 continuous frames (t − 7 to t; encoding the past, c). Com-

bined as a hybrid network, the two branches were trained in parallel with shared 3D filters (all

spatio-temporal filters were shared; InputEC, 8-frame UV-green movie clip; OutputEC, recon-

struction of the 7th frame of InputEC). c. Example for input/output of the EC model for encod-

ing the past (left; also see b) and exemplary spatio-temporal convolutional filters when using

natural movies as input to train the EC model alone (right). d. Example for input/output of the

EC model for predicting the future, i.e., predicting the 8th frame from the first 7 frames (t − 7

to t − 1) of the clip, and exemplary spatio-temporal filters when using natural movies as input

to train the EC model alone. During preprocessing, the 8th frame of input was set to the mean

of the first 7 frames, for UV and green channel, respectively. Note that for stand-alone EC

models, all temporal components of filters for past encoding were very similar while those for

future prediction were much more diverse.

(TIF)

S3 Fig. Training of 3D hybrid models. a,b.Model performance (mean) based on validation

data for hybrid models w/ natural movies as inputEC (a), applying past encoding (hybrid-

natural-past) or future prediction (hybrid-natural-future) and for different weights, and

for the SI-PCAmodel (b) with different numbers of basis (each model for n = 10 random

seeds). c. Scatter plots for model predictions based on test data at a particular seed (each

dot representing one neuron). hybrid-natural-past (w = 0.4) vs. SI, SI-PCA (128 PCA

bases) and hybrid-natural-future (w = 0.4). Error bars in (a)–(b) represent 2.5 and 97.5 per-

centiles with bootstrapping. Both 3D hybrid models performed similarly, with a peak in

predictive performance on the validation data at around w = 0.4 (a). This value of w was

higher than for the 2D hybrid models (w = 0.2; cf. Fig 3c). We also examined the low-pass

filtering effects on the 3D SI model by using PCA filters (3D SI-PCA) and varying the num-

ber of basis (b). Like for the 2D case when varying the number of basis, we found a
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maximum in performance on the validation data at 128 bases, which was larger than the 16

bases in the 2D case (cf. S1(b) Fig).

(TIF)

S4 Fig. Hybrid model for encoding neuronal responses to 30-Hz dense noise. To test hybrid

models for different stimuli, we recorded neuronal responses to the 30-Hz dense noise in the

ventral retina. We yielded n = 64 neurons after quality control (Methods), which were used

to train the SI and hybrid networks. a.Model performance (mean) based on validation data

for hybrid models (w/ natural movies as inputEC), applying encoding-past (hybrid-natural-

past) or predicting-future (hybrid-natural-future) and for different weights. Each model for

n = 10 random seeds. Both models with similar performance for all weights, peaking at

w = 0.7. b.Model performance (mean) based on test data for SI, hybrid-natural-past

(w = 0.7) and hybrid-natural-future (w = 0.7). Each model for n = 10 random seeds. The two

hybrid models had better performance with smaller standard deviation compared the SI

model (p< 0.0001 for SI and hybrid-natural-past, p = 0.9992 for hybrid-natural-past and

hybrid-natural-future; two-sided permutation test, n = 10,000 repeats). c. R-squared (mean)

of fitting a 2D Gaussian to all the spatial filters in UV stimulus channel (each model for

n = 10 random seeds; p< 0.0001 for SI and hybrid-natural-past, p = 0.9888 for hybrid-natu-

ral-past and hybrid-natural-future; two-sided permutation test, n = 10,000 repeats). d.

Learned spatio-temporal filters of the three representative cells, visualized by SVD. Note that

because all neurons in this data set were recorded in the ventral retina, their responses were

dominated by the UV channel. Different temporal filters in the UV channel were observed

for these neurons (cf. the very similar temporal filters in the green channel for neurons’

responses to 5-Hz noise in Figs 3b and 5a lower). e. Exemplary shared spatial and temporal

filters of 3D models, visualized by SVD and for one random seed. Temporal: UV and green

channels indicated by purple and green lines, respectively. Error bars in (a)–(c) represent 2.5

and 97.5 percentiles with bootstrapping.

(TIF)

S5 Fig. Confusion matrix for a trained random forest classifier. Normalized confusion

matrix (true cell types against predicted cell types) for a trained random forest classifier evalu-

ated on a test dataset (for details, see Methods). Dotted line indicates separation of 6 broad

functional cell groups [47].

(TIF)

S6 Fig. Hybrid model for different cell types. a. Performance difference (mean) between

hybrid-natural-future and SI based on test data for different cell types (each model for n = 10

random seeds). b. Performance difference (mean) between hybrid-natural-future and SI based

on test data for DS and non-DS cells (each model for n = 10 random seeds). c. Cumulative his-

togram of model prediction difference between hybrid-natural-future (w = 0.7) and SI on test

data, for DS (red) and non-DS cells, at one particular seed. d. Scatter plots for model predic-

tions based on test data at a particular seed (each dot representing one neuron) for DS and

non-DS cells and hybrid-natural-past (w = 0.7) vs. hybrid-natural-future (w = 0.7). Note that

the predictions of two hybrid models were similar for most of neurons. e.Quality index

(mean) for DS and non-DS cells based on responses to the repeated test sequences in the noise

stimuli (p = 0.2881, two-sided permutation test, n = 10,000 repeats; for details, see Methods). f.

Like (e) but for chirp responses (p = 0.6714, two-sided permutation test, n = 10,000 repeats). g.

Like (e) but for bar stimulus responses (p< 0.0001, two-sided permutation test, n = 10,000

repeats). Error bars in (a),(b),(e)-(g) represent 2.5 and 97.5 percentiles with bootstrapping.

(TIF)
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of Physiology. 2009; 457(6):1393–1414. https://doi.org/10.1007/s00424-008-0603-5 PMID: 19023590

46. Euler T, Franke K, Baden T. Studying a light sensor with light: multiphoton imaging in the retina. In: Mul-
tiphoton Microscopy. Springer; 2019. p. 225–250.

47. Baden T, Berens P, Franke K, Rosón MR, BethgeM, Euler T. The functional diversity of retinal ganglion
cells in the mouse. Nature. 2016; 529(7586):345–350. https://doi.org/10.1038/nature16468 PMID:
26735013

48. Franke K, Chagas AM, Zhao Z, ZimmermannMJ, Bartel P, Qiu Y, et al. An arbitrary-spectrum spatial
visual stimulator for vision research. elife. 2019; 8:e48779. https://doi.org/10.7554/eLife.48779 PMID:
31545172

49. Breiman L. Random forests. Machine learning. 2001; 45(1):5–32. https://doi.org/10.1023/
A:1010933404324

50. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research. 2011; 12:2825–2830.

51. Sun L, Jia K, Yeung DY, Shi BE. Human action recognition using factorized spatio-temporal convolu-
tional networks. In: Proceedings of the IEEE international conference on computer vision; 2015.
p. 4597–4605.

52. Tran D, Wang H, Torresani L, Ray J, LeCun Y, Paluri M. A closer look at spatiotemporal convolutions
for action recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recog-
nition; 2018. p. 6450–6459.

53. Vincent BT, Baddeley RJ. Synaptic energy efficiency in retinal processing. Vision research. 2003; 43
(11):1285–1292. https://doi.org/10.1016/S0042-6989(03)00096-8 PMID: 12726834

54. Doi E, Lewicki MS. A theory of retinal population coding. Advances in neural information processing sys-
tems. 2007; 19:353.

PLOS COMPUTATIONAL BIOLOGY Efficient coding for neural system identification

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1011037 April 24, 2023 27 / 29



55. Van RossumM, O’Brien BJ, Smith RG. Effects of noise on the spike timing precision of retinal ganglion
cells. Journal of neurophysiology. 2003; 89(5):2406–2419. https://doi.org/10.1152/jn.01106.2002
PMID: 12740401

56. Field DJ. What is the goal of sensory coding? Neural computation. 1994; 6(4):559–601. https://doi.org/
10.1162/neco.1994.6.4.559

57. Hubel DH, Wiesel TN. Receptive fields of single neurones in the cat’s striate cortex. The Journal of
physiology. 1959; 148(3):574–591. https://doi.org/10.1113/jphysiol.1959.sp006308 PMID:
14403679

58. Marr D, Hildreth E. Theory of edge detection. Proceedings of the Royal Society of London Series B Bio-
logical Sciences. 1980; 207(1167):187–217. PMID: 6102765

59. Schlamp CL, Montgomery AD, Mac Nair CE, Schuart C, Willmer DJ, Nickells RW. Evaluation of the per-
centage of ganglion cells in the ganglion cell layer of the rodent retina. Molecular vision. 2013; 19:1387.
PMID: 23825918

60. Jacobs GH,Williams GA, Fenwick JA. Influence of cone pigment coexpression on spectral sensitivity
and color vision in the mouse. Vision research. 2004; 44(14):1615–1622. https://doi.org/10.1016/j.
visres.2004.01.016 PMID: 15135998

61. Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: European conference
on computer vision. Springer; 2014. p. 818–833.

62. Franke K, Berens P, Schubert T, Bethge M, Euler T, Baden T. Inhibition decorrelates visual feature rep-
resentations in the inner retina. Nature. 2017; 542(7642):439–444. https://doi.org/10.1038/nature21394
PMID: 28178238

63. Soodak RE. Two-dimensional modeling of visual receptive fields using Gaussian subunits. Proceedings
of the National Academy of Sciences. 1986; 83(23):9259–9263. https://doi.org/10.1073/pnas.83.23.
9259 PMID: 3466186

64. Palmer SE, Marre O, Berry MJ, BialekW. Predictive information in a sensory population. Proceedings
of the National Academy of Sciences. 2015; 112(22):6908–6913. https://doi.org/10.1073/pnas.
1506855112

65. BialekW, Van Steveninck RRDR, Tishby N. Efficient representation as a design principle for neural cod-
ing and computation. In: 2006 IEEE international symposium on information theory. IEEE; 2006. p.
659–663.

66. Chalk M, Marre O, Tkačik G. Toward a unified theory of efficient, predictive, and sparse coding. Pro-
ceedings of the National Academy of Sciences. 2018; 115(1):186–191. https://doi.org/10.1073/pnas.
1711114115

67. Lettvin JY, Maturana HR, McCullochWS, Pitts WH.What the frog’s eye tells the frog’s brain. Proceed-
ings of the IRE. 1959; 47(11):1940–1951. https://doi.org/10.1109/JRPROC.1959.287207

68. Bae JA, Mu S, Kim JS, Turner NL, Tartavull I, Kemnitz N, et al. Digital museum of retinal ganglion cells
with dense anatomy and physiology. Cell. 2018; 173(5):1293–1306. https://doi.org/10.1016/j.cell.2018.
04.040 PMID: 29775596

69. Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I, Hong G, et al. Single-cell profiles of retinal gan-
glion cells differing in resilience to injury reveal neuroprotective genes. Neuron. 2019; 104(6):1039–
1055. https://doi.org/10.1016/j.neuron.2019.11.006 PMID: 31784286

70. Goetz J, Jessen ZF, Jacobi A, Mani A, Cooler S, Greer D, et al. Unified classification of mouse retinal
ganglion cells using function, morphology, and gene expression. Morphology, and Gene Expression.
2021;.

71. Barlow HB, Hill RM. Selective sensitivity to direction of movement in ganglion cells of the rabbit retina.
Science. 1963; 139(3553):412–412. https://doi.org/10.1126/science.139.3553.412 PMID: 13966712

72. Olshausen BA, Field DJ. How close are we to understanding V1? Neural computation. 2005; 17
(8):1665–1699. https://doi.org/10.1162/0899766054026639 PMID: 15969914

73. Heitman A, Brackbill N, Greschner M, Sher A, Litke AM, Chichilnisky E. Testing pseudo-linear models
of responses to natural scenes in primate retina. bioRxiv. 2016; p. 045336.

74. Rust NC, Movshon JA. In praise of artifice. Nature neuroscience. 2005; 8(12):1647–1650. https://doi.
org/10.1038/nn1606 PMID: 16306892

75. Touryan J, Felsen G, Dan Y. Spatial structure of complex cell receptive fields measured with natural
images. Neuron. 2005; 45(5):781–791. https://doi.org/10.1016/j.neuron.2005.01.029 PMID: 15748852

76. Jacoby J, Schwartz GW. Three small-receptive-field ganglion cells in the mouse retina are distinctly
tuned to size, speed, and object motion. Journal of Neuroscience. 2017; 37(3):610–625. https://doi.org/
10.1523/JNEUROSCI.2804-16.2016 PMID: 28100743

PLOS COMPUTATIONAL BIOLOGY Efficient coding for neural system identification

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1011037 April 24, 2023 28 / 29



77. Rousso DL, Qiao M, Kagan RD, Yamagata M, Palmiter RD, Sanes JR. Two pairs of ON and OFF retinal
ganglion cells are defined by intersectional patterns of transcription factor expression. Cell reports.
2016; 15(9):1930–1944. https://doi.org/10.1016/j.celrep.2016.04.069 PMID: 27210758

78. Bleckert A, Schwartz GW, Turner MH, Rieke F, Wong RO. Visual space is represented by nonmatching
topographies of distinct mouse retinal ganglion cell types. Current Biology. 2014; 24(3):310–315.
https://doi.org/10.1016/j.cub.2013.12.020 PMID: 24440397

79. Brown SP, He S, Masland RH. Receptive field microstructure and dendritic geometry of retinal ganglion
cells. Neuron. 2000; 27(2):371–383. https://doi.org/10.1016/S0896-6273(00)00044-1 PMID: 10985356
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Abstract

Integrating data from multiple experiments is common practice in systems neuro-
science but it requires inter-experimental variability to be negligible compared to
the biological signal of interest. This requirement is rarely fulfilled; systematic
changes between experiments can drastically affect the outcome of complex anal-
ysis pipelines. Modern machine learning approaches designed to adapt models
across multiple data domains offer flexible ways of removing inter-experimental
variability where classical statistical methods often fail. While applications of these
methods have been mostly limited to single-cell genomics, in this work, we develop
a theoretical framework for domain adaptation in systems neuroscience. We imple-
ment this in an adversarial optimization scheme that removes inter-experimental
variability while preserving the biological signal. We compare our method to previ-
ous approaches on a large-scale dataset of two-photon imaging recordings of retinal
bipolar cell responses to visual stimuli. This dataset provides a unique benchmark
as it contains biological signal from well-defined cell types that is obscured by
large inter-experimental variability. In a supervised setting, we compare the gener-
alization performance of cell type classifiers across experiments, which we validate
with anatomical cell type distributions from electron microscopy data. In an un-
supervised setting, we remove inter-experimental variability from data which can
then be fed into arbitrary downstream analyses. In both settings, we find that our
method achieves the best trade-off between removing inter-experimental variability
and preserving biological signal. Thus, we offer a flexible approach to remove
inter-experimental variability and integrate datasets across experiments in systems
neuroscience. Code available at https://github.com/eulerlab/rave.
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1 Introduction

Systems neuroscientists are often concerned with identifying and characterizing how properties of
neurons vary along certain dimensions of interest. Differences in these properties between neurons
form the basis for sorting them into discrete categories. Both the advance of large-scale data
acquisition techniques in experimental neuroscience as well as the development of more efficient and
powerful data analysis methods allow collecting and analyzing datasets of increasing size; and hence
the discovery of more subtle variations in neural function between cell types [e.g. 1–4]. However, as
data acquisition is often an incremental process, it has become common practice to pool data from
multiple experiments. This practice ignores variability in the data stemming from external factors,
which include non-biological ones (e.g. sample handling resulting in small differences in tissue
quality, or temperature fluctuations affecting the rates of biochemical processes) but potentially also
unforeseen biological ones (e.g. subtle genetic variations) [3, 5, 6]. Such variability due to external
factors, here referred to as inter-experimental variability, can confound and obscure the biological
signals of interest. In some cases, the source of inter-experimental variability is known and can be
modeled [5], but if this is not the case, a method for removing it from the data is required.

The issue of inter-experimental variability in systems neuroscience is analogous to the problem of
domain shift in machine learning, where the data distribution changes between training (‘source’)
and test (‘target’) data, causing an algorithm to fail when deployed on data from an unseen target
domain [7–10]. Methods that address this issue have to perform some form of domain adaptation, i.e.
adapting the algorithm to work both on the training as well as some (usually unseen) test domain
[11]. In single-cell genomics, a number of different studies have proposed methods for removing
inter-experimental variability (see Section 2), but related works in systems neuroscience are lacking,
despite the recognized need for such approaches [3, 5]. Here, we contribute to closing this gap as
follows:

• We cast the removal of inter-experimental variability from functional data in systems
neuroscience in the theoretical framework of domain adaptation (Figure 1 and Section 3).

• We adapt and evaluate different approaches and demonstrate improved performance of cell
type assignment, while preserving the biological signals of interest (Table 1 and Figure 4).

• We demonstrate that our method produces cell type predictions on a new dataset that are
best aligned with anatomical data (Table 2 and Figure 5).

• Finally, we showcase in a downstream analysis that the corrected data (Figure 3) clearly
exhibits biological effects that were obscured by inter-experimental variability (Figure 6).

2 Related Work

As mentioned before, few studies have proposed specialized solutions to the issue of inter-
experimental variability in systems neuroscience. Two studies have approached the problem of
temporal alignment of neural responses across experiments. Zhao et al. [5] proposed a solution to
deal with the specific effects of temperature fluctuations on the response kinetics of retinal neurons
by modeling them explicitly. Williams et al. [12] proposed a more general method for the temporal
alignment of data across trials or recording sessions. Other studies have suggested models of neural
function that integrate data across experiments. Shah et al. [3] build encoding models to predict
the responses of retinal ganglion cells across different experiments [see also 13] and compare it to
covariates such as the gender of an animal. Sorochynsky et al. [14] propose a way to measure noise
correlations in each recording and integrate those into models of neural populations of a specific
cell type. This latter approach is complementary to our method because it allows the study of the
structure and function [see also 15] of noise correlations, which we discard as nuisance variability.
Somewhat related to the example application in our paper, Jouty et al. [16] suggested a method to
perform non-parametric physiological classification of retinal ganglion cells in the mouse retina while
trying to find matching clusters of cell types across experiments. Crucially, all of these approaches
offer specialized solutions that do not represent general purpose correction methods.

In single-cell genomics, a number of approaches for removing inter-experimental variability from
data have been developed [17–24]. Two such methods are Harmony [25] and scGen [26]. Harmony
performs iterative clustering using a variant of soft k-means until convergence to align cells from
different datasets in a joint embedding. scGen, on the other hand, combines a variational autoencoder
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adapted for scRNA-seq data with latent space arithmetics to predict gene expression, while removing
inter-experimental variability between datasets. In this paper, we compare our approach against these
methods as they have been found to perform particularly well in two benchmarking studies [27, 28].

3 Theoretical Framework

Figure 1: Problem Setting. Arrows repre-
sent given (solid lines) and modeled (dashed
lines) relations. Capital letters denote random
variables, small letters transformations (see
Section 3). The setting with known S (white
circle) is supervised, while unknown S (gray
circle) is an unsupervised setting.

The generative process of data denoted by a random
variable X with image X is depicted in Figure 1. The
biological signal shared across experiments (e.g. vari-
ation due to cell types) is represented by a random
variable S (‘signal’) with image S. We define D
(‘domain’) as a random variable with image D that
represents inter-experimental variability. Now, our
objective is to learn a function f that transforms the
data into a new random variable Z :“ fpXq with
image Z . Importantly, we distinguish two settings:
(i) unsupervised — where S is unknown and we sim-
ply try to retain in Z as much information about the
data as possible while removing inter-experimental
variability; (ii) supervised — where S is known and
we additionally try to retain in Z as much informa-
tion about S as possible. These objectives can be
formulated in terms of mutual information, giving
the unsupervised loss function

L “ IpZ;Dq ´ IpZ;Xq (1)

and, provided knowledge about S, we obtain the supervised loss function

L` “ L ´ IpZ;Sq. (2)

Now, IpZ;Dq attains its minimum for IpfpXq;Dq “ 0 because of the non-negativity of mutual
information. And IpZ;Sq attains its maximum for IpfpXq;Sq “ IpX;Sq because of the data
processing inequality. If f were a bijection, it would follow that IpfpXq;Sq “ IpX;Sq, but also
IpfpXq;Dq “ IpX;Dq. But by assumption, IpX;Dq ą 0 (otherwise there is no inter-experimental
variability and we are done) and so we would have IpfpXq;Dq ą 0. Thus, at the minimum of
IpZ;Dq, f cannot be a bijection. Generally, if there is an interaction between recording, signal and
domain i.e. IpX;S;Dq ‰ 0, then there will be a trade-off between maximizing IpfpXq;Sq and
minimizing IpfpXq;Dq. This trade-off becomes even more apparent in the unsupervised setting
where IpfpXq;Xq and IpfpXq;Dq are clearly competing.

Mutual information quantifies the dependence between two variables but it is difficult to estimate
[29–32]. Instead, we measure dependency through nonlinear regression with an appropriate distance
metric d.2 Usually D is a discrete random variable indicating the experiment of a recording, and so, to
estimate IpZ;Dq, we can perform classification with a classifier function h : Z Ñ D, minimizing the
standard cross-entropy dCEphpZq, Dq (Figure 1). Lemma 10 in [34] shows that this gives a variational
lower bound to IpZ;Dq [see also 35]. In some cases S may also be discrete (e.g. cell types) and we
can do the same, in other cases it might be a (high-dimensional) continuous random variable and so, to
approximate IpZ;Sq, we can perform regression, minimizing the mean squared error dMSEpgpZq, Sq.
Similarly, in the unsupervised setting, to approximate IpZ;Xq, we minimize dMSEpgpZq, Xq. To
keep notation simple, in the unsupervised setting we define the mapping g : Z Ñ X , and in the
supervised setting g : Z Ñ X ˆ S . Putting this together, in the unsupervised setting our objective is

minL ÝÑ min
h

max
g,f

λ dphpfpXqq, Dq ´ dpgpfpXqq, Xq (3)

where we have introduced a hyperparameter λ that mitigates the trade-off discussed above. In the
supervised setting our objective becomes

minL` ÝÑ min
h

max
g,f

λ dphpfpXqq, Dq ´ dpgpfpXqq, pX,Sqq. (4)

2If the joint probability density of two random variables is a bivariate normal distribution, then the mutual
information is proportional to their linear correlation [33].
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In both equations we find a min´max optimization, where h is trying to predict D from Z, tightening
the lower bound on IpZ;Dq [see 34], while f is trying to prevent that by removing information
about D from Z, effectively lowering IpZ;Dq. Practically, this optimization scheme has become a
standard adversarial setting in machine learning, for instance, in the training of generative adversarial
networks [36] or for discriminative adversarial domain adaptation [37].

4 Methods

4.1 Datasets

To test our model approach, we use two datasets of two-photon imaging recordings [38–40] from the
14 mouse retinal bipolar cell (BC) [41] types’ responses to two visual stimuli, a local and full-field
chirp stimulus (Figure 3). The axon terminals of BCs stratify at distinct, cell type-specific depths
within the second synaptic layer of the retina, the inner plexiform layer (IPL). The functional BC data
were obtained by imaging the glutamate output at their axon terminals using the genetically encoded
glutamate-sensing fluorescent reporter iGluSnFR [42]. In our study, we refer to these two datasets as
A [2] and B [5] (for further preprocessing see Appendix).

In [2], an anatomy-guided functional clustering approach to group the BCs into the 14 functional
types was applied to dataset A, thus providing functional reference cell type labels, which do not
exist for dataset B. However, even if both datasets recorded the same cell types, they suffer from
inter-experimental variability making it difficult to match and, for example, to use dataset A to predict
the cell type labels for dataset B. We discuss potential sources of inter-experimental variability in the
Appendix. For preprocessing, both BC datasets are high-pass filtered above 0.1 Hz (to remove the
trends of decreasing fluorescence signal over time) and resampled to 30 Hz. Each cell’s response is
normalized to zero mean and standard deviation one. In addition, to ensure high quality responses,
only cells with a sufficient response quality are used (for details about quality criterion see [2]).

4.2 Models

All methods transform the data, either into a low-dimensional embedding z P Z or directly into a
reconstruction x̂ P X from which inter-experimental variability has been removed to a varying degree.
Usually we have dimpZq ! dimpX q and so, for different downstream evaluations, we map between
these representations: (i) with least squares reconstructions (Z Ñ X ), or (ii) principle component
projections (X Ñ Z) (see Appendix).

4.2.1 Unsupervised Model

We parameterize the functions f, g and h (Figure 1) with neural networks. In the unsupervised model,
the function g : Z Ñ X provides a reconstruction x̂ :“ gpzq, x̂ P X of the data. With the concurrent
task (eq. 3) of minimizing the predictability of the domain D, this reconstruction should only contain
parts of the original data that are indiscernible across experiments. Since the purpose of our method
is to Remove, Adversarially, Variability from datasets collected in different Experiments, we term our
model RAVE.

4.2.2 Supervised Model

In the supervised setting, we have partial knowledge about the biological signal S. The function g :
Z Ñ X ˆ S now returns a reconstruction as well as a prediction of that signal px̂, ŝq :“ gpzq, ŝ P S .
When optimizing equation (4), this additional task is equivalent to discriminative adversarial domain
adaptation [37]. In the particular data that we work with, we have two datasets D :“ tA,Bu, but
the biological signal S consists of cell type labels which are only available in the first dataset A.
Thus, more accurately, this presents a semi-supervised scenario where one wishes to classify a newly
recorded dataset according to some existing classification scheme. We term this extended version of
our model RAVE+.

4.2.3 Training and Optimization Details

All of our models are implemented and optimized in PyTorch [43]. For both RAVE and RAVE+, we use
the same model architecture, they only differ in the objective function. We randomly split the data
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into training, validation and test set and train all models with empirical risk minimization. Model
weights are trained with stochastic gradient descent using one instance of the Adam optimizer [44]
for the outer minimization of f and g in equations (3) and (4); and then a second instance of Adam
for the inner minimization of h in those equations. We optimize hyperparameters through random
search [45] on the validation set and report performances on the test set which is only used for
final evaluation. In the random search, we test different learning rates for both optimizers, and also
different training schedules. We additionally search over depth, width and drop-out rate for each
of the neural networks pf, g, hq, as well as the trade-off parameter λ introduced in equation (3).
Finally, we explore training the inner optimization (h, estimating IpZ;Dq) more often than the outer
optimization, which proved more stable and effective in early experiments.

4.2.4 Comparison Models

We test three different methods for comparison with our model. Our simplest comparison model
(Linear) is a linear model that projects out the contrast between the dataset indicator variables
(see Appendix). This has an analytic solution and no hyperparameters, serving as a baseline to
get an estimate of the correction quality achieved by a standard method in classical statistics. The
other two methods (scGen and Harmony) are run in an unsupervised learning mode without cell
type information. Even though scGen could be utilized to run in a supervised mode with cell type
information, this is not specified in a semi-supervised setting with only partial cell type labels
available.

4.3 Performance Evaluation

For evaluating the correction performed by the various methods, we analyze their output with respect
to dataset-mixing (achieved by removing inter-experimental variability) and preservation of signal
information.

4.3.1 Dataset-Mixing

The Rand index [46] measures similarity between two clusterings; the adjusted Rand index (ARI) is
the Rand index adjusted for chance level (see Appendix) which was recently used by Tran et al. [28]
to assess the quality of dataset-mixing in genomics. It takes as input the true and the predicted labels

for a set of samples. We define ARIdompzq :“ ARIpd, d̂zq with d the original domain labels (of the

test set) and d̂z the domain labels predicted by a classifier trained on z. On the raw data (z “ x), we
expect ARIdom to be high due to inter-experimental variability. After successful correction (with z
the output of a model), we expect ARIdom to be low indicating good dataset-mixing.

In addition, we compute the accuracy (Accdom) of a domain classifier with the objective to predict the
domain labels based on the input data. For low dataset-mixing, we expect a high Accdom as it should
be trivial for the classifier to differentiate the datasets. However, after removing inter-experimental
variability, Accdom is supposed to be close to chance level („ 64%, cf. Table 1), which would
indicate successful dataset-mixing. For the domain classifier, we use a random forest classifier with
cross-validated hyperparameters for each model (see Appendix). This is crucial, because a powerful
encoder f might hide (through multiple nonlinear transformations) domain information from a
simple classifier, but still recover that information in an equally powerful decoder g. Conversely,
we observe that overly expressive random forest classifiers, tend to overfit on the training set, thus
underestimating the preserved domain or type information on the test set.

4.3.2 Preservation of Signal Information

In the unsupervised setting, to assess the amount of information preserved about the original data
x during the process of removing inter-experimental variability, we evaluate the rank correlation
Corrpx, x̂q between input x and reconstruction x̂. In the (semi-) supervised setting, we have reference
cell type labels sA for dataset A. To estimate how much of this information is preserved, we predict
cell type labels ŝA from zA with random forest classifiers like above (see Figure 2; Appendix for
further details).

If a method succeeds at preserving signal information in z after removing inter-experimental vari-
ability, then we expect the classifier to have a high accuracy (Acctype). Deteriorating classification

5



performance between predicting ŝA from raw data xA versus predicting it from the model output zA
would indicate signal loss.

Figure 2: Workflow. Evaluating the
preservation of signal information: A
classifier gets trained on the labeled
dataset A (either px, sqA or pz, sqA) and
applied to dataset B to predict labels (ei-
ther ŝxB

or ŝzB
). The predicted labels are

then used for further evaluation.

Additionally, we would like to evaluate how well cell types
can be distinguished and how biologically plausible they
are for the unlabeled dataset B. To this end, we apply the
classifiers to predict cell type labels ŝB from zB . One
direct comparison is between the distributions over cell
types in ŝB and as expected from electron-microscopy
(EM) data [47–50] (Figure 5A). However, we can also
evaluate the accuracy of these predictions by making use
of BC axonal stratification profiles obtained from the same
EM data. From those data, we know where in the IPL
a BC type stratifies its axon terminals. Thus, we can
compare the distribution over IPL depth for the predicted
cell types (ŝB) with the distributions expected from EM
data. We quantify the difference between the expected and
predicted distributions by calculating the Jensen-Shannon
distance. We define the depth score (DS) as the mean
Jensen-Shannon distance between those two distributions
(Table 2). Additionally, we evaluate the robustness of
cell type labels ŝB by fitting the classifier ten times with
different seeds and calculating the average ARI between
different runs, giving the ARItype score (Table 1).

5 Results

5.1 Simulation Experiments

First of all, we validated that our model performs as expected on simulated ground truth data. To do
this, we generated bipolar cell responses for all 14 cell types based on the published bipolar cell model
in Schröder et al. [51]. To simulate different individual neurons, we added small perturbations to the
model weights for each cell type until we matched the intra-cell-type variability observed in the real
data. Thus, we generated N “ 1000 distinct neurons for each of the 14 BC types. Approximating the
differences of the two datasets in the paper, we presented the model with the slightly altered versions
of the stimulus from the actual experiments (see Appendix B). We additionally added white noise
to match realistic signal to noise ratios, as estimated from repeated stimulations of the real neurons.
This resulted in two datasets (‘A’ and ‘B’) with similar intra- and inter-experimental variability as
observed in the real data, but with known ground truth cell type labels.

The results are discussed here and, additionally, they are presented in Appendix Fig. 9. We first
confirmed that the classifiers are indeed perfectly able to separate these two artificial datasets based
on their systematic differences (domain accuracy on raw simulated data: 1.0). However, cell type
classifiers trained on dataset A fail completely on dataset B indicating severe inter-experimental
variability and a failure to transfer models across datasets (type accuracy on dataset A: 0.98, type
accuracy on dataset B: 0.16). In contrast, after correction with RAVE+, the performance of a classifier
trained to distinguish the two datasets drops from 1.0 to 0.66 (chance level 0.5), indicating strong
removal of inter-experimental variability. Importantly, we find that a classifier trained on the output
of RAVE+ on dataset A does now generalize to dataset B and recovers the ground truth cell labels
nearly perfectly (type accuracy 0.99). This constitutes an important validation of our model.

5.2 Unsupervised Removal of Inter-Experimental Variability

All methods tested (Linear, Harmony, scGen, RAVE and RAVE+) succeed at retaining a significant
amount of information about x in x̂, reflected by high correlations between x and x̂ (Table 1).
Corrpx, x̂q reaches similar levels for data from both datasets, suggesting that both datasets are
modified to find a midway representation. This impression is confirmed when visualizing xA, xB

and x̂A and x̂B next to each other (Figure 3). Moreover, we note that a side-effect of the alignment
is a more general denoising that RAVE tends to perform along with removing inter-experimental
variability. We recognize that this a desirable feature that we will study further in future research.
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Model CorrA Ò CorrB Ò Accdom Ó Acctype Ò ARIdom Ó ARItype Ò

Raw 100 100 99.8 (0.1) 77.4 (0.9) 99.3 (0.4) 37.3 (3.3)

Linear 99.0 (0.5) 97.0 (1.7) 99.5 (0.2) 83.4 (0.8) 98.1 (0.7) 7.6 (1.7)
Harmony 72.0 (10.7) 72.0 (13.8) 94.2 (0.4) 82.5 (0.5) 78.0 (1.6) 31.4 (2.3)
scGen 78.0 (9.8) 80.0 (10.5) 99.6 (0.1) 84.7 (0.8) 98.7 (0.3) 14.3 (2.6)
RAVE 60.0 (12.8) 58.0 (17.3) 77.5 (0.5) 69.5 (0.4) 28.9 (1.2) 81.2 (2.7)
RAVE+ 59.0 (14.8) 58.0 (19.1) 65.9 (0.9) 78.6 (0.8) 10.0 (1.2) 83.7 (2.3)

Table 1: Model Comparison. All entries in percentage. Mean and standard deviation metric scores
across 10 random seeds. Bold font in each row indicates best score. CorrA (CorrB) is the correlation
of corrected data from dataset A (B) with its raw data. Accdom (Acctype) is the accuracy of the
domain (cell type) classifier. For ARIdom and ARItype see Section 4.3.

We show mean traces for exemplary cell types from dataset A, and mean traces of cells from dataset
B whose cell type labels we predict twice, first based on x (left pathway in Figure 2) and then again
based on x̂ (right pathway in Figure 2, but on x̂RAVE instead of z). As expected, inter-experimental
variability obscuring the common signal s behind xA and xB causes the cell type assignment to
fail; the similarity between responses of cells assigned to the same cell type, but coming from the
different datasets is low (Figure 3, BC type 5t). Repeating the classification pipeline based on x with
the same classifier architecture and different seeds yields highly variable cell type predictions for
dataset B (Table 1, ARItype) despite high prediction accuracy on dataset A (Table 1, Acctype). This
demonstrates a failure in transferring to dataset B, and not the classification itself. These results on
the raw data x affected by inter-experimental variability were expected; however, the same pattern
- low ARItype (dataset B) and high Acctype (dataset A) - is observed for Harmony, scGen and the
Linear model. This suggests that these methods fail at removing inter-experimental variability. The
high domain accuracy achieved by a classifier trained on the outputs of these models confirms this
conclusion. RAVE, on the other hand, succeeds at significantly lowering domain accuracy Accdom,
while at the same time maintaining high scores for ARItype and Acctype.

5.3 Supervised Removal of Inter-Experimental Variability

RAVE+ extends RAVE to the (semi-) supervised setting where (partial) signal information is present.
RAVE+ excels at removing inter-experimental variability (Table 1, Accdom and ARIdom) and at the
same time retaining signal information (Table 1, Acctype and ARItype). A low dimensional t-SNE

Figure 3: Exemplary Cell Type Responses from both Datasets to the Chirp Stimuli. Four bipolar
cell type responses of the types 2, 3a, 5t and 5i to the local (top panel) and full-field (bottom panel)
chirp of raw data xRaw (two top upper panels) and reconstructed data x̂RAVE (two bottom lower panels)
by RAVE for both datasets A and B. Each column shows the mean responses of one cell type (standard
deviation shaded).
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[52] embedding (Figure 4) shows that cells from datasets A and B are mapped onto the same cell
type "islands". The distribution of types across IPL depth predicted by a classifier trained on zRAVE+
matches the expected anatomical distributions better than for all other methods (Figure 5 and Table
2). This provides a valuable validation of the estimate ŝB learned by RAVE+ in the absence of ground
truth knowledge of sB .

Figure 4: Dataset Embeddings. t-SNE embeddings of the test set of raw (left column) and corrected
output data by RAVE+ (right column). Embedded cells are color-coded by dataset (top row) and cell
type (bottom row). Cell type labels for the raw data of dataset B (bottom left) were predicted using a
cell type classifier trained on the raw data of dataset A (Figure 2, left pathway).

Figure 5: Distribution Across BC Types and IPL Depths. We compare the expected and predicted
distribution of BCs from dataset B across the 14 types and across IPL depth. (A) Probability that a
BC belongs to a certain type as estimated from EM data; as estimated from BC type labels predicted
on x̂RAVE+; and as estimated from BC type labels predicted on x. Error bars indicate SD across 10
seeds of the classifier. (B) Distributions per cell type over IPL depth for EM data (distribution shown
to the left), RAVE+ output (solid line to the right) and raw data (dashed line to the right). Shaded
area around the distributions shown to the right indicate SD across 10 seeds of the classifier. (C) JS
distances corresponding to the distributions in B).

5.4 Downstream Analyses on Reconstructed Traces

As in our unsupervised setting, it is common that no particular signal information is available and
that one wants to remove inter-experimental variability from the data to perform further downstream
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BC Type 1 2 3a 3b 4 5t 5o 5i X 6 7 8 9 R I all

Raw 34 52 38 42 56 63 62 54 60 52 51 38 58 37 50 31

Linear 58 40 53 51 57 62 57 56 62 55 57 58 58 53 56 34
Harmony 42 32 42 47 54 59 58 56 61 37 59 26 58 38 48 23
scGen 51 38 48 48 56 59 56 59 63 55 57 56 56 42 53 31
RAVE 41 32 38 40 57 58 62 55 66 55 55 38 50 50 50 23
RAVE+ 38 30 43 40 52 62 56 54 55 26 56 28 27 49 44 17

Table 2: Depth Score Comparison. All entries in percentage, lower is better. Bold font in each
row indicates best score. Depth Score - Jensen-Shannon (JS) distance between predicted types and
EM depth distribution: JSppEM pdepth|type “ tq, pmodelpdepth|type “ tqq. Last column ("all"):
JSppEM ptypeq, pmodelptypeqq.

analyses. We show that a previously demonstrated biological effect, obscured by inter-experimental
variability in x, emerges when performing the same analyses on the reconstructed traces x̂ obtained
from RAVE. Full-field visual stimulation has been shown to decorrelate responses from different BC
types compared to local stimulation due to inhibitory feedback from amacrine cells (see Figure 3A, B
in [2]). We expect this fundamental feature to be present in dataset B, but cannot fully reproduce it if
we assign cells of dataset B to cell types based on the raw data (Figure 2, left pathway; and Figure
6A). However, using the reconstructed traces x̂RAVE, the expected feature is unmasked (Figure 2, right
pathway, but on x̂RAVE instead of z; and Figure 6B). Here, the mean responses to the local chirp are
more correlated across cell types than the full-field responses (Figure 6B, left panel). This can also
be seen when comparing the mean correlations between local and full-field chirp responses for each
cell type with all other cell types, both of the same and the opposite response polarity (On and Off
polarity) (Figure 6B, right panel).

Figure 6: Removing Inter-Experimental Variability Reveals Biological Feature. (A) Correlation
matrices show the correlations between mean responses per cell type to local (top) and full-field
(bottom) chirp of raw data x from dataset B. The right panel represents the mean correlation for each
cell type mean response with all other types of the same (circle) and opposite (triangle) response
polarity between local and full-field chirp shown for raw responses. (x: mean correlation same
polarity: plocal = 0.57 and pfull-field = 0.39, P < 0.005; opposite polarity: plocal = 0.01 and pfull-field =
-0.04, n.s.; n = 14, non-parametric paired Wilcoxon signed-rank test).(B) Same analysis as A, but
with the reconstructed responses obtained from RAVE. (x̂RAVE: mean correlation same polarity: plocal =
0.88 and pfull-field = 0.79, P < 0.0005; opposite polarity: plocal = -0.34 and pfull-field = -0.48, P < 0.0005;
n = 14, non-parametric paired Wilcoxon signed-rank test).
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6 Limitations

Our method is limited to datasets where neurons were presented with the same stimulus. For other
kinds of data, such as neural recordings from free behavioral paradigms where each trial will be
different, it will be difficult to ‘align’ neural responses in a meaningful way. One solution to this
could be to learn a shared embedding space [see 53], from which domain effects are removed, but
distinct encoders fi and decoders gi for different trials i. In another setting, where different stimuli
are presented between experiments, one might resort to an approach like Shah et al. [3]. Nevertheless,
we do acknowledge that the data in our applications consists of ex vivo retinal recordings which have
little to no attentional effects or task-dependent noise correlations like they would be present in in
vivo cortical data. We are optimistic that our framework of adversarially removing inter-experimental
variability is still a promising approach in those settings, under the constraint that a much more severe
trade-off may need to be made between retaining signal and removing domain shifts.

7 Discussion

We present a framework to remove inter-experimental variability from functional recordings in
systems neuroscience. To the best of our knowledge, this is the first application of domain adaptation
methods to this kind of data. Using our unsupervised (RAVE) and (semi-) supervised (RAVE+)
approaches, we demonstrate that we are able to remove inter-experimental variability while retaining
signal information, which allows us to robustly predict cell type labels for a new dataset. We validate
those predictions using an anatomy-based comparison to existing EM data.

Furthermore, our unsupervised approach RAVE is able to remove inter-experimental variability without
cell type information. By using the corrected dataset B, we unmask biological effects, obscured by
inter-experimental variability, that have been previously described for dataset A. Thus, by allowing
the integration and alignment of functional recordings across experiments, we show that biological
effects in the data become more pronounced when using our model approaches. Inter-experimental
variability is ubiquitous and we hope that this method will become a helpful resource to many
experimenters as we make the code toolbox publicly available.

We believe that our method can also make a contribution to systems neuroscience research in the
context of the 3Rs (Replacement, Reduction and Refinement) for animal ethics: By enabling detection
of more subtle biological signals after removal of inter-experimental variability, fewer animals may
be needed to test a specific hypothesis. Lastly, we acknowledge that the removal of inter-experimental
variability from any kind of data (thus not only within systems neuroscience) can be useful in various
applications. Virtually any analysis that aggregates data across experiments can be confounded by
inter-experimental variability. Consequently, we cannot exclude the possibility that some military
application will find value in this approach. Although unlikely, we cannot fully anticipate such
developments. Therefore we condemn, without any exceptions, the use of RAVE(+) for any warlike
applications or other nefarious purposes.
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[61] Pavlin G Poličar, Martin Stražar, and Blaž Zupan. opentsne: a modular python library for t-sne
dimensionality reduction and embedding. BioRxiv, page 731877, 2019.

14



Appendix

A Model details

A.1 Linear mappings between z and x

Usually, we have data x P R
NˆD1 and latent representation z P R

NˆD2 with N the number of
neurons, D1 the dimensionality of the data, D2 the dimensionality of the latent space and, usually,
D1 " D2. In cases where a method m does only produce some latent representation zm, we fit a
reconstruction x̂m “ Wzm with a least squares projection W “ pzTmzmq´1zTmx. In cases where a
method m does only produce some reconstruction x̂m, we produce a simple latent representation zm
by extracting the first D2 columns of the left singular vectors U from the singular value decomposition
x “ USV T . Both of these projections are fitted on the training data, then fixed and also used on the
validation and test data.

B Data

We used three datasets, where the first two (dataset A [2] n=8417 cells; B [54] n=4600) are two-photon
recordings of mouse retinal bipolar cell (BC) responses to the chirp stimuli (local and full-field,
see [2] for details). Both datasets were used for model fitting and removal of inter-experimental
variability. For the validation of cell type predictions made by the different models, we used the third
dataset, which comprises EM data of axonal stratification profiles as probability distribution of each
BC type [47–50].

The inter-experimental variability between the two functional datasets may originate from, at least,
the three following differences between the datasets: (i) dataset A recorded BCs mostly at certain IPL
depths (‘ChAT-bands’, which are landmarks within the IPL [55]) using tangential scans parallel to
the retinal layers, whereas dataset B used axial scans employing an electrically tunable lens to record
from BCs across the entire IPL simultaneously [5], resulting in different sampling distributions; (ii)
the chirp stimulus used in dataset B differs slightly as the sinusoidal intensity modulation of the
increasing frequency is marginally slower; (iii) dataset A did not employ a gamma correction of the
display device to linearize its intensity curve, resulting in slightly different stimulus contrasts [56].

C Training Results

The outcome of the random search can be seen in Figure 7, showing metrics on the validation set
for both models. To select the best RAVE model, we picked the point in the top right corner (center
plot, first row, Figure 7). This was the model with the highest IpZ;Xq, i.e. correlation, and the
lowest IpZ;Dq, i.e. domain classification accuracy. To select the best RAVE+ model, we picked the
(RAVE+) point in the top right corner of the 3D space spanned by tIpZ;Xq, IpZ;Sq,´IpZ;Dqu, i.e.
the model with the best reconstruction and cell type prediction accuracy but with the lowest domain
prediction accuracy.

Moreover, Figure 7 also demonstrates the trade-off between maximizing IpZ;Xq and IpZ;Sq and
minimizing IpZ;Dq. In the top row on the left, one can see that models with high IpZ;Xq also tend
to have a high IpZ;Sq, indicating that these two tasks can be performed well at the same time (this is
what we mean by ‘synergy’ in the title; naturally, we cannot make a causal statement here). In the top
row middle, one can see for models that achieve a high IpZ;Xq (some hyperparameter configurations
in the random search simple lead to bad models), that there is a negative slope with respect to IpZ;Dq,
indicating that there is a trade-off between optimizing these two objectives. The same can be seen in
the top row on the right with respect to IpZ;Sq and IpZ;Dq. The bottom row of Figure 7 zooms
in on the high performing models (see axes limits) and indicates the rank correlations. As stated
above, we find a positive correlation between IpZ;Xq and IpZ;Sq (i.e. no conflict), but a negative
correlation between IpZ;Xq and IpZ;Dq, and between IpZ;Sq and IpZ;Dq (i.e. a trade-off).
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Figure 7: Random Search Result. Optimizing models with different hyperparameters shows how
the terms in the objective function interact. The top row shows all models, the bottom row only
filtered (high-performing) models within the indicated axes ranges. The red lines in the bottom plot
indicate linear fits and the red axis labels show the rank correlation coefficients ρ and p values.

D Details for Comparison Models

D.1 Linear Model

Let our full dataset x P R
pN`MqˆD consists of the concatenated datasets xA P R

NˆD and xB P
R

MˆD, i.e. x “ pxA, xBqT For the linear model, we chose a design matrix β P R
pN`Mqˆ2 of the

form

β “

»

—

—

—

—

—

—

—

—

–

1 ´ 1

N
...

...

1 ´ 1

N

1 1

M
...

...

1 1

M

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5)

where the first column gives the constant component and the second column (the first N entries equal
to ´ 1

N
and the second M entries equal to 1

M
) encodes a contrast for the difference between the

datasets. The matrix is orthogonal, thus avoiding a singular design. To produce a version of the data
with domain effects removed, we fit this to the data with least squares γ “ minγ }Aγ ´ X}2

2
, γ P

R
2ˆD and project out the second component like

x̂Linear “ x ´ xp:,2qγp2,:q (6)

to obtain the linearly domain-corrected data.

D.2 Harmony

For Harmony, we used Harmonypy (version 0.05) (https://github.com/slowkow/harmonypy), which
is the adapted Harmony [25] version for the Python environment. As input, we provided a PCA
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embedding of the raw data (preprocessed). Here, we used the same number of principle components
(PCs) as used for RAVE. Since Harmonypy returns corrected PCs, we performed further evaluation on
these PCs (cf. Appendix Section A.1). To find the best model(s), we performed a random search over
hyperparameters. We chose the best model with Accdom close to or at chance level, while having
high Acctype on predicted cell type labels. Furthermore, we used the exact same dataset splits as we
did for RAVE and RAVE+.

D.3 scGen

We used scGen [26] (version 2.0.0) within the Scanpy [57] (version 1.7.2) working en-
vironment. As input to scGen, we used the raw responses with dataset source infor-
mation (either dataset A or B) using the AnnData [57] object format (version 0.7.6).
To run scGen, we used the following functions as described in the documentation
(https://scgen.readthedocs.io/en/latest/tutorials/scgen_batch_removal.html): setup_anndata to setup
the AnnData object for scGen, SCGEN to setup the model, train to train the model and
batch_removal to remove inter-experimental variability.

As scGen returns corrected input data, we performed PCA on the output data, which were used
for further evaluation (cf. Appendix Section A.1). Here, we used the same number of principle
components (PCs) as used for RAVE. To find the best model, we performed a random search over
hyperparameters. Just like Harmony, we chose the best model that had Accdom close to or at chance
level, while having high Acctype on predicted cell type labels.

D.4 Results of Dataset-Mixing by Harmony and scGen

Figure 8: Dataset Embeddings. t-SNE embeddings of corrected data by Harmony (left) and scGen

(right). Embedded cells are colored by dataset.

The low dimensional t-SNE embeddings [52, 58] (Figure 8), performed after the application of
the two comparison methods (Harmony and scGen), show that cells from datasets A and B are not
properly mixed; hence they are not removing inter-experimental variability sufficiently (see main
paper, Table 1).

E Simulation experiments

In Figure 9, we present the results of the simulation experiments discussed in the main text. More
specifically, we show example simulated cell responses for both stimuli (i.e., datasets ‘A’ and ‘B’) in
Fig. 9A. Then in Fig. 9B, we demonstrate with a t-SNE embedding that the two datasets show clear
inter-experimental variability. However, after correction with RAVE+, we can see in Fig. 9C that the
two datasets have become aligned, and that the different cell types form clearly separated "islands".
And lastly, in Fig. 9D, we see that the depth distributions of the RAVE+ corrected data are much better
aligned with the ground-truth EM distributions than those of the raw data. This last steps further
supports our validation procedure for RAVE+ on real data, based on EM IPL depth profiles.
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Figure 9: RAVE+ results on simulated BC responses A: Simulated (bold) and recorded (light) BC
responses of example type 5t in response to (i) the local chirp version A (i.e. the stimulus played
in dataset A); (ii) the global chirp version A; (iii) the local chirp version B (i.e. the stimulus played
in dataset B); (iv) the global chirp version B. Note that for chirp version B, we do not have ground
truth type labels for recorded responses. B: tSNE embedding of raw simulated test set data, colored
according to dataset ground truth labels (top) and according to type labels predicted by a classifier
trained on raw simulated responses of dataset A (bottom). The classifier fails for dataset B. C: same
as B, but for RAVE+ output. A classifier trained on RAVE+ output for dataset A achieves accuracies
of 1 for dataset A and 0.99 for dataset B. D: Distributions per cell type over IPL depth for EM data
(distribution shown to the left), RAVE+ output (solid line to the right) and raw data (dashed line to
the right). Shaded area around the distributions shown to the right indicate SD across 10 seeds of
the classifier. We sampled IPL depth values for the simulated data according to the type specific
distributions known from EM data.
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F Details for Performance Evaluation

F.1 Dataset-Mixing

To evaluate dataset-mixing, we used the scikit-learn [59] (version 0.24.1) implementation of the
adjusted Rand Index (ARI) (cf. [28]).

F.2 Domain and Cell Type Classifier

In order to evaluate the model correction, we employ a domain and cell type classifier by using a
random forest classifier (RFC) [60] from scikit-learn with cross-validated hyperparameters for
each model. The RFC gets fitted on a subset of dataset A and validated on a held-out validation set.
We performed the cross-validated grid search on the following hyperparameters: n_estimators (5,
10, 20, 30), max_depth (5, 10, 15, 20, None), ccp_alpha (0, 0.001, 0.01) and max_samples (0.5,
0.7, 0.9, 1). The grid search was performed using 10 random seeds to avoid overfitting (see main
paper, section 4.3.1) and the best scoring RFC (highest Acctype; lowest Accdom on validation set,
respectively) was selected to predict cell types or domain labels on the test set of the corrected data.

F.3 Visualization of Dataset Embedding

We used the t-SNE algorithm [52] to visualize the cells in a low dimensional space [58]. For this
purpose, we chose the openTSNE [61] implementation (version 0.6.0) in Python and ran it with
default parameters and fixed seed.
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Study III: Nitric oxide mediates differential effects in mouse
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Neuromodulators have major influences on the regulation of

neural circuit activity across the nervous system. Nitric oxide

(NO) is a prominent neuromodulator in many circuits, and has

been extensively studied in the retina across species. Here, NO

has been associated with the regulation of light adaptation, gain

control, and gap junction coupling, but its effect on the retinal

output, specifically on the different types of retinal ganglion cells

(RGCs), is still poorly understood.

Here, we used two-photon Ca2+ imaging to record RGC re-

sponses to visual stimuli to investigate the neuromodulatory ef-

fects of NO on the cell type-level in the ex vivo mouse retina. We

found that about one third of the RGC types displayed highly

reproducible and cell type-specific response changes during the

course of an experiment, even in the absence of NO. Account-

ing for these adaptational changes allowed us to isolate NO ef-

fects on RGC responses. This revealed that NO affected only

three RGC types, which became more active due to a reduc-

tion of their response suppression. Notably, NO had no dis-

cernible effect on their spatial receptive field size and surround

strength. Together, our data suggest that NO specifically mod-

ulates suppression of the temporal response in a distinct group

of contrast-suppressed RGC types. Finally, our study demon-

strates the need for recording paradigms that takes adapta-

tional, non-drug-related response changes into account when

analysing potentially subtle pharmacological effects.

retina | ganglion cells | nitric oxide | neuromodulation
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Introduction

The retina can be considered as a visual signal processor with

a straightforward functional architecture (1±3). The photore-

ceptors convert the stream of photons from the environment

into an electrical signal, which is relayed downstream by the

bipolar cells (BCs) to the retinal ganglion cells (RGCs), the

tissue’s output neurons. Along this vertical pathway, the vi-

sual signal is shaped by two lateral, inhibitory cell classes:

horizontal cells in the outer and amacrine cells (ACs) in the

inner retina. The resulting intricate networks allow sophisti-

cated computations, reflected in the >40 output channels that

relay diverse visual feature representations as spike trains to

higher visual brain regions (4±6).

Over the past decades, the retinal synaptic networks have

been intensively studied, which greatly broadened our under-

standing of early visual signal processing (7±12). Specifi-

cally, the availability of connectome data for large parts of

the retina helped in unprecedented ways, as can be seen

from studies, for example, investigating direction-selective

circuits and their precise wiring regarding starburst ACs and

direction-selective RGCs (e.g., (13, 14)).

What is not well-captured by connectomic approaches are

’wireless’ interactions mediated by neuromodulators, which

comprise a broad variety of very different small molecules,

including monoamines (e.g., dopamine (15, 16), histamine

(17, 18), serotonin (19)), endocannabinoids (20±22), gaso-

transmitters such as nitric oxide (NO) (23, 24)), as well as

a variety of neuropeptides (e.g., neuropeptide Y (25, 26)).

Only few of the >20 neuromodulators (27) found in the retina

are released from centrifugal fibers (e.g., histamine and sero-

tonin (17±19, 28)), whereas most of them are released in ad-

dition to GABA or glycine by ACs (27, 29±32). Neuromod-

ulators have long been implicated in adapting the retina to

different contextual states necessary to robustly perform in

a highly dynamic visual environment (e.g., (33±36)). For

instance, dopamine (DA) is released by a distinct type of

AC (37±40), and has been shown to regulate light adaptation

(33, 41, 42) via several cellular mechanisms, such as modula-

tion of gap-junction coupling (34, 43±45) and intrinsic con-

ductances (46, 47). More recently, histamine was proposed

to shape the retinal code in a top-down modulatory man-

ner related to the animal’s arousal state (17, 28). For sev-

eral neuromodulators, the retinal release sites and receptors

are known and their effects on cellular properties have been

described, however, a comprehensive, function-oriented and

cell-type view of these neuromodulators’ functional impli-

cations and contributions to visual signal processing is only

slowly emerging (e.g., (17, 48)).

One of the better-studied neuromodulators in the retina is

NO. Here, neuronal nitric oxide synthesis (nNOS) is consid-

ered the dominant enzyme producing NO relevant for retinal

signal processing, and ± depending on species ± was shown

to be present in different retinal cell classes (49±57). In

the mouse retina, nNOS was mainly found in specific ACs

(36, 58±60). A few years ago, Jacoby et al. (36) demon-

strated that one of those AC types (nNOS2-AC) controls the

light-dependent release of NO in the inner retina. NO can

function via two main pathways (61): (i) it can bind to the

NO guanylate cyclase (NO-GC; also referred to as soluble

guanylate cyclase (sGC)) receptor, triggering the production

of the second messenger cyclic guanosine monophosphate
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(cGMP), which binds to downstream targets (55, 62, 63), and

(ii) via S-nitrosylation (cGMP-independent) by directly mod-

ifying certain receptor and channel proteins (64, 65).

The effects of NO have been primarily linked with light adap-

tation and the transition between scotopic and photopic sig-

naling pathways via a number of mechanisms, including un-

coupling the gap junctions between AII ACs and On-cone

BCs (66), increasing the gain of On-cone BCs in response

to dim light (67, 68), and modulating the gain of Off-cone

BCs (69, 70). At the retina’s output level, increasing NO was

found to decrease On- and Off-responses in RGCs (71). No-

tably, genetically knocking-out nNOS also led to a reduced

light sensitivity in RGCs (72). Additionally, NO has been

shown to modulate RGC responses via cGMP by altering

their cGMP-gated conductances (73, 74). Taken together, NO

can act on different levels and via different pathways in the

retina. However, the function of NO at the cell-type level and

its role in early visual processing are far from understood.

Here, we systematically studied the functional role of NO and

its effects on the different retinal output channels in ex vivo

mouse retina. Surprisingly, we observed highly reproducible,

cell type-specific changes in the light responses of some

RGCs already in the absence of pharmacological manipula-

tion. To account for these adaptational response changes, we

developed a recording paradigm to measure ’paired’ RGC re-

sponses under control and drug conditions. Here, we found

that NO had a highly selective effect on a distinct set of three

suppressed-by-contrast RGCs, where NO strongly and differ-

entially reduced the suppression in their temporal responses.

Yet, NO had no discernible effects on their spatial receptive

field properties. Together, our data suggest that NO modu-

lates the visual feature representation of the retinal output in

a highly selective and type-specific manner.

Results

To investigate NO effects systematically on the retinal output,

we performed population imaging from somata in the gan-

glion cell layer (GCL) of ex vivo mouse retina electroporated

with the synthetic Ca2+ indicator Oregon Green BAPTA-1

(Fig. 1a-c; Methods). To identify the different types of RGCs

and detect potential NO-induced response changes, we pre-

sented a set of visual stimuli, including full-field chirps, mov-

ing bars (Fig. 1d), and binary dense noise (5).

A protocol for ’paired’ control/drug recordings. Previ-

ous studies have shown that retinal responses recorded with

two-photon Ca2+ imaging can be systematically affected by

experimental factors, such as excitation laser-induced activ-

ity, photoreceptor bleaching, and temporal filtering due to

Ca2+ buffering by the fluorescent indicator (75±77). These

changes can be summarized by the umbrella term ’batch ef-

fects’ (a term coined in the molecular genetics field), which

can confound the biological signal and potentially cause erro-

neous interpretations of the data (77, 78). Such batch effects

may play a role when, as in our study, data are recorded in a

sequential manner to infer possible drug effects.

Because we wanted to detect potentially subtle NO effects,

we devised a protocol to make experiments as comparable as

possible (Fig. 1e). After placing the tissue into the recording

chamber, it was allowed to recover from the electroporation

for 15 min, before we light-adapted the retina for 10 min by

presenting the dense noise stimulus. We then selected retinal

recording fields, each of which was recorded twice for the

complete stimulus set in an interlaced manner (Fig. 1e). The

first field was recorded twice without perturbation (control-

control pair). For the next field, we added the drug to the per-

fusion medium and incubated the tissue for approx. 15 min,

before recording the field for the second time (control-drug

pair).

Using this protocol, we recorded the following paired

datasets: (i) a control dataset to test response stability, i.e.,

Ctrl 1 and Ctrl 2, (ii) a strychnine dataset to test the protocol

for a drug with well-described effects, i.e., Ctrl 1 and Strych-

nine (1 µM), and (iii) a NO dataset to infer NO-induced re-

sponse changes, i.e., Ctrl 1 and NO (DETA/NO; 100 µM).

The control dataset was leveraged to reveal NO-induced ef-

fects on the background of potential nonspecific response

changes over the course of the experiment.

For the following analyses, we used 3,864 paired RGCs

(nCtrl=1,590; nNO=1,838, nstrychnine=436) that fulfilled

our response quality filtering (see Methods).

Identifying functional RGC types using a classifier. The

mouse retina contains more than 40 RGC types (5, 6). As we

wanted to investigate if the tested drugs differentially affect

the different retinal output channels, we applied an RGC clas-

sifier (Fig. 2a) (79), which had been trained and validated on

a previously published RGC Ca2+ imaging dataset (5). The

classifier predicts an GCL cell’s functional type based on

soma size and the responses to chirp and moving bar stim-

uli (Methods). While the classifier also identifies displaced

ACs, we focused our analysis on RGCs. To match the condi-

tions under which the classifier’s training data was acquired

as closely as possible, we predicted types based on the re-

sponses from the first control recording (Ctrl 1). To min-

imize classification uncertainty, we additionally discarded

cells with low confidence scores (< 0.25, see Methods for

details).

We found that the distributions of the predicted RGC types

in our datasets matched that of the earlier dataset quite well

(Fig. 2b-d). Also the predicted mean traces for the in-

dividual RGC types were very similar to those in Baden

et al. (5) (Fig. 2e), as indicated by the high correlations of

their chirp and moving bar responses (Fig. 2f left and right,

respectively). That the moving bar responses were more

strongly correlated than the chirp responses is likely due to

the lower complexity and shorter duration of the former stim-

ulus. Nonetheless, we found the RGC classification overall

to be robust.

Testing and evaluating the recording protocol. To test

our recording protocol, we used the glycine receptor antag-

onist strychnine (Fig. S1). In the mouse retina, glycine is
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Fig. 1. Overview of experimental setup and recording procedure. (a) Two-photon imaging of ganglion cell layer (GCL) somata in the whole-mounted mouse retina. (b)
Schematic ex vivo whole-mounted retina with two representative recording fields (white boxes; dot marks optic disc; d, dorsal; t, temporal; v, ventral; n, nasal). (c) Recording
fields from (b) showing GCL somata loaded with Ca2+ indicator OGB-1 (Methods). (d) Representative GCL cell Ca2+ activity (white circles in (c)) in response to chirp (left)
and moving bar stimulus (right) (black, mean; gray, s.d.). (e) Timeline of experimental procedure; for details, see text. IPL, inner plexiform layer; INL, inner nuclear layer; OPL,
outer plexiform layer; ONL, outer nuclear layer; OS+IS, outer and inner segments; DETA/NO, nitric oxide (NO) donor.

released by small-field ACs and relays inhibition vertically

across the inner plexiform layer (IPL; (32, 80)). For instance,

such cross-over inhibition mediated by AII ACs relays the

signals from rod BCs to Off-cone BCs, which is why strych-

nine eliminates Off RGC responses in dark-adapted retina

(81). In the light-adapted retina, On-cone BCs boost light-

Off responses in Off-cone BCs through cross-over inhibition

(82, 83) and hence, strychnine affects Off-response compo-

nents in RGCs ± in line with our observations (Fig. S1):

Strychnine application revealed additional On-responses in

Off (e.g., G1, G2) and On-Off RGCs (e.g., G12), as can be

seen, for instance, in their leading-edge response to the mov-

ing bar (Fig. S1; left panel, middle column). In On RGCs,

we did not detect substantial response changes with strych-

nine (Fig. S1; e.g., G17).

Together, the strychnine dataset showcases that we can re-

solve drug-related effects on light responses at cell-type level.

Certain RGC types display adaptational response

changes. To test if our recording conditions were stable and

to exclude major batch effects, we first compared the re-

sponses of the control datasets (Ctrl 1 vs. Ctrl 2). To this

end, we computed the difference between the Ctrl 1 and Ctrl 2

mean responses (∆R(Ctrl2−Ctrl1)) to chirp and moving bar

stimuli for each cell of every RGC type. This allowed us

to quantify if and how the responses changed over the time-

course of an experiment (cf. protocol in Fig. 1e). Here, we

only considered RGC types with >10 paired cells (21/32).

Surprisingly, while the majority of RGC types featured sta-

ble responses (e.g., G1, G21; Fig. 3a), a substantial number of

RGC types (∼34%) changed their responses to chirp and/or

moving bar stimuli in the absence of any pharmacological

perturbation in a highly reproducible manner (Fig. 3b). For

instance, for Ctrl 2, G23 showed reduced responses, whereas

G31 showed an increased response activity. Interestingly,

cells assigned to the functional groups of ‘Off’ and ‘Fast-On’

RGC types displayed exclusively stable responses, whereas

‘On-Off’, ‘Slow-On’, and ‘Uncertain RGCs’ included types

with changing responses (50%, 50%, and 67%, respectively).

This diversity argues against a systematic effect (such as, e.g.,

general run-down) and for a cell type-specific phenomenon,

which in the following we refer to as ’adaptational response

changes’.

NO affects retinal output in a highly type-specific man-

ner. Next, we investigated the effects of NO on the RGC re-

sponses. As with the control dataset, we computed the cell-

wise response differences between Ctrl 1 and NO responses

(∆R(NO−Ctrl1)). Similar to the control dataset, the major-

ity of RGC types displayed stable responses (e.g., G2, G17;

Fig. 3c), while a smaller fraction (∼43%) changed their re-

sponses significantly (e.g., G28, G32; Fig. 3d) following the

NO perfusion. We found that the percentage of changing

types per functional group was similar to that in the con-

trol dataset: ‘Off’ (0%), ‘Fast On’ (34%), ‘On-Off’ (50%),

‘Slow On’ (66%), and ‘Uncertain RGCs’ (66%). This raised

the question if the observed changes in the NO dataset in-

deed reflected NO-induced modulations or mostly adapta-

tional response changes (as observed in the control dataset).

We therefore tested for each RGC type if the response

changes observed for control (∆R(Ctrl2−Ctrl1)) and NO
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Fig. 2. Functional classification of mouse RGC types. (a) Illustration of the random forest classifier (RFC) to predict cell type labels for Ctrl 1 of both datasets. For each
cell, Ca2+ responses to chirp and moving bar, soma size, and p-value of permutation test for direction selectivity (left) constitute the input to the RFC (centre) to predict a
cell type label, i.e., a type GX (right). For details, see Methods and (79). (b) Pooled heat map of unsorted cell responses to chirp and moving bar stimulus from both Ctrl 1
datasets after quality filtering (QIMB>0.6 or QIchirp>0.45, and classifier confidence score ≤ 0.25). Color bar indicates normalized response activity. (c) Heat map from (b),
but sorted according to their assigned type. (d) Distribution of RGC types predicted by the RFC classifier for both Ctrl 1 of control pair (Ctrl 1 (Ctrl); solid black), of DETA/NO
pair (Ctrl 1 (NO); dotted black), and for the training dataset from Baden et al. (5) (red). (e) Representative RGC type mean responses to chirp and moving bar (Ctrl, black;
training dataset, red). (f) Correlation matrix of type mean responses per RGC type between Ctrl and training dataset for chirp (left) and moving bar (right). Dashed boxes
indicate functional groups (Off, On-Off, Fast On, Slow On, and Uncertain RGCs; see (5)). Color bar indicates correlation coefficient.

(∆R(NO−Ctrl1)) were significantly different (Fig. 3e). To

our surprise, this was only the case for G32 (‘Off-suppressed

2’) RGCs, suggesting highly type-selective NO effects ± at

least for temporal responses to chirp and moving bar stimuli.

Next, we leveraged the control dataset to disentangle NO-

induced from adaptational effects at the level of the re-

sponse features. To this end, we subdivided the chirp stim-

ulus into 6 features ((i) On, (ii) Off, (iii) low frequency,

(iv) high frequency, (v) low contrast, (vi) high contrast),

and the moving bar into 2 features ((vii) On, (viii) Off)

(Fig. 4c). Then, for every cell type and every stimulus fea-

ture, we computed the difference of the mean responses be-

tween the first and second recording separately for the control

(Fig. 4a; left panel) and NO dataset (Fig. 4a; middle panel).

To isolate NO-induced effects, we computed the differences

(∆R(NO−Ctrl1) − ∆R(Ctrl2−Ctrl1); Fig. 4a; right panel),

based on the assumption that the adaptational component of

the changes would be similar for both datasets. Through

this analysis, we could distinguish three response behav-

iors across the RGC types: (1) not NO-affected/stable, (2)

showing cell type-specific adaptation, and (3) NO-affected

(Fig. 4b).

As before, we found that only G32 is strongly affected by

NO; it showed no adaptational response changes, yet its ac-

tivity increased during NO application (Fig. 4b; (3)). In-

terestingly, a cell type that is also suppressed-by-contrast,

G31 (‘Off-suppressed 1’), displayed a similar behavior dur-

ing the NO application (Fig. 4b; (2); bottom). However,

G31 showed this response change already in the control, sug-

gesting that this effect was adaptational and not NO-related

(Fig. 4a; right panel). Notably, RGC types that were assigned

to the group of the so-called ‘Slow On’ types (G21-G28),

which exhibit strong and sustained responses during the fre-

quency and contrast sequences of the chirp stimulus, showed

a decrease in activity in both datasets (e.g., G24; Fig. 4b; (2);

top). Consequently, the changes in these response features

(iii-vi) are likely adaptational (Fig. 4a) ± as the changes can

be found in the control (Fig. 4a; left panel) as well as in the

NO dataset (Fig. 4a; middle panel), but not in the difference

(Fig. 4a; right panel). Our conclusion that both adaptational

and NO-mediated effects on RGC responses are highly cell

type-selective is further supported by the fact that we also
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Fig. 3. Certain RGC types are affected by adaptational and/or NO-induced effects, others are unaffected. (a) Left: Two representative mean calcium responses
of paired RGC types showing no differences between Ctrl 1 (black) and Ctrl 2 (orange) (top: G1; bottom: G21). Right: Corresponding histograms displaying the trace
differences between paired cell responses of the respective cell types. Zero indicates no difference between the response of the same cell across both recordings, whereas
negative values indicate a decreased and positive ones an increased activity. (b) Two representative RGC types that show decreased (top: G23) and increased (bottom:
G31) response activity during Ctrl 2. (c) As in (a), but between paired Ctrl 1 (black) and DETA/NO (green) (top: G2; bottom: G17). (d) As (c), but showing two cell types
that display a decreased (top: G28) and increased (bottom: G32) activity when perfused with DETA/NO. ***: p<0.001; One-sample T-test. (e) Box plots of trace differences of
all paired cells of all RGC types from control (Ctrl 1 & Ctrl 2; orange) and NO dataset (Ctrl & DETA/NO; green). Bold numbers indicate RGC types with >10 paired cells per
dataset and condition. Dashed line shows zero baseline, i.e., no difference between traces. Gray and white background blocks summarize the larger functional groups for
better visualization (Off, On-Off, Fast On, Slow On, Uncertain RGCs). ***: p<0.001; Mann-Whitney U-Test.

found several RGC types that showed stable responses dur-

ing control and NO application (Fig. 4b; (1)).

Clustering of G32 responses reveals three function-

ally distinct RGC types with different NO-sensitivity.

According to Baden et al. (5), G32 features a coverage fac-

tor of ∼4. As the average coverage factor of mouse RGCs

was estimated to be ∼2 (5, 84), G32 likely consists of several

RGC types. To test this, we performed Mixture of Gaussian

clustering of the RGC cells assigned as G32 (Fig. 5a-c) us-

ing the Ctrl 1 responses to chirp and moving bar stimuli from

both datasets (Fig. 5a). We found three distinct clusters ± all

suppressed-by-contrast but to different degrees (Fig. 5d,e).

All three G32 clusters showed little to no adaptation for

the control dataset, but displayed differential modulations

in response to NO application, with cluster 1 exhibiting the

strongest NO effect (Fig. 5f,g; left) for both stimuli. The NO

effect was statistically significant in clusters 1 and 2 ± both

for mean trace difference and correlation (Fig. 5g; left and

right, respectively) ± but not in cluster 3.

Since the prominent feature of these RGC types is suppres-

sion by stimulus contrast, we compared their suppression

strength between the conditions using a suppression index

(SI; see Methods). Here, we found that in cluster 1, SI did

not change between Ctrl 1 and Ctrl 2, but was significantly

reduced with NO. In fact, with NO, these cells lost their sup-

pressive feature and were rather excited than suppressed by

the stimuli. Cluster 2 displayed significant differences in SI

in both control and NO dataset.

Taken together, our data indicate that G32 may consist of

three suppressed-by-contrast RGC types and that in at least

two of them, the contrast suppression is strongly modulated

by NO. This subdivision of G32 into three types is supported

by its high coverage factor (5, 84).

NO does not affect RGC receptive field properties. So

far, we focused on effects in the temporal response domain,

where we found that mainly G32 types were affected by an in-

crease in NO levels. However, NO has been shown to affect

electrical coupling, e.g., by reducing conductance between

AII ACs and On-cone BCs (66), and hence may alter recep-

tive field (RF) properties. Therefore, we next investigated

the effects of NO on the spatial RFs (sRFs) of the individ-
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Fig. 4. Disentangling NO-induced effects from adaptational response changes reveals type-specific NO modulation. (a) Left: Difference between paired Ctrl 2 and
Ctrl 1 RGC traces per type subdivided into 8 features (∆R(Ctrl2−Ctrl1)). Color-code indicates response increase (red), no change (white) and decrease (blue) for Ctrl 2.
Middle: Difference between DETA/NO and Ctrl (∆R(NO−Ctrl1)). Right: Difference between the two heatmaps (∆R(NO−Ctrl1) − ∆R(Ctrl2−Ctrl1)). (b) Example
chirp traces categorized into unaffected (top two types: G1, G12), adaptational (two middle types: G24, G31) and NO-affected (bottom: G32). Left traces show exemplary
responses per type from the control dataset (black: Ctrl 1; orange: Ctrl 2) and NO dataset (black: Ctrl; green: DETA/NO). (c) Subdividing the chirp (left) and moving bar (right)
stimuli into 8 features for detailed feature analysis. The chirp is subdivided into 6 features ((i) on, (ii) off, (iii) low frequency, (iv) high frequency, (v) low contrast and (vi) high
contrast); the moving bar into 2 ((vii) on and (viii) off).

ual RGC types. To this end, following the same experimental

paradigm as described earlier, we recorded RGC responses to

binary dense noise. Next, we computed their sRFs for both

recording conditions (Fig. 6a) using spike-triggered averag-

ing (85), obtaining control and NO sRFs, and then fitted a

Gaussian to each sRF’s center (Fig. 6a). We focused the fol-

lowing analysis on RGC types with reliable sRF estimates

(see Methods). These included types in all five larger RGC

groups (5): G5 for Off; G11, G12, and G14 for On-Off; G17

for Fast On; G23, G24, G26, and G27 for Slow On; G31 and

G32 for Uncertain RGCs. In these types, sRFs were very sta-

ble in both control and NO condition.

Using the difference in sRF center diameter between control

and NO as a metric (Fig. 6b), we did not find NO to cause any

significant changes in sRF size in any of the analysed RGC

types. Next, we tested if the sRF surround was affected by

NO, because a modulation of inhibitory synaptic input and/or

electrical coupling may cause a change in surround strength.

As a measure of surround strength, we computed a surround

index (see Methods) of control and NO sRFs (Fig. 6c). Like

with the sRF center diameter, we did not find significant dif-

ferences for any of the analysed RGC types. Surprisingly,

also G32 did not show NO-mediated differences in its sRF

properties, implying that NO may only affect its temporal re-

sponse, but not its RF organization.

Taken together, at least for the tested RGC types, we did not

detect any significant NO effects neither on sRF center size

not surround strength.

Discussion

We used two-photon Ca2+ imaging to record RGC responses

to various visual stimuli to investigate the neuromodulatory

effects of elevated NO levels on the signal processing across

RGC types in the mouse retina. To our surprise, already with-

out pharmacological perturbation, we found that about one

third of the RGC types displayed highly reproducible and cell

type-specific response changes during the course of an ex-

periment ± a finding of potentially high relevance especially

for pharmacological experiments in the ex vivo retina. Ac-

counting for these adaptational changes enabled us to isolate

NO-related effects on RGC responses. Here, we revealed that

mainly the RGCs assigned to G32 (Off suppressed 2) were af-

fected by NO, which strongly reduced the response suppres-

sion and rendered the cells more active. Further, we demon-

strated that G32 likely consists of three types ± consistent

with its high coverage factor (5) ± that were all differentially

modulated by NO. Finally, for a representative subset of RGC

types, we showed that elevating NO levels has no discernible

effect on sRF size or surround strength. Together, our data

suggest that NO specifically modulates response suppression

in a group of contrast-suppressed RGC types. Additionally,

our study demonstrates the need for recording paradigms that

takes adaptational, non-drug-related response changes into

account when analysing potentially subtle pharmacological

effects.

Nitric oxide as a modulator in the retina. Neuronal nitric

oxide synthesis (nNOS) has been detected in different reti-

nal cell classes (49±57). In the mouse retina, light-dependent
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Fig. 5. Functional clustering of the G32 reveals three distinct types that are differently affected by NO. (a) Visual responses of G32 cells recorded from several
experiments in response to the full-field chirp (left) and moving bar (right) stimuli. (b) Visual features extracted from chirp (top) and moving bar (bottom) stimuli using sparse
PCA on the responses. Color indicates weight of each feature. (c) Top: Bayesian Information Criterion (BIC) as function of number of clusters. Arrow indicates lowest BIC
and the number of clusters to choose. Bottom: Number of cells per predicted cluster. (d) Cells sorted according to their assigned cluster. Cells at the bottom were discarded.
(e) Mean responses of the 3 corresponding clusters for the chirp (left) and moving bar (right). (f) Left: Paired mean responses of the 3 clusters to Ctrl 1 (black) and Ctrl 2
(orange). Right: Cluster mean responses to Ctrl 1 (black) and DETA/NO (green) (g) Left: Trace difference between Ctrl 2 & Ctrl 1 (orange) and DETA/NO & Ctrl (green) for
the 3 clusters (cluster 1-3 from top to bottom). Right: Correlation coefficient between Ctrl 2 & Ctrl 1 (orange) and DETA/NO & Ctrl 1 (green) for the 3 clusters. ***: p<0.001;
independent T-test & Mann-Whitney U-Test. (h) Left: Suppression index (SI) computed for Ctrl 1 (gray), Ctrl 2 (orange) and DETA/NO (green) for the 3 clusters. ***: p<0.001;
Kruskal-Wallis test & Dunnett’s test. Right: Difference of SI between Ctrl 2 & Ctrl 1 (orange) and DETA/NO & Ctrl 1 (green). ***: p<0.001; independent T-test & Mann-Whitney
U-Test.

NO production seems to mainly occur in specific AC types

(36). The main NO-sensor (NO-GC), which connects NO to

intracellular cGMP signalling (55, 60, 86, 87) is present in all

retinal layers (70). This and earlier findings of NO modulat-

ing response gain in BCs (68, 69) and RGCs (71), led us to

expect global NO effects on retinal output. What we found

instead was a highly selective effect in a distinct group of

likely three types of RGCs formerly amalgamated in G32 (5).

Specifically, NO affected these types in a similar way, yet dif-

ferentially by increasing their activity and partly eliminating

their characteristic feature of being suppressed by temporal

contrast. Notably, the NO effect was only visible in their

temporal responses; we did not detect changes in their sRF

properties. This RGC type-selectivity of NO neuromodula-

tion is reminiscent of a recent study, where dopamine was

found to modulate distinct response features of specific RGC

types (48).

To ensure reliable RGC type classification, our set of visual

stimuli was restricted to artificial ones (full-field chirps, mov-

ing bards, and dense noise). Such artificial stimuli probe

the stimulus space in a rather selective and limited fashion.

Hence, we cannot exclude that we missed NO effects that

may have come apparent for other, more complex stimuli.

Specifically, natural images or movies, stimuli that are closer

to what the retina evolved to process (88), may be needed

for a more complete picture of the functional implication

of retinal neuromodulation. That natural stimuli can reveal

novel nonlinear properties of retinal functions was demon-

strated, for example, by Goldin et al. (89), who showed that

a RGC’s contrast selectivity can be context-dependent. Sim-

ilarly, Höfling et al. (90) discovered a RGC type that may

serve as a ‘horizon detector’. This finding was made possi-

ble by combining natural movie-evoked RGC responses and

a convolutional neural network trained on these data. These

approaches highlight that future studies on neuromodulators

should also employ natural stimuli.

Another important aspect to consider when studying NO neu-

romodulation in the retina is the level of light adaptation.

Several studies proposed that NO facilitates the transition

across light levels (66, 68, 69), especially to photopic con-
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Fig. 6. Spatial receptive fields are not affected by NO across various RGC types. (a) Representative estimated spatial receptive fields (sRF) of six RGC types. Top:
Estimated sRFs to Ctrl 1. Cross indicates RF center; solid line indicates outline of the Gaussian fit of the RF center; dashed outline indicates corresponding Gaussian fit of
the same cell to DETA/NO. Bottom: Same as top, but of DETA/NO condition. (b) RF diameter difference in percentage between DETA/NO and Ctrl 1. Only types with more
than 5 paired cells were included. One-sample T-test. (c) Surround index difference between DETA/NO and Ctrl 1. Only types with more than 5 paired cells were included.
One-sample T-test.

ditions (36). Since we employed two-photon imaging, which

inevitably results in a certain level of background ‘illumina-

tion’ (see discussion in (75, 91)), our experiments were per-

formed in the low photopic range. Therefore, it is possible

that NO-mediated neuromodulation serves different, light-

level dependent functions: more globally during the transi-

tion from scotopic to mesopic/photopic, and more cell type-

specific in the photopic regime ± as we reported here.

Adaptational, cell type-specific response changes. Ev-

ery recording method introduces technique-specific biases

that have to be considered in the data analysis and interpreta-

tion. For two-photon imaging with fluorescent Ca2+ sensors,

these potential biases include Ca2+ buffering, sensor bleach-

ing by the excitation laser and, in the case of bulk-loading

with synthetic dyes (as in our experiments; see also (92)),

slow leakage of indicator from the cells. In retinal imaging,

additional potentially confounding factors are an excitation

laser-induced baseline activity and photoreceptor bleaching

(76, 91). These biases are expected to be systematic, e.g.,

causing a decrease in signal-to-noise ratio across (RGC) re-

sponses (i.e., run-down). To account for this, we established a

recording paradigm that produced a control and a NO dataset

consisting of paired RGC responses.

When analyzing the control dataset, we were surprised by

finding response changes in approx. a third of the RGC types

already in the absence of the NO donor. These changes were

consistent for a particular type but differed between types.

Typically, we did not observe a simple overall decrease or

increase in activity, but rather selective changes of response

features: For instance, in G24 (Slow On) only its response to

high frequency and low contrast was reduced, while the re-

maining response features were not affected. Together, this

strongly argues against a systematic, recording technique-

related bias. Currently, we can only speculate about the

mechanism(s) underlying this type-specific adaptation. The

most parsimonious explanation may be related to the ex vivo

condition of the retina: While we allowed the tissue to settle

and adapt to perfusion medium, light level, temperature etc.

for approx. 25 min, extracellular signaling molecules, such as

neuromodulators, may be depleted and washed out over the

course of the experiment, resulting in differential adaptation

of various RGC types. In any case, as type-selective adap-

tations can confound the recorded responses in a complex

manner, a paired recording paradigm as the one described

here, is recommended ± in particular for pharmacological ex-

periments.

Combining population imaging, RGC classification

and paired recordings to study neuromodulation of

retinal output. In this study, we investigated the neuromod-

ulatory effects of NO on the retinal output signal. To this end,

we combined experimental and computational approaches to

dissect NO-mediated effects at the RGC type-level. The lat-

ter is important for understanding neuromodulator function

for early vision, because the visual information is sent to the
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brain via parallel feature channels, represented by >40 RGC

types in the mouse retina (5, 6, 84, 93). We demonstrated that

our approach enable adaptational from actual NO-induced ef-

fects using a rather simple and straightforward linear analysis

(i.e., focusing on mean trace or RF size differences), which

means that we may have missed potential nonlinear effects.

However, the here presented pipeline for analyzing neuro-

modulation in neural circuits constitutes a framework that can

be easily extended by more advanced analyses.
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Methods

Animals and tissue preparation. All animal experiments

were conducted at the University of Tübingen and were per-

formed according to the laws governing animal experimenta-

tion issued by the German Government as well as approved

by the institutional animal welfare committee of the Univer-

sity of Tübingen. For all experiments, we used retinae (n=26)

from C57Bl/6 J mice (n=14; JAX 000664) of either sex be-

tween the age of 4-16 weeks. All animals were kept in the

local animal facility and housed under the standard 12h/12h

day/night cycle at 22°C and a humidity of 55%.

The following procedures were carried out under very dim

red (> 650 nm) light. Before each imaging experiment, the

animal was dark-adapted for >1 h, then anesthetized with

isoflurane (CP-Pharma) and sacrificed by cervical disloca-

tion. Immediately after, the eyes were enucleated with a

dorsal cut as orientation landmark and hemisected in car-

boxygenated (95% O2, 5% CO2) artificial cerebrospinal fluid

(ACSF) solution containing (in mM): 125 NaCl, 2.5 KCl,

2 CaCl2, 1 MgCl2, 1.25 NaH2PO4, 26 NaHCO3, 20 glu-

cose, and 0.5 L-glutamine at pH 7.4. Sulforhodamine-101

(SR101, 0.1 µM; Invitrogen) was added to the ACSF to re-

veal blood vessels and damaged ganglion cell layer (GCL)

cells in the red fluorescence channel (75). The carboxy-

genated ACSF was constantly perfused through the record-

ing chamber at 4 ml/min and kept at ∼36°C throughout the

entire experiment. After the dissection, retinae were bulk-

electroporated with the synthetic fluorescent calcium indi-

cator Oregon-Green 488 BAPTA-1 (OGB-1; hexapotassium

salt; Life Technologies) (92). To electroporate the GCL, the

dissected retina was flat-mounted with the GCL facing up

onto an AnodiscTM (#13, 0.1 µm pore size, 13 mm diameter,

Cytiva), and then placed between two 4 mm horizontal plat-

inum disk electrodes (CUY700P4E/L, Nepagene/Xceltis).

The lower electrode was covered with 15 µl of ACSF, while

a 10 µl drop of 5 mM OGB-1 dissolved in ACSF was sus-

pended from the upper electrode and lowered onto the retina.

Then, nine electrical pulses (∼9.2 V, 100 ms pulse width, at

1 Hz) from a pulse generator/wide-band amplifier combina-

tion (TGP110 and WA301, Thurlby handar/Farnell) were ap-

plied and then, the electroporated retina on the Anodisc was

transferred into the recording chamber, whereby the dorsal

edge of the retina pointed away from the experimenter. The

retina was left there for 30 min to recover, as well as adapted

to the light stimulation by displaying a binary dense noise

stimulus (20 x 15 matrix, 40 µm2 pixels, balanced random

sequence) at 5 Hz before the recordings started.

Pharmacology. All used drugs were added to the car-

boxygenated, perfused ACSF solution 15min prior to the

second recording of the GCL scan fields. For the drugs,

the respective concentrations were used (in µM): 100 (Z)-

1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-

ium-1,2-diolate (DETA/NO), 10 1H-[1,2,4]oxadiazolo[4,3-

a]quinoxalin-1-one (ODQ) and 1 strychnine. The ACSF

solution with and without drug application was always kept

at ∼36°C.

Two-photon calcium imaging. For the functional cal-

cium imaging experiments, a MOM-type two-photon micro-

scope (designed by W. Denk, MPI, Heidelberg; purchased

from Sutter Instruments/Science Products) (75, 76) was em-

ployed. The microscope was equipped with a mode-locked

Ti:Sapphire laser (MaiTai-HP DeepSee, Newport Spectra-

Physics) tuned to 927 nm (ideal wavelength to excite OGB-

1), two photomultiplier tubes serving as fluorescence detec-

tion channels for OGB-1 (HQ 510/84, AHF/Chroma) and

SR101/tdTomato (HQ 630/60, AHF), and a water immer-

sion objective (CF175 LWD×16/0.8W, DIC N2, Nikon, Ger-

many). To acquire images, custom-made software (ScanM

by M. Müller and T. Euler) running under IGOR Pro 6.3 for

the operating system Microsoft Windows (Wavemetrics) was

used and time-lapsed 64 x 64 pixel image scans (∼100 µm2)

at 7.8125 Hz were taken. Routinely, the optic nerve position

and the scan field position were recorded to reconstruct their

retinal positions. High-resolution images (512 x 512 pixel

images) were recorded to support semi-automatic ROI detec-

tion.

Light stimulation. For the light stimulation of the retinal tis-

sue, a digital light processing (DLP) projector (lightcrafter

(LCr), DPM-E4500UVBGMKII, EKB Technologies Ltd)

was used to display the visual stimuli through the objec-

tive onto the retina, whereby the stimulus was focused on

the photoreceptor layer (94). The LCr was equipped with

a light-guide port to couple in external, band-pass filtered

green and UV light-emitting diode (LEDs; green: 576 BP

10, F37-576; UV: 387 BP 11, F39-387; both AHF/Chroma).

The band-pass filter was used to optimize the spectral separa-

tion of mouse M- and S- opsins (390/576 Dualband, F59-003,

AHF/Chroma). Both LEDs were synchronized with the scan

retracing of the microscope. Stimulator intensity (as pho-

toisomerization rate, 103 P∗s−1 per cone) was calibrated to

range from ∼0.5 (black image) to ∼20 for M- and S-opsins,

respectively. A steady illumination of ∼104 P∗s−1 per cone

was present during the scan recordings due to the two-photon

excitation of photopigments (75, 76).

In total, 3 types of light stimuli were used for the imaging of

calcium in the GCL: (1) full-field chirp stimulus (700 µm �;

see details here ref. (5)), (2) bright moving bar (0.3 x 1 mm)

at 1 mm s−1 in eight directions to probe direction and orien-

tation selectivity, and (3) random binary noise with a checker-

board grid of 20 x 15 checks and a check size of 40 µm at 5 Hz

for 5 min to map receptive fields. Before each stimulus was

presented, the baseline was recorded after the laser started

scanning for at least 30 s to avoid immediate laser-induced

effects on the retinal activity (75, 76, 95).

Data Analysis. Image extraction and semi-automatic

region-of-interest (ROI) detection were performed using

Igor PRO 8. All analyses were organized and performed

in a custom-written schema using DataJoint for Python

http://datajoint.github.io/; D. Yatsenko, Tolias lab, Baylor

College of Medicine.
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Preprocessing. After the Ca2+ were extracted from individ-

ual ROIs, as described elsewhere (5, 95), the raw traces were

detrended by subtracting a smoothed version of the trace

from the raw one. Detrending was necessary to remove slow

drifts in the signal that were unrelated to the light-induced

response. The smoothed version was the trace was computed

by applying a Savitzky-Golay filter (96) of 3rd polynomial

order and a window length of 60 s using the Python SciPy

implementation scipy.signal.savgol_filter (97).

rdetrend = rraw − rsmooth

Lastly, the baseline activity (mean of the first eight samples)

was subtracted, the mean activity r(t) was computed and then

traces were normalized such that:

max
t

(♣r(t)♣) = 1

Inclusion criterion. To include reliable cell responses for the

performed analyses, two consecutive quality filtering steps

were applied. At first, the response quality criterion, also

termed quality index (QI), was computed for the moving bar

(QIMB > 0.6) and full-field chirp (QIchirp > 0.45). Cells that

passed either one of these two QIs in both recording condi-

tions were included, otherwise they were discarded in the fol-

lowing analyses. As in Baden et al. (5), the quality index is

defined as follows:

QI =
V ar[⟨C⟩r]t
⟨V ar[C]t⟩r

where C is the T by R response matrix (time samples by

stimulus repetitions) and ⟨⟩x and V ar[]x denote the mean

and variance across the indicated dimension x, respectively.

As a second step, cells were assigned to a RGC group using

the RGC classifier, which returned the RGC group index and

a confidence score (i.e., assignment probability to the pre-

dicted RGC group by the random forest classifier (79)). Only

cells that were assigned to one of the RGC groups (i.e., RGC

index 1 - 32) were included, whereby cells assigned to a dis-

placed AC group (i.e., RGC index 33 - 46) were rejected.

Cells that exceeded the confidence score threshold of > 0.25

were included.

Suppression index. For each cell, the suppression index

(SI) was measured by comparing the (absolute) negative

area under the curve (AUCneg) of the chirp and mov-

ing bar responses with the total area under the curve

(AUCneg+AUCpos) of the entire response trace. For the ab-

solute AUCneg , the response was clipped for value <0.

SI =
♣AUCneg♣

♣AUCneg♣+ ♣AUCpos♣

On-Off Index. The On-Off index was computed as

OOI =
⟨ron⟩t −⟨roff ⟩t

⟨ron⟩t + ⟨roff ⟩t

where ron and roff are defined as the separated time com-

ponents of the moving bar response into its On- and Off-

component. For each component, we computed the mean

value of the discrete differences along the time axis clipped

between 0 and 1 to estimate if there is a response to the par-

ticular feature.

Classification of functional retinal ganglion cell types. For

the functional classification of RGC types, we used a previ-

ously published RGC classifier (79). The classifier, which

uses a random forest classifier, was trained, validated and

tested on previously published RGC type responses (5). As

input to the classifier, we used the responses to the standard

set of stimuli, i.e., full-field chirp and moving bar, as well

as soma sizes (separates alpha and non-alpha types) and the

p-values of the permutation test for direction selectivity (sep-

arates DS and Non-DS types). For every cell, the RGC clas-

sifier outputs its type index and the confidence scores for all

46 types. The confidence score, as described in ‘Inclusion

criterion’ was used as quality criterion.

Receptive field estimation. We mapped receptive fields (RFs)

of RGCs using the RF python toolbox RFEst (98), follow-

ing the procedure in (5) with few modifications. The binary

dense noise stimulus (20 × 15 matrix, 40 µm2 pixels, bal-

anced random sequence; 5 Hz) was centered on the recording

field. We computed the temporal gradients of the Ca2+ sig-

nals from the detrended traces and clipped negative values:

ċ = max(0, ṙdetrend)

The stimulus S(t) and the clipped temporal gradients c were

upsampled to 10 times the stimulus frequency to compute the

gradient-triggered average stimulus:

F (x,y,τ) =

∫ T

t=0
ċ(t)S(x,y, t+ τ)

where S(x,y, t) is the stimulus, τ is the lag ranging from ap-

proximately −0.20 to 1.38 seconds, and T is the duration of

the stimulus. We smoothed these raw RF using a 5 × 5 pixel

and 1 pixel standard deviation Gaussian window for each

lag. Then we decomposed the RF into a temporal (Ft(τ))

and spatial (Fs(x,y)) component using singular value de-

composition and scaled them such that max(♣Ft♣) = 1 and

max(♣Fs♣) = max(♣F ♣). For each spatial RF Fs, we fit a

2D Difference of Gaussians using the python package as-

tropy (99). The mean and covariance matrices of the cen-

ter and surround Gaussian fits were tied, except for a lin-

ear scaling of the covariance matrix. We defined the polarity

p ∈ ¶−1,1♢ of the spatial RF as the sign of the model fit at its

mean. Next, we computed the center RF of the spatial RF as

F
c
s = max(0,p ·Fs). The surround index was computed as:

RFsurround =

∑
x,y(Fs −F

c
s )∑

x,y(♣Fs♣)
.

To measure the center RF size, we fit a 2D Gaussian to the

center RF, with the mean fixed to the one obtained from the

Difference of Gaussians fit. The area covered by two standard

deviations of this Gaussian fit was used as the RF size.
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Functional clustering. The functional clustering was based

on a similar approach as in (5). The clustering was only ap-

plied on RGC types previously classified as G32 and only

recorded in Ctrl 1. First, visual features from the full-field

chirp and moving bar Ca2+ responses were extracted using

sparse principal component analysis (100). After optimizing

the alpha parameter for each stimulus, each cell’s dimension-

ality was reduced to 30 features, whereby the chirp covered

21 and the moving bar 9 features. Alpha was optimized in a

way that every part of each stimulus was represented by one

feature to increase interpretability. Each feature was stan-

dardized across cells before clustering. Then, the features

were used to cluster the cells using a Mixture of Gaussian

model. The ideal number of clusters was chosen based on

the cross-validated Bayesian Information Criterion. Addi-

tionally, cluster coherence was computed and validated using

intra- and inter-cluster correlation, as well as the influence of

potential batch effects, i.e., a single cluster originates from

a single retina or scan field, but is found across several ones.

Then, the model was used to predict cell types labels. Finally,

cluster 3 showed a high signal-to-noise ratio, thus cells were

re-clustered, which originated in three clusters, whereby two

showed high variability in their chirp and moving bar re-

sponses. These cells were discarded in the further analysis

to clean this cluster from potential contamination.

Statistical analysis. To quantify the differences between

traces, a Shaprio-Wilk test was used to test for normality and

then either the two-sided t-test (if normally distributed) or the

non-parametric Wilcoxon signed-rank test (Mann-Whitney U

Test). To determine α, Bonferroni correction was used, de-

pending on the number of tests performed. To test the differ-

ence between traces against zero, we either used the t-test or

the non-parametric Wilcoxon signed-rank test, depending on

the distribution. A one-sampled T-test was performed to test

the mean against a population mean of zero in order to quan-

tify if the mean difference diverges from zero. For the statis-

tical comparison of the suppression index between conditions

per cluster, the non-parametric Kruskal-Wallis one-way anal-

ysis of variance and post-hoc Dunnett’s test and Bonferroni

correction to determine the statistical significance between

conditions was used.

Data and code availability. Data, light stimuli, as

well as all custom analyses including code and note-

books to reproduce analyses will be made available at

https://github.com/eulerlab upon journal publication.
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Supplementary Material

Fig. S1. Testing the effects of strychnine on different RGC type responses. (a) Left: Representative mean calcium responses of paired RGC types between Ctrl
(black) and Strychnine-application (blue) (top: G1; middle: G2; bottom: G12) exhibiting Off-responses. Right: Corresponding On-Off indices of paired RGCs for the Ctrl
and Strychnine condition. (b) Left: As (a), representative mean calcium responses of paired RGC types between Ctrl (black) and Strychnine-application (blue) (top: G17;
middle: G23; bottom: G32) exhibiting mainly On-responses and a suppressed-by-contrast component. Right: Corresponding On-Off indices of paired RGCs for the Ctrl and
Strychnine condition.
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