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Abstract 
Genomics-informed breeding of locally adapted, nutritious, albeit underutilised 
African crops can help mitigate food and nutrition insecurity challenges in Africa, 
particularly against the backdrop of climate change. However, utilisation of modern 
crop improvement tools including genomic selection and genome editing for many 
African indigenous crops is hampered by the scarcity of genetic and genomic 
resources. Here we report on the assembly of the genome of African yam bean 
(Sphenostylis stenocarpa), a tuberous legume crop that is indigenous to Africa. By 
combining long and short read sequencing with Hi-C scaffolding, we produced a 
chromosome-scale assembly with an N50 of 69.5 Mbp and totalling 649 Mbp in 
length (77 - 81% of the estimated genome size based on flow cytometry). Using 
transcriptome evidence from Nanopore RNA-Seq and homology evidence from 
related crops, we annotated 31,614 putative protein coding genes. We further show 
how this resource improves anchoring of markers, genome-wide association analysis 
and candidate gene analyses in Africa yam bean. This genome assembly provides a 
valuable resource for genetic research in Africa yam bean. 
 

Background and Summary  
African yam bean (Sphenostylis stenocarpa (Hochst. Ex. A. Rich) Harms) is an 
underutilised tuberous legume which produces edible protein-rich seeds and starch-
rich tubers (Fig. 1). It is a tropical African crop1 that originated from Ethiopia from 
where its distribution extended to West and Central Africa2. African yam bean 
(hereafter referred to as AYB) is important for food and nutritional security in local 
communities in sub-saharan Africa. AYB is a rich source of dietary protein with up to 
30% and 10% protein content in the seeds and tubers, respectively3,4. Its seeds and 
tubers are also low in fat and rich in carbohydrates, minerals and vitamins3,4. In 
addition, AYB exhibits high nitrogen-fixing ability5 and is drought tolerant. These 
attributes may have allowed it to thrive in marginal soils under low-input farming 
systems and intercropping, especially in Ghana and Nigeria6,7.  

AYB, however, is largely underutilised due to the hardness of the seed coat, leading 
to long cooking time and the presence of anti-nutritional factors which reduce protein 
digestibility3. Also, the need for staking of plants has greatly hampered its cultivation 
on a commercial scale. Its production has been sustained indigenously through 
intercropping with major crops, especially yam - Dioscorea spp. To date, minimal 
genomic information is available to assist breeding efforts aimed at unlocking the full 
potential of AYB, thereby limiting its contribution to food and nutritional security in 
Africa.  

Here, we present the first chromosome-scale assembly of the AYB genome using 
Illumina short-read and Oxford Nanopore long-read sequencing platforms (Fig. 2). 
Using homology and transcript evidence, we performed a gene annotation of the 
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AYB’s genome (Fig. 2). We further demonstrate the usefulness of this genome 
resource for genetics analyses and trait mapping in AYB.  

Methods 
Size estimation of AYB genome by flow cytometry   
Fresh 10 mg leaf samples of AYB and soybean (Glycine max, used as standard) 
were immersed in 1 mL of ice-chilled Galbraith buffer (45 mM MgCl2, 30 mM sodium 
citrate, 20 mM 3-(N-morpholino) propanesulfonic acid, 0.1% w/v Triton X-100, pH 7) 
and sliced using a scalpel. The supernatant was filtered through one layer of 
Miracloth (pore size 22 - 25 µm). An aliquot of 600 µL of filtrate were mixed with 
propidium iodide to a concentration of 50 µM and RNAse A to 20 µg/mL and 
incubated for 1.5 h on ice. A FACSCantoll flow cytometer (Becton Dickinson) was 
used to measure nuclei, with flow rate adjusted to 20 - 50 events/s and results were 
analysed using FCSalyser (v. 0.9.18 alpha). The genome size of Sphenostylis 
stenocarpa was estimated following the method described by Dolezel et al (2007)8 
by dividing the mean position of its fluorescence peak by the mean position of the 
corresponding soybean peak and multiplying by the estimated soybean genome size 
of 1.10 - 1.15 Gbp9 (Fig. 3, Supplementary Table 1). Based on this range we 
estimate the size of the AYB genome as 804 - 841 Mbp. 

 

Sample selection, library preparation and sequencing  
Illumina DNA sequencing: Seeds of AYB accession TSs1110 were germinated in a 
Petri dish on filter paper moistened with tap water. The sprouted seedlings were 
transferred to soil and allowed to grow in the greenhouse facility at the International 
Livestock Research Institute (ILRI, Kenya) for a month. DNA was extracted from 
young leaves using a DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) following the 
manufacturer’s protocol, recovering a total of 10 µg. DNA was quantified using a 
Qubit 2.0 Fluorometer and dsDNA BR Assay (Invitrogen, Paisley, United Kingdom) 
and integrity was confirmed by gel electrophoresis on a 0.8% agarose gel. 
 
Three samples of 50 ng each of genomic DNA were sheared and processed using 
the Nextera DNA Library Prep Kit (Illumina, USA) according to the manufacturer’s 
instructions. Three runs of paired-end (2 x 150 bp) sequencing were performed on 
an Illumina MiSeq (Illumina) to generate 25 Gbp of raw data, representing ~30x of 
the AYB genome. 
 

Nanopore DNA sequencing: Two grams of young leaves of AYB accession TSs11 
were harvested, frozen in liquid nitrogen and stored at -80 0C. The leaves were then 
ground in liquid nitrogen using a pestle and mortar. High Molecular Weight (HMW) 
DNA was extracted from the ground sample with Carlson lysis buffer (100 mM Tris-
HCl, pH 9.5, 2% CTAB, 1.4 M NaCl, 1% PEG 8000, 20 mM EDTA) followed by 
purification using the Qiagen Genomic-tip 100/G as described on the Oxford 
Nanopore Technologies (ONT, UK) HMW plant DNA extraction protocol. The ONT 
SQK-LSK109 ligation sequencing kit protocol was used to prepare sequencing 
libraries from the HMW DNA. This involved repairing and 3’ adenylation of 1 µg of 
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HMW genomic DNA with the NEBNext FFPE DNA Repair Mix and the NEBNext® 
Ultra™ II End Repair/dA-Tailing Modules (New Englang Biolab, NEB). Sequencing 
adapters were then ligated using the NEBNext Quick Ligation Module (NEB). After 
library purification with AMPure XP beads (Beckman Coulter), sequencing was 
conducted at ILRI using R9.4.1 flow cells on an ONT MinION sequencer. High-
accuracy base calling was done using Guppy basecaller11 (v4.1.1) generating 9.5 
million reads totalling 42.4 Gbp of sequence that represents 50 - 53x of the 
estimated genome size (Fig. 2). 
 
Nanopore RNA sequencing: Two grams of young and disease-free leaves, stem 
and root tissues of AYB accession TSs11 were harvested and ground with mortar 
and pestle in liquid nitrogen. HMW RNA was extracted with the following extraction 
buffer [100 mM Tris–HCl (pH 8.0), 25 mM EDTA, 2 M NaCl, 2% CTAB (w/v), 2% 
PVP (w/v) and 2% β-mercaptoethanol (v/v)], followed by removal of residual DNA 
using DNASE I (RNase-free) kit (Thermo Fisher Scientific). The library was prepared 
following the Oxford Nanopore SQK-PCS109 PCR-cDNA sequencing kit. A total of 
50 ng total RNA was transcribed using Maxima H Minus Reverse Transcriptase 
(Thermo Fisher Scientific). Full length transcripts were selected by PCR amplification 
using the LongAmp Taq Master Mix and the product was purified with AMPure XP 
beads (Beckman Coulter). An aliquot of 1 µL of Rapid Adapter was added to the 
amplified cDNA library. The libraries were sequenced at ILRI using R9.4.1 flowcells 
on the ONT MinION sequencers. Real-time data acquisition and high accuracy base-
calling were conducted using the MinKNOW software with the Guppy basecaller 
generating 7.1 Gbp of sequence from 17.1 million reads (Fig. 2). 
 

De novo assembly  
Genome assembly was done primarily with the ONT long reads generated above. 
Briefly, the reads were assembled using Flye de novo long read assembler (v2.9)12 
with default parameters generating 10,329 contigs with total assembly length of 
701.6 Mbp (Fig. 2). The draft assembly was further polished for error correction with 
Illumina short reads generated above from the same AYB accession TSs11 using 
HyPo hybrid polisher13 (v1.0.3) with parameters -s 700m -c 30 -p 96 and -t 64. The 
polished draft assembly had an N50 of 781,337 bp, and a total assembly of 701.3 
Mbp (Table 1). The draft assembly was further scaffolded using Chromatin 
conformation capture data as described below. 

Hi-C scaffolding 
Chromatin conformation capture (Hi-C) scaffolding was performed by Phase 
Genomics (Seattle, USA) using the Proximo Hi-C 2.0 Kit. For this, fresh leaves from 
young AYB accession TSs11 plants were frozen in liquid nitrogen, ground to powder 
and cross-linked using formaldehyde solution before being sent to Phase Genomics 
for library preparation following the manufacturer’s protocol. Sequencing of the Hi-C 
library was performed at Phase Genomics using Illumina HiSeq platform generating 
a total of 275,166,448 paired-end reads. Reads were aligned against the polished 
assembly using BWA-MEM14 with options -5SP and -t 8 specified and the other 
parameters set to the defaults. PCR duplicates were then mapped using 
SAMBLASTER15, which were later excluded from the analysis.  Non-primary and 
secondary alignments were flagged and filtered with Samtools16 using the -F 2304 
filtering flag. Putative misjoined contigs were broken using Juicebox17 based on the 
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Hi-C alignments, and the same alignment procedure was repeated from the 
beginning on the corrected assembly. Phase Genomics Proximo Hi-C genome 
scaffolding platform was used to create chromosome-scale scaffolds from the 
corrected assembly following the method similar to that described by Bickhart et al 
(2017)18. Ordering of the scaffolds into pseudomolecules was done by LACHESIS19.  

 
The scaffolded assembly contains 11 pseudomolecules (representing the 11 AYB 
chromosomes) with 649.8 Mbp of sequence, and N50 of 69.5 Mbp (Table 1). There 
were also 8,422 short contigs with total and average length of 51.8 Mbp and 6.1 Kbp, 
respectively, that were not anchored into chromosomes. Summary statistics and 
evaluation of the completeness of the chromosome-scale genome assembly was 
evaluated using QUality ASsessment Tool (QUAST)20 (ver 5.0.2) and  Benchmarking 
Universal Single-Copy Orthologs (BUSCO)21 (v5.2.2), respectively (see Technical 
Validation section). 
 
Table 1: AYB assembly statistics before and after scaffolding. 

Assembly Metric Polished Assembly  Scaffolded (Hi-C) 
Assembly 

Number of 
contigs/scaffolds (> 500 
bp) 

10,329 11 

Total assembly length (bp) 701,349,621 649,801,261 

N50 (bp) 781,088 69,519,929 

L50(bp) 194 4 

N75 (bp) 292,358 47,252,539 

L75(bp) 567 7 

Longest contig/scaffold 
(bp) 

9,386,731 107,191,003 

Mapping back rate of ONT 
reads 

 97.82% 

 
 
Synteny with closely related species genomes 
We examined the syntenic relationship between the HiC-scaffolded genome of AYB 
and those of closely related species including common bean (Phaseolus vulgaris)22 
and lablab  (Lablab purpureus)23. For this, long-read based genome assemblies and 
annotation dataset for P. vulgaris and L. purpureus were obtained from Ensembl 
plant24 and e!DAL25 respectively. The blastp option from BLAST v2.7.1 was used to 
compare the AYB protein to P. vulgaris and L. purpureus with parameters: -
max_target_seqs 1 -evalue 1e-10 -qcov_hsp_perc 70. MCscanX26 algorithm was 
subsequently used to identify collinear blocks between the AYB-phaseolus and AYB-
lablab genome pairs with parameters: -s 20 and -m 10. Visualisation of synteny 
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linkages was made by R27 (v3.3.1) and circos28 (v0.69-4). Six of AYB chromosomes 
show direct one-to-one syntenic relationships with lablab and common bean 
chromosomes, while the other five AYB chromosomes show syntenic relationship 
across two or more chromosomes in either lablab or common bean. Based on these 
syntenic relationships, we assigned chromosome names to the Hi-C-scaffolded AYB 
pseudomolecules.  
 

Repeat annotation 
The Extensive de novo TE Annotator29 (EDTA v1.9.7) pipeline was used to annotate 
the transposable elements (TE) in the AYB genome. The pipeline incorporates 
different tools to annotate predominant TE classes found in plant genomes using 
structure and homology-based detection methods. The tools include LTRharvest30, 
LTR_FINDER31, LTR_retriever32, TIR-Learner33, HelitronScanner34, 
RepeatModeler235 and RepeatMasker36. The outputs of each tool are combined and 
filtered into a comprehensive non-redundant TE library. The inbuilt genome 
annotation function in EDTA was then used to produce a final non-overlapping 
repeat annotation for the AYB genome. Data visualisation and summary were carried 
out in R37 using the Tidyverse suite38. In total 624,517 TEs and 78,100 unclassified 
repeats accounting for 74.08% of the total assembly were identified (Table 2, Fig. 5 
and Fig. 6). 
 
 
Table 2: The number of TEs, TE families and the proportion of occupied assembly 
length by different classes of repeats identified and annotated in AYB. 
 
Class Order Superfamily Number 

of TEs 
Number of 
Families 

% of     
Assembly 

Class I LTR-RT Copia 172471 3149 22.01 

Gypsy 183229 1488 24.13 

unknown 187360 1379 17.73 

LINE unknown 351 6 0.04 

Class 
II 

TIR CACTA 28514 494 2.4 

MUDR-Mutator 20256 264 1.23 

PIF-Harbinger 800 23 0.08 

Tc1-Mariner 675 25 0.03 

hAT 10466 116 0.59 

MITE CACTA 39 32 0 

MUDR-Mutator 1255 174 0.03 

PIF-Harbinger 45 3 0 

Tc1-Mariner 2 2 0 
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hAT 4496 22 0.21 

Helitron Helitron 14242 27 1.44 

Other Pararetrovirus   316 1 0.01 

Unclassified repeat   78100 702 4.15 

Total     702617 7907 74.08 
 
 
 
 

Gene prediction and functional annotation of genome  
We combined transcript and homology evidence to annotate the gene content of the 
AYB genome. The transcript evidence was generated from 17,117,377 ONT long-
read RNA reads totalling 7.1 Gbp of sequencing data used for de novo assembly of 
60,249 transcripts. Briefly, Minimap239 (v2.22) was used to index the AYB genome 
assembly and the RNA reads were mapped to the indexed assembly. Samtools16 
(v1.9) was used to sort mapped reads by coordinates that were used to assemble 
transcripts with Stringtie240 (v2.0.1). Transdecoder41 (v2.0.1) was then used to 
identify candidate CDS regions and select transcripts with a minimum protein length 
of 100 amino acids. 
 
We combined the de novo transcripts with protein homology evidence from four well-
annotated plant genomes (Arabidopsis thaliana TAIR10, Phaseolus vulgaris v1.0, 
Glycine max v2.1, Vigna_angularis v1.1) together with a soft-masked (for repeats) 
AYB genome as inputs into Funannotate42 (v1.8.11) to identify protein coding genes. 
Funannotate ‘predict’ uses ab initio gene predictors Augustus43, PASA44, SNAP45 
and GlimmerHMM46 together with protein sequences as evidence to predict genes. 
Gene predictions from all four ab initio predictors are passed to EVidenceModeler47 
with various weights for integration. This resulted in 30,840 coding gene models 
totalling 31,614 transcripts with a median exon length of 231 bp and a median of 
three exons per transcript. Additionally, we detected 774 non-overlapping tRNA-
encoding genes using tRNAscan-SE48 for tRNA prediction. The gene and 
transposable element distribution across the genome are inversely correlated (Fig. 
5). 
 
Protein domains were annotated using InterProScan-5.25-64.049 based on InterPro 
protein databases, including TIGRFAM, SUPERFAMILY, PANTHER, Pfam, PRINTS 
and ProDom. We also used eggNOG-mapper50 (v2.1.7) to annotate predicted gene 
models. Funannotate ‘annotate’ uses results of InterProScan and eggNOG-mapper 
to annotate putative functions of protein sequences using PFAM51, UniProtKB52  and 
Gene Ontologies53 databases. In total, functional descriptions were assigned to 
25,241 (81.85%) of the genes. 
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Gene family analysis 
To delineate gene families, AYB was compared to other legumes L. purpureus, P. 
vulgaris, Vigna unguiculata, and Mycrotyloma uniflorum (with Solanum tuberosum as 
an outgroup) using OrthoFinder54 (v2.5.4). This analysis placed 26,038 (84.4%) of 
the 30,840 AYB proteins into orthogroups. Clustering using Venn Diagrams55 
revealed 1,296 AYB proteins (4.2%) segregated in 384 species-specific orthogroups 
(Fig. 7).  
 
 

Technical Validation  
Genome and annotation completeness 
We mapped the ONT long-reads data back to the genome assembly and analysed 
the alignment with Qualimap56 (v.2.2.2). The alignment mapping rate was 97.8% 
(Table 1) with an average read coverage of 39x. We also evaluated the 
completeness of the genome assembly and annotation using BUSCO21 (v5.2.2). A 
highly conserved set of single-copy orthologs from embryophta_odb10 and fabales 
lineages were used as references. For the genome assembly, we obtained complete 
matches to 98.0% and 98.5% of the conserved single-copy orthologs in the fabales 
and embryophyta lineages, respectively (Fig. 8). Similarly, 90.4% and 91.4% of the 
conserved single copy orthologs showed complete matches to the gene annotation 
of AYB (Fig. 8). These high percentages suggest a high degree of accuracy and 
completeness of the genome assembly and gene annotation.  
 
 

Marker mapping and association 
We also examined the usefulness of the AYB genome for positionally anchoring 
markers for genetic analyses. Previous efforts to anchor a set of Genotyping-By-
Sequencing (GBS) markers generated from a collection of AYB accessions using the 
common bean genome as reference only mapped 15.48% of the markers to a 
unique syntenic position, thus limiting the number of markers used for genome-wide 
association analyses (GWAS)57. Using the chromosome-scale assembly of AYB as 
reference, we could anchor 92% of the total 5,142 DArTseq-SNPs markers to unique 
positions in the AYB genome. The distribution of the markers across the genome 
tallies with the gene distribution highlighting the gene-centric nature of the GBS 
pipeline (Fig. 5). Furthermore, we used a subset of 1,460 quality-filtered SNPs (Call 
Rate > 0.70, Marker repeatability > 0.95, MAF > 0.05, missing < 0.05) for evaluating 
how the chromosome-scale genome assembly support GWAS and candidate gene 
analyses. For this, we used Best Linear Unbiased Estimates (BLUE, combined years 
and locations) of seed yield traits (hundred seed weight - HSW; seed length -SL; 
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seed width - SW; and seed thickness - ST) from a landrace population of 195 AYB 
accessions which were phenotyped in 2018 and 2019 under optimal field condition in 
three different locations of IITA research farms in Nigeria (Ibadan, Kano and Ubiaja). 
More information about field trait analysis can be obtained from Olomitutu et al 
(2022)57. 
 
The Generalised Linear Model (GLM) and Mixed Linear Model (MLM) were used in 
TASSEL58 (v5.2.87) for identifying marker-trait association for seed yield-traits. 
Significant SNP association with the traits were determined by adjusting p-value 
threshold (a = 0.10) for FDR procedure proposed by Benjamini and Hochberg 
(BH)59. Significant marker-trait associations were found for SW and ST traits, two 
highly correlated traits, on Ss07 and on unanchored contigs. SNP 29420736-57-G/T 
was associated with both SW and ST traits on Ss07 (4.78 Mbp) of the AYB genome, 
suggesting a possible pleiotropic effect. The unanchored SNP 29420736-57-G/T was 
associated with SW traits. The contribution of these associated SNPs to the 
phenotypic variation ranged between 8.38% to 11.19%.  
 
Candidate genes were searched within 1 Mbp interval around the position of SNP 
29420736-57-G/T on Ss07 (± 500 Mb, 4283198 bp to 5283198 bp) in the AYB 
genome. In total sixteen genes were identified (Supplementary Table 2). Out of 16 
candidate genes, nine genes  were involving in grain development process in which 
seven genes were related to seed development role (Spste.TSs11.07G209790.160, 
Spste.TSs11.07G209800.161, Spste.TSs11.07G209840.162, 
Spste.TSs11.07G209850.162,  Spste.TSs11.07G209860.162, 
Spste.TSs11.07G209910.163, and Spste.TSs11.07G209920.163), one gene for seed 
shape (Spste.TSs11.07G209820.164,65), and two genes for seed size ( 
Spste.TSs11.07G209790.160 and Spste.TSs11.07G209920.166) in plants.  
 
Similarly, Olomitutu et al (2022)57 reported nine candidate genes in common bean by 
blasting SNPtag of SNP 29420736-57-G/T in legume information system database67. 
The encoding product of these common bean candidate genes were similarly 
involved in regulation of seed development68, seed/fruit size69, seed size70–73, grain 
shape64,65, and grain size74,75. The mechanism regulating seed traits in AYB needs 
further exploration. The SNP position and candidate genes information in the AYB 
genome provided in this study might help to improve AYB yield. These results also 
indicate that AYB genome will play a central role in precise mapping of SNP markers 
and genome-wide allele mining for agronomical, biotic, abiotic and nutrition value 
traits in future AYB crop breeding.  
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Data Records 

The genome assembly and annotation have been deposited in the following 
repositories: 

 
1. ENA/NCBI/DDBJ accessions: BioProject PRJEB57813 on ENA and on NCBI, 

chromosomes have accessions OY731398 to OY731408 and the whole 
genome assembly is GCA_963425845. 

2. ENA only: ENA project ERP142818 is already published on INSDC as 
EDTAPRJEB57813, sample is ERS16321187 (completed) and annotated 
assembly is ERZ21776326 (completed). 

 
 

Code Availability 
Open-source software were used for the analyses reported. The software versions 
and custom parameters used (if different from default) are indicated in the Methods. 
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Fig. 1: Africa yam bean - an African indigenous tuberous legume. Figure shows (a) full grown plants in the 

field (b) flowers (c) pods (d) root tubers of different shapes and sizes (e - g) different coloured seeds.
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Fig. 2: AYB genome sequencing and annotation workflow. Overview of the workflow used for the sequencing, 

assembly, masking and annotation of the  African Yam Bean genome. The boxes are color-coded by the different 

stages involved in the workflow (top right box) . Software used for each step are indicated in grey boxes.. 
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Fig. 3. Genome size estimation of AYB.  Density plot showing results of 

a representative flow cytometry run, excluding events caused by cell 

debris. Propidium iodide fluorescence amplitude (in relative units) is plotted 

against event density. The interval assumed to be AYB nuclei is delimited 

by blue dashed lines, the interval assumed to be soybean nuclei is 

delimited by green dashed lines. Three biological replicates were 

performed.
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Fig. 4: AYB synteny to related legumes. Syntenic relationships between AYB chromosomes to the 

genomes of (a) lablab (Lablab purpureus)  and (b) common bean  (Phaseolus vulgaris). Where possible, 

AYB chromosome were renamed to reflect these syntenic relationships.  

a b
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1

2

3

Fig. 5: Gene, repeat and marker distribution in the AYB genome. The outer to the inner 

track show 1) gene density, 2) repeat density, 3) heatmap of marker distribution.
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Fig. 6: Distribution of transposable elements across the AYB genome. Chromosomal repeats content in 

the AYB genome showing proportional abundance of identified transposable element Orders on each 

chromosome.
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Fig. 7: Gene families in AYB. Venn diagram of the number of gene 

families common among and unique to AYB (S. stenocarpa), Lablab 

purpureus, Phaseolus vulgaris, Vigna unguiculata and Macrotyloma 

uniflorum. 
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Fig. 8: AYB Genome assembly completeness: BUSCO scores of the AYB genome and gene annotation 

using the embryophyta and fabales reference lineages.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2023. ; https://doi.org/10.1101/2023.10.31.564964doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.564964
http://creativecommons.org/licenses/by/4.0/


Fig. 9: GWAS in AYB. Manhattan and quantile-quantile plot of GWAS analysis for seed thickness (ST) and seed 

width (SW) in African yam bean collection.  (a & b) Q-Q plot for GWAS results for ST and SW traits using GLM 

and MLM statistical models respectively. (c & d) Manhattan plot for GWAS results of ST trait using GLM and MLM 

statistical models respectively. (e & f) Manhattan plot for GWAS results of SW trait using GLM and MLM statistical 

models respectively. The green horizontal dotted lines indicate the significant threshold for associated SNPs in 

GWAS analysis.
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