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ABSTRACT: 123 

Research on data use and school Early Warning Systems (EWS) 

notes a central practice of researchers and practitioners is to 

search for patterns in student data to predict outcomes so schools 

can support success when students experience challenges. Yet, 

the domain lacks a means to visualize the rich longitudinal data 

that schools collect. Here, we use visual data analytic 

hierarchical cluster analysis (HCA) heatmaps to pattern and 

visualize entire longitudinal grading histories of a national 

sample of n=14,290 students from grade 9 to college in every 

enrolled subject and year, visualizing 6,728,920 individual 

datapoints. We provide both the open access code in R and an 

open-access online tool allowing anyone to upload their data and 

create a HCA heatmap, providing support for visual data 

analytic and data science practice for both education researchers 

and schooling organizations. 
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PURPOSE AND BACKGROUND: 

The world outside is itself the greatest storehouse of knowledge. 

Human reason, drawing upon the pattern and redundancy of 

nature, can predict some of the consequences of human action. 

But the world will always remain the largest laboratory, the 

largest information store, from which we will learn the 

outcomes, good and bad, of what we have done. (Simon, 1971) 

(p.47) 
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The purpose of this study is to apply visual data analytics, 

specifically a hierarchical cluster analysis (HCA) heatmap, to 

longitudinal student trajectories of all grades and enrolled 

subjects from grades 9 through college as a means to inform 

current education early warning system research and practice 

through generating maps of entire cohorts of student progress 

linked to overall schooling outcomes. Over the last decade, there 

has been growing interest and research focused on education 

Early Warning Indicators (EWI) and Early Warning Systems 

(EWS) (Allensworth, 2013; Balfanz & Byrnes, 2019; Bowers, 

2021b; Carl, Richardson, Cheng, Kim, & Meyer, 2013; Davis, 

Herzog, & Legters, 2013; Kemple, Segeritz, & Stephenson, 

2013; Knowles, 2015). The goal of much of this work is to 

provide educators with information on the best predictors of 

student challenge or success early to provide an opportunity for 

teachers and the organization to possibly intervene and help 

support student success based on student needs detected from 

data that already exists within the system (Agasisti & Bowers, 

2017; Bowers, Krumm, Feng, & Podkul, 2016; Bowers & Zhou, 

2019; Farrell, 2014; Frazelle & Nagel, 2015; Krumm, Means, & 

Bienkowski, 2018; Piety & Pea, 2018).  

 

Current Research on EWI/EWS that Focus on Single Variable 

Summary Statistics and Predictors 

Throughout the EWI/EWS literature, multiple individual 

variables have been identified in predicting overall student 

outcomes, such as graduation from high school (Allensworth, 

Nagaoka, & Johnson, 2018; Baker, Berning, Gowda, Zhang, & 

Hawn, 2020; Bowers, Sprott, & Taff, 2013; Bowers & Zhou, 

2019; Gubbels, van der Put, & Assink, 2019; Knowles, 2015; 

Rumberger, 2011). Yet, current EWI/EWS practice is to 

summarize student data into overall single summary statistics, 

such as a grade point average, overall test score, or average 

absences, and then to relate these summary statistics to student 

outcomes (Soland, 2017). This practice persists despite the 

findings, from across a review of 110 early warning indicators 

from the literature, that disaggregated clusters of student 

longitudinal performance trajectories are highly accurate 

predictors of schooling outcomes, especially in secondary 

school, including non-cumulative GPA (Bowers et al., 2013). 

While there has been much enthusiasm for informing evidence 

use in schools with EWI/EWS (Balfanz & Byrnes, 2019; 

Bowers, 2021b; Davis et al., 2013), two recent randomized 

controlled experiments which implemented early warning 

indicator monitoring across two different samples of schools in 
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the USA failed to find a significant effect of this practice (Faria 

et al., 2017; Mac Iver, Stein, Davis, Balfanz, & Fox, 2019). 

Additionally, recent research from Oregon in which 65 districts 

implemented a grade 9 early warning system that provided 

monitoring on chronic absenteeism, discipline, course 

progression, and state test score performance, found no 

relationship between the adoption of the EWS and student 

discipline infraction rates, credit accrual, or math or English 

state standardized test performance (Sepanik, Zhu, Shih, & 

Commins, 2021).  

 

While these results are early, in limited samples, and in need of 

replication, our supposition is that these findings suggest that 

current data summary practices which focus on bar graphs, line 

plots, and summary averages across schools (Bowers, 2021a; 

Bowers et al., 2016; Bowers, Shoho, & Barnett, 2014; 

Schwendimann et al., 2017; Selwyn, Pangrazio, & Cumbo, 

2021) could be augmented and complemented through adding 

additional tools to the education data analysts’ toolbox that 

provide additional views into the life course of students 

throughout their time in school (Alexander, Entwisle, & 

Kabbani, 2001; Bowers & Krumm, 2021; Nitkin, Ready, & 

Bowers, 2022; Pallas, 1993), which could ultimately help 

support richer and more in-depth data discussions between 

educators focusing on supporting individual student journeys 

through the system provided to the student.  

 

As recently noted by Selwyn et al. (2021), educators in their 

three case study schools reported their high aspirations for data 

use, saying  “But there’s this pattern here… That sort of stuff is 

gold especially for a year level coordinator. If they can see that 

then they can start to do something.” (p.78) In practice however, 

the authors noted that current practice relies not on finding these 

interesting patterns, but rather on education data analysts 

creating bespoke, ad hoc data summaries, often in Microsoft 

Excel, in which the analytics are “simple frequency counts… 

and modest cross-tabulations” (Selwyn et al., 2021) (p.84). 

Overall summary statistics aggregate students’ interesting, 

variable, and individual journeys through the schooling system 

into single summary numbers, obfuscating the lived experiences 

of each student across their individual grades and enrollments 

through subjects and grade levels throughout their time in 

schools.  

 

A Bottom-Up Descriptive Framework for Visualizing “Maps” of 

the Curricular Ecosystem 

In contrast to this practice, some researchers have proposed an 

alternative holistic “bottom up” framework. This framework 

considers both the student and the school system as a dynamic 

curricular ecosystem that provides a rich set of information to 

describe the lived experiences of individual students, 

information which is rarely used to view and work to understand 

each student as an individual (Frank et al., 2008; Heck, Price, & 

Thomas, 2004). This “sociocurricular” system: 

 

…can be conceptualized as emergent structures resulting 

from a series of student encounters with courses… One 

unique feature of this type of analysis is that it allows the 

structure of a complex array of student, teacher, and course-

taking events over time to emerge from their simultaneous 

analysis, with minimal assumptions required about what this 

structure might look like ahead of time. Importantly, it 

identifies actual patterns by considering each student’s 

complete course-taking pattern…  (Heck et al., 2004, pp. 

327-328) 

 

Currently there are few options for EWS practitioners to plot, 

view, and examine data that can be thousands or tens of 

thousands of rows (students) by hundreds or thousands of 

columns (variables collected over time). Indeed, current practice 

does not allow anyone working in the educational system to see 

the many different ways that students move through the system. 

This reality precludes researchers and practitioners from 

identifying patterns throughout these individual histories of each 

student’s experiences with the schooling provided to them 

through which more efficient routes or unexpected and 

beneficial practices could be identified (Bowers, 2010; Bowers 

& Krumm, 2021). As noted in human-system interaction design 

theory (Preece et al., 1994), when the most efficient route 

through a system is not well known or studied, then providing 

map-like knowledge is important to generate so that the most 

efficient yet currently unidentified pathways to objectives can be 

found, especially from rarely occurring cases and at the 

boundaries of the system (Verplank, 2003). 

 

Hierarchical Cluster Analysis (HCA) Heatmaps as Visual Data 

Analytics 

In the present study, we address these issues through applying 

recent innovations in visual data analytics in education research 

and methods (Bienkowski, Feng, & Means, 2012) which draw 

on innovations from the fields of data science, big data, and 

information system design (Agasisti & Bowers, 2017; Bowers, 

2021b, in press; Bowers, Bang, Pan, & Graves, 2019; Bowers & 

Krumm, 2021; Fischer et al., 2020; Krumm & Bowers, 2022; 

Krumm et al., 2018; Piety, 2019; Piety, Hickey, & Bishop, 2014; 

Piety & Pea, 2018; Stahl, Gabrys, Gaber, & Berendsen, 2013). 

Visual data analytics is “designed to help expose patterns, 

trends, and exceptions in very large heterogeneous and dynamic 

datasets collected from complex systems” (Bienkowski et al., 

2012, p. 15). This makes it ideal to apply to the large system of 

data that schools currently collect yet rarely leverage, namely 

teacher-assigned grades in each subject across multiple grade 

levels (Bowers, 2009, 2011, 2019; Brookhart et al., 2016). Here, 

we apply the visual data analytic technique of hierarchical 

cluster analysis heatmaps to longitudinal grades data. 

 

Used extensively in big data fields such as bioinformatics, 

Hierarchical Cluster Analysis (HCA) heatmaps are a visual data 

analytic technique that takes as input large heterogeneous 

datasets of many different variables or features (columns in the 

dataset) across many sampled participants or respondents (rows). 

The rows by columns data matrix is clustered such that 

participant rows of data that are most similar by a selected 

metric across the hyperdimensional dataspace are placed 

proximal to one another in the ordering of the rows (Romesburg, 

1984; Wilkinson & Friendly, 2009). The data in each cell for 

each row by column (person by variable) is then visualized with 

a “heatmap” in which lower levels of a variable are represented 
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by one color (here a “colder” blue), and higher levels by another 

color (here a “hotter” red) (Bowers, 2010; Eisen, Spellman, 

Brown, & Botstein, 1998). For example, over the last 20 years in 

big data bioinformatics cancer research and molecular biology, 

scientists have worked to analyze the flood of data from across 

medicine, such as from the sequencing of the human genome, 

using cluster analysis heatmaps (Gu, Eils, & Schlesner, 2016). 

To organize, pattern, and analyze these large sets of data, studies 

apply these ideas of map-like visualizations through the use of 

hierarchical cluster analysis heatmaps, such as in cancer research 

in which hundreds or thousands of gene expression levels are 

patterned and visualized across hundreds or thousands of human 

cancer patient samples, representing varying levels of disease 

invasiveness and varying degrees of patient prognosis, 

identifying patterns of specific genes related directly to better or 

worse outcomes (Bowers, Stanton, & Boylan, 2000; Kim, 

Watkinson, Varadan, & Anastassiou, 2010). In virology, for 

example, hierarchical cluster analysis heatmaps have been used 

to pinpoint patterns in the COVID 19 pandemic, examining 

outcomes versus patient responses to the virus (Lucas et al., 

2020). In each of these domains, the cluster analysis heatmap is 

used to describe the patterns in the data. 

 

Indeed, in bioinformatics, the popularity of cluster analysis 

heatmaps is well-known, as Weinstein (2008) noted in Science 

more than a decade ago: 

For visualization, by far the most popular graphical 

representation has been the clustered heat map, which 

compacts large amounts of information into a small space to 

bring out coherent patterns in the data.... Since their debut 

over 10 years ago, clustered heat maps have appeared in 

well over 4000 biological or biomedical publications 

(Weinstein, 2008, p. 1772). 

 

Continuing, Weinstein (2008) provides the following useful 

definition of the cluster analysis heatmap, in which: 

In the case of gene expression data, the color assigned to a 

point in the heat map grid indicates how much of a 

particular RNA or protein is expressed in a given sample. 

The gene expression level is generally indicated by red for 

high expression and either green or blue for low expression. 

Coherent patterns (patches) of color are generated by 

hierarchical clustering on both horizontal and vertical axes 

to bring like together with like. Cluster relationships are 

indicated by tree-like structures adjacent to the heat map, 

and the patches of color may indicate functional 

relationships among genes and samples source of order 

other than clustering (for example, time in a series of 

measurements) (Weinstein, 2008, p.1772). 

 

In education, HCA heatmaps have been used to pattern and 

visualize data ranging from personalized learning logfiles 

(Bowers & Krumm, 2021; Bowers et al., 2016; Krumm et al., 

2018; Nitkin et al., 2022); K-12 student benchmark test 

performance across state standards (Adams et al., 2021); higher 

education online learning management system (LMS) course 

pageviews (Lee, Recker, Bowers, & Yuan, 2016) and student 

course evaluation surveys (Reverter, Martinez, Currey, van 

Bommel, & Hudson, 2020); the use of student virtual 

manipulatives in mathematics (Moyer-Packenham, Tucker, 

Westenskow, & Symanzik, 2015); comparing principal survey 

responses about their perceptions of school leadership across 

national contexts (Ólafsson & Hansen, 2022); and participant 

interaction in circuit and logic gate educational design games 

(Jorion et al., 2020). Importantly, in a EWI/EWS students are 

empirically ordered rather placed in a list by student name or 

ID,. Students with the most similar data patterns are next to one 

another in the clustered list, and when combined with the 

heatmap representing their data, the human eye quickly 

identifies clusters of similar and dissimilar data patterns – visual 

data analytics. Thus, while a line or bar chart of thousands of 

student rows by hundreds of columns of data would be 

uninterpretable, the same data patterned and displayed in a HCA 

heatmap provides a means to visualize the individual and 

complex patterns across the entire dataset, displaying each 

datapoint for each person, patterned such that overall trends as 

well as exception cases are pinpointed for interpretation and 

possible action (Bowers, 2010). 

 

Exploratory Visual Data Analysis, Data Science, and Learning 

from Data 

A central issue in a discussion of HCA heatmaps for any field 

(education, bioinformatics, or otherwise) is that compared to 

inferential statistics which includes analysis and model fit 

metrics, p-value hypothesis significance tests, and theory testing 

(Bland & Altman, 1986), cluster analysis heatmaps complement, 

yet are quite different from, these classic psychology and 

econometrics statistics as heatmaps are a descriptive exploratory 

data visualization method designed to visualize high 

dimensionality relationships across hundreds to thousands of 

rows and columns of data. Exploratory data visualization has a 

long history over the last half century of research methods 

literature, as noted across the Exploratory Data Analysis (EDA) 

literature (Behrens, DiCerbo, Yel, & Levy, 2012; Tukey, 1962, 

1977), in which EDA functions to “address the broad question of 

‘what is going on here?’ [with] an emphasis on graphic 

representations of data [. . .] [in which] the goal of EDA is to 

discover patterns in data” (p. 132) (Behrens, 1997). Indeed, in 

research on the recent impact of the important advances in 

statistics and data analysis over the last half century, Gelman and 

Vehtari (2020) note:  

 

Following Tukey (1962), the proponents of exploratory data 

analysis have emphasized the limitations of asymptotic 

theory and the corresponding benefits of open-ended 

exploration and communication (Cleveland, 1985) along 

with a general view of data science as going beyond 

statistical theory (Chambers, 1993; Donoho, 2017). This fits 

into a view of statistical modeling that is focused more on 

discovery than on the testing of fixed hypotheses, and as 

such has been influential not just in the development of 

specific graphical methods but also in moving the field of 

statistics away from theorem-proving and toward a more 

open and, we would say, healthier perspective on the role of 

learning from data in science. An example in medical 

statistics is the much-cited article by Bland and Altman 

(1986) that recommended graphical methods for data 
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comparison in place of correlations and regressions (p.2090) 

(Gelman & Vehtari, 2021). 

 

This emphasis on graphical exploratory data visualization as a 

useful and practical method to surface unknown patterns in the 

data was recently exemplified in education research in which the 

researchers partnered with education leaders in a school to 

pattern and visualize multiple strands of summative assessments 

for 476 students in Algebra I using HCA heatmaps visualizing 

more than 4,000 individual data points, in which on reflecting on 

the collaborative work with the data scientists a school leader 

noted: 

I think that this [HCA heatmap discussion] just opened up a 

huge frame of conversation for us to have with course-level 

teams and provide them data that I think they’ll be able to 

dig deep on and start to revise a lot of these courses… It was 

a totally different way of visualizing data that I think we 

haven’t seen before... It was just a really, really interesting 

way to think about data. Because we think about it in 

simpler terms here and so it’s nice to see the larger 

possibilities with what we can do with the data that we have 

(p.641) (Bowers & Krumm, 2021). 

 

Thus, we focus on exploratory data analysis as a recommended 

yet under-utilized descriptive research method as we bring 

together these ideas of description, visual data analytics, 

exploratory data analysis, data science, and the “from the ground 

up” theory of the sociocurricular system as applied to visualizing 

and describing curricular “maps” of student enrollment and 

performance over time connected to overall schooling outcomes. 

 

HCA Heatmaps to Visualize Entire Longitudinal Grading 

Histories of Large Student Datasets 

Specifically for the present study and EWI/EWS, our goal was to 

replicate and extend Bowers (2010) who applied HCA heatmaps 

to visualize the entire longitudinal grading history of every grade 

in every subject for every student K-12 from two small school 

districts (Bowers, 2010). Analyzing a dataset including n=188 

students and each of their grades in each subject K-12 using 

HCA heatmaps, the author found two main clusters that each 

represented about 50% of the dataset, about half of the students 

with high grades who took the ACT, and half who had overall 

low grades throughout K-12 and accounted for almost all of the 

dropouts. For specific subclusters, Bowers (2010) identified that 

persistent longitudinal grade patterns could be identified as early 

as grade 4 that correlated with dropping out before the end of 

grade 12.  

 

While currently one of the only applications of HCA heatmaps 

to longitudinal grades data of this type, the Bowers (2010) study 

is limited. First, the dataset is small and context-dependent. 

Second, the analysis did not include information beyond grade 

12 outcomes. Third, the analysis was not performed in an open 

coding environment in which the code for the analytics and 

visualization could be shared. 

 

Thus, in the present study we aim to replicate and extend 

Bowers (2010) by applying visual data analytic HCA heatmaps 

to fine-grained longitudinal grade and subject data for a large 

national sample of over ten thousand students from grades 9 

through college, examining patterns linked to college and career 

outcomes, with an added focus on STEM outcomes (Science, 

Technology, Engineering, and Mathematics). To help inform 

EWI/EWS research and practice, we provide the full code for the 

analysis in the open source R software (R Development Core 

Team, 2019), and we also provide an open source online 

application written with the Shiny package in R, such that a user 

can download the code and run it locally in an encrypted 

environment, or upload a .csv or Microsoft Excel file of their 

data, and generate their own HCA heatmap using the visual data 

analytic recommendations from the literature, without the need 

to code (providing a low-code/no-code environment (Lethbridge, 

2021)). Our research questions for this study were: 

1) To what extent are student grading patterns from grade 9 

through college identified through hierarchical cluster 

analysis heatmaps. 

2) To what extent do patterns identified through HCA 

heatmaps link to overall schooling outcomes, such as 

dropping out, graduating, attending college, majoring in a 

STEM subject, graduating with a STEM degree, or 

obtaining a job in a STEM field by age 26. 

 

METHODS: 

 

Sample: 

This study is a secondary data analysis of the restricted access 

Education Longitudinal Study of 2002 (ELS:2002) High School 

Transcript Study (HSTS), Post-Secondary Transcripts and first 

through third follow-ups. ELS:2002 is a survey of about 15,000 

USA students who were in grade 10 in 2002, collected by the 

U.S. Department of Education, National Center for Education 

Statistics (NCES), in which the NCES collected the entire high 

school and college transcripts of participants as well as 

schooling outcomes by age 26 (Ingels et al., 2014), representing 

the most complete national public dataset for students through 

age 26 at the time of writing. Transcripts included teacher-

assigned grades in each subject from grades 9 through 12, as 

well as post-secondary school starting in 2006 (for dual-

enrollment students) through four years of college. All courses 

were classified by NCES into 54 standardized subjects in high 

school (Classification of Secondary School Courses, CSSC) and 

47 subjects in college (College Course Map, CCM), representing 

all courses taken in high school and college. Thus, our final data 

matrix for analysis included n=14,290 student rows by 451 

columns. Grades in each column were standardized to a 5-point 

grading scale (0 to 4.0) and z-scored to prevent overweighting in 

the data matrix.  

 

Analysis and Visualization: 

To analyze and plot the HCA heatmap, we used the 

ComplexHeatmap() package (Gu et al., 2016) in the open source 

R statistical software (R Development Core Team, 2019). We 

followed past recommendations for HCA heatmaps with this 

type of data (Bowers, 2010) using uncentered correlation as the 

distance metric and average linkage as the unsupervised 

hierarchical clustering algorithm, as it is robust to missing data 

issues that are inherent in this type of data as many students may 



5 

 

Bowers et al. (2022) 

not enroll in a range of subjects. This is in comparison to other 

clustering algorithms, such as k-means, which are much less 

robust to even small amounts of missing data. As noted 

throughout the clustering analysis research literature, cluster 

analysis is a descriptive method and, for hierarchical cluster 

analysis here, clusters are defined through the empirical 

hierarchical structure identified through the algorithm, as there is 

the long-standing issue across the cluster analysis domain of a 

lack of agreement on fit metrics given that clustering algorithms 

are designed to group similar objects rather than identify and 

learn separation and borders of different classes (Färber et al., 

2010; Zimmermann, 2020).  

 

Briefly, in hierarchical cluster analysis, a distance metric is used 

to calculate a distance matrix for each row in the dataset, then 

each row starts off as its own cluster, then clusters agglomerate 

in a hierarchical fashion, with the most similar data vectors 

(rows) next to each other in the reordered list, as defined by the 

clustering algorithm (Romesburg, 1984; for reviews of 

clustering algorithms see (Iam-On & Boongoen, 2017; D. Xu & 

Tian, 2015; R. Xu & Wunsch, 2005; Zhao & Karypis, 2005). 

Here, following the previous research (Bowers, 2010) we used 

uncentered correlation (Equation 1) as the distance metric, 

r(xi,yi), which is preferred over the similar Pearson correlation as 

it assumes the mean is zero for each vector x and y. Thus where 

the Pearson correlation would have a high correlation of 1 for 

two data vectors that had the same shape but are offset by a 

constant value, the uncentered correlation will not be 1 

(Anderberg, 1973). An additional useful property of the 

uncentered correlation is that it is equivalent to the cosine angle 

between two vectors. Thus, the uncentered correlation for any 

two vectors xi and yi of sample size n is: 

 

 Equation 1 

where: 

 

 
 

For the agglomeration clustering algorithm we then used average 

linkage, which iteratively starts with each case as a cluster, then, 

using the distances calculated above, iterates over the distance 

matrix, agglomerating cases and clusters into larger clusters by 

calculating the average distance of the total number of cases 

within each of two clusters, in which the two cases with the 

smallest average distance are joined first, the distance matrix is 

updated, and then the process iterates hierarchically clustering 

similar cases and clusters together. 

 

We then built an RShiny application to allow upload of data files 

for HCA heatmap analysis and visualization ( 

https://ohrice.shinyapps.io/Heatmap ). We provide the full R 

code for all analysis, visualizations, and the full R Shiny 

application code in the online Supplement 1 Appendix: 

https://doi.org/10.7916/cqvn-9t71. Additionally, as we realize 

that HCA heatmaps may be unfamiliar to education researchers 

and education data analysts, and our dataset here for the results 

uses a restricted access dataset from NCES, we provide in the 

online Supplement 2 Appendix ( https://doi.org/10.7916/r1mg-

yn37 ) a specific walkthrough in R markdown using the 

“mtcars” dataset which is included by default in R. This 

markdown demonstrates each step of the HCA heatmap process 

with the public “toy” dataset of attributes of automobiles from 

the 1974 Motor Trend data (such as horsepower, miles per 

gallon, weight, etc.) and includes all of the code needed along 

with the example output generated from the code to provide an 

opportunity for data analysts and researchers to practice and 

replicate the analysis and then be able to implement this 

technique themselves with their own data in their own 

organization. Importantly for education data analysts using 

restricted datasets, the code can be downloaded and run locally 

on an individual’s computer, either encrypted or not, as well as 

modified and adapted by the user.  

 

Figure 1 provides an overview of data processing and analysis, 

and Appendix A provides the order of subjects in the HCA 

heatmap by grade level. As it may be the first time that a reader 

has encountered an HCA heatmap, Figure 2 provides a primer 

and template for how to read the full HCA heatmap, with each 

major section described. Annotations are dichotomous variables, 

or, for categorical variables, the majority group is the reference 

group. We focus on education outcomes provided in ELS:2002 

(dropout, SAT/ACT, 2-year degree, 4-year degree, STEM 

degree, STEM occupation by age 26, bachelor degree or above), 

as well as demographic and context variables (female, private or 

Catholic school with public as the reference group, suburban, 

urban, or rural; African American, Hispanic, or Asian with 

White as the reference group, if the student ever received 

financial aid in post-secondary school, standardized SAT score, 

SES, and overall GPA for all courses). Following the 

recommendations from the cluster analysis research literature 

(Weinstein, 2008), datapoints within the heatmap are color 

coded with gradients of blue (low z-scored “colder” grades) to 

red (high z-scored “hotter” grades), which also makes the 

heatmap accessible to people who are colorblind, such as one of 

the authors. 

 

RESULTS: 

 

As visual data analytics, the HCA heatmap patterns and 

visualizes the longitudinal grade trajectories of n=14,290 

students across 6,728,920 individual data points. Figure 3 plots 

the full HCA heatmap. These results are a deep description of 

the lived experiences of over ten thousand  students in American 

schools from grade 9 onward in each subject and grade level, 

linked to persistence, educational outcomes, and context and 

demographics. To help read the figure, as noted in the recent 

research on the application of data science visualization practices  

https://ohrice.shinyapps.io/Heatmap
https://doi.org/10.7916/cqvn-9t71
https://doi.org/10.7916/r1mg-yn37
https://doi.org/10.7916/r1mg-yn37
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High School Transcript 

Data File

Post-Secondary Transcript 

Data File
Long format data

638,970 rows

Course by row

Wide format data

14,290 student rows

Student by row

Subject grades per year by column

Years 2002-2006

Long format data

558,260 rows

Course by row

Wide format data

11,620 student rows

Student by row

Subject grades per year by column

Years 2006-2010

Merge datasets n=14,290 student rows by n=450 subject grade columns

Data matrix represents cells = 6,728,920 individual subject grades

Merge annotation and outcome variables from third-follow-up student file

Remove n=630 

students with no grade 

10 mathematics data

Sequence columns by year, left to right

High school 9-12 then 2006-2010 college

Within year, sequence columns by % of missing data by subject column, least to most.

For high school, use grade 9, repeat sequence 10-12.

For college, use 2007, repeat sequence all years.

z-score subject grades by each column

Hierarchical cluster student rows with uncentered correlation as the distance metric and 

average linkage as the clustering algorithm

Heatmap of all subjects by year. Each student’s grade by subject by grade-level is 

represented in the cell by blue for lower grades, red for higher grades. Annotations are 

shown on the right. Dark is presence of the dichotomous variable.

Data processing, 

merging, cleaning, 

sequencing

Hierarchical cluster 

analysis heatmap

visualization

 
Figure 1: Overview of data processing and analysis design. 

 

to education (Krumm & Bowers, 2022), we encourage the 

reader to “zoom in and out” of Figure 3, exploring specific 

columns, rows, or groups through zooming in to the high 

resolution figure, or zooming out. Additionally, for the 

annotations on the right, it can help the reader to hold a piece 

of blank paper up against the figure, revealing each annotation 

column one at time, left to right, to see the patterns. For 

example, covering all of the annotations except for the first 

left-most annotation for high school dropout reveals a quite 

stark pattern between the labeled Cluster 1 and Cluster 2. 

Additionally, it can be helpful to view the Appendix A order 

of the subjects for the columns for each grade-level. Of note, 

as discussed above, the HCA Heatmap in Figure 3 is a 

descriptive visual exploratory data analysis. Here, each row 

starts as its own cluster, with similar data patterns empirically 

being paired and agglomerated in a hierarchical fashion using 

the algorithm noted in the methods, such that the order of the 

rows in Figure 3, and by extension the overall clusters, are 

determined by the agglomeration algorithm given the distance 

metric (see methods). 

 

Our results point to seven main findings. First, as evidenced by 

the cluster tree on the left of Figure 3, we find two main clusters 

color coded green (Cluster 1) and maroon (Cluster 2) of students 

who in general received high grades (red) (Figure 3, Cluster 1, 

bottom), and graduated high school and went to post-secondary 

school, in comparison to students who in general received 

average or lower grades (grey and blue) (Figure 3, Cluster 2, 

top) and who make up the majority of students who dropped out 

of high school (Figure 3, first annotation column, right, compare 

Cluster 1 to Cluster 2). This result replicates and extends Bowers
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Figure 2: Template for cluster analysis heatmap. A cluster analysis heatmap contains multiple objects which represent the analysis 

results. The x-axis in our example is ordered in time, starting on the left with grades 9-12 of high school (secondary school), and 

continuing on through years in post-secondary college and university courses from 2006 through 2010, with 2006 as a year of possible 

dual-enrollment in both high school and college. The y-axis provides the cluster tree which graphically represents the similarity or 

dissimilarity between rows, with more similar rows clustered together and represented by shorter horizontal lines in the cluster tree. 

Thus, students are rows, and columns in this example are each course subject within each year. The list and order of course subjects in 

high school and post-secondary are listed in Appendix A. Any individual z-scored course grade for a student is represented by colors in 

a heatmap from higher grades (red) to lower grades (blue) with grey as the mean, and white representing no data. Annotations of 

dichotomous variables are provided on the right of the plot as dark bars for when the student has that variable. 

 

 

 

(2010) findings to a large national sample that extends from high 

school through post-secondary school.  

 

Second, within each grade level block of columns, the more 

contiguous columns to the left are the core subjects for each 

grade level, as each subject column in each grade level (year) is 

ordered left to right from more core-subjects to non-core 

subjects (see Appendix A), so the courses that students enroll in 

(and thus receive a grade in) are located to the left within each 

grade-level column block in the heatmap (Figure 3 center) from 

blue to grey to red (low to high grades), where white represents 

no data. Thus, Figure 3 visualizes the full course-taking and 

curriculum patterns for a large national sample, visualizing core-

subject taking patterns in early high school, which then changes 

over time into more diverse subject course taking by the end of 

high school and into post-secondary school. 

Third, in general, past performance predicts future performance, 

with some exceptions. The grades that students receive in grade 

9 are generally similar across their time in high school and 

college, and grades received in one subject, in general, are 

similar to the grades received across all subjects, with some 

exceptions. For example, students in Cluster 1A (Figure 3, 

bottom), have a pattern of high grades throughout high school 

and college, graduate from high school, and go on to obtain 4-

year post-secondary degrees, and have high rates of STEM 

degrees and STEM occupations at age 26. Cluster 1B students 

receive generally high grades throughout high school, except for 

the single blue column in grades 9, 10, and 11, for a select set of 

students, which is a low grade for citizenship (Figure 3 left, 

zoom in on the rows next to the B). These low citizenship graded 

students more often were in private and Catholic schools (Figure 

3, annotations right), but otherwise resemble the patterns and  
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Figure 3: Hierarchical Cluster Analysis Heatmap of n=14,290 students (rows) by longitudinal course subject grades in each course in 

each grade level from grade 9 through four years of college. Two main clusters are identified, cluster 1 (left: green bar and cluster tree) 

and cluster 2 (left: maroon bar and cluster tree). Students in Cluster 1 have generally high grades (center: red) in high school and college. 

Cluster 1 students rarely drop out (right: annotations), do take the ACT or SAT, graduate with a two or four year degree, graduate with a 

STEM degree, and are more often in a STEM career by age 26. The highest performing students are in subcluster A. Subcluster B is one 

of the few patterns of students who do well in all classes in their grades (center: red) except one course each year of high school (blue) 

citizenship. Students in Cluster 2 (top) account for almost all of the high school dropouts, and do not generally have strong outcomes. 

Demographic annotations (far right) indicate that students in Cluster 2 are generally from historically underserved communities and 

contexts. Subcluster C includes students who in high school have slightly above average grades (light red) then lower grades in college 

(blue). Subcluster D students are the lowest performing students in the analysis (blue), dropping out most often (first annotation 

column).
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outcomes of Cluster 1. A central finding from this analysis thus 

is that other than the citizenship columns (column 4 in each 

grade), the supposition in the research literature that there is a 

large set of students who do well in non-core subjects, such as 

art and music, but that there are consistent core-subject gateway 

courses such as algebra and mathematics that put the students off 

track (column 2 in each grade) (Allensworth, Nomi, 

Montgomery, & Lee, 2009; Carolan & Matthews, 2015; 

Gamoran & Hannigan, 2000) is not apparent in Figure 3. If this 

were the case, then other vertical bands of blue within individual 

columns would be obvious. Thus, when considering the full 

socio-curricular ecosystem visualized and mapped through an 

HCA heatmap, this analysis does not support the “gateway 

class” literature that focuses exclusively on courses such as 

algebra I. No study previously has described all individual 

subject course grades across this length of time for this many 

students in a national sample. Given that this is the first time 

such data at the national level has been visualized, it is a striking 

result that across the heatmap, especially in early high school, 

other than the citizenship course, student performance in one 

course generally is similar to their performance in all other 

courses. Thus, this finding supports the more holistic and 

individual-centered socio-curricular ecosystem framework 

described above (Frank et al., 2008; Heck et al., 2004), rather 

than a focus on overall averages or individual course subject 

performance, as students do not appear to operate within 

individual subject courses in isolation. 

 

Fourth, the longstanding issues of segregation and advantage in 

the USA provided to students from high SES families in 

comparison to low SES families are visualized here in Figure 3. 

The second-to-last annotation column on the far right is color 

coded as a heatmap itself from high SES (red) to low SES (blue). 

Students in Cluster 1 who receive high grades and graduate from 

high school and college have generally higher SES, while 

students in Cluster 2 who receive lower grades in general and 

students with the lowest grades (Figure 3 Cluster 2D, blue) are 

from families with lower SES as well as more often historically 

disadvantaged racial and ethnic groups. However, there are 

exceptions with low SES students in cluster 1 (Figure 3 bottom 

right, note instances of blue in the SES annotation) and high SES 

students in cluster 2 (Figure 3 top right, note instances of red in 

the SES annotation). Thus, as a descriptive visual data analytic 

technique, rather than focus on averages which would mask this 

interesting heterogeneity, an HCA heatmap of this type provides 

the entire set of data for visual inspection and interpretation by 

the reader, who can themselves trace the lived experiences of 

individual students, as individuals, throughout the course of the 

entire dataset, noting overall trends, but also exceptions. 

 

Fifth, Cluster 2C is intriguing because the cluster tree indicates 

that these students are somewhat dissimilar from the other 

student patterns in Cluster 2 (Figure 3, left, longer horizontal 

cluster tree lines). Cluster 2C students in general have just above 

average grades across subjects in grades 9 and 10, but then begin 

to struggle with lower grades starting in grades 11 and 12. 

Strikingly, for a large number of students in Cluster 2C, they 

appear to struggle immediately when they start college in 2007 

and then throughout the rest of their time there (Figure 3, note 

change to blue for 2007 reading left to right, Cluster 2C). This 

visualizes the struggle these students experience as they move 

from high school to college. 

 

Sixth, in examining the height of the cluster trees (Figure 3 left), 

also referred to as a dendrogram in cluster analysis (Romesburg, 

1984), the horizontal length of the cluster tree lines on the rows 

can be interpreted as the relative similarity between the rows, 

with longer lines indicating more dissimilarity in longitudinal 

student course taking and grades patterns. Overall similarity of 

longitudinal student course taking and grades is higher in Cluster 

1, students with generally high grades longitudinally (Figure 3, 

bottom left, shorter horizontal lines in the cluster tree), while 

dissimilarity is higher across Cluster 2, students with generally 

lower grades longitudinally (Figure 3, top left, longer horizontal 

lines in the cluster tree). This finding should be interpreted with 

caution however, as Cluster 1 students are more likely more 

similar in their longitudinal pattern due to the ceiling effect of 

the top end of the grading scale. 

 

And finally, seventh, in considering the EWI/EWS literature 

noted above, and the goal of applying visual data analytics to 

this domain to help to identify intervention points to support 

student persistence and success when they meet significant 

challenges in school, for the students in Cluster 2, especially for 

the students in Cluster 2D who drop out most often, their data 

pattern in the HCA heatmap in Figure 3 is clear and striking in 

grade 9. Our argument here is not that the HCA heatmap is 

predictive, but that it is descriptive. Knowing that a student’s 

grades are below average is not enough, as evidenced by these 

students continuing to struggle throughout their time in schools. 

For many students in Cluster 2D, their grades get worse by grade 

10 (deeper blue in comparison to grade 9), and by grade 11 

white streaks show up as they drop out and their data becomes 

missing (represented by white as well as noted in the dropout 

annotation column, Figure 3 center and right). While this result 

replicates previous research that has demonstrated that one of the 

most accurate predictors of dropping out is non-cumulative 

course grades from grade 9 and 10, especially a pattern of 

declining grades (Bowers & Sprott, 2012a; Bowers et al., 2013), 

here we show that this low grading pattern exists longitudinally 

across all subjects, both core subjects and non-core subjects. 

This result supports previous findings that there is a typology of 

students who drop out who need quite different types of 

interventions, from a reconnection to schooling as an overall 

good (such as here for Cluster 2D), to academic tutoring, to 

course enrollment and transcript audits to ensure that students 

are not unexpectedly missing required course credits (Bowers & 

Sprott, 2012b; Freeman & Simonsen, 2015; Sansone, 2019). 

Surfacing these patterns as early as possible across all of the 

students in a district, region, state, or nationally, provides a 

novel means for educators to identify individual students, 

subjects, courses, and grade levels in which students may need 

significant supports. We argue here that HCA heatmaps of this 

type, clustering enrollments and grades through time, are a 

useful means to visualize and pinpoint the challenge of 

individuals as well as groups and clusters of students for 

potential interventions and supports. 
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Panel A: 

 
Panel B: 

 
Figure 4: Visual Data Analytics R Shiny Website Screenshot of Cluster Analysis Heatmap for Education. To provide practitioners the 

ability to create HCA cluster analysis heatmaps without the need to access the R code, we created an open access website using R Shiny. 

The intention of the website is to allow practitioners to generate HCA heatmaps easily to the recommended specifications and 

annotations. To upload the data and manipulate the visualization, users must first agree to terms and privacy warning, then can upload 

their data as either a .csv (comma delimited) or .xlxs (Microsoft Excel) files. Data must be numeric, with missing data either as blanks, 

“.”, or “NA”. If annotation data is included, the user must add an asterisk as the first character in the column label for that variable and 

the variable will be automatically detected as an annotation variable. Once data is uploaded, it will be displayed (Panel A: top) for 

inspection. A heatmap of the data is automatically generated following previous recommendations from the literature (Bowers, 2010) 

with each column z-scored, with higher intensity of red indicating higher levels of the variable, blue lower levels, grey as the average, 

and white as no data (Panel A: bottom). Annotation variables are indicated on the left and can be included with checkboxes. Hierarchical 

cluster analysis with uncentered correlation as the distance metric and average linkage as the clustering algorithm for either the rows, 

columns or both are provided as checkboxes, (Panel B, left). Row and column label font sizes can be controlled with sliders. In Panel B 

we have replicated the results from Bowers (2010) by clustering the dataset used in the 2010 study, representing n=188 student 
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longitudinal grade patterns in all subjects from grades K-12. Annotations include if the student dropped out, took the ACT college 

entrance exam, was retained in any grade level, or is male. HCA clustering is selected for the rows only. The HCA heatmap in Panel B 

replicates the findings from Bowers (2010) with two main clusters, one of generally high grades (red), graduation, and taking the ACT 

(Panel B: right top cluster), and one of generally low grades (blue), dropping out, retention, and not taking the ACT (Panel B: right 

lower cluster). While we provide the example of student longitudinal grade data, any data can be uploaded and clustered on rows or 

columns, or both, providing a new visual data analytic tool to the research and practice community. 

 

 

To make the HCA heatmap technique accessible to EWI/EWS 

education practitioners, we provide the full open source code in 

R ( https://doi.org/10.7916/cqvn-9t71 ) within an online web 

browser environment in the open source application R Shiny ( 

https://ohrice.shinyapps.io/Heatmap ) which is also available for 

download to run locally and encrypted. Figure 4 details the R 

Shiny application that provides the visual data analytic tool of 

HCA heatmaps to anyone through uploading a data file and 

visualizing the heatmap. Here we demonstrate the tool with 

mock data (Figure 4, Panel A), as well as the longitudinal grade 

data from Bowers (2010) of n=188 student grades across all 

subjects K-12 with outcome annotations (Figure 4, Panel B), 

replicating the HCA heatmap results from that study using data 

from two small school districts. Note that education practitioners 

can include student IDs in the data as an option, which then will 

be displayed on the right of the HCA heatmap between the 

heatmap and the annotations. Our goal is to support the use of 

HCA heatmaps in education, through providing the code and an 

in-browser application, as the cluster analysis heatmap is well-

suited to pattern longitudinal grades data as shown here, but also 

can pattern and visualize many different types of data, both on 

the rows and the columns. 

 

 

DISCUSSION: 

 

In this study we demonstrate the usefulness of HCA heatmaps as 

a descriptive visual data analytic technique for EWI/EWS to 

describe, pattern, and visualize the individual experiences of 

more than ten of thousand students throughout each subject and 

grade level from grade 9 through college. For evidence-based 

decision making in schools (Mandinach & Schildkamp, 2021) 

and the growing literature on EWI/EWS (Balfanz & Byrnes, 

2019; Bowers, 2021b), HCA heatmaps are a useful means to 

surface important patterns of student success and challenge 

throughout their time in schools. Here, we replicate and extend 

the previous literature on the usefulness of patterns of teacher-

assigned grades across subjects to inform the work of EWI/EWS 

(Bowers & Sprott, 2012a, 2012b; Bowers et al., 2013; Brookhart 

et al., 2016), and visualize the complete transcript records of all 

of the students in the dataset as a socio-curricular ecosystem 

(Frank et al., 2008; Heck et al., 2004).  

 

This study is novel and significant in three main ways. First, we 

find strong evidence for the socio-curricular ecosystem 

perspective of student course taking and performance, and little 

evidence that there are specific gateway courses or subjects that 

limit or enable student long-term outcomes. Rather, the 

relationships we visualize here across more than 14,000 students 

and more than 6 million individual course subject grades 

representing and visualizing the entire enrollment and grading 

history for each student, indicate that students appear to be 

supported or challenged in similar ways across the entire 

curriculum, as a socio-curricular ecosystem. Given these 

findings, we argue that in working to promote student 

persistence and success in the system, focusing on individual 

course subject achievement may be naïve. Research traditionally 

ignores the full slate of subjects and courses, focusing instead on 

the researchers’ or policymakers’ interests, such as algebra, 

science, or reading and writing. Rarely are all courses considered 

as an ecosystem (Bowers, 2011; Frank et al., 2008; Heck et al., 

2004), including social studies, the arts, career and technical 

education, and the entire range of subjects offered in the US 

curriculum (Powell, Farrar, & Cohen, 1985). Our findings 

indicate that students generally perform well or are challenged in 

similar ways across subjects and courses. In contrast to the 

socio-curricular ecosystem framework, one might alternatively 

conclude from these findings, however, that focusing on a 

specific course or small set of courses is ultimately a good 

approximation of overall performance. We argue that this 

alternative interpretation of the results would be confusing an 

individual symptom with the much larger system. Focusing on a 

specific course, such as algebra 1 for example, would not take 

into account our central finding from the socio-curricular 

ecosystem framework that student performance as visualized and 

patterned here across all of their enrolled courses and grades 

does not appear to be course specific, and so focusing on a 

specific course seems to perhaps miss the forest for the trees. 

Thus, we encourage future research to further consider how 

individual courses each contribute to the overall socio-curricular 

ecosystem, and how perhaps interventions that help support 

overall student success working to address systematic issues 

across all courses as a system itself, as postulated in the previous 

research on the socio-curricular ecosystem (Frank et al., 2008; 

Heck et al., 2004), could help support findings from individual 

subject-specific course interventions. 

 

Second, we replicate and extend Bowers (2010), here at the 

national level, finding two large clusters that are strongly related 

to high school graduation and long term post-secondary 

outcomes. Third, student success or challenge with schooling is 

obvious in grade 9. For students in cluster 2, visualizing only 

their individual grades in each course and subject, data that are 

already collected in schools and reported to students on report 

cards, indicates challenge with schooling across subjects at the 

start of high school. The HCA heatmap method visualizes this 

issue, surfacing and highlighting these student’s lived 

experiences, and providing an opportunity to make these 

previously unseen patterns knowable and therefore actionable.  

 

 

https://doi.org/10.7916/cqvn-9t71
https://ohrice.shinyapps.io/Heatmap
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Visualizing the Socio-Curricular “Map” of Each Individual 

Student Life Course 

We envision this technique being useful beyond the ELS:2002 

transcript dataset for individual schools, districts, and state and 

regional education systems, as education data scientists (Agasisti 

& Bowers, 2017; Bowers, 2017, 2021a, in press; Bowers et al., 

2019; Bowers & Krumm, 2021; Bowers et al., 2016; Krumm & 

Bowers, 2022; Piety et al., 2014; Piety & Pea, 2018) work to 

describe the diverse array of data that exists within and across 

schools. While we have detailed the major patterns displayed in 

the HCA heatmap, as a description of every student in the 

dataset that includes the patterns of grades across each subject 

for many years of schooling, there are many more patterns to 

explore that are beyond the scope of the present study. As a 

descriptive visual data analytic technique (Bienkowski et al., 

2012), the reader’s ability to form and then test hypotheses 

immediately by looking at the figure is a strength of cluster 

analysis heatmaps across multiple domains (Bowers, 2010; 

Wilkinson & Friendly, 2009), and demonstrated here in 

education. Considered from the human-computer interaction 

design theory framework (Preece et al., 1994) in which map-like 

information helps the reader see the entire dataspace at once, 

examine both usual and alternative routes and edge cases, and 

previously uncharted or rarely examined areas of interest 

alongside the well-known (Verplank, 2003), we argue here that 

cluster analysis heatmaps are a useful addition to the education 

research data display lexicon. This type of visualization helps to 

complement both in-depth descriptions from qualitative research 

as well as the traditional quantitative education research focus on 

summaries, averages, and regression statistics, and provide deep, 

thick, and rich descriptions of every individual in the dataset, 

mirroring many of the goals of qualitative research (Denzin & 

Lincoln, 2000), visualizing the lived experiences of every 

student through their time in the schooling system. 

 

Issues of Equity, Ethics, and Privacy in Visual Data Analytics 

We also provide the open access code and digital tool as a means 

to empower data users and education data scientists in their 

organizations and communities (Agasisti & Bowers, 2017; 

Bowers, 2021a, 2021b; Bowers et al., 2019). Data science, 

machine learning, and pattern analytics has a problematic history 

across many social, governmental, and business domains, as the 

historic data used to train machine learning algorithms will 

ensure that those algorithms reproduce longstanding problematic 

issues of segregation, racism, and historical disadvantage of the 

poor, especially in health and education (Benjamin, 2019; 

Bowers, 2021b, in press; Bowers et al., 2022; Hawn Nelson et 

al., 2020). As noted by Benjamin (2019) in relation to health 

care: 

Data used to train automated systems are typically historic 

and, in the context of health care, this history entails 

segregated hospital facilities, racist medical curricula, and 

unequal insurance structures, among other factors. Yet 

many industries and organizations well beyond health care 

are incorporating automated tools, from education and 

banking to policing and housing, with the promise that 

algorithmic decisions are less biased than their human 

counterpart (p.422). 

 

In education, and USA schooling systems in particular, 

curricular options through tracking and segregation have 

inequitably limited access to these resources to students from 

historically underserved communities (Oakes, 2005; Reardon, 

2019). A clear danger exists when applying data science and 

machine learning to education, in that the machines will learn 

and replicate past problematic systems (Bowers, 2021b, in press; 

Fischer et al., 2020). Here, our goal is to provide an alternative 

to hidden algorithms, summaries, averages, and the exclusive 

(and biased) narrative of an author of a study or visualization 

that relies exclusively on averages and regression coefficients, 

and instead surface and describe patterns visualizing all of the 

data, and provide open and accessible visual data analytic tools 

that allow the reader to see the author’s summary while coming 

to their own conclusions as all of the patterns and data are 

visualized together.  

 

This intention throughout the present study on moving away 

from an exclusive reliance on summary statistics such as 

averages and regression coefficients, and instead provide deeper 

descriptions of the patterns of individuals and their individual 

data points that represent each student’s own journeys through 

the system, aligns with recent calls for a critical and equity-

centered focus in data use throughout educational decision 

making (Mandinach & Schildkamp, 2021). For example, in 

discussing the intersection of equity and improvement science in 

service to historically underserved communities, Hinnant-

Crawford highlights this focus on individuals throughout the 

process by noting "if we truly want to understand the nature of 

improvement driven by human behavior, we have to examine 

both the logic and the psychology that drive choices and 

decisions of individuals with agency within our organizations." 

(Hinnant-Crawford, 2020, p. 36). Similarly, in their report 

focused on data use in schools titled “Centering Racial Equity 

Throughout Data Integration”, Hawn-Nelson et al. (2020) note 

that in comparison to problematic data practices of “attempting 

to describe individual experiences with aggregate or “whole 

population” data” (p.31) a positive aspect of data use that centers 

equity is the “whole-person view” in which: 

When data are integrated across multiple sources, we get a 

more holistic view of the experiences and outcomes of 

children, households, and families, supporting asset- (rather 

than deficit- ) based approaches. Such views allow analysts 

to identify bright spots across communities, families, and 

individuals, and, ultimately, encourage investment in 

policies and programs that work. (Hawn Nelson et al., 2020, 

p. 12) 

 

Indeed, visual data analytics of the type discussed throughout 

this study aligns with this research on equity-centered practices 

across data use and the curriculum that encourages a more 

holistic view that includes the individual within the larger 

system, and promotes a focus that goes beyond outcomes such as 

test scores and graduation rates, and includes opportunities and 

resources (Carter & Welner, 2013; Gutiérrez, 2012). For 

example, recent reports by the National Academy of Science, 

Engineering, and Mathematics (NASEM) on building 

educational equity indicator systems, have provided a 

framework and recommendations for school systems to move 
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beyond an outcomes focus and include and report multiple 

indicators of equity (National Academies of Sciences 

Engineering and Medicine, 2019, 2020), of which curricular 

breadth, access to and enrollment in rigorous coursework, and 

performance in coursework, are three NASEM equity indicators 

that are informed through a socio-curricular framework that uses 

cluster analysis heatmaps to visualize, pattern, and describe the 

entire history of individual student course enrollments and 

grades. 

 

Yet, while an individual perspective to this type of analytics is 

recommended across these reports, recent studies also note 

issues of ethics, privacy, and access when it comes to the use of 

big data analytics in education research and practice (Fischer et 

al., 2020; Hawn Nelson et al., 2020; National Academies of 

Sciences Engineering and Medicine, 2019; National Academy of 

Education, 2017), especially for education early warning 

systems (Bowers, 2021b). These issues are, of course, of concern 

for cluster analysis heatmaps of large sets of student data as the 

technique can pattern and visualize the individual data of 

thousands of students across millions of datapoints, such as here. 

Yet, this issue is not unique to the application of HCA heatmaps 

to education, as noted above, HCA heatmaps have a long history 

of being applied extensively throughout industries such as 

cancer biology and oncology, an industry with not dissimilar 

privacy and ethical concerns to education data, visualizing 

thousands of human cancer patient’s data across all of their gene 

expression levels for thousands and tens of thousands of genes 

(Wilkinson & Friendly, 2009).  

 

A central concern in analytics in education is to not only not 

release personally identifiable information that can be linked 

back to identified individuals, but that the data analysis and 

display of the results itself does not allow for the re-

identification of de-identified individuals using the analysis 

reported (Fischer et al., 2020; National Academy of Education, 

2017). Drawing on the lessons learned from the application of 

HCA heatmaps across the variety of fields with strong individual 

data privacy regulations noted throughout this study, HCA 

heatmaps provide a useful means to focus on individual-level 

data while maintaining data privacy in four main ways. First, at 

the most basic level, as demonstrated here and in the previous 

HCA heatmap studies in education noted above, each student’s 

row in the heatmap is deidentified, such that there is no 

indication of a student number or unique identifier that would 

link back to individuals directly. However, for internal use 

within a school district or within an encrypted computing 

environment, student IDs can be listed and requested in the 

visualization, as detailed in the Shiny app and the demonstration 

R code appendices.  

 

Second, each column of data in the heatmap is z-scored, thus 

obfuscating the original data and norming the resulting output 

within each column, which as noted in the methods, is a standard 

step in cluster analysis to ensure that the distances in the distance 

matrix are comparable on a standardized metric, with the added 

privacy benefit noted here of obfuscating the actual data. 

Additionally, this step is similar to grand mean centering in 

regression statistics, making the averages comparable across a 

wide range of courses and grade levels. While beyond the scope 

of the present study, future research may wish to investigate the 

difference in patterns without z-scoring.  

 

Third, the actual data within the heatmap is never displayed as a 

number, but rather the heatmap visualization itself is a key 

component of maintaining privacy of the individuals, as by 

translating the individual datapoints into a heatmap that 

interpolates along a gradient from blue to red, each individual 

datapoint is not displayed as a number, rather a visual 

representation is displayed through the color of the heatmap. 

Thus, just as in fields with strong ethics and privacy regulations 

and concerns such as cancer biology, here in education the HCA 

heatmap provides a means to analyze and display individual data 

in a de-identified and obfuscated manner. And finally, fourth, as 

noted above, for district data analysts, we provide the full code 

in the appendices for the R shiny application and the tutorial in 

R, each of which can be run in an encrypted private computing 

environment locally within a school district on the analyst’s 

computer. 

 

Exploratory Visual Data Analytic Cluster Analysis Heatmaps as 

a Useful Tool in Education 

However, taking the alternative view, one could ask in relation 

to our findings throughout this study on the application of HCA 

heatmaps to grades data, so what? There is already strong 

evidence across the literature that demonstrates that low grades 

are highly correlated on average with dropping out and high 

grades with persistence in school (Bowers et al., 2013; 

Brookhart et al., 2016). What is it here that HCA heatmaps add 

other than more work for the already beleaguered education data 

analyst (Agasisti & Bowers, 2017; Bowers, 2017; Bowers et al., 

2019; Selwyn et al., 2021)? Indeed, current research using 

longitudinal inferential statistics, such as Growth Mixture 

Modeling (GMM), and non-cumulative GPA in the first three 

semesters of high school (grade 9 semester 1 and 2, and grade 10 

semester 1), has been shown to be one of the most accurate 

predictors of dropping out (Bowers, 2021b; Bowers & Sprott, 

2012a; Bowers et al., 2013; Coleman, 2021; Knowles, 2015). 

Additionally, mixture models, such as GMM and Latent Class 

Analysis (LCA), include significance tests on the longitudinal 

trajectories and multiple covariates, such that a probability 

distribution model is tested with the assumption that the data are 

a sample from a mixture from that distribution (Vermunt & 

Magidson, 2002). However, as noted by Vermunt and Magidson 

(2002), while mixture models of this type are similar to 

nonhierarchical cluster analysis, such as k-means, outcomes may 

be quite similar. As with k-means clustering, these models are a 

top-down a priori method to predict the groups. Additionally, 

these types of inferential models are restricted in the number and 

types of data and variables that can be included, especially when 

considering distributional assumptions, statistical power, 

interactions, and the like. In the present study, our focus is on 

socio-curricular theory and using a bottom-up map-like approach 

to describe and visualize the longitudinal journeys of each 

student and the relationships across these journeys in the dataset 

throughout their time in the system to augment and complement 

the path-like information provided through the inferential 

techniques described throughout the literature in this domain. 
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We posit that similar to the bioinformatic literature noted 

throughout this study, for the education research literature the 

answer to the “so what?” question is that even when research is 

quite specific for one variable that indicates a strong correlation 

on average, this average provides little in the way of being able 

to help educators take informed action to intervene in positive 

ways to help address specific student needs. In an average, the 

individual is lost. Visual data analytics (Bienkowski et al., 2012) 

in the tradition of Exploratory Data Analysis (EDA) (Behrens, 

1997; Tukey, 1962, 1977) that address the socio-curricular 

ecosystem that students experience (Frank et al., 2008; Heck et 

al., 2004), of the type demonstrated here of HCA heatmaps, use 

the same data and add the ability to see the individual within the 

larger pattern. The addition of HCA heatmaps as a tool for 

education data analysts (Bowers, 2021b; Bowers et al., 2019; 

Bowers & Krumm, 2021), both in districts and in research and 

policy, will simultaneously help broaden the view across the 

disaggregated data patterns by displaying all of the data at once, 

and allow for the life course and lived experience of individuals 

(Alexander et al., 2001; Pallas, 1989, 1993) to remain present in 

the analysis. We encourage future research and practice to 

include HCA heatmaps not as a replacement for other 

visualization, description, and data summaries, but to augment 

and deepen the warrants for their claims. Indeed, the recent 

research on evidence-based improvement and data driven 

decision making practice in schools and districts demonstrates 

that data that are specific and individual to teacher practice can 

have the most influence on instructional improvement (Gerzon, 

2015; Halverson, 2010; Mandinach & Schildkamp, 2021). 

 

While outside the scope of the present study the HCA heatmap 

is, as with bioinformatics, just one part of a suite of evidence to 

warrant claims that data patterns across the heatmaps are 

predictive of overall outcomes. When we started this study, 

given the national level of the dataset, the authors had assumed 

that we would identify strong “blocks” of blue or red in high 

school or college that correlated with outcomes, such as for 

specific students struggling in core subjects but doing well 

otherwise, or vice versa. However, we were surprised that 

overall, other than the citizenship exception, we found little 

evidence for these types of “gateway course” subject specific 

patterns, and rather Cluster 1 students generally receive high 

grades and go to college, and Cluster 2 students generally 

receive lower grades and drop out much more often, replicating 

the much smaller district-embedded study of Bowers (2010). 

Nevertheless, we encourage future research to further explore 

the heterogeneity represented across the HCA heatmap, as there 

are intriguing yet small patterns that may warrant further study. 

 

Towards More Quantitative Large-Scale Visual Descriptive 

Research in Education 

As noted across the Exploratory Data Analysis (EDA), visual 

data analytics, and education data science research literature 

(Agasisti & Bowers, 2017; Bienkowski et al., 2012; Bowers, in 

press; Bowers et al., 2022; Bowers & Krumm, 2021; Krumm & 

Bowers, 2022; Krumm et al., 2018; Piety et al., 2014; Tukey, 

1962, 1977), visualizing and describing the complex 

relationships across large-scale datasets is an important 

contribution for a research and practice field (Gelman & Vehtari, 

2021) such as education and education early warning systems 

(Bowers, 2021b). Concurrently, across the psychology research 

literature, there is the current discussion about the “replication 

crisis” in which many past experiments tested with traditional 

individual variable hypothesis tests fail to replicate (Yarkoni, 

2022). In education research, and especially recent large scale 

and randomized controlled EWI/EWS studies (Faria et al., 2017; 

Mac Iver et al., 2019; Sepanik et al., 2021), as well as multiple 

large-scale education data use studies (Farley-Ripple, Jennings, 

& Jennings, 2021; Gleason et al., 2019; Grabarek & Kallemeyn, 

2020; Wayman, Shaw, & Cho, 2017), beyond select high 

performing case studies, researchers have failed to identify 

significant relationships between early warning system use and 

student persistence, achievement, and degree completion on 

average. Traditionally in education research,  quantitative studies 

often rely on individual variable p-value significance hypothesis 

testing. We argue here throughout the present study, that perhaps 

the single variable average summary statistics focus throughout 

much of quantitative education research is not serving the 

research and practice domain fully, and perhaps could be 

augmented and complemented by descriptive visual data 

analytics, such as the HCA Heatmap of the socio-curricular 

ecosystem discussed throughout the present study. Recently, one 

solution proposed for the replication crisis has been to “take 

descriptive research more seriously” (p.17) (Yarkoni, 2022, p. 

17). Specifically, as stated by Yarkoni (2022): 

 

Traditionally, purely descriptive research—where 

researchers seek to characterize and explore relationships 

between measured variables without imputing causal 

explanations… is looked down on in many areas of 

psychology. This stigma discourages modesty, inhibits 

careful characterization of phenomena, and often leads to 

premature and overconfident efforts to assess simplistic 

theories that are hopelessly disconnected from the 

complexity of the real world… Acknowledging the value of 

empirical studies that do nothing more than carefully 

describe the relationships between a bunch of variables 

under a wide range of conditions would go some ways 

towards atoning for our unreasonable obsession with 

oversimplified causal explanations. We know that a large-

scale shift in expectations regarding the utility of careful 

descriptive work is possible, because other fields have 

undergone such a transition... Perhaps most notably, in 

statistical genetics, the small-sample candidate gene studies 

that made regular headlines in the 1990s… have all but 

disappeared in favor of massive genome-wide association 

studies (GWAS) involving hundreds of thousands of 

subjects (Nagel et al., 2018; Savage et al., 2018; Wray et al., 

2018). The latter are now considered the gold standard even 

in cases where they do little more than descriptively identify 

novel statistical associations between gene variants and 

behavior. In much of statistical genetics, at least, researchers 

seem to have accepted that the world is causally 

complicated, and attempting to obtain a reasonable 

descriptive characterization of some small part of it is a 
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perfectly valid reason to conduct large, expensive empirical 

studies (p.17) (Yarkoni, 2022). 

 

We concur with Yarkoni’s argument, as this encouragement to 

take descriptive research more seriously is a core component of 

the usefulness of HCA heatmaps applied to large-scale 

quantitative education data. In the present study, using a visual 

data analytic technique applied to the socio-curricular theory of 

the student life-course, rather than find single individual courses 

and subjects that seem to gate or limit students, in viewing the 

entire map of the journey of more than ten thousand students 

across more than six million individual subject grades and 

enrollments which includes a wide variety of courses, subjects, 

and grade levels, we provide a description of the relationships 

across this highly varied and multidimensional data. This 

technique provides an opportunity to investigate these 

relationships both overall across the entire dataset and zoom in 

on both clusters and individual student journeys through the 

system. Given the lack of findings to date in the EWI/EWS 

research literature, we argue that this technique of describing 

large scale relationships across such a wide variety of data while 

retaining the individual data story, is a useful complement to the 

vast majority of the EWI/EWS research that focuses on average 

summary statistics of specific variables. 

 

Conclusion: 

Here we applied HCA heatmaps to a large national level dataset, 

demonstrated the utility of visual data analytics, and then 

replicated the results from two small districts to relate directly to 

practice. We encourage future researchers to further apply HCA 

heatmaps to other school districts, regions, states, and nations, to 

visualize and describe the longitudinal cluster patterns across the 

wide range of data collected in schools beyond course grades, 

such as attendance, standardized test scores, benchmark scores, 

satisfaction, interest, engagement, and more. We selected a large 

national dataset here to demonstrate the utility of the method 

with large datasets that represent data that is not unlike data that 

is collected on a regular basis across school districts world over. 

Additionally, as the dataset is available with a restricted data 

license, rather than a district-specific dataset, future research can 

access the data from NCES to replicate and extend the study. As 

with the use of HCA heatmaps across a wide range of big data 

domains noted above, describing the individual patterns and 

displaying every data point, rather than obfuscating and hiding 

the heterogeneity behind averages and standard deviations, 

allows the reader, practitioners, and researchers to see the 

individuals within the data and identify patterns and 

relationships in large multidimensional data matrices that would 

go undetected otherwise. We encourage future researchers and 

education data analysts to consider HCA heatmaps as a useful 

tool to address these goals. 

 

Note: Online Supplement Appendices: 

Online Supplement 1 Appendix for Bowers, Zhao, and Ho 

(2023) Towards Hierarchical Cluster Analysis Heatmaps: R 

Shiny application code: https://doi.org/10.7916/cqvn-9t71  

 

Online Supplement 2 Appendix for Bowers, Zhao, and Ho 

(2023) Towards Hierarchical Cluster Analysis Heatmaps: R 

Tutorial and code: https://doi.org/10.7916/r1mg-yn37  
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Appendix A: Column order (left to right) of high school and post-secondary course grade columns in Figures 2 and 3. 

 
High School Courses by CSSC  Post-Secondary College & University by CCM 

Order CSSC Label Description  Order CCM Label Description 

1 LETTERS  Letters/English   1 ENGLISH English language and literature/letters 

2 MATH  Mathematics  2 SOCIALSC Social sciences 

3 PUBLAFF  Public affairs   3 MATH&SCI Mathematics and statistics 

4 CITIZEN  Citizenship/civic activities   4 VISUART Visual and performing arts 

5 FORLANG  Foreign languages   5 BIOSCIEN Biological and biomedical sciences 

6 TRANSPO  Transportation and material moving   6 PSYCHOLO Psychology 

7 THEOLOG  Theology   7 BUS&MARK Business/management/marketing/related 

8 LIFESCI  Life sciences  8 PHYSICAL Physical sciences 

9 INTEPER  Interpersonal skills   9 HISTORY History 

10 VOCAECO  Vocational home economics  10 COMMUNIC Communication, journalism, related 

11 PEAWARE  Personal awareness   11 RELIGSTU Philosophy and religious studies 

12 COMPUTER  Computer and information sciences  12 FORELANG Foreign languages/literature/linguistics 

13 PARK&RE  Parks and recreation   13 HEALTHSC Health/related clinical sciences 

14 BUS&OFF  Business and office   14 COMPUTER Computer/information science/support 

15 MILITEC  Military technologies   15 PARKSSTU Parks/recreation/leisure/fitness studies 

16 BASICSK  Basic skills   16 EDUCAT Education 

17 MECHANI  Mechanics and repairers   17 ETHNIC Area/ethnic/cultural/gender studies 

18 SCIENCE  Science technologies   18 LIBERART Liberal arts/sci/gen studies/humanities 

19 COMMUNI  Communications  19 FAMILSER Family/consumer sciences/human sciences 

20 ETHINIC  Area and ethnic studies   20 MULTISTU Multi/interdisciplinary studies 

21 INDARTS  Industrial arts  21 BASICSKI Basic skills/remedial education 

22 BUS&MAN  Business and management  22 OTHER Other 

23 SPECCUR  Special education-resource 

curriculum 

 23 SECURITY Security and protective services 

24 MILISCI  Military sciences  24 ENGINEER Engineering 

25 CONSTRU  Carpentry   25 HEALTHSK Health-related knowledge and skills 

26 MAR&DIS  Marketing and distribution   26 ENGITECH Engineering technologies/technicians 

27 COMTECH  Communication and technologies   27 PUBSERVI Public administration/social service 

28 HEALTH  Allied health   28 NATURAL Natural resources and conservation 

29 LIB&GEN  Liberal/general studies  29 LEISURE Leisure and recreational activities 

30 CAREER  Special education-vocational, career 

preparation, career exploration 

 30 LEGALSTU Legal professions and studies 

31 AGRIBUS  Agribusiness and agricultural 

production 

 31 THEOLOGY Theology and religious vocations 

32 ENGITEC  Engineering and engineering related 

technologies 

 32 AGRICULU Agriculture/operations/related sciences 

33 LAW  Law  33 SOCIALSK Interpersonal and social skills 

34 HEALACT  Health related activities   34 MECHANIC Mechanic/repair technologies/technicians 

35 SOCISCI  Social sciences   35 ARCHITEC Architecture and related services 

36 EXECINT  Executive internship  36 COMMUTEC Communication technology and support 

37 AGRISCI  Agriculture sciences   37 PERSONAL Personal and culinary services 

38 SPECEDU  Special education   38 CONSTRUC Construction trades 

39 PHILOSO  Philosophy and religion   39 PERSAWAR Personal awareness/self-improvement 

40 LEISURE  Leisure and recreational activities   40 RESEROFF Reserve officer training (JROTC, ROTC) 

41 PSYCHOL  Psychology   41 PRECIPRO Precision production 

42 CONSUME  Consumer, personal, and 

miscellaneous service 

 42 CITIZEN Citizenship activities 

43 ENGINER  Engineering   43 TRANSPOR Transportation and materials moving 

44 NATURAL  Renewable natural resources   44 RESIDENPR Residency programs 

45 LIBR&AR  Liberal and archival sciences   45 LIBRASCI Library science 

46 ARCHITE  Architecture and environmental 

design 

 46 MILITECH Military technologies 

47 PRECPRO  Precision production   47 SCITECH Science technologies/technicians 

48 HEALSCI  Health sciences   48 HSCERTIF HS/Secondary Diplomas/Certificates 

49 VIS&PER  Visual and performing arts  
   

50 PHYSICA  Physical sciences   
   

51 EDUCATE  Education  
   

52 PROTSER  Protective services   
   

53 MULTIDI  Multi/interdisciplinary  studies  
   

54 HOMEECO  Home economics  
   

 
 


