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Abstract 

Evergreen needleleaf forests (ENFs) play a sizable role in the global carbon cycle, but the biological and physical controls on ENF carbon 
cycle feedback loops are poorly understood and difficult to measure. To address this challenge, a growing appreciation for the stress 
physiology of photosynthesis has inspired emerging techniques designed to detect ENF photosynthetic activity with optical signals. 
This Overview summarizes how fundamental plant biological and biophysical processes control the fate of photons from leaf to globe, 
ultimately enabling remote estimates of ENF photosynthesis. We demonstrate this using data across four ENF sites spanning a broad 
range of environmental conditions and link leaf- and stand-scale observations of photosynthesis (i.e., needle biochemistry and flux tow- 
ers) with tower- and satellite-based remote sensing. The multidisciplinary nature of this work can serve as a model for the coordination 
and integration of observations made at multiple scales. 

Keywords: evergreen needleleaf forests, remote sensing, ecophysiology, ecosystem fluxes, photosynthesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in the seasonality, magnitude, and sign of net carbon exchange 
(Buermann et al. 2018 , Fisher et al. 2018 , Butterfield et al. 
2020 ). Our understanding of the ENF carbon cycle is encum- 
bered by limited observations of plant photosynthesis (i.e., car- 
bon assimilation) at high spatiotemporal resolutions globally. 
Consequently, our predictions of the future carbon cycle remain 
highly uncertain, with some Earth system models suggesting 
that the terrestrial biosphere may even transition to a net car- 
bon source by the end of the twenty-first century (Friedlingstein 
et al. 2022 ). 

Optical remote sensing plays a critical role in detecting changes 
in evergreen photosynthesis and can provide an important con- 
straint on our ability to predict and understand the future of ENFs 
(Schimel et al. 2019 ). Remote sensing can help scale leaf- and site- 
level observations across both space and time, enabling more ro- 
bust quantification of ENF photosynthesis across the globe. Opti- 
cal remote sensing is sensitive to both changes in plant physiology 
and the biophysics of how incident photons are reflected or emit- 
ted from vegetation (Zeng et al. 2022 ). The goal of this Overview is 
to review the fundamental biological and physical processes that 
inform the use of optical remote-sensing data for tracking photo- 
synthesis in ENFs. 
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Evergreen needleleaf forests (ENFs) are one of the largest forest
biomes in the world and are an important sink in the global carbon
cycle (Smith et al. 2009 ). Notably, the carbon sequestration poten-
tial of ENFs is high, with an uptake of approximately 2 billion tons
of carbon dioxide each year (Köhl et al. 2015 ). They also provide
critical ecosystem services, including climate regulation, wildlife
habitat, sustenance, and timber (Keenan et al. 2015 , Felipe-Lucia
et al. 2018 ). Anthropogenic climate change has shifted the base-
line environmental conditions for ENFs, but the impacts of these
changes on carbon budgets and ecosystem services remain un-
certain (Liu et al. 2020a ). Rising temperature and carbon fertil-
ization have increased canopy greenness in some ENFs, suggest-
ing enhanced potential for photosynthetic carbon uptake (Wang
and Friedl 2019 , Berner et al. 2020 ). However, the future of ENF
carbon assimilation is threatened by a myriad of climate-related
factors, including widespread drought (Bentz et al. 2019 , Anderegg
et al. 2020 , Trugman et al. 2021 ), changes to growing season length,
increased wildfire potential, and biotic agents of mortality (An-
deregg et al. 2015 , Kautz et al. 2017 ). In regions where warmer
springs and drier summers are becoming more prevalent, ENFs
have become more productive in the spring and less produc-
tive in the summer or fall, ultimately affecting long-term trends
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Figure 1. Summary of ways to measure evergreen needleleaf forest photosynthesis from the molecular to ecosystem scale and data types highlighted 
in this overview. Pigment analyses provides direct insight into light absorption and partitioning but has limited temporal resolution (samples must be 
collected and processed manually). Continuous pulse amplitude modulated fluorometry provides leaf-level information on the photosynthetic activity 
of plant photosystems, including information on the partitioning of light energy among different pathways. Tower-based remote sensing provides 
proxies for many variables related to photosynthetic carbon uptake, including forest chlorophyll and xanthophyll pigment content and net carbon 
uptake at a high spatiotemporal resolution (half-hourly, tree-canopy scale). Eddy-covariance-derived carbon-dioxide fluxes are the best available 
measure for carbon uptake via photosynthesis (gross primary production) at the canopy scale and can be derived at a half-hourly resolution. 
Satellite-based remote sensing is the only way we can detect photosynthesis at large spatial scales but is limited in its spatial and temporal 
resolutions. Illustration created with BioRender.com. 
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We provide nonspecialists with an understanding of how these
ata can be used to better inform our understanding of the ENF
arbon cycle. To do this, we use a suite of data (figure 1 ) col-
ected from four ENF sites spanning a climate gradient across
orth America (figure 2 ). We begin by reviewing the mechanisms
ontrolling the diurnal and seasonal dynamics of photosynthesis
n ENFs and the physical and physiological controls on the fate of
bsorbed light at the leaf or needle level. These biological mecha-
isms are then scaled to the canopy level using a variety of differ-
nt measurement approaches. We show how an integrated mea-
urement approach can provide a more complete picture of car-
on assimilation at the canopy scale. We further scale these mea-
urements and their biological underpinnings to the biome level
ith satellite-based remote sensing. We end this Overview by dis-
ussing the need for multiscale and multidisciplinary research—
panning from leaf-level biology to physics and remote sensing—
or advancing our understanding of the processes underpinning
lobal change impacts on ENFs. 

eedle-scale mechanisms controlling the 

aily and seasonal physiology of evergreen 

eedleleaf forests 

hotosynthesis uses light from the Sun to drive the conversion
f carbon dioxide and water into energy-rich organic compounds
sugars and starch). Through this process, plants use solar power
o sustain nearly all life on Earth. Light, temperature, nutrients,
nd the availability of water control photosynthesis (figure 3 ;
erry and Bjorkman 1980 , Farquhar et al. 1980 ). Within a daily
ycle, a plant’s ability to photosynthesize varies with changes
n sunlight, temperature, and evaporative demand. Over days
o weeks, plants acclimate to their environment and allocate
esources to optimize photosynthesis during the active season,
djusting to seasonal changes (e.g., Logan et al. 1998 , Huxman
t al. 2003 ). To properly explain the mechanisms controlling the
aily and seasonal photosynthetic physiology of ENFs, we begin
y discussing the fate of sunlight. 
Light travels from the Sun through Earth’s atmosphere and into

 forest canopy. Only a portion of the Sun’s electromagnetic spec-
rum can be used to drive photosynthesis, known as photosynthet-
cally active radiation (PAR; 400–700 nanometers [nm]). A portion of
AR is incident on soil, branches, and other nonphotosynthesiz-
ng media, whereas a fraction of this light ( f PARchl ) is absorbed by
hlorophyll molecules in foliage and is known as absorbed photo-
ynthetically active radiation (APARchl ) such that 

APA Rchl = fPA Rchl × PAR (1)

Chlorophyll molecules have a unique spectral signature in that
hey reflect more light in the green region of the spectrum and
bsorb strongly in the red and blue; therefore, plants appear green
Comar and Zscheile 1942 ). Optical metrics can approximate the
raction of light absorbed by chlorophyll ( f PARchl ) by probing the
atios of reflected light in the red, blue, and green spectral regions.
lthough APARchl can vary seasonally because of changes in PAR,
n ENFs with little understory, f PARchl tends to remain seasonally
onstant (Steinberg et al. 2006 , Serbin et al. 2013 ). This is because
easonal changes in chlorophyll content (figure 4 ; Magney et al.
019 ) and canopy structure (Chen 1996 ) are small. Therefore, we

https://BioRender.com


Pierrat et al. | 3

Figure 2. Overview of evergreen needleleaf forest (ENF) sites used in this overview. (a) The spatial extent and percentage cover of ENFs across North 
America, as well as the locations of the four field sites used in this study. The ENF percentage cover was derived from MODIS (the Moderate Resolution 
Imaging Spectroradiometer) International Geosphere-Biosphere Programme Land Cover 2019 data set at 500 meters resolution (Friedl and 
Sulla-Menashe 2019 ). The four sites include boreal forest locations in Alaska (DEJU, mean annual temperature = 0.4 degrees Celsius [°C], latitude = 

63.9 degrees north [°N]) and Saskatchewan, Canada (Ca-Obs, 1.3°C, 54.0°N), a high elevation forest in Colorado (US-NR1, 2.8°C, 40.0°N), and a longleaf 
pine forest in Florida (OSBS, 21.1°C, 29.7°N). (b) Images of the four sites across seasons highlighting that canopy structure does not change with season 
in ENFs. Images: PhenoCam Network ( https://phenocam.nau.edu/webcam), brightened for clarity. 
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cannot rely on optical metrics sensitive to f PARchl alone and need
to understand not just how much light is absorbed but also the
fate of the energy of absorbed light. 

When absorbing a photon, chlorophyll enters an excited state
and will partition the energy to one of four potential pathways:
photochemistry, damage via the formation of reactive oxygen
species, thermal energy dissipation, and fluorescence (figure 3 ;
Niyogi 1999 ). In order to maintain energy conservation, the yield
of each pathway ( φ) must add up to 1 such that 

1 = φP + φD + φN + φF , (2)

where φP is the yield of photochemistry, φD is the yield of damage,
φN is the yield of thermal energy dissipation, and φF is the yield of
fluorescence (Frankenberg and Berry 2018 ). The amount of photo-
chemistry (which is linked to subsequent carbon uptake) a plant
can perform depends on both the absorption of light by chloro-
phyll (i.e., APARchl ) and the partitioning of light among these four
pathways such that 

photosynthesis ≈ APA Rchl × φP . (3)
Optical techniques can probe photosynthesis by approximat- 
ing APARchl , φP , or both. Although φP cannot be directly observed 
with optical methods, we can rely on techniques that are sensi- 
tive to other pathways. Under typical environmental conditions,
the damage pathway ( φD ) is negligible. Meanwhile, φN and φF tend 
to covary in predictable ways with φP in ENFs as a response to en-
vironmental controls (Frankenberg and Berry 2018 ). Much of our 
understanding of the partitioning of light among these pathways 
has come from pulse amplitude modulated (PAM) fluorometry 
(Maxwell and Johnson 2000 ). PAM fluorometry employs a pulsed 
measuring source of weak light, in combination with saturating 
pulses of light, measuring the subsequent fluorescence emissions 
to derive a variety of parameters that can tell us about photo-
chemical performance and how light energy is being partitioned 
(we refer readers to Schreiber 2004 for details on PAM fluorome- 
try). By understanding how φN and φF pathways operate in ENFs,
we can relate the biology of photochemistry ( φP ) to what can be
detected with optical methods. 

The dynamics of ENF photosynthesis are unique, because 
they absorb light year-round, but they can experience seasonal 
stress, hampering their ability to perform photosynthesis. For 

https://phenocam.nau.edu/webcam
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Figure 3. Overview of the mechanisms controlling the daily and seasonal physiology of evergreen needleleaf forests (ENFs), as well as their 
environmental controls. The summer and winter examples highlight the biological mechanisms associated with most extreme environmental 
conditions ENFs experience at higher latitudes and altitudes. Illustration created with BioRender.com. 
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xample, subzero temperatures in winter (e.g., NEON’s Delta Junc-
ion site [DEJU] in Alaska, the Saskatchewan-Western Boreal, Ma-
ure Black Spruce site [Ca-Obs] in Canada, and the Niwot Ridge
ite [US-NR1] in Colorado) inhibit enzyme activity and drive a
ack of liquid water availability due to ice forming in the soil,
ithin the roots, the trunk, and the distal stems (figure 3 ; Se-
anto et al. 2006 , Bowling et al. 2018 , Pierrat et al. 2021 , Nehemy
t al. 2022 ). Repeated freeze–thaw events can also lead to damage
o the water transport pathway via embolism of xylem (Sperry
nd Sullivan 1992 ). Because of the combination of cold tempera-
ure stress and water limitation, although they are still absorbing
ight, many plants in cold locations down regulate the biochem-
cal processes of photosynthesis during winter (figure 3 ; Adams
t al. 2004 ). Because absorbed light energy cannot be efficiently
sed for photochemistry, it must be sent down alternative energy
athways. 
When a plant absorbs more light than can be used to drive

hotochemistry ( φP ), the excess energy can damage the plant’s
issue. Excited chlorophyll molecules can pass energy to oxygen,
ransforming it into singlet oxygen (Niyogi 1999 ). This is an unsta-
le form in the family of reactive oxygen species, which can irre-
ersibly modify proteins, membrane lipids, and chlorophyll itself,
otentially setting off a cascade of harmful cellular oxidation re-
ctions (Logan 2006 ). Singlet oxygen formation via energy transfer
rom chlorophyll is a low-probability biophysical event (i.e., φD ≈ 0
or healthy plants); however, it can occur at appreciable and prob-
ematic levels when chlorophyll molecules remain in the excited
tate when photochemistry is unable to claim that energy. It is ad-
antageous, then, for plants to have systems in place to deal with
ight absorbed in excess of what can be used to perform photo-
hemistry. 
All plants possess a well-regulated pathway to safely di-

ert excess absorbed light energy as heat (Demmig-Adams and
dams 2006 ). This pathway, known as thermal energy dissipation , is
odulated by three xanthophyll pigment molecules, zeaxanthin
Z), antheraxanthin (A), and violaxanthin (V), which interconvert
hrough a process known as the xanthophyll cycle (Demmig-Adams
nd Adams 2006 ). Z and A undergo exothermic chemical reac-
ions, which facilitate the conversion of excitation energy into
eat that can be dissipated to the surrounding environment (Holt
t al. 2004 , Holzwarth and Jahns 2014 ). The portion of light energy
issipated via this pathway ( φN ) is controlled by the ratio of Z + A
o chlorophyll. This ratio is modulated via enzyme-catalyzed in-
erconversions between Z, A, and V; the latter pigment is unable
o carry out energy dissipation (Niyogi et al. 1998 ). When tem-
erature allows enzymatic activity (i.e., during the warm season),
lants interconvert xanthophyll pigments to dissipate light ab-
orbed in excess (figure 3 ; Demmig-Adams and Adams 1992 ). This
ype of dynamic thermal energy dissipation happens over shorter
eriods of time, from minutes to hours, and can help plants pre-
ent damage during short-term stress and routine absorption of
ight in excess (e.g., midday). 
ENFs also use a form of sustained thermal energy dissipa-

ion over winter (Demmig-Adams and Adams 1992 , Huner et al.
993 ). Because low temperature inhibits enzyme-catalyzed inter-
onversion of xanthophyll cycle pigments, evergreens retain high
evels of Z + A over winter in relation to the total xanthophyll
ool (V + A + Z; figure 3 ; Verhoeven 2014 ). This induces a sus-
ained form of thermal energy dissipation marked by an increase
n (Z + A) ÷ (V + A + Z) evident in winter dormant ENFs (DEJU
nd US-NR1 in figure 4 a,b). In addition to the change in xan-
hophyll pigment ratios, ENFs also increase the total amount of
anthophyll pigments, which is most often quantified as the ra-
io between chlorophyll and carotenoid pigments (including xan-
hophylls). Winter dormant ENFs therefore exhibit a decrease in
hlorophyll or carotenoid ratios over winter (figure 4 a,b). ENFs
xperiencing mild winters (e.g., the OSBS [Ordway-Swisher Bi-
logical Station] site in Florida) have little need for sustained

https://BioRender.com
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Figure 4. Pigments collected from (a) DEJU, (b) US-NR1, and (c) OSBS field sites. The chlorophyll pool remains relatively constant year-round at all three 
sites (DEJU, US-NR1, and OSBS). The relatively cold sites (DEJU and US-NR1) exhibit much larger seasonal variability in xanthophyll conversion state 
than the warm site (OSBS). Pigment analysis is performed by collecting needle tissue from 8–10 different trees at each site, immediately flash-frozen in 
liquid nitrogen and stored in a freezer at –80 degrees Celsius until analysis. Pigments are then extracted in acetone and analyzed by HPLC as described 
in Bowling and colleagues (2018 ). At DEJU, 10 samples were collected from 10 different trees approximately every 2 weeks from August 2019 to 
November 2020. At US-NR1, approximately 30 samples were collected from approximately 18 different trees from July 2017 to June 2018. At OSBS, five 
samples were collected from five different trees from June 2020 to June 2021. The plotted points indicate the average value of all pigment samples on a 
collection day, and the error bars indicate the standard deviation of the sample values. 
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energy dissipation, and therefore do not exhibit dramatic seasonal
variation in pigment pools (figure 4 c). Because the yield of photo-
chemistry ( φP ) depends on the yield of thermal energy dissipation
( φN ; equation 2 ; Porcar-Castell et al. 2014 ) and because φN is pri-
marily modulated by xanthophyll pigment concentrations, we can
use the spectral signatures of xanthophyll pigments to probe pho-
tosynthesis. 

The final path for the energy of excited chlorophyll is fluores-
cence emission ( φF ; figure 3 ). Excited chlorophyll can fall back to
its unexcited state with the emission of a red or near infrared
photon—that is, fluorescence. The intensity of the fluorescence
emission is therefore a function of APARchl , and the yields of
alternative energy partitioning pathways. Fluorescence never ac- 
counts for more than a small fraction (typically 1%–3%) of APARchl 

and is not a method for plants to safely dissipate appreciable ex-
cess energy. Rather, it is a byproduct of chlorophyll excited elec- 
trons falling back to their ground state and varies in predictable
ways with φP , depending on the light environment. Under ex- 
tremely low-light conditions, such as dusk and dawn, photosyn- 
thesis is typically limited by the amount of light absorbed rather 
than biochemical capacities. Under light-limited conditions, light 
energy is therefore almost entirely sent down the photochem- 
istry pathway (known as the photochemical quenching [PQ] phase),
with essentially no energy being dissipated as heat ( φN ≈ 0).
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Figure 5. Continuous pulse amplitude modulated (PAM) measurements made at DEJU. (a) The relationship between normalized steady state 
fluorescence yield ( φF) and photosystem II yield ( φP) during the warm season (Day of year, DoY, 100–250) fit with a third order polynomial showing 95% 

confidence intervals. The data are in strong agreement with the theorized relationship from Magney and colleagues (2020 ) and the observed 
relationship in Maguire and colleagues (2020 ). We observe an inverse relationship under low-light conditions and a direct relationship under moderate 
light conditions, where remote sensing observations are typically made. (b) Seasonal covariation between φF and φP. The PAM measurements were 
recorded every 10 seconds with a saturating pulse every 2 hours using a Walz monitoring PAM (MONI-PAM). MONI-PAM heads were affixed to four 
needle clumps on the branches of three different trees, facing all cardinal directions. The data were averaged on a 2-hourly basis from August 2021 
through fall 2022. 
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uring the PQ phase, the yields of photochemistry ( φP ) and the
ields of fluorescence ( φF ) will exhibit an inverse relationship
figure 5 a, equation 3 ; Porcar-Castell et al. 2014 , van der Tol et al.
014 , Magney et al. 2020 , Maguire et al. 2020 ). Under moderate or
ypical-light conditions, thermal energy dissipation mechanisms 
 φN , known as the nonphotochemical quenching [NPQ] phase) regu-
ate the amount of light used for photochemistry. Because φN pulls
nergy away from φP and φF , during the NPQ phase, φP and φF ex-
ibit a positive relationship (figure 5 a; Porcar-Castell et al. 2014 ,
an der Tol et al. 2014 , Magney et al. 2020 , Maguire et al. 2020 ). In
NFs where seasonal changes in sustained thermal energy dissi-
ation ( φN ) drive changes in φP and φF (Porcar-Castell 2011 ), we
bserve strong covariation between the seasonal cycles of φP and

F (figure 5 b). Remote-sensing observations of fluorescence also
ypically occur under NPQ phase conditions and can serve as a
obust proxy for photosynthesis when averaged over longer tem-
oral scales (i.e., seasonally, Magney et al. 2020 ). 

anopy-scale measures of photosynthesis 

nd remote-sensing proxies 

arbon uptake via photosynthesis can be studied at the canopy
cale with instruments mounted above the vegetation on tow-
rs using the eddy covariance technique (for a review, see Baldoc-
hi 2020 ). This technique uses high-frequency observations of at-
ospheric turbulence, temperature, and gas concentrations (typi- 
ally, carbon dioxide and water) to derive vertical fluxes of carbon,
ater, and heat (sensible and latent) between a forest and the at-
osphere within a varying footprint range around the tower. The
ddy covariance technique provides a measure of the net carbon
ioxide flux (net ecosystem exchange), which is the combination
f carbon dioxide uptake by photosynthesis (gross primary pro-
uction [GPP]) and the release of carbon dioxide through respira-
ion (ecosystem respiration). Net ecosystem exchange can be split
nto its component parts (GPP and ecosystem respiration) using a
ide variety of models based on a combination of temperature,
unlight, and evaporative demand (Reichstein et al. 2005 , Desai
t al. 2008 , Lasslop et al. 2010 , Tramontana et al. 2020 ), all of which
arry uncertainties (Papale et al. 2006 , Wutzler et al. 2018 ). 
Carbon uptake via photosynthesis at the canopy scale can be
escribed using the light-use efficiency model of GPP (Monteith
972 , 1977 ): 

GPP = PAR × fPA Rchl × LU EP , (4)

here LUEP is the light-use efficiency of photosynthesis at the
anopy scale (canopy level φP ). As at the leaf level, GPP is depen-
ent on light (APARchl = PAR × f PARchl ), temperature, and the avail-
bility of water (both of which will affect LUEP ; Luyssaert et al.
007 , Beer et al. 2010 ). This is observed across our four study sites.
he first three sites (DEJU, Ca-Obs, and US-NR1) experience cold
inters with subzero temperatures (figure 6 a–d) but differ in the
mount of light they receive (figure 6 e–h). During winter, these
old weather sites are photosynthetically dormant (slightly pos-
tive net ecosystem exchange, no GPP; figure 6 i–p) and therefore
se the thermal energy dissipation pathway ( φN ) to dissipate ex-
ess energy. This results in a seasonal cycle in LUEP (figure 6 q–t)
here plants can safely divert excess energy from sunlight while
emaining photosynthetically dormant. The extent to which φN 

s necessary to prevent damage also depends on the intensity of
he light over winter. Specifically, the high elevation of US-NR1,
n Colorado, ensures a cold winter—despite the lower latitude—
esulting in dramatically higher PAR in the winter than that at
he more northerly sites. This combination amplifies the need for
ustained thermal energy dissipation in comparison with more
igh-latitude sites. The warmest site, OSBS, in Florida, photosyn-
hesizes year-round and therefore does not employ sustained en-
rgy dissipation. On the basis of the light-use efficiency model,
anopy-level remote-sensing metrics for tracking photosynthesis
re typically sensitive to either f PARchl or approximate LUEP on the
asis of the partitioning of energy into thermal dissipation ( φN ) or
uorescence ( φF ) pathways. 
Reflectance-based vegetation indices are the most common

ype of optical measure capable of tracking changes in photosyn-
hesis. These are typically calculated using a normalized differ-
nce formula: 

Index = ρ1 − ρ2 

ρ1 + ρ1 
, (5)
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Figure 6. Midday (10:00–14:00) stand-level (a)–(d) air temperature, (e)–(h) PAR, (i)–(l) net ecosystem exchange, (m)–(p) GPP, and (q)–(t) LUEP data from the 
four field sites. LUEP is approximated by assuming fPAR ≈ 0.5 and seasonally invariant; therefore, LUEP = GPP ÷ (PAR × 0.5). The dots are individual 
data points, the colored lines are the average interannual midday values, and the shaded regions are the interannual midday standard deviation. 
Meteorological data were collected at DEJU from January 2017 to July 2022, at Ca-Obs from January 1999 to December 2021, at US-NR1 from January 
1998 to December 2021, and at OSBS from December 2016 to July 2022. 
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here 1 and 2 are reflectance in the wavelength bands of interest.
he first of these reflectance-based metrics to be widely used was
he normalized difference vegetation index (NDVI; Tucker 1979 ).
DVI takes advantage of the difference in reflectance between 
he red (sensitive to chlorophyll absorption; approximately 620–
70 nm) and near infrared (approximately 830–860 nm) regions of 
he spectrum (figure 7 ; Tucker 1979 ). It provides a good measure of
anopy structure, particularly the presence or absence of chloro- 
hyll (figure 8 a–d) and, therefore, f PARchl . The sensitivity of NDVI
o f PARchl means that NDVI is a good proxy for GPP in systems
here changes in f PARchl are significantly greater than changes 
n LUEP (equation 4 ), and therefore, canopy structure and carbon 
ptake are closely linked (e.g., crops, deciduous ecosystems). How- 
ver, it fails to detect changes in GPP in ENFs due to minimal sea-
onal change in canopy chlorophyll content, and therefore f PARchl 
Magney et al. 2019 , Pierrat et al. 2022a ). In addition, NDVI is highly 
ensitive to the presence of snow cover because of the large dif- 
erence in reflectance between vegetation and snow in the near 
nfrared (figure 7 , figure 8 a–d; Myers-Smith et al. 2020 , Wang et al. 
023 ). This complicates the interpretation of NDVI in ENFs, which 
re commonly affected by snow contamination within the sen- 
or field of view. Derivations of NDVI that also use the difference 
etween the red and near infrared regions of the spectrum, such 
s the near-infrared reflectance of vegetation (NIRv; Badgley et al.
017 , 2019 ) and the enhanced vegetation index (EVI), among oth- 
rs, have been able to account for background and soil contami- 
ation but still fail to capture changes in photosynthetic phenol- 
gy of ENFs due to the decoupling between chlorophyll content 
nd photosynthesis (Sims et al. 2006 , Garbulsky et al. 2010 , Gamon 
t al. 2013 ). 
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Figure 7. Spectral regions where reflectance-based vegetation indices 
are commonly calculated (shaded gray), SIF retrievals are commonly 
performed (shaded red), and example reflectance data of vegetation and 
snow normalized at 800 nanometers. Vegetation reflectance data are 
from US-NR1 and processed following Cheng and colleagues (2020 ). The 
snow and soil reflectance data are from the Advanced Spaceborne 
Thermal Emission and Reflection Radiometer Spectral Library (Baldridge 
et al. 2009 , Meerdink et al. 2019 ). 
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Reflectance-based indices that are sensitive to xanthophyll pig-
ent activity in ENFs have shown a marked improvement in

racking the photosynthetic phenology of ENFs over greenness-
ased metrics. This is because xanthophyll pigment activity mod-
lates how much light energy is sent down the thermal energy
issipation pathway ( φN ), which can inform LUEP or φP . The first
f these to be developed, the photochemical (or physiological) re-
ectance index (PRI), exploits a narrow band at 531 nm (which is
ensitive to the conversion state of xanthophyll cycle pigments)
n reference to a narrow band at 570 nm (which does not change
ith xanthophyll interconversion; Gamon et al. 1992 , 1997 ). This

s noticeable in the difference in reflectance spectra in the 531 nm
egion from the US-NR1 site (figure 7 ) between summer (when
 concentrations are lower) and winter (when Z concentrations
re higher). Over short temporal scales (e.g., over the course of a
ay in the growing season), PRI is sensitive to rapidly reversible
hermal energy dissipation dynamics ( φN ) in ENFs, making it ef-
ective for tracking diurnal changes in LUEP (Gamon et al. 2015 ,
ang et al. 2020 ). Over longer temporal scales (seasons), PRI is
ensitive to sustained thermal energy dissipation because of win-
er increases in Z + A pigments (figure 8 e–h; Wong and Gamon
015a , 2015b ). PRI is also highly sensitive to the presence of snow
n the canopy, which presents a significant challenge in ENFs. It is
lso not presently measured from spaceborne platforms. The best
vailable satellite proxy for PRI, the chlorophyll-carotenoid index
CCI), was specifically developed to track the seasonal changes
n the ratio of chlorophylls to carotenoids (including xanthophyll
igments) using reflectance bands from the Moderate Resolution
maging Spectroradiometer (MODIS, band 11 at 526–536 nm and
and 1 at 620–670 nm; Gamon et al. 2016 ). By tracking the ra-
io of chlorophylls to carotenoids, CCI is also able to track sus-
ained energy dissipation in ENFs (figure 8 i–8l) and is therefore
 good proxy for ENF carbon uptake (Gamon et al. 2016 , Wang
t al. 2023 ). 
In addition to reflectance-based metrics that employ narrow
avelength bands, digital repeat photography can be used to track
easonal changes in canopy color and, therefore, the photosyn-
hetic phenology of ENFs. Specifically, the green chromatic coor-
inate (GCC ) can be calculated from images as 

Gcc = G 

R + G + B 
, (6)

here G , R , and B are the mean intensity of the green, red, and blue
olor channels (Richardson 2019 ). Prior work has shown that GCC is
ensitive to the changes in canopy color associated with variation
n leaf pigment ratios (including the ratio of chlorophyll to xan-
hophyll pigments) in ENFs (Seyednasrollah et al. 2021 ). Because
f this sensitivity, GCC can probe thermal energy dissipation, and
herefore tracks the seasonality of GPP. Start of season and end
f season transition dates derived from GCC are well aligned with
tart of season and end of season transition dates derived from
ddy-covariance GPP as well as the onset of transpiration, as was
etermined by stem-radius measurements in ENFs (Seyednasrol-
ah et al. 2021 , Nehemy et al. 2023 ). GCC from our four experimen-
al sites shows good agreement with the seasonal cycle of GPP but
oes not show a consistent ratio between GCC and GPP (figure 8 m–
). Snow cover affects GCC values by obscuring the canopy in the
egion of interest and making it less green, but the values only
hift down by approximately 10% (Seyednasrollah et al. 2021 ). A
ajor advantage of GCC is the ease of measurement at the canopy
cale and the accessibility of images and data from 600 sites glob-
lly with a standardized processing approach through the Phe-
oCam Network (Richardson et al. 2018 ). This level of standard-
zation and accessibility is currently unavailable for most other
anopy-level remotely sensed data. 
Another approach to probe photosynthesis remotely is the use

f the fluorescence emitted by excited chlorophyll. Under natural
unlight conditions, this is referred to as sun- or solar-induced chloro-
hyll fluorescence (SIF). SIF has was shown significant potential for
racking GPP in ENFs (figure 8 q–t; Magney et al. 2019 , Pierrat et al.
021 , 2022a , 2022b ). Canopy-level SIF is expressed similarly to GPP
equation 4 ) using the light-use efficiency model as 

SIF = PAR × fPA Rchl × LU EF × fesc , (7)

here LUEF is the light-use efficiency of fluorescence ( φF inte-
rated over all leaves or needles within the sensor field of view)
nd fesc is the fraction of SIF photons that escape the canopy and
each the detector. We can relate SIF and GPP by combining equa-
ions( 5 ) and ( 8 ): 

GPP = SIF × LU EP 

LU EF × fesc 
. (8)

SIF and GPP are therefore linked by both shared drivers
APARchl = PAR × f PARchl ), as well as leaf-level biological param-
ters ( φP and φF ) calculated at the canopy level (LUEP and LUEF ).
nder typical conditions for remote-sensing observations, when
hermal energy dissipation regulates photochemistry (the NPQ
hase) leading to covariation between φP and φF (figure 5 a) and fesc 
s invariant, the LUEP ÷ (LUEF × fesc ) term becomes approximately
onstant. This leads to a linear relationship between SIF and GPP
Sun et al. 2018 ). Therefore, SIF closely tracks both the seasonal-
ty (figure 8 q–t) and diurnal dynamics of GPP across a variety of
cosystems (Yang et al. 2015 , Magney et al. 2019 , He et al. 2020 ,
020 , Pierrat et al. 2022a ). Furthermore, because SIF is an emitted
ignal and not a reflectance-based metric, it is less sensitive to the
resence of snow (figure 8 q–t) and cloud cover (Frankenberg et al.
011 , Mohammed et al. 2019 , Chang et al. 2020 ). The ability to use
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Figure 8. Tower-based remote sensing combined with leaf-level pigment data and eddy-covariance derived GPP. (a)–(d) NDVI and chlorophyll 
concentration, (e)–(h) PRI and xanthophyll conversion state, (i)–(l) CCI and chlorophyll to carotenoid ratio, (m)–(p) GCC and GPP, and (q)–(t) SIF and GPP. 
NDVI, PRI, CCI, and SIF data were collected using PhotoSpec. The additional measurement and data processing details from PhotoSpec can be found in 
Grossmann and colleagues (2018 ), Magney and colleagues (2019 ), Pierrat and colleagues (2022a , 2022b ). The PhotoSpec data were collected at DEJU 

from August 2019 to September 2021, at Ca-Obs from August 2019 to December 2021, at US-NR1 from June 2017 to June 2018, and at OSBS from June 
2021 to July 2022. The GCC data were obtained from the PhenoCam Network ( https://phenocam.nau.edu/webcam). The plotted lines represent average 
interannual midday (10:00–14:00) values, and the shaded regions are the interannual midday standard deviation. The vertically shaded regions 
indicate days where snow on the canopy obscures remote sensing observations. 
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SIF as a proxy for GPP in ENFs has led to substantial advances in
our understanding of ENF carbon dynamics. 

Studies at fine spatiotemporal resolutions (leaf and tower) have
highlighted nuance to the SIF–GPP relationship that can be at-
tributed to a combination of decoupling between φP and φF (and
subsequently LUEP and LUEF ) modulated by thermal energy dissi-
pation dynamics (figure 5 a; Magney et al. 2020 , Maguire et al. 2020 ,
Marrs et al. 2020 , Pierrat et al. 2022a ), and variation in fesc . In ENFs
with strong seasonal temperature variations, such as DEJU, Ca-
OBS, and US-NR1, the GPP-SIF relationship changes throughout
the year because of sustained energy dissipation dynamics. In ad-
dition, in winter when photochemistry is strongly downregulated
at these sites, SIF still exhibits a small light response when GPP
is absent, which leads to a nonzero SIF signal and an increase in 
SIF prior to changes in GPP (figure 8 q–t; Magney et al. 2019 , Yang 
et al. 2022 , Pierrat et al. 2022a ). The winter SIF light response can 
be explained as persistent photosystem activity that does not re- 
flect carbon assimilation (i.e., zero φP ÷ LUEP and nonzero φF ÷
LUEF ). The nuances in the SIF–GPP relationship does not preclude 
the use of SIF as a proxy for GPP, but they do motivate future work
to understand when and where divergence between SIF and GPP 
occurs and how we can best account for it. 

Given that remote-sensing metrics can contain information on 
both plant structure ( f PARchl , fesc ) and function (light partition- 
ing among φP , φN , and φF ), combining multiple metrics can help 
paint a more complete picture of ENF photosynthesis. Specifically,

https://phenocam.nau.edu/webcam
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ombining SIF with reflectance-based indices improves our abil-
ty to predict GPP beyond the use of any one metric alone (Wang
t al. 2020 , Hikosaka and Tsujimoto 2021 , Kováč et al. 2022 , Wong
t al. 2022 , Pierrat et al. 2022b ). This can be attributed to the fact
hat although some metrics are sensitive to similar physical pa-
ameters ( f PARchl , fesc ), they describe different physiological pa-
ameters; that is, reflectance-based metrics are sensitive to leaf
r needle composition that controls thermal energy dissipation
 φN ), whereas SIF depends on fluorescence yields (LUEF and φF ). In
ombination, these metrics provide a more complete description
f the fate of photons absorbed by canopies. Both statistical (Zeng
t al. 2019 , Liu et al. 2020b , Wong et al. 2022 ) and machine learning
pproaches (Cheng et al. 2020 , Bai et al. 2022 , Pierrat et al. 2022b )
ave been used to incorporate information from both SIF and veg-
tation indices to predict GPP. There is not yet a universal quan-
itative framework for relating these metrics because intersen-
or differences and footprint-mismatch make cross-comparison 
etween sites and data sets difficult (Gamon 2015 ). A more inte-
rated network of sensors would significantly advance our ability
o develop universal quantitative relationships. Despite these lim-
tations, combining SIF with vegetation indices typically results in
mproved predictive capacity for GPP over any single metric alone
Pierrat et al. 2022b ). 

lobal-scale satellite remote sensing 

f evergreen needleleaf forests 

he high cost of flux tower observations and restrictions on site
uitability limit the locations where eddy covariance and other
anopy-scale measurements can be applied. Although drone and
irborne observations can scale site-level observations over a
arger area, to scale broadly across the terrestrial land surface,
atellite remote-sensing observations are necessary (Jung et al.
011 , 2020 , Zeng et al. 2022 ). Satellite remote-sensing products
e.g., NDVI, CCI, SIF) are sensitive to the same underlying physical
nd physiological processes that can be measured at the leaf or
eedle and site levels but offer expanded spatiotemporal monitor-
ng of vegetation (Schimel et al. 2015 , Zeng et al. 2022 ). The spatial
esolutions of satellite products range from meters to kilometers
nd temporal resolutions from subdaily (geostationary) to daily
nd more than 8 days (global coverage) depending on platform.
atellite observations offer applications for monitoring and un-
erstanding both short (diurnal, seasonal) and long term (annual,
ecadal) dynamics of whole landscape or biome processes at a
patial scale much broader than a single site. Some satellite mis-
ions also offer long-term data availability with certain missions
ating as far back as the 1970s (e.g., Landsat, Xiao et al. 2019 ).
ong-term satellite records have been used to evaluate changes
n annual carbon uptake (Myneni et al. 2001 , Dong et al. 2003 )
nd phenology (Zhang et al. 2003 , White et al. 2009 , Keenan et al.
014 ). In addition, monitoring ecosystem function from space has
pplications for assessing long-term trends in forest stress sever-
ty and recovery (e.g., fires, pests, drought; French et al. 2008 , Ek-
undh et al. 2009 , Beck et al. 2011 , Michaelian et al. 2011 ). The ex-
ansion of the spatiotemporal range that satellite data provides,
owever, typically comes at the expense of spatiotemporal reso-
ution. Therefore, it is necessary to consider both the spatial and
emporal scaling benefits and limitations of satellite data. 
Satellite reflectance-based metrics, such as NDVI from MODIS

nd Landsat have been used for many years to monitor the global
iosphere. For example, maps of NDVI reveal the spatial and
easonal variation of ecosystem structure across North America
figure 9 a,b). However, care has to be taken with these obser-
ations, because satellites aggregate optical signals from multi-
le sources in a given area, often called ground pixel , into a sin-
le measurement (Zeng et al. 2022 ). This makes interpretation of
eflectance-based observations challenging in structurally com-
lex and heterogeneous ecosystems such as ENFs with multi-
le overstory species and contributions from understory vege-
ation, soil, and snow (Maguire et al. 2021 ). Mixed forest sites
ontain evergreen and deciduous trees with contrasting adap-
ive strategies (e.g., phenology, photosynthetic capacity; Givnish
002 )—also complicating the seasonal interpretation of satellite
ata. Depending on the dominant vegetation type, satellite re-
ote sensing may be biased to the dominant optical signal on

he basis of density and leaf area (Atherton et al. 2017 , Pierrat
t al. 2021 ). In sparse canopies, understory plants, rock, and soil
ffect reflectance-based indices such as NDVI. For this reason, cor-
ection factors (Eitel et al. 2006 ) or other vegetation indices (e.g.,
VI and NIRv) are useful in minimizing the influence of under-
tory components. Reflectance-based metrics are also highly sen-
itive to cloud cover, which may contaminate observations, even
or partial cover in a pixel, leading to data gaps (Walther et al. 2016 ,
heng et al. 2022 ). Finally, the sensitivity of reflectance-based met-
ics to snow (figure 7 ) can lead to a seasonal signal in reflectance-
ased metrics that is not associated with changes in photosyn-
hetic phenology. This is noticeable across three of our study sites
figure 9 e–g). Correction approaches (e.g., Wang et al. 2023 ) may
elp remove the impact of snow on vegetation indices but this
as yet to be widely adopted. Despite these limitations, global re-
ectance based remote-sensing products have successfully been
sed to parameterize and constrain model predictions of carbon
ptake (Gonsamo et al. 2012 , Smith et al. 2020 ), monitoring and
anaging change at large scales (Zeng et al. 2022 ), and remain
ne of our most important tools to reduce uncertainties in future
limate predictions (Friedlingstein et al. 2014 ). 
The measurement of SIF from space has led to considerable ad-

ances in monitoring ENF photosynthesis in recent years. Because
f the underlying physical (APARchl = PAR ×f PARchl , fesc ) and physi-
logical drivers (LUEF ) of SIF, it can reveal the spatial and seasonal
ariation of ecosystem structure and function across North Amer-
ca (figure 9 c–h). Satellite SIF observations across our study sites
figure 9 e–h) show a comparable seasonal cycle to tower-based
IF and eddy-covariance GPP (figure 8 q–t), illustrating the poten-
ial of satellite SIF observations over larger spatial scales. As an
mitted signal, SIF has a lower sensitivity to cloud (Frankenberg
t al. 2014 , Doughty et al. 2019 , Guanter et al. 2021 ) and snow cover
Luus et al. 2017 ), therefore making it more robust across the sea-
ons (figure 9 e–g). This is especially important during the onset of
hotosynthesis, which often coincides with the snowmelt period
Pierrat et al. 2021 ). SIF has also shown significant potential for
etecting the impacts of drought, even before changes in canopy
reenness (NDVI) are detected (Shen et al. 2021 , Mohammadi et al.
022 ). This enables potentially real-time evaluations of ecosystem
ealth. In analogy with tower-based results, combining satellite
IF with reflectance-based metrics has the potential to overcome
any of the limitations presented by any individual metric alone;
owever, this has yet to be fully investigated. 
Integrating satellite products from different sensors should

lso be considered with care, because overpass time and pixel lo-
ations may not align temporally and spatially, leading to spa-
iotemporal mismatch (Gao et al. 2006 , Alcaraz-Segura et al.
010 ). In addition, the seasonal variation in solar radiance and
igh solar-zenith angles results in unequal availability of satellite
ata between winter and summer (figure 9 a–d), which may bias
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Figure 9. . (a)–(d) Average summer (June–September) and winter (December–March) MODIS NDVI and TROPOMI SIF. The yellow stars represent site 
locations. (e)–(h) 16-day MODIS NDVI (unitless) and 16-day daily corrected TROPOMI SIF (in watts per square meter per steradian per micrometer) both 
averaged annually from 2018 to 2021. The vertically shaded regions indicate days with snow present based on daily MODIS NDSI. The winter maps 
show limited spatial coverage of the northern extent due to high solar zenith angles leading to inadequate solar irradiation. 
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interpretation of the seasonality of photosynthesis. Forests at
higher latitudes will also be more sensitive to sun-sensor ge-
ometry, requiring postprocessing steps such as bidirectional
reflectance distribution function and atmospheric corrections
(Asner 1998 ). 

Satellites offer data sets that expand the spatiotemporal range
of tower-based observations. Despite the challenges imposed by
mixed pixels and snow and cloud contamination, satellites are es-
sential tools to better monitor ENFs and to inform global carbon
models. More research is needed to fully understand and inter-
pret satellite-based data products for tracking photosynthesis in
ENFs. There remains a need for mechanistic validations at a high
spatiotemporal resolution (Nelson et al. 2022 ) with measurements
such as those discussed earlier. 

Multiscale observations for an integrated 

understanding of evergreen needleleaf 
biology 

Climate change is likely to have complex and multifaceted im-
pacts on ENF photosynthesis, which could alter the structure,
composition, and productivity of these ecosystems in ways that
are not yet fully understood (Seidl et al. 2017 ). Understanding
both the nuances and potential of integrating the aforementioned
measurements will create a more complete picture of the ENF
carbon cycle. This is critical as both climate change and land-use
decisions make the future of forests largely uncertain (Anderegg
et al. 2020 , Brodribb et al. 2020 ). Long-term carbon storage and
biodiversity of ENFs are hindered by interannual changes in tem-
perature and precipitation as well as disturbance events linked
to extreme weather, biotic agents, and large-scale demographic
shifts (Allen et al. 2010 , Seidl et al. 2017 , Anderegg et al. 2020 ).
Both modeling and monitoring these changes have been chal- 
lenging, with a recent study suggesting wide divergence in projec- 
tions of future global forest vulnerability using the best available 
data and mechanistic models (Anderegg et al. 2022 ). Understand- 
ing how climate-sensitive disturbances might affect ENF vegeta- 
tion physiology going forward will require multidisciplinary ef- 
forts for scaling and interpreting observations from the leaf to the 
globe. 

We can glean essential knowledge of the environmental and 
physiological controls on the seasonality of ENF photosynthesis 
by combining fundamental theory of plant physiological ecol- 
ogy with a diverse combination of observations at scales from 

conifer needle to flux tower to satellite. In this Overview, we 
have shown how pigment-based thermal energy dissipation of 
excess sunlight is an integrative general property of ENFs re- 
sponse to adverse environmental conditions over both mild and 
harsh winters. In addition, we show that the steady-state emis- 
sion of chlorophyll fluorescence can be a physiological indicator 
of ENF photosynthesis. Interpreting these processes from satel- 
lite data alone leaves out important nuances in these signals be- 
cause of the low spatiotemporal resolution of satellite measure- 
ments. Therefore, without careful measurements of and expertise 
in plant pigments, gas exchange, and chlorophyll fluorescence at 
the site level interpretations of satellite products might over- or 
underestimate ENF photosynthetic seasonality. Colocated mea- 
surements of footprint-tower spectroscopy and needle biochem- 
istry can provide an explanation for how seasonal adjustments in 
needle pigments and light energy partitioning are mechanistically 
linked to photosynthetic capacity. These crucial ground observa- 
tions enable developers of satellite data products to correct for 
impacts of sun-sensor geometry and background noise that might 
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onfound researchers’ interpretation of SIF or pigment-based
ignals. 
Although eddy covariance currently provides the best ground

alidation of remote-sensing derived ENF GPP products, both flux
easurements and remote-sensing products carry uncertainties

Hollinger and Richardson 2005 , Tramontana et al. 2015 ). Because
ux measurements represent net exchanges of carbon, water, and
nergy at the ecosystem scale, flux data alone do not explicitly
ell us the spatiotemporal contributions to or the partitioning of
uxes between different ecosystem components (Baldocchi 2003 ).
inking remote sensing with needle-scale measurements can help
cientists interpret site-specific flux measurements by providing
ontextual information on community composition and vegeta-
ion function and help scale estimate fluxes globally (Ustin et al.
009 ). Taken together, seasonal measurements of plant biochem-
stry or physiology, eddy covariance, and remote sensing can help
aint a more complete picture of where uncertainties arise and
ow we might account for them going forward. 
In this Overview, we show how coordinated measurement cam-

aigns (figure 1 ) allow for a better understanding of the environ-
ental controls on ENF physiology and, ultimately, how this can
e approximated at multiple scales using remote-sensing prod-
cts. With the rapid proliferation of new satellites and researchers
sing these data to draw conclusions about ecosystem response to
limate change, the need remains for multidisciplinary efforts to
etter reconcile when, where, and to what extent remote sensing
an be used to track changes in the carbon cycle. The multidisci-
linary efforts discussed above involved experts in plant ecophys-
ology, leaf- and tower-scale carbon flux observations, and tower
nd satellite remote sensing. Going forward, empirical data from
hese efforts should be used to help inform modeling efforts or
sed in model-data fusion frameworks, requiring close collabora-
ion with the ecosystem modeling community (Stofferahn et al.
019 , Gettelman et al. 2022 ). Accurate scaling of carbon cycle pa-
ameters from the site to the ecosystem to the biome is a ma-
or challenge but can be accomplished by well instrumented and
onitored sites that encompass a broad range of ENFs. Doing so
ill ultimately enable scientists to better understand both the bio-

ogical and physical drivers of changes in ENF photosynthesis and
ow we can accurately monitor and measure these processes un-
er future climate scenarios. 
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