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Abstract

A General Framework for Model Adaptation to Meet Practical Constraints in Computer Vision

Shiyuan Huang

Recent advances in deep learning models have shown impressive capabilities in various

computer vision tasks, which encourages the integration of these models into real-world vision

systems such as smart devices. This integration presents new challenges as models need to meet

complex real-world requirements. This thesis is dedicated to building practical deep learning

models, where we focus on two main challenges in vision systems: data efficiency and variability.

We address these issues by providing a general model adaptation framework that extends models

with practical capabilities.

In the first part of the thesis, we explore model adaptation approaches for efficient

representation. We illustrate the benefits of different types of efficient data representations,

including compressed video modalities from video codecs, low-bit features and sparsified frames

and texts. By using such efficient representation, the system complexity such as data storage,

processing and computation can be greatly reduced. We systematically study various methods to

extract, learn and utilize these representations, presenting new methods to adapt machine learning

models for them. The proposed methods include a compressed-domain video recognition model

with coarse-to-fine distillation training strategy, a task-specific feature compression framework

for low-bit video-and-language understanding, and a learnable token sparsification approach for

sparsifying human-interpretable video inputs. We demonstrate new perspectives of representing



vision data in a more practical and efficient way in various applications.

The second part of the thesis focuses on open environment challenges, where we explore

model adaptation for new, unseen classes and domains. We examine the practical limitations in

current recognition models, and introduce various methods to empower models in addressing

open recognition scenarios. This includes a negative envisioning framework for managing new

classes and outliers, and a multi-domain translation approach for dealing with unseen domain

data. Our study shows a promising trajectory towards models exhibiting the capability to navigate

through diverse data environments in real-world applications.
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Chapter 1: Introduction

1.1 Background and Motivation

Visual information is an indispensable source of media of people’s daily lives. Over the past

decades, deep learning models have exhibited remarkable capabilities in understanding visual data

and successfully executing diverse computer vision tasks, including visual recognition in images

and videos, object detection and tracking, visual question answering, etc. This progress takes

a significant step towards vision-capable intelligence. It also encourages a growing integration

of deep learning models into practical vision systems for real-world production, such as smart

devices, which poses new challenges as models need to adhere to more complex requirements

imposed by real-world scenarios.

Recent advancements in deep learning have demonstrated the ability to learn powerful models

using large-scale data and strong computational resources. Different pre-training strategies have

been proposed to accommodate variations in data availability, quality, and properties. The resulted

models, which are referred as pre-trained models, can then be used for various downstream appli-

cations. However, when applied to real-world vision systems, visual data by its nature imposes

specific challenges for deployment. One practical concern is that visual data is huge in volume

and presents difficulties in processing and storage within the constraints of hardware. For exam-

ple, a real-time home monitoring system demands efficient management of large recorded videos

for a timely and accurate monitoring. Another practical concern is that vision systems encounter

diverse and dynamic circumstances, leading to highly variable visual data. For example, a surveil-

lance system should be able to handle new objects and individuals while also adapting to different

environments such as outdoor and indoor scenes. Additional considerations include fairness, pri-

vacy, ethics and more. Addressing these concerns necessitates research efforts focused on building
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practical deep learning models and designing new capabilities.

In this thesis, we investigate and propose methods to extend pre-trained deep learning models

towards practical capabilities. We focus on the aforementioned two important data challenges

in real world: data efficiency and variability, and design model adaptation techniques to meet

with different constraints exhibited by visual data in computer vision applications. The thesis is

hence divided into two parts: Part I delves into model adaptation towards efficient representations;

Part II focuses on model adaptation to open environments, encompassing new, unseen classes and

domains. Next we will give an overview of the relevant literature, and connect our work to the

existing research endeavors.

1.2 Overview of Model Adaptation

Model adaptation is a broad area covering different contexts, directions and applications in

computer vision. An important field is model fine-tuning, where the pre-trained model is con-

tinued training for new downstream applications on a small set of task-specific data. Research

works such as [1] and [2] underscore the importance of fine-tuning multi-modal models for specific

vision-language tasks such as visual question answering and video retrieval. However, in dynamic

open environments where the quality and quantity of data are not well guaranteed, standard fine-

tuning approaches can be sub-optimal. To enhance adaptability in changing environments, several

techniques are proposed to make models more generalizable. For example, meta learning [3] trains

model on a variety of pseudo tasks to improve generalization; feature disentanglement [4] decom-

poses features to extract environment-invariant parts. Our works in Chapter 5 and 6 address similar

challenges of adapting models to unseen classes or new domains. Chapter 5 is built upon meta

learning by designing task-level training scheme. Chapter 6 explores feature debiasing techniques

akin to feature disentanglement, in order to identify domain-invariant components.

In a different context of model adaptation, the focus is on computational efficiency. For ex-

ample, model distillation [5] distills a large powerful model into a smaller-sized network, in order

to reduce memory and energy consumption while retaining the original capabilities. Additionally,
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there is also increasing attention to data efficiency, where people seek to reduce data size for both

computation and performance advantages. For example, feature selection [6] selects the important

set of features for better model performance and processing speed. We start with Chapter 2 that

examines model distillation under the context of compressed-domain video understanding. Then

in Chapter 3 and 4, we introduce new perspectives of adapting model for efficient data represen-

tations such as low-bit feature and sparsified inputs.

1.3 Our General Framework for Model Adaptation

In this thesis, we present a general model adaptation framework where our works follow. We

highlight the critical need for efficiency in practical deployment, hence our primary objective is to

minimize the changes to the original model architecture and parameters. We introduce our general

framework as M + 𝛿, where M refers to the pre-trained model, and 𝛿 refers a small architecture

added to the original model. Throughout the thesis, we design and instantiate 𝛿 in different ways,

serving for different goals and purposes, coupled with different learning strategies. Regarding the

design and incorporation of 𝛿, we discuss a special case where 𝛿 = 0 (Chapter 2), and then explore

𝛿 as an additional input module (Chapter 4), as an intermediate bottleneck (Chapter 3) and as a

final module on top of the model (Chapter 5 and 6). In terms of purposes and goals, we examine

𝛿 as an efficient representation adapter, where it functions as a feature compressor (Chapter 3) and

a input sparsifier (Chapter 4); and 𝛿 as an open environment adapter, where it serves as a negative

prototype generator (Chapter 5) and a domain translator (Chapter 6). Figure 1.1 summarizes the

instantiations and usecases of our M + 𝛿 framework covered in the thesis. The versatility of our

approach allows for adaptable model enhancements tailored to specific objectives and deployment

scenarios.

1.4 Thesis Outline and Contributions

Putting together, we here provide a full outline of the chapters and summarize our contributions

briefly. In a nutshell, we design model adaptation methods towards practical data challenges in
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(a) 𝛿 at the input level (usecase: input sparisifier)

(b) 𝛿 as an intermediate bottleneck (usecase: feature compressor)

(c) 𝛿 at the output level (usecase: prototype generator, domain translator)

Figure 1.1: Overview of M + 𝛿 framework with 𝛿 at different positions serving as different pur-
poses.

vision applications. The following chapters can be divided into two parts according to the type of

data challenges they focus on:

Part I. Model adaptation for efficient data representations, which consists

• Chapter 2: We develop a two-stream framework for compressed-domain video recognition,

bypassing the need for decoding. We examine the properties of compressed video formats in

modern video codecs, and group the compressed modalities into two branches, representing

spatial and temporal signals respectively. In transitioning from conventional two-stream

networks, we propose a fine-to-coarse distillation approach. This approach enhances the

low-resolution and noisy signals with the more robust decoded representations. We show

that our network substantially narrows the performance gap from decoded video recognition,

outperforming other compress-domain methods. Moreover, it accelerates the inference speed

by two orders of magnitudes compared to methods with decoded formats. In this chapter,

we demonstrate how to transform a conventional two-stream network 𝑀 into a compressed-

domain network with 𝛿 = 0.
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• Chapter 3: We introduce a novel Few-Bit VideoQA problem, where only limited number of

bits of video information are permitted for accomplishing VideoQA tasks. To address this,

we propose a task-specific feature compression approach that learns to extract task-specific

tiny features of very few bits. Integrating a light-weight feature compressor into a pre-trained

video-and-language model enables its adaptation into a low-bit compressor, facilitating the

extraction of tiny features along with task accomplishment. Our experiments demonstrate

that with as low as 10-bit of information, we can successfully perform VideoQA tasks with

only a minor decrease in accuracy across VideoQA benchmarks. We provide detailed anal-

ysis on the learned low-bit feature, point out its storage efficiency and the privacy advantage

and discuss how it opens up new possibilities for on-device or cloud-based data storage and

processing. In this chapter, we adapt a video-and-language model for low-bit representation

with 𝛿 being an intermediate bottleneck module serving as a feature compressor.

• Chapter 4: We demonstrate that videos can be efficiently represented as sparse frames or

texts, which are human-interpretable, to accomplish VideoQA tasks. We introduce the con-

cept of sparsified VideoQA problem, and propose a token sparsification approach that learns

to drop input tokens, applicable to both visual and textual modalities. By incorporating an in-

put sparsifier at the model’s outset, the sparsifier is trained along with model towards task ac-

complishment. We also propose a multi-gumbel estimator to tackle the non-differentiability

of the sampling process. Our approach is evaluated on VideoQA benchmarks, showing a mi-

nor drop of performance with very limited number of frames and/or words. We also provide

analysis on the sparsified frames and words, highlighting their effectiveness in capturing

salient information. In this chapter, we adapt a video-and-language model for sparsifying

inputs with 𝛿 being an input sparsifier.

Part II. Model adaptation for open environment, which consists

• Chapter 5: We propose a negative envision framework to enhance prototype-based recogni-

tion models, enabling it to recognize new classes given few examples and reject outliers. Ad-
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dressing limitations of threshold-based open recognition approaches, we offer a threshold-

free solution that generates negative prototypes to dynamically adjust rejection power. Cou-

pled with this, we propose a new conjugate training strategy that modifies the conventional

meta-learning scheme with conjugate sampling and loss. Our approach achieves state-of-the-

art results on few-shot recognition benchmarks, in both closed-set and open-set evaluations.

We also formulate a more realistic evaluation of recognition models, showing our approach

excels at handling new and unseen classes without compromising original class capabilities.

In this chapter, we adapt a recognition model for new and unseen classes with 𝛿 being a

negative prototype generator added to output class prototypes.

• Chapter 6: We develop a language-guided domain generalization approach that adapts a

model to new domains by leveraging their textual descriptions. Our approach includes a

domain translator module to transforms visual embeddings, and a training scheme with both

domain-invariant and domain-specific losses. Furthermore, we introduce the one-to-many

domain generalization problem which requires adaptation of a model to a combination of

new domains. To address this challenge, we propose a multi-domain generalization learning

scheme which learns an additional domain selector to locate the correct target domain. In ex-

periments, we validate our approach on domain generalization benchmarks, evaluating both

one-to-one and one-to-many scenarios, and also provide analysis of the quality of translated

features. In this chapter, we adapt a recognition model to unseen domains with 𝛿 being a

domain translator on top of visual embeddings.
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Chapter 2: Adapting Model for Compressed Video Domain

Video processing could be a substantial computational bottleneck. A common practice is to first

decode a video into a sequence of image frames, then apply other techniques on top of image se-

quences. In this chapter, we take a different perspective and inspect compressed-domain video for-

mats as an efficient video modality. In this chapter, we examine the properties of these compressed

data and seek to seamlessly transform a traditional decoded-domain model M to compressed-

domain, with the special case 𝛿 = 0.

2.1 Introduction

Video is nowadays the dominating visual data source in all kinds of application scenarios. The

temporal context embedded in videos captures additional information compared to still images.

However, the temporal aspect of videos also induces information redundancy and computational

burden. Early works [7, 8] on video recognition apply convolutional neural networks (CNNs)

directly on RGB frame sequences decoded from video but get limited success, due to the difficulty

of extracting discriminative spatiotemporal information from the frames that highly resemble each

other. Recent works [9, 10] have demonstrated the effectiveness of two-stream networks where

appearance and motion are modeled by separate CNNs and then fused together to obtain the final

prediction. Most state-of-the-art works keep RGB frame sequences as the appearance modality,

and use optical flow (OF) [11] calculated from consecutive RGB frames as the motion modality.

Though adding an optical flow stream improves the performance, it is known to be computationally

heavy. Some works [12, 13] try to estimate OF using CNNs. But to make pixel-level accuracy,

most of those networks are heavy. OF estimation remains a huge computational bottleneck for two

stream frameworks.
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Figure 2.1: Overview of our IP Two-Stream Network (IP TSN). We propose a novel compressed
domain two-stream network, which exploits the two frame types readily available in compressed
videos. The I-stream samples RGB I-frames and process them with a 2D-Net to get still scene in-
formation. The P-stream samples the weaker P-frame modality, motion vectors (MV) and residual
errors (R), processed by a 2D-3D Net for effective temporal modeling. The two streams outputs
are fused to obtain the final prediction. Our model achieves significant performance gains in both
accuracy and efficiency.

To improve video recognition efficiency, some recent works have started to look into modern

compressed video encoding formats (MPEG4, H.264, etc) as input. CoViAR [14] and DMC-Net

[15] consider MPEG4 [16] videos that contain I-frame (intra-coded frames as RGB images) and

P-frame (predictive frames) represented by both Motion Vectors (MV) and Residuals (R). Both of

them follow a multi-stream setting (CoViAR TSN) where I, MV and R are fed into separate CNNs

together as the spatial stream, and then fused with another temporal stream (Fig. 2.2a,2.2b). While

CoViAR (Fig. 2.2a) still uses high-cost OF for the temporal stream, DMC-Net (Fig. 2.2b) resolves

the latency by replacing OF with fast “Discriminative Motion Cue” (DMC) generated from MV

and R. However, CoViAR TSN ignores the encoding structure as well as the shared information

between P-frame modalities. The dense P-frames offer stronger temporal information that the

current network design hardly captures. Also separate networks for MV , R and DMC could be
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redundant as MV and R already share motion information, and yet insufficient as MV and R are

both weak modalities for classification.

In addition, DMC-Net reconstructs full-resolution OF-like DMC to enrich discriminative infor-

mation. But several works [17, 18] have demonstrated that the End-Point-Error (EPE) accuracy of

OF does not guarantee recognition accuracy, which implies that pixel-wise reconstruction of flow

does not necessarily benefit the performance. Our insight is that we can directly guide MV and R

to mimic OF without any explicit flow reconstruction. We find through experiment in Sec. 2.4.4

that feature level supervision is stronger in enhancing the weak P-frame modalities.

Based on the above observations of existing methods, we propose a new compressed-domain

two-stream network, IP TSN, depicted in Fig. 2.1, where the spatial stream (I-stream) is modeled

by I only and the temporal stream (P-stream) is modeled by a unified network for MV and R. Based

on the nature of video encoding format which consists of detailed RGB I-frame and weaker P-

frame, we use a strong 2D CNN in the spatial stream to extract still scene information from sparse

I-frames, and a light 2D-3D CNN in the temporal stream for better spatio-temporal modeling from

P-frames. We also propose to exploit high-level feature supervision from OF, during training time

only, to better extract motion information from MV and R.

We compare with other compressed-domain methods on two video understanding tasks. For

action recognition, we are able to reduce the total inference GFLOPS by 20% while increasing the

accuracy by ∼ 7% on HMDB-51. For action detection, our flow distillation achieves a 3.6% gain

on VIRAT.

In a nutshell, in this chapter, we consider M being a decoded-domain two-stream video recog-

nition model and seeks to adapt it to compressed-domain. We accomplish this with 𝛿 = 0 and

uses generalized distillation techniques to distill M into a new compressed-domain model. With

the supervision of high-level optical flow (OF) features during training time only, we are able to

replace OF with MV and R, and speed up the temporal stream by more than 60 times compared

to using optical flow while achieving similar or better accuracy. Our approach is able to achieve

higher accuracy than other compressed-domain methods by large margins while improving the ef-
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ficiency significantlyon both action recognition and action detection benchmarks. We are able to

make large improvements over current compressed-domain methods and get significantly closer to

the upper-bound performance using conventional decoded videos.

2.2 Related Works

Two Stream Networks for Video Action Recognition. Two stream networks are first proposed

by [10, 19] where separate 2D CNNs are used for RGB frames and OF frames, and then fused

for final prediction. Later, 3D CNNs [20, 8, 21] are shown to perform better in spatiotemporal

modeling. With many large-scale video datasets [22, 23, 24, 25] coming out, 3D CNNs are able

to get high accuracies when incorporated into a two-stream framework. However, 3D CNNs are

computationally heavy and there are some efforts like [26, 27], trying to alleviate 3D computations

and get comparable or even better performances. [28] and [26] partially insert 3D layers into the

network arguing that temporal modeling is only needed at certain stages.

All the two-stream networks discuss above in decoded video requires additional calculation of

OF and takes the temporally-aligned RGB and OF as inputs. In contrast, our IP TSN simply use

two types of encoded frames as inputs that are readily available in the video and not temporally

aligned. Also, given the nature of encoding structure, we use non-symmetric networks for I- and

P-streams.

Compressed Video Action Recognition. Recent works have started to look into compressed

video domain and showed that compressed video modalities contain rich information that can be

exploited quickly using light-weight networks. [29] utilizes motion vector as a cheap alternative

to optical flow, but it still needs the full decoded RGB stream in the traditional two stream setting.

CoViAR [14] proposes to exploit the compressed video modalities as alternatives to decoded RGB

frames. As shown in Fig. 2.2a, it uses three separate networks for I, MV and R as the spatial

streams. But to get comparable performance with decoded-domain methods, the full CoViAR

TSN framework uses the expensive OF stream computed in the decoded space as the temporal

stream, which diminishes its speed superiority. To solve this issue, DMC-Net [15] proposes to
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generate fast OF-like discriminative motion cues (DMC) directly from MV and R to replace the

OF stream in the CoViAR TSN, as illustrated in Fig. 2.2b.

However, the current CoViAR TSN setting fails to consider the embedded encoding structure

and the inter-relations among these modalities. For example, shared motion boundaries in MV

and R; different I- and P-frame densities. The brute way of applying similar networks for each

modality separately hence could be suboptimal and redundant, especially for the weak P-frame

modalities. From the above observations, we want to maximize the efficiency by searching for

the best utilization of the compressed-domain modalities. We propose a novel compressed-domain

framework that is designed towards the encoding structure to better exploit compressed-domain

modalities.

Generalized Distillation. Knowledge distillation was first proposed by [30] as a concept of trans-

ferring knowledge from a high-performance complex model (teacher) to a simple model (student)

through the supervision of complex model soft predictions. Recent works [31, 32, 33] apply

the concept along with privileged information [34] in cross-modality transfer learning and show

promising results. [35, 36] propose to use knowledge distilled from the optical flow to get motion

representations directly from RGB inputs. [29, 37] applies similar techniques but on the motion

vectors. All these works either consider only one student modality, or multiple student modalities

independently. Our work takes optical flow as the teacher to enhance the P-stream in a similar

spirit. However, we consider a new student modality, P-frame, which by itself is multi-modal

since it consists of both MV and R. Our insight is that MV and R contain complementary motion

information that are well aligned, and hence can be merged into one stream and supervised by OF.

2.3 Approach

In this section we first define the compressed video notations. Then we present our IP TSN

framework for compressed video recognition. Finally, we introduce the distillation technique we

use to enhance P-stream.
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Figure 2.2: Compressed-domain video recognition frameworks. (a)(b) Existing compressed-
domain methods follow multi-stream CoViAR TSN framework, where (a) CoViAR[14] requires
decoding and computing OF for the temporal stream; and (b) DMC-Net[15] generates Discrimi-
native Motion Cue (DMC) to replace OF. (c) Our IP TSN instead takes directly I and MR (MV
+R) as the spatial and temporal stream inputs respectively without any form of flow computation.

2.3.1 Compressed Video Formats and Notations

Following CoViAR [14] and DMC-Net [15], we consider MPEG-4 Part2 [16] encoded videos

with Group of Structure (GOP) size 12. Starting with the first frame, I-frames appear every 12

frames, with 11 P-frames filling in between. Each I-frame is a full resolution RGB image (I). Each

12



P-frame is represented by a Motion Vector (MV) computed from 16 × 16 macroblock displace-

ment from the previous frame and a Residual (R) computed from the RGB difference between the

original image and motion compensated image. Both I and R are three channel (RGB) images of

the same resolution as in the original video, while MV is two channel of horizontal and vertical

displacements that has 16× smaller resolution in effect. In visualization, MV are blocky images

where each 16×16 block is filled with the same value of its displacement. Additionally, we denote

the optical flow as OF, which is the pixel displacement calculated from RGB frames. In our exper-

iment, we use TV-L1 [11] to extract optical flows. We use the FFmpeg [38] based implementation

provided by CoViAR to extract I, MV and R from MPEG4 videos.

2.3.2 IP TSN for Compressed Video Recognition

Existing compressed domain methods (Fig. 2.2a,2.2b) create multi-streams for compressed-

domain modalities to replace RGB and fuse with another temporal stream. As MV is computed

from block displacement and hence of low resolution, and both MV and R contain a lot of noises,

prior works use accumulation or pixel-level OF reconstruction to enrich the discriminative power

for these weak modalities. The limitation with their framework is that they ignore the encoding

structure and the different information embedded in different frame types. While the sparse I-

frames offers rich still scene information, the dense P-frames are stronger for temporal modeling.

Also MV and R are well-aligned and share motion information, which implies separate modeling

is not optimal.

To better utilize the compressed-domain modalities, we propose a new non-symmetric frame-

work, IP TSN, illustrated in Fig. 2.2c, which is composed of an I-stream which uses I for appear-

ance modeling, and a P-stream which fuses MV and R for motion modeling. Final prediction is

computed from late fusion of these two streams. We split a video into different frame types and

feed them into separate networks for the spatial and temporal modeling purposes. Following TSN

style [9] sampling as in DMC-Net and CoViAR, we split the video into N segments sample one

I-frame and one P-frame each segment, as is shown in Fig. 2.1.

13



Action Class 
Scores

OF teacher 
network

Classification 
Loss

P stream
2D Net 3D Net

2D Net 3D Net

fc

Feature 
Distance Loss
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ResNet18 [39]. The P-stream takes as input a clip of stacked MV and R under supervision of
ground truth action labels. Furthermore, during training, we exploit a pre-trained OF net as teacher
to distill its OF based features. At inference time, only the P-stream (blue parts) remains.

Based on the properties of the compressed video, we propose to use different network archi-

tectures for the I-stream and P-stream. Since I-frames have fine details, we use a heavy 2D CNN,

ResNet152, as is used in [14] to extract still scene information. On the other hand, MV and R of

P-frame are weaker and noisy modalities that contain rich motion information. Recent works [28,

26] have shown 3D CNNs at the top layers help extract high level motion features. Hence we use a

combine 2D-3D Net for efficient motion modeling. Fig. 2.3 illustrates the details of P-stream. For

better comparison and efficiency, we use a 2D-3D ResNet18 where the later half of the layers are

inflated into 3D. Details are given in Sec. 2.4, where we also study how the architectures of I- and

P-streams affect the performance.

2.3.3 P-frame Enhancement with Flow Feature

OF is computed from pixel movement between consecutive frames and hence is a full-resolution

motion representation of fine details compared to MV and R. It is widely used as the input modality

of temporal stream and is proved to be effective [9, 20]. DMC-Net proposes to reconstruct OF-like

motion cues at full resolution from MV and R. Recent works [40, 41] demonstrate that the discrim-

inative information embedded in OF is more important than the pixel-level accuracy. As a result,
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we propose to use high-level OF feature as supervision to better guide MV and R.

As shown in Fig. 2.3, at training time, the P-stream network is trained with a standard cross-

entropy loss using the ground truth class action label as well as the the feature output of a pre-

trained OF network as supervision for knowledge distillation. OF network is pretrained on the

same dataset with classification loss. Then the OF network weights are frozen when training the

P-stream network. At test time, the OF network is discarded and only the P-stream network (blue

part) remains. Note that compared to DMC-Net, we do not need extra layers besides the motion

stream feature extractor, so our method is more efficient. Also the flow distillation method is

generic and can be applied to any stronger classifiers to boost the performance.

We train our P-stream using the combination of the classification loss and the loss between OF

and P-stream features:

L𝑝 = L𝑐𝑙𝑠 + 𝜆L𝑑 ( 𝑓𝑝, 𝑓OF) (2.1)

where L𝑐𝑙𝑠 is the cross-entropy loss of P-stream, and L𝑑 is the Euclidean distance between P-

stream feature 𝑓𝑝 and OF feature 𝑓OF. 𝜆 is the feature loss weight. We experiment on different

choices of 𝐿𝑑 function and its weight 𝜆, and finally choose 𝐿1 loss with 𝜆 = 50 which gives the

best balance between two losses. Note that in general, we could have

L𝑝 = L𝑐𝑙𝑠 + 𝜆1L𝑑 ( 𝑓𝑝, 𝑓OF) + 𝜆2L𝑠 (𝑙𝑜𝑔𝑖𝑡𝑝, 𝑙𝑜𝑔𝑖𝑡OF) (2.2)

where L𝑠 the soft label cross-entropy loss as is widely used in knowledge distillation. But we find

in Section 2.4.4 that it actually downgrades the performance. Our insight to this is that MV and R

can capture different properties of the video stream from OF. Also, R has some object boundary

information that OF does not capture but are useful for recognition. Hence we do not want to

simply reproduce the classification output of OF. Instead, we only want OF to help extract more

useful motion information from MV and R.
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2.4 Experiments: Action Recognition

In this section we describe the implementation details and present the performance of our

framework for the action recognition task. We will show that our flow-distilled IP TSN achieves

both high accuracy and high efficiency.

2.4.1 Datasets and Metrics

UCF-101[42], which contains 13320 videos from 101 action categories. 3 training/testing splits

are offered. The performance result is averaged over splits.

HMDB-51[43], which contains 6766 videos from 51 action categories. 3 training/testing splits are

offered. The performance result is averaged over splits.

Kinetics [20], which contains about 246k training videos and 20k validation videos from 400

action categories.

Metrics: We report top-1 class prediction accuracy. For efficiency measurement, we report GFLOPs

and Videos Per Second [28] using 16-frame clip unless specified.

2.4.2 Implementation

We here detail our training and testing parameters and procedures.

Training

We follow the same setting as CoViAR and DMC-Net where videos are resized to 340 × 256

and we use 224 × 224 random cropping and random flipping for data augmentation. For I-stream,

we employ a ResNet152 classifier and train it with cross-entropy classification loss exactly as

CoViAR and DMC-Net. The P-stream network is a combination of 2D and 3D CNNs. CoViAR

and DMC-Net use ResNet18 [39] for P-frame modalities. For better comparison and efficiency,

we use the same backbone for P-stream. We take the layers of ResNet18 up to conv3x layer for 2D

Net, where the output feature has 28×28 spatial dimension. For 3D Net, we take 3D-ResNet18 [28,
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8] from conv4x until the end. In effect, we replace the later half of the ResNet18 layers with its 3D

version. Hence our P-stream is a 2D-3D network.

In practice, we first train a 2D ResNet18 taking the stacked MV and R (MR) as input with

classification loss only. We similarly train our OF teacher network as a 2D ResNet18 using OF

as input with cross-entropy loss. Then, we perform a first round of distillation of the OF fea-

tures. Then, we initialize the 2D-3D Res18 with the MR 2D-ResNet18 weights, where the 2D

part simply copies the weights and the 3D part inflate the weights from the corresponding layers

and we initialize similarly the OF teacher 2D-3D Res18 with copy and inflation from the OF 2D

ResNet18 network weights. We then train both 2D-3D networks with cross-entropy loss. Finally,

the P-stream network is initialized with the MR 2D-3D Res18 and trained with both cross-entropy

loss and L1-loss with the average-pooled features of the frozen teacher network as discussed in

Sec. 2.3.3.

Inference

During inference, we uniformly sample 16 I-frames and P-frames with a center crop of size

224×224 from each modality, which is less than CoViAR and DMC-Net that use 25-frame inputs.

I-stream prediction score is averaged over 16 I-frames. The 16 P-frames form one clip input and

is fed into the network to get one P-stream class scores. The final prediction is calculated through

late fusion of the I-stream and P-stream scores.

2.4.3 Flow-Distilled IP TSN Performance

Fig. 2.4 shows the accuracy speed trade-off with our method compared to using OF-stream

instead of P-stream and DMC-Net and CoViAR. All the numbers are reported on 16-frame input

each with one central crop. Our method clearly exhibits the best trade-off with high speed and

high accuracy. We also additionally compare with decoded video methods on the left side of

Tab. 2.1 and give detailed timings. Since our P-stream network requires clip input, we measure

the inference time per video [28]. Speed measurements are performed using one NVIDIA TITAN
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Table 2.1: Comparison of efficiency and accuracy among two stream methods. All compressed-
domain networks take 16-frame input with one crop. TSN [9] and I3D [20] are test with their
default settings.

Decoded Video
(RGB+Flow)

Compressed Video
(I, MV , R) OF

TSN [9] I3D [20] CoViAR [14] DMC-Net [15]
I-stream

(ours)
P-stream

(ours)
IP TSN
(ours)

OF I + OF

Time
(ms)

Preprocess 1200 1200 14.7 14.7 3.3 11.4 14.7 1200 1200
Spatial 12.2 45.5 55.3 55.3 43.1 - 43.1 - 43.1

Temporal 12.2 33.7 - 12.8 - 8.5 8.5 8.5 8.5
Total 1224.4 1279.2 70 82.8 46.4 8.5 66.3 1208.5 1251.6

VPS 0.8 0.8 14.3 12.1 21.5 50.2 15.1 0.8 0.8
GFLOPs 33 + 33 436 + 401 243.4 275.6 185.6 33.9 219.5 185.6 33.9

Acc. (%)
HMDB-51 68.5 80.7 56.5 59.0 51.5 61.8 69.1 60.0 69.2
UCF-101 94.0 98.0 89.7 90.3 86.7 87.1 93.4 84.9 93.7
Kinetics - 71.6 65.4 65.4 62.4 33.8 67.1 28.1 67.2

RTX GPU with CUDA 10 and cuDNN 7.5.0. To measure the inference speed for CoViAR and

DMC-Net, as well as I-stream, we take a batch of 16 frames and feed into the 2D Nets. To measure

the inference speed for P-stream, we take one clip of 16 frames as one batch. Each frame is

centered-cropped without any flipping. The reported results of TSN [9] and I3D [20] are based

on their default settings, respectively. As Tab. 2.1 shows, our P-stream (50.2VPS) runs more

than 60x faster than OF (0.8VPS). The full IP TSN runs about 18x faster than using OF instead.

Compared to the state-of-the-art compressed-domain methods, our IP TSN significantly improves

the accuracy while decreasing the GLOPs and increasing VPS both by roughly 20%.

2.4.4 Ablation Study

Contributions from IP TSN and Flow Distillation. Since we propose both a new framework

and a new compressed-domain modality enhancement method, we evaluate how each component

contributes to the accuracy and efficiency in Tab. 2.2. We compare our proposed framework, IP

TSN(Fig. 2.2c), against the existing compress-domain framework, CoViAR TSN(Fig. 2.2a,2.2b).

Under each framework, we ablate our flow distillation method and compare with DMC generator.

Specifically, MR(raw) refers to training MV-R with cross-entropy loss only. MR w/ DMC uses

DMC generator to reconstruct OF-like motion cues from MR. Distilled MR refers to our work that

uses flow feature as extra supervision in addition to ground truth labels. (1) We can observe the
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Figure 2.4: Accuracy vs Speed at inference time. Input of each network is 16-frames with one
crop. Results on HMDB51 and UCF101 are averaged over 3 splits. Our IP TSN achieves sim-
ilar accuracy compared to IP TSN w/ Flow while being about 20× faster, and as fast as other
compressed-domain video recognition methods that have much lower accuracy.

benefit of IP TSN framework by comparing each row under CoViAR TSN and IP TSN respectively.

Our IP TSN significantly improves the accuracy with slight speedups. This validates that dense

P-frame needs strong temporal modeling; (2) We can see the benefit of flow feature distillation

by comparing the rows within each framework. Flow distillation significantly enhance the weak

P-frame modalities (row 1. vs 3., 4. vs 6.). Compared to DMC, flow distillation brings substantial

speed improvement and performance gains especially under our IP TSN setting.

Flow Distillation Loss. We study commonly used variants in knowledge distillation: L1 loss on

last averaged pooled feature (the adopted choice), soft label cross-entropy loss with temperature =

8, and the combination of both which can be exploited jointly in the general loss function intro-
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Table 2.2: Ablation on OF feature supervision and IP TSN framework. Result is averaged over
three splits for HMDB51 and UCF101. Both our IP TSN framework and OF distillation brings
substantial improvement on accuracy and speed.

Motion(MR) branch Distill? 2D-3D? VPS HMDB51 UCF101

CoViAR TSN
1.MR(raw) × × 14.3 59.1 90.2

2.MR w/DMC × × 12.1 61.8 90.9
(I+MV +R+MR) 3.Distilled MR[ours] ✓ × 14.3 62.1 91.1

IP TSN[ours]
4.MR(raw) × ✓ 15.1 64.9 92.5

5.MR w/DMC × ✓ 12.9 68.0 92.9
(I+MR) 6.Distilled MR[ours] ✓ ✓ 15.1 69.1 93.4

Table 2.3: Top-1 Accuracy on HMDB51 with different training losses and type of teacher flow.
Feature distance gives the best result, as it probably induces a better complementarity with the
cross-entropy loss with labels. The result is averaged over splits.

Flow
Type

L1 loss
weight 𝜆2

Soft label loss
weight 𝜆2

IP TSN
Acc.

I +OF
Acc.

TV-L1

0 50 66.0

69.2
25 50 67.1
25 25 68
50 50 68
50 0 69.1

PWC 50 0 67.0 66.3

duced in eq. (2.2). As shown in Tab. 2.3, the soft label cross-entropy alone performs worst and

actually hurts the performance of the L1 loss when combined with it. This may indicate that the

L1 loss on features induces a better complementarity with the cross-entropy loss on the ground

truth labels than the soft-label cross-entropy loss. Hence we use only the last pooled feature as

supervision with L1 loss in all other experiments. We also experiment on different types of teacher

flow in Tab. 2.3. TV-L1 flow is stronger than PWC flow [12]. But P-stream can always get similar

or even better performance with our distillation technique, no matter what kind of teacher flow is

used.

Number of Streams. We argue that CoViAR TSN requires multi-streams mainly because it

doesn’t fully exploit P-frame modalities. In Tab. 2.4, with our 2D3D architecture, adding extra

MV and R like CoViAR TSN doesn’t necessarily help. This shows our framework is fully utilizing

the P-frame modalities.

Non-symmetric Architecture Search. Based on the encoding structure, we propose a non-
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symmetric IP TSN. For P-stream architecture search, we report in Tab. 2.5 how the inflation po-

sition affects both the performance and computational cost. Note that ’conv1.x’ is equivalent to

3D Res18 and ’conv5.x’ is equivalent to 2D Res18 (same as CoViAR TSN with Distilled MR in

Tab. 2.2). We choose to inflate at ’conv3.x’ as it gives the best accuracy-efficiency trade-off. For

I-stream architecture search, Tab. 2.6 gives the result on different I-stream architecture and input

length, where we fix the P-stream architecture as 2D-3D Net we have proposed. We can see that

2D-3D Res18 is even worse than 2D Res18 on I-stream. One reason for this is that I-frame are rare

in short videos hence hardly provide any useful spatiotemporal information. However, increasing

the clip length improves the performance substantially. We get our best results with ResNet152.

The architecture search results for I- and P-stream validates our non-symmetric design concept.

We also report in Fig. 2.5 the accuracy as a function of GFLOPs obtained by our method and

the DMC-Net approach using different I-stream network architectures: ResNet18, ResNet34, and

ResNet152, and how performance changes with either 8 or 16 frames as input for each video. We

see that at a same number of GFLOPs our method always outperforms DMC-Net.

OF vs P-stream We report on the right side of Tab. 2.1 the performance of the spatial I-stream, and

of the temporal stream either OF or our P-stream or separately. We also report the performance

of two-streams network with either P-stream or OF as the motion stream. P-stream is roughly

60× faster than OF while enjoying a higher accuracy. When combined with I-stream, P-stream

is < 0.5% lower than OF-stream. We can observe that the OF stream pre-processing time is

prohibitive and does not come at any accuracy benefit compared to our P-stream.

Table 2.4: Top-1 Accuracy on HMDB51 with different number of streams. CoViAR TSN (2D
Res18 based) requires multiple streams to get the best performance, which does not necessarily
help in our setting (2D3D Res18 based). Our IP TSN already fully utilizes the P-frame modalities.

Stream
Backbone MV R Distilled MR Acc.

2D Res18
✓ ✓ ✓ 62.1

✓ 60.9

2D3D Res18
✓ ✓ ✓ 68.2

✓ 69.1[ours]
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Table 2.5: Accuracy on HMDB51 split3 and GLOPs at different inflation layer positions. We
choose to inflate at conv3.x as it gives the best accuracy-complexity tradeoff.

Top 1 Acc GFLOPs
conv1.x 61.4 86
conv2.x 70.2 50
conv3.x 69.6 34
conv4.x 66.5 35
conv5.x 62.1 29

2.4.5 Comparison with State-of-the-Art

We finally compare our IP two-stream network with current state-of-the-art methods in Tab. 2.7.

Our method outperforms all other compressed-domain methods significantly by 7% on HMDB51,

2.5% on UCF101 and 1.7% on Kinetics. We have brought the compressed-domain methods per-

formance significantly closer to the decoded video methods. Without pre-training on large-scale

video datasets, we are competitive with many decoded methods, apart from the most expensive

two-stream methods using heavy architectures such as I3D. For example, our proposed IP TSN

achieves comparable or better performance compared to ECO and ECO Lite [28], a recently pro-

posed decoded-video based efficient video understanding model, under the same amount of input

frames (16). Note that as is shown in Tab. 2.1, all the decoded two stream based networks need to

compute optical flow, which is often the main bottleneck of real time processing. However, we are

able to greatly speed up the process while maintaining a comparable performance.

Table 2.6: Accuracy on HMDB51 using different I-frame backbones and input length. The result
is averaged across 3 splits.

I frame
backbone

seg I-stream
Acc.

P-stream
Acc.

VPS HMDB51
Acc.

2D-3D Res18 16 40.5 61.9 25.1 66.8

ResNet 18
8 44.6 53.1 57.7 60.1

16 45 61.9 52.1 66.2

ResNet 152
8 51.4 53.1 24 63.6

16 51.8 61.9 15.1 69.1
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Figure 2.5: Accuracy vs GFLOPs at inference time. Results on are averaged over 3 splits. This
shows how testing segments and I-stream backbone affects the result. Three node sizes corresponds
to ResNet18, 34, 152 respectively. Solid and dashed line refer to testing with 16-frames and 8-
frames respectively. Orange nodes are result on IP-TSN, and blue nodes are on DMC-Net.

2.4.6 Additional Ablation Study

Modalities Both CoViAR and DMC-Net include separate networks for I,MV,R as spatial stream,

and DMC-Net further includes a DMC network as temporal stream. Our IP TSN instead only use

I frames as the spatial stream, and use stacked MV and R as temporal stream under the guidance

of OF, which achieves better accuracy as well as efficiency. We also evaluate the result of adding

individual streams of MV and R to the spatial stream, like what is proposed in CoViAR and DMC-

Net. As is demonstrated in Table 2.8 . 𝐶𝑜𝑉𝑖𝐴𝑅 + 𝑃 refers to fusing ResNet-18 based MV and
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Table 2.7: Accuracy on HMDB-51, UCF-101 and Kinetics for both state-of-the-art compressed-
domain and decoded-domain methods.

HMDB-51 UCF-101 Kinetics
Compressed video based methods

EMV-CNN [29] 51.2 (split1) 86.4 -
DTMV-CNN [37] 55.3 87.5 -
CoViAR [14] 59.1 90.4 65.4
DMC-Net [15] 61.8 90.9 65.4
CoViAR TSN w/ distilled MR [ours] 62.1 91.1 -
IP TSN [ours] 69.1 93.4 67.1
Decoded video based methods (RGB only)

Frame-level classification
ResNet-50 [44] 48.9 82.3 61.3
ResNet-152 [44] 46.7 83.4 63.0

Motion representation learning
ActionFlowNet [18] 56.4 83.9 -
PWC-Net (ResNet-18) + CoViAR [12] 62.2 90.6 -
TVNet [45] 71.0 94.5 -

Efficient spatio-temporal modeling
ECO Lite16 𝑓 [28] 68.2 91.6 64.4
ECO16 𝑓 [28] 68.5 92.8 69.0
ECO𝐸𝑛 [28] 72.4 94.8 70.0
Decoded video based Two Stream methods (RGB + Flow)
Two-stream [19] 59.4 88.0 -
Two-Stream fusion [10] 65.4 92.5 -
I3D [20] 80.7 98.0 74.2
R(2+1)D [26] 78.7 97.3 75.4

R. This is equivalent to fusing CoViAR with our P-stream. 𝐼𝑃 + (𝑀𝑉 + 𝑅)2𝑑−3𝑑 refers to fusing

2D-3D ResNet-18 based MV and R with our IP TSN. Following DMC-Net and CoViAR, we train

MV and R streams with cross-entropy loss and fuse all the scores for final prediction. We can see

from the result that adding MV and R does not improve the accuracy. This validates that our IP

TSN already exploits the necessary spatial and temporal information repectively. MV and R do

not offer new information while possibly adding noises. IP TSN performs at the best accuracy as

well as efficiency.

Alternative 3D Sub-networks Besides inflation from 2D to 3D, inserting temporal convolution af-

ter spatial convolution to construct (2+1)D networks is also a promising option for spatial-temporal

modeling [46]. We also evaluate using (2+1)D network as 3D sub-network on HMDB-51. We first

train the (2+1)D teacher network using optical flow as input for P stream. The average accuracy
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Table 2.8: Top 1 Accuracy on HMDB-51 by adding MV and R streams to IP TSN. Network
architectures are specified for each modality . Additional modalities do not improve the accuracy.
The result is averaged over splits.

IP TSN(ours) CoViAR+P IP+(MV+R)2d-3d

Spatial
I Res152 Res152 Res152

MV - Res18 2D-3D Res18
R - Res18 2D-3D Res18

Temporal MR 2D-3D Res18 2D-3D Res18 2D-3D Res18
Top 1 Acc. 69.1 66.1 68.9

on three splits is 69.6%, which is slightly lower than the performance (69.8%) of the inflated 3D

version. We then train (2+1)D IP TSN, under the guidance of the teacher network using optical

flow. (2+1)D IP TSN achieves an average accuracy of 69.0%, which is slightly lower than the

performance (69.1%) of the inflated 3D version. Therefore, we use inflated 3D for IP TSN in all

the experiments.

2.5 Experiments: Action Detection

As discussed in Sec. 2.3.3, flow distillation can apply to any OF-based classifiers to get signif-

icant speedup. In this section, we evaluate our flow distillation method on action detection task.

Datasets and Metrics. We test on VIRAT[47], a public action detection benchmark in long

surveillance videos. It contains 64 training and 54 validation videos from 18 action categories.

We report mean probability of missing detection (p-miss) at fixed rates of false alarm per minute

(RFA) [48] on the validation set. The lower the mean p-miss value, the better the performance.

Implementation. We integrate our flow distillation method into an OF-based TRI-3D pipeline

proposed by [49], and replace their OF inputs with P-frame modalities. Their original OF model

is used only in the training stage for feature distillation. We follow their proposal generation and

preprocessing steps. For each action proposal, our inputs are 64-frame MV and R of size 224*224

for both training and testing.

Main Results. Fig. 2.6a shows the speed breakdown for the original TRI-3D pipeline, where OF

computation is one of the speed bottleneck that consumes ∼ 20% of the total time. We are able to
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completely zero-out the OF computation time while maintaining the performance about 1% from

the original baseline, as is shown in Fig. 2.6b and Fig. 2.6c . Compared to DMC method, our

method achieves much better accuracy (3.6% gain) and faster speed.

Optical Flow

(a) TRI-3D Pipeline Speed Chart

Flow Computation Time (ms/frame) Mean P-miss (%) at 0.15rfa
OF TRI-3D Baseline 130 61.4
DMC w/ TRI-3D 7.6 65.9

Distill w/ TRI-3D[ours] 0 62.3

(b) Speed-Accuracy Tradeoff. We reach the maximum efficiency while outperforming
DMC by large margins.
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Figure 2.6: Action detection results on VIRAT. We are able to achieve similar performance with
the OF baseline with zero flow computation. (light blue in the speed chart)
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(a) Military Parade (b) Pizza Tossing

(c) Archery (d) Golf Swing

Figure 2.7: Saliency Maps generated by Grad-CAM method [50]. The first row is the original
video clip. Row 2 is the map from our flow-distilled model. Row 3 is from OF teacher. Row 4
is from DMC-Net [15]. Our flow-distilled model is able to focus on the action regions precisely,
while other two pay false attention which leads to incorrect class prediction.

2.6 Visualizations

We use the Grad-CAM method [50] to generate the saliency maps which localize the most

discriminative video regions of the ground truth class. We apply Grad-CAM on our flow-distilled

model, OF teacher model as well as DMC-Net with the same ResNet-18 backbone. The maps

generated with respect to OF or P-frame modalities are then plotted on corresponding RGB frames

for better visualization.

Fig. 2.7 visualizes 7-frame clips from different videos, where our flow-distilled model success-

fully finds the correct class while DMC-Net and OF teacher fail. Row 1 in each example gives the

original video clip; Row 2 is the Class Activation Map generated from flow-distilled model; Row

3 is from OF teacher model; Row 4 is from DMC-Net. We can observe that DMC-Net and OF
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teacher deviates from the moving areas and pay false attention to other regions, while our flow-

distilled model is able to localize action regions precisely. For example, in Military Parade, our

flow-distilled method focuses on the moving soldiers but the other two look at the house in the

background. This shows that P-frame modality contains rich motion information and our flow-

distilled method performs well in enhancing the discriminative power of P-frame.

2.7 Summary

In this chapter, we tackle the problem of adapting decoded-domain video model 𝑐𝑀 to compressed-

domain, where we provide a solution with 𝛿 = 0. Specifically, we propose a new IP two-stream

framework for compressed video understanding, where the different frames (I and P) of the com-

pressed representation are exploited for different modeling purposes (spatial and motion, respec-

tively). We also propose an efficient P-stream training strategy using an OF feature supervision to

train a 2D-3D architecture for the motion stream. Our P-stream is 60× faster than an OF stream

with similar accuracy. The overall framework is highly efficient as it can process 15 videos per

second at a high level of accuracy, much faster than real time. Evaluation on both action recogni-

tion and detection benchmarks validate our method and shows significant improvement over prior

compressed domain action recognition method and approach decoded video methods performance.

We show in this chapter the potential of efficient data modality and showcase how we can adapt

mode 𝑐𝑀 for the new modality with distillation techniques.
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Chapter 3: Adapting Model for Low-Bit Representation

In practical vision applications, it is always a basic but crucial question to ask: "How do we

store vision data?", given the substantial sizes of visual signals. In this chapter, we pick video as a

typical visual data coming with storage and privacy issues. and seek to provide a machine learning

solution from the perspective of data minimization. Specifically, we adapt a deep learning model

to learn and extract task-specific low-bit representations that provide unique practical advantages.

Figure 3.1 shows a high-level illustration of the framework we’d use, where we instantiate 𝛿 as an

intermediate bottleneck, serving as a learnable feature compressor.

3.1 Introduction

Video data exemplifies various challenges with machine learning data: It is large and has pri-

vacy issues (e.g. faces and license plates). For example, an autonomous robot driving around may

collect gigabytes of video data every hour, quickly filling up all available storage with potentially

privacy-sensitive information. Yet, video is useful for a variety of computer vision applications,

e.g. action detection [52], object tracking [53], and video question answering (VideoQA) [54, 55].

With increasing adoption of computer vision applications, and mobile devices, efficiently storing

video data becomes an increasingly important problem.

VideoQA [54, 55] is a general machine learning task that requires analyzing video content

to answer a general question. As such, it contains elements of multiple video problems, such as

classification, retrieval, and localization. The questions in VideoQA are not all available before-

hand, which means that the model needs to extract general semantic information that is still useful

enough to answer a diverse set of questions, such as any question about the task “Human Activ-

ities”, for example. Concretely, the system may have been trained on queries including “Is the
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Figure 3.1: In this chapter, 𝛿 serves as an intermediate feature compressor to encode task-specific
low-bit features that provides storage efficiency and privacy advantages.

person laughing?”, and at inference time, the system needs to record and store a video, and may

later receive the query “Do they look happy?” which was not seen at training time. In contrast with

classification problems where the system could potentially store the answer to all possible queries,

a VideoQA system needs to keep enough information to answer any query about the video.

While early video analysis used hand-crafted visual descriptors to represent videos, recent

advances in deep neural networks are able to learn highly abstracted features [56, 57, 58]. These

features still contain more information than what is actually needed in a specific task. For example,

a popular video encoder network ResNet3D [51] extracts a 512-dim floating number feature, which

requires 16,384 bits. If the task is to only answer questions about the happiness of a person, such

as “do people look happy”, we theoretically only need 1-bit of information to accomplish that

task by encoding the existence of person + laughing. A single 16,384-bit feature encodes much

more information than required to answer this question. Moreover, it is hard to interpret what

information is captured by continuous features, and hence hard to guarantee that the features do

not contain any sensitive information, which may carry privacy concerns.

Much of recent work on VideoQA focuses on learning stronger vision features, improved ar-

chitectures, or designing better multi-modal interaction [59, 60, 1, 61, 62]. This chapter instead

investigates how many bits are really needed from video in current VideoQA tasks. To this end, we

introduce a novel “Few-Bit VideoQA” problem, which aims to accomplish VideoQA where only

few bits of information from video are allowed. To our knowledge, the study of few-bit features is
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Is the person laughing?

When are they laughing?
Do they look happy?

Figure 3.2: We introduce the problem of Few-Bit VideoQA where only few bits of video informa-
tion is allowed to do VideoQA tasks. Our proposed method compresses the features inside a neural
network to an extreme degree: A video input of 1 MB can be compressed down to 10 bits, and
still solve common question-answering tasks with a high degree of accuracy, such as “Is someone
laughing?”. This has both storage and privacy implications. Here the Target Task is all ques-
tions related to laughing, a subset of all possible tasks in the Task Space. Regular Features have
additional task-irrelevant information visualized with questions and bits of corresponding color.
Regular Features corresponds to 512 floating point features from a state-of-the-art video network,
such as [51].

an understudied problem, with applications to storing and cataloging large amounts of data for use

by machine learning applications.

We provide a simple yet effective task-specific compression approach towards this problem.

Our method is inspired by recent learning-based image and video coding [63, 64, 65, 66, 67, 68,

69, 70, 71, 72], which learns low-level compression with the goal of optimizing visual quality.

In contrast, our method looks at compressing high-level features, as shown in Figure 3.2. Given

a video understanding task, we compress the deep video features into few bits (e.g., 10 bits) to

accomplish the task. Specifically, we utilize a generic Feature Compression module (FeatComp),

which can be inserted into neural networks for end-to-end training. FeatComp learns compressed

binarized features that are optimized towards the target task. In this way, our task-specific feature

compression can achieve a high compression ratio and also address the issue of privacy. This

approach can store large amounts of features on-device or in the cloud, limiting privacy issues for
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Table 3.1: Overview of different levels of feature storage and privacy limitations.

Data Amount Can Identify User? Can Discriminate User?

Original Data 1,000,000 bits (e.g. MPEG4 video) Yes Yes
Regular Feature 16,000 bits (e.g. 512 floats) Yes (Can be inverted) Yes
Regular Compressed Feature 100 bits No Yes
Task-Compressed Feature 10 bits No No (k-Anonymity [73])

stored features, or transmitting only privacy-robust features from a device. Note that this work is

orthogonal to improvements made by improved architectures, shows insights into analyzing how

much video data is needed for a given VideoQA dataset, and provides a novel way to significantly

optimize storage and privacy risks in machine learning applications.

10-bits is a concrete number we use throughout this chapter to demonstrate the advantage of

tiny features. While 10-bits seems like too little to do anything useful, we surprisingly find that

predicting these bits can narrow down the solution space enough such that the model can correctly

pick among different answers in VideoQA [54, 55]. Different tasks require different number of

bits, and we see in Section 3.4 that there are different losses of accuracy for different tasks at the

same number of bits. Storing only 10 bits, we can assure that the stored data does not contain any

classes of sensitive information that would require more than 10 bits to be stored. For example,

we can use the threshold of 33 bits (8 billion unique values) as a rule-of-thumb threshold where

the features stop being able to discriminate between people in the world. In Table 3.1 we show

different levels of features and how they compare to this threshold. At the highest level, Original

Data, we would have the full image or video with all their privacy limitations.1 Even with feature

extraction, various techniques exist to invert the model and reconstruct the original data [74, 75].

Using Regular Compressed Features (i.e. off-the-shelf compression on features in Section 3.5.1 or

task-independent compression in Section 3.4.1) would still pose some privacy threats. Our Task-

Compressed Features, provide privacy guarantees from their minimal size.

We experiment on public VideoQA datasets to analyze how many bits are needed for VideoQA

tasks. In our experiments, the “Task” is typically question types in a specific dataset, such as

1In the MSRVTT-QA dataset the videos are 630KB on average, which consists of 320×240-resolution videos, 15s
on average.
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TGIF-Action [76], but in a practical system this could be a small set of the most common queries,

or even a single type of question such as “do people look happy in the video?”. Note that while the

“Task” of all questions in a single dataset might seem very diverse and difficult to compress, the

task is much more narrow than any possible question about any information in the video, such as

“What color is the car?”, “What actor is in the video?”, etc.

In a nutshell, in this chapter, we instantiate M as a pre-trained video-language model and

aims to adapt it for low-bit representation. We introduce a novel Few-Bit VideoQA problem,

where only few bits of video information is used for VideoQA; and we propose a simple yet

effective task-specific feature compression approach that learns to extract task-specific tiny features

of very few bits, where we insert a feature compressor 𝛿 as an intermediate bottleneck for M.

Extensive study of how many bits of information are needed for VideoQA. We demonstrate that

we lose just 2.0%−6.6% in accuracy using only 10 bits of data, which provides a new perspective

of understanding how much visual information helps in VideoQA.

The outline of the chapter is as follows. In Section 3.2, we review related work in VideoQA,

image/video coding and deep video representations. In Section 3.3 we introduce the Few-Bit

VideoQA problem, and our simple solution with feature compression. In Section 3.4 we discuss

several experiments to analyze and validate our approach. Finally, in Section 3.5 we demonstrate

applications of this novel problem, including distributing tiny versions of popular datasets and

privacy.

3.2 Related Work

Video Question Answering VideoQA is a challenging task that requires the system to output

answers given a video and a related question [77, 76, 54, 78, 79]. Recent approaches include

multi-modal transformer models [1, 62] and graph convolutional networks [80]. We instead look

at VideoQA under limited bits, which shares some philosophy with work that has looked at how

much the visual content is needed for Visual Question Answering [81].

Image and Video Coding Image and video coding is a widely studied problem which aims to
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compress image/video data with minimum loss of human perceptual quality. In the past decades,

standard video codecs like HEVC [82], AVC [83], image codes like JPEG [84] have been used for

compressing image/video data. More recently, learning-based image/video compression [63, 64,

65, 66, 67, 68, 69, 85, 86] has been proposed to replace the codec components with deep neural

networks that optimize the entire coding framework end-to-end, to achieve better compression

ratios. Some works ?? explore compressed image/video formats and design specific networks

for efficient recognition. All of these existing approaches compress with the goal of pixel-level

reconstruction. Our approach is inspired by these works but is applied under a different context —

we aim to solve a novel Few-bit VideoQA problem.

Deep Video Representation Deep neural networks have been shown effective to learn compact

video representation, which is now a favored way to store video data for machine learning applica-

tions. With the emergence of large-scale video datasets like Kinetics [56] and HowTo100M [57],

recent advances in representation learning [59, 60, 1, 61, 62, 87] extract continuous video features

which contain rich semantic information. Such pre-computed video features can be successfully

applied to video understanding tasks like action detection, action segmentation, video question an-

swering, etc [1, 61, 62]. However, deep video features could still contain more information than

what’s actually needed by a specific task. We instead focus on learning tiny video features, where

we aim to use few bits of data to accomplish the target task.

3.3 Few-Bit VideoQA

In this section, we first establish the problem of Few-Bit VideoQA; then provide a simple and

generic task-specific compression solution; finally we introduce our simple implementation based

on a state-of-the-art VideoQA model.

3.3.1 Problem Formulation

In a standard VideoQA framework, a feature extractor (e.g., ResNet3D [51]) is applied to a

video sequence to extract the video embedding 𝑥, which is a high-level and compact representa-
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Figure 3.3: Pipeline of our generic feature compression approach (FeatComp) towards Few-Bit
VideoQA, which follows the procedure of encoding, binarization and decoding. It has learned to
only encode information relevant to the questions of interest through task-specific training.

tion of the video, normally a vector composed of floating point numbers. We write M(·) as the

VideoQA task performer, and the output from M(𝑥, 𝑞) is the predicted answer in text, where 𝑞

refers to the text embedding of the question. In our context, we assume M(·) is a neural network

that can be trained with an associated task objective function Ltask.

Though the compact feature 𝑥 already has a much smaller size compared to the original pixel

data, it still raises storage and privacy concerns as discussed in the introduction. To this end, we

introduce a novel problem of Few-Bit VideoQA, where the goal is to accomplish VideoQA tasks

with only few bits of visual information, i.e., we want to perform M(𝑥, 𝑞) with the size of 𝑥 less

than 𝑁 bits, where 𝑁 is small (e.g., 𝑁 = 10).

3.3.2 Approach: Task-Specific Feature Compression

We propose a simple yet effective approach towards the problem of Few-Bit VideoQA. As

shown in Figure 3.3, we insert a feature compression bottleneck (FeatComp) between the video

feature extractor and task performer M to compress 𝑥. We borrow ideas from compression ap-

proaches in image/video coding [70, 71, 72]. But rather than learning pixel-level reconstruction,

we train the compression module solely from a video task loss, which has not been explored before

to our knowledge. In fact, FeatComp is a generic module that could be applied to other machine

learning tasks as well.
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Encoding and Decoding FeatComp follows the encode-binarize-decode procedure to transform

floating-point features into binary, and then decode back to floating-point that can be fed into the

task performer. In encoding, we first project 𝑥 to the target dimension, 𝑥′ = 𝑓enc(𝑥), where 𝑥′ ∈ R𝑁

and 𝑁 is the predefined bit level to compress into. Binarization is applied directly on feature

values; so we map the feature values to a fixed range. We use batch normalization (BN) [88] to

encourage bit variance, and then a hyperbolic function 𝑡𝑎𝑛ℎ(·) to convert all the values to [−1, 1].

Binarization is inherently a non-differentiable operation, in order to incorporate it in the learning

process, we use stochastic binarization [70, 71, 72] during training. The final equation for the

encode-binarize-decode procedure is:

𝑥dec = FeatComp(𝑥) = ( 𝑓dec ◦ BIN ◦ tanh ◦ BN ◦ 𝑓enc) (𝑥) (3.1)

where ◦ denotes function composition. The output after the binarization step is 𝑥bin ∈ {0, 1}𝑁 ,

which is the 𝑁-bit compressed feature to be stored.

Learning Task-Specific Compression Our FeatComp is generic and can be inserted between any

usual feature extractor and task performer M(·). The task performer will instead take the decoded

feature to operate the task: M(𝑥dec) or M(𝑥dec, 𝑞). To compress in a task-specific way, FeatComp

is trained along with M(·) with the objective L = Ltask, where Ltask is the target task objective.

Simple Implementation Our FeatComp can be easily implemented into any VideoQA models. As

an instantiation, we choose a recent state-of-the-art model ClipBERT [62] as our baseline, and add

our compression module to study the number of bits required for VideoQA. Specifically, ClipBERT

follows the similar pipeline as in Figure 3.3. We then insert FeatComp after feature extractor.

For encoding and decoding, we use a fully connected layer where 𝑓enc : R(𝑇×ℎ×𝑤×𝐷) ↦→R𝑁 and

𝑓dec : {0, 1}𝑁 ↦→R(𝑇×ℎ×𝑤×𝐷) . 𝑥 is flattened to a single vector to be encoded and binarized, and the

decoded 𝑥dec can be reshaped to the original size. Then the answer is predicted by M(𝑥dec, 𝑞). For

FeatComp with 𝑁-bit compression, we write it as FeatComp-𝑁 . This implementation is simple and

generic, and as we see in Section 3.4 already works surprisingly well. Various other architectures
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for encoding, decoding, and binarization could be explored in future research.

Intuition of FeatComp To learn a compression of the features, various methods could be explored.

We could cluster the videos or the most common answers into 1024 clusters, and encode the cluster

ID in 10 bits, etc. For a task such as video action classification, where only the top class prediction

is needed, directly encoding the final answer may work. However, in a general video-language task

such as VideoQA, the number of possible questions is much more than 1024, even for questions

about a limited topic. Our method can be interpreted as learning 2𝑁 clusters end-to-end, that are

predictable, and useful to answering any questions related to the task.

3.4 Experiments

In this section, we show the experimental results on Few-Bit VideoQA, study how much visual

information is needed for different VideoQA tasks, and analyze what the bits capture.

Datasets We consider two public VideoQA datasets: 1) TGIF-QA [76] consists 72K GIF videos,

3.0s on average, and 165K QA pairs. We experiment on 3 TGIF-QA tasks — Action (e.g. “What

does the woman do 5 times?”), Transition (e.g. “What does the man do after talking?”), which are

multiple-choice questions with 5 candidate answers; and FrameQA (e.g. What does an airplane

drop which bursts into flames?”), which contains general questions with single-word answers. 2)

MSRVTT-QA [54] consists of 10k videos of duration 10−30s each and 254K general QA pairs,

e.g. “What are three people sitting on?”.

Implementation Details We leverage the ClipBERT model pre-trained on COCO Captions [89]

and Visual Genome Captions [90], and train on each VideoQA dataset separately, following [62].

During training, we randomly initialize FeatComp, and finetune the rest of the network; we ran-

domly sample 𝑇=1 clip for TGIF-QA and 𝑇=4 clips for MSRVTT-QA, where in each clip we only

sample the middle frame. We fix the ResNet backbone and set the learning rate to 5×10−5 for

FeatComp, and 10−6 for M. We use the same VideoQA objective and AdamW [91] optimizer as

in [62]. During inference, we uniformly sample 𝑇test clips to predict answer, where 𝑇test=𝑇 , un-

less noted otherwise. We set 𝑁=1, 2, 4, 10, 100, 1000 for different bit levels. Code will be made
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available.

Evaluation Metrics QA accuracy at different bit levels.

Baselines To our knowledge, there is no prior work directly comparable; hence we define the

following baselines:

• Floats: the original floating-point-based ClipBERT; it provides performance upper bound

using enough bits of information .2

• Q-only: answer prediction solely from question.

• Random Guess: randomly choose a candidate/English word for multiple-choice/single-word-

answer QA.

Additionally, since our approach follows an autoencoder-style design, we also study whether an

objective of feature reconstruction helps with Few-Bit VideoQA. We add the following two ap-

proaches for comparison:

• R-only: learn FeatComp solely with a reconstruction loss, L𝑅=MSE(𝑥, 𝑥dec), then finetune

M using learned compressed features with task objective.

• FeatComp+R: learn FeatComp from both task and reconstruction objectives, i.e., L=L𝑡𝑎𝑠𝑘+L𝑅.

We also study how test-time sampling affects the results with:

• 4×FeatComp: test-time sampling 𝑇𝑡𝑒𝑠𝑡=4𝑇 .

3.4.1 Few-Bit VideoQA Results

We demonstrate our Few-Bit VideoQA results in Figure 3.4 and compare to the baselines. As

expected, more bits yields accuracy improvements. Notably, for our FeatComp, even a 1-bit video

encoding yields a 7.2% improvement over Q-only on TGIF-Action. On all datasets, at 1000-bit,

we maintain a performance drop <2.8% while compressing more than >1000 times. At 10-bit,

the drop is within 2.0−6.6% while compressing over >100,000 times, demonstrating 10-bit visual

information already provides significant aid in VideoQA tasks.

We also compute supervision size as a naive upper bound of bits required to accomplish the

2ClipBERT uses 16-bit precision, we use this for calculation.
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MSRVTT-QA

Q-only
Floats
FeatComp
4*FeatComp
FeatComp+R
R-only

Method Bits TGIF-Action TGIF-FrameQA TGIF-Transition MSRVTT-QA

Random Guess 0 20.0 0.05 20.0 0.07
Q-only 0 61.8 47.3 77.2 31.7
R-only 10 63.7 47.3 83.5 31.7

FeatComp+R 10 75.8 47.4 82.8 32.2
FeatComp 10 76.3 50.9 85.5 33.6

Floats 1.8M - 9.8M 82.4 (82.9) 57.5 (59.4) 87.5 (87.5) 37.0 (37.0)

Supervision Size 30.9 Bits 59.2 Bits 57.7 Bits 59.5 Bits

Figure 3.4: Analysis of how bit size affects VideoQA accuracy on MSRVTT-QA and TGIF-QA.
Floats refers to the original ClipBERT model that serves as an upper bound of the performance
without bit constraints. We both report the number we reproduced and cite paper results in paren-
thesis. With our simple approach FeatComp, we can reach high performance using only a few bits.
Notably, at 10-bit level (see table), we get only 2.0−6.6% absolute loss in accuracy.

task. Theoretically, the compressed features should be able to differentiate the texts in all QA

pairs. Hence, for each task, we use bzip23 to compress the text file for the training QA pairs,

whose size is used as the upper bound. We observe correspondence between supervision size and

compression difficulty. TGIF-Action and TGIF-Transition are easier to compress, requiring less

bits to get substantial performance gains; and they also appear to require less bits in supervision

size. Instead TGIF-FrameQA and MSRVTT-QA are harder to compress, also reflected by their

relatively larger supervision size.

Role of Reconstruction Loss Our approach FeatComp is learned in a task-specific way in order

3https://www.sourceware.org/bzip2
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to remove any unnecessary information. On the other hand, it is also natural to compress with the

goal of recovering full data information. Here we investigate whether direct feature supervision

helps learn better compressed features from FeatComp+R and R-only. We can see that integrating

feature reconstruction harms the accuracy at every bit level. In fact, R-only can be considered

as a traditional lossy data compression that tries to recover full data values. It implies that re-

covering feature values requires more information than performing VideoQA task; hence feature

reconstruction loss may bring task-irrelevant information that hurts the task performance.

Role of Temporal Context For longer videos, frame sampling is often crucial for task accuracy.

We study the impact in Figure 3.4 (FeatComp vs. 4×FeatComp). We can see denser sampling ben-

efits compression ratio especially at higher bits on longer videos like MSRVTT-QA. For example,

400-bit compression with 𝑇test=16 outperforms 1000-bit compression with 𝑇test=4. However, on

short video dataset TGIF-QA, it does not yield improvements, which implies TGIF-QA videos can

be well understood with single frames.

How Task-Specific are the Features? Here we evaluate the task-specificity by analyzing how

much information is removed by the compression. We use FeatComp-10 learned on a source TGIF-

QA task to extract the compressed features 𝑥bin; then train a new VideoQA model for different

target tasks on top of 𝑥bin. For fair comparison, we use the same M and decoding layers and

follow the previous practice to initialize M from the model pre-trained on COCO Captions and

Visual Genome, and randomly initialize the decoding layers. Then we train the network with

learning rate 5×10−5 for 20 epochs. Table 3.2 shows the results, where we also cite Q-only from

Figure 3.4. Compression from the same task gives the best result as expected. Note that Action

and Transition are similar tasks in that they query for similar actions but Transition asks change

of actions over time. FrameQA instead queries for objects, which has minimal similarity with

Action/Transition. Compression from a highly relevant source task (Action vs. Transition) gives

pretty high performance. However, compression from an irrelevant source task (Action/Transition

vs. FrameQA) yields similar performance as Q-only (0-bits), which again implies that the learned

compression discards any information unnecessary for its source task.
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Table 3.2: Task-specificity of FeatComp-10. Compression learned from an irrelevant source task
is less helpful for a target task, while compression from the same task gives the best performance.

Target Task

Source Task Action FrameQA Transition

Action 76.9 47.6 83.8
FrameQA 62.3 51.7 77.1
Transition 76.0 47.3 85.0

Q-Only 61.8 47.3 77.2

3.4.2 Qualitative Analysis

Here we study qualitatively what the learned bits are capturing. We apply Grad-CAM [92]

directly on the compressed features 𝑥bin to find the salient regions over frames. Grad-CAM is

originally a tool for localizing the regions sensitive to class prediction. It computes the weighted

average of feature maps based on its gradients from the target class, which localizes the regions

that contribute most to that class prediction. Here we instead construct Bit Activation Map (BAM)

by treating each binary bit 𝑥𝑖bin as a “class”: 1 is a positive class while 0 is negative. We calculate

BAM at the last convolutional layer of ResNet. We average BAM for all bits where for 𝑥𝑖bin=0 we

multiply them with −1. Note that no class annotations, labels or predictions are used for BAM.

Figure 3.5a shows heat map visualization results on TGIF-Action for FeatComp-10. The learned

compression is capturing salient regions (e.g., eyes, lips, legs) which align with human perception.

We also study in Figure 3.5b how important temporal signals are captured, where we average the

BAM over frames. The frames with high BAM scores tend to capture more important semantic

information across time that is relevant to the task. Additional examples are provided in Figure S1

and Figure S2.

Additionally, we investigated whether the bits capture task-specific information by analyzing

the correspondences between VideoQA vocabularies and compressed features. We calculate a

word feature as the averaged FeatComp-10 bit features over the videos whose associated QAs

contain this word, and find its top-7 closest words based on Euclidean distance. Table 3.3 shows
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(a) Bit Activation Map w.r.t. FeatComp-10 compressed features 𝑥bin on TGIF-Action. The learned tiny
feature is able to capture salient regions useful for the source task of FeatComp-10.
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(b) Averaged Bit Activation Map over video frames on MSRVTT-QA. We can see that learned tiny feature
can capture scene changes — the bit activation peaks appear when there is a different scene useful for the
source task of FeatComp-10.

Figure 3.5: Qualitative visualization examples of bit activation map w.r.t FeatComp-10 com-
pressed features 𝑥bin. Note that no question, answer, prediction, or class label was used for these
visualizations—This is visualizing what the network used to generically compress the video.

some sample results on TGIF-Action. Neighbor words tend to demonstrate semantic associations.

E.g., ‘eyes’ is closely related to ‘blink’, ‘smile’ and ‘laugh’; ‘step’ is associated with its similar

actions like ‘walk’ and ‘jump’, implying that the compression captures task-relevant semantic

information.

Finally, in Figure S3, we provide some sample predictions made by different FeatComp at

1, 10, and 1000 bits, the question-only model (Q-only), as well as the original ClipBERT model

(Floats). As expected, more bits are typically more likely to lead to the correct answer. Often

𝑁=10 bits are sufficient to get the correct answer among the candidates. However, VideoQA is a

challenging task, and even the original ClipBERT model (Floats) sometimes guesses the wrong

answer while a lower bit model guesses correctly.
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Table 3.3: Top-7 closest words from FeatComp-10 on TGIF-Action.

Word Most Similar Words

head bob neck stroke fingers raise cigarette open
wave touch man bob hands hand stroke raise
spin around ice pants jump foot kick knee
step walk spin around ice pants jump kick
guitar object who keys black a strum bang
eyes blink smile laugh cigarette lip tilt sleeve

3.5 Applications of Few-Bit VideoQA

The problem of Few-Bit VideoQA has practical applications to data storage efficiency and

privacy. Below we discuss how our approach can compress a video dataset into a tiny dataset and

use that to achieve the same task (Section 3.5.1); then we demonstrate the privacy advantages of

few-bit features (Section 3.5.2); finally we show how we can create video summaries from the

learned bits and perform quantitative evaluation (Section 3.5.3).

3.5.1 Tiny Datasets

With our task-specific compression approach, we can represent a video using only a few bits,

which allows extreme compression of gigabytes of video datasets into almost nothing. For ex-

ample, TGIF-QA contains 72K videos whose MPEG4-encoded format takes up about 125GB of

storage; with FeatComp-10, we end up with a 90KB dataset. We follow Section 3.4.1 to train a

model using stored compressed features 𝑥bin, with source and target tasks being the same, to evalu-

ate the feature quality. Table 3.4 compares the compression size and testing accuracy on TGIF-QA

and MSRVTT-QA tasks. Our tiny datasets achieve similar performance with Figure 3.4 at all bit

levels. In addition to MPEG4 video and uncompressed Floats, we also report the size of Floats

compressed with the off-the-shelf lossless compression standard ZIP.4 The result implies that the

original features indeed contain a lot of information not easily compressible, and we are learning

meaningful compression.

4numpy.savez_compressed
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Table 3.4: VideoQA accuracies with our compressed datasets at different bit levels. Looking at
10-bit, we can get 100,000-fold storage efficiency, while maintaining good performance.

TGIF-QA MSRVTT-QA

Datasets Size
Task Accs.

Size
Task Accs.

Action FrameQA Transition What Who All

1-bit set 9KB 68.3 47.3 82.4 1.3KB 24.8 37.7 31.8
10-bit set 90KB 76.9 51.7 85.0 13KB 27.4 44.1 33.7

1000-bit set 9MB 80.8 54.4 87.2 1.3MB 28.3 46.0 34.9
Floats set 16.2GB 82.4 57.5 87.5 12.3GB 31.7 45.6 37.0

Comp. Floats set 14.0GB 82.4 57.5 87.5 9.5GB 31.7 45.6 37.0
MPEG4 set 125GB 82.4 57.5 87.5 6.3GB 31.7 45.6 37.0

3.5.2 Privacy Advantages from Tiny Features

Here we demonstrate how our tiny features offer privacy advantages.

Advantages of Data Minimization.

Intuitively, we expect 10 bits of information to not contain very much sensitive information.

The principle of Shannon Information5, or the pigeonhole principle, tells us that 10 bits of infor-

mation cannot contain a full image (approximately 10KB). Using 10 bits as an example, we can

divide sensitive information into two groups based on if it can be captured by 10 bits or not in

Table 3.5.

Note we assume the data was not in the training set as otherwise the model could be used to

extract that potentially sensitive information (training networks with differential privacy can relax

this assumption [93]). By capturing only 10 bits, we can assure a user that the stored data does not

contain any classes of sensitive information that require more bits to be stored.

Furthermore, considering that there are 8B unique people in the world, the identity of a person

in the world can be captured in 33 bits, so we cannot reconstruct the identity of a person from 10

bits. The identity can be identifying information, photographic identity, biometrics, etc. This is

consistent with the following experiment where feature-inversion techniques do not seem to work,

5en.wikipedia.org/wiki/Information_content
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whereas they work on regular compressed 16,384 bit features (as in Table 3.1). This effectively

de-identifies the data.

Table 3.5: What sensitive information can be stored in 10 bits?

Impossible (bits) Possible (bits)

Credit Card Num. (≈53) Gender (≈2)
Social Security Num. (≈30) Skin Color (≈3)
Street Address (≈28) Social Class (≈3)
License Plate (≈36) . . .
Personal Image (≈100, 000)
Phone Number (≈33)
. . .

Robustness to Feature Inversion

Storing only a few bits also has applications to preventing reconstruction of input from stored

features (i.e. Feature Inversion). Various methods exist for inverting features [75, 74] typically by

optimizing an input to match the feature output, with an optional regularization. To evaluate this,

we started with a re-implementation6 of the Frederikson et al. attack [74] for model inversion, but

instead of class probability, we used a MSE loss between the target feature and the model feature

output before the last linear layer, or after the binarizer. We used a two layer neural network

trained on the AT&T Faces Dataset [94]. In Figure 3.6 we demonstrate two examples on how

the inversion deteriorates as the model uses fewer bits. The 1,280 bits result has no compression

(40 32-bit numbers) whereas the rest of the results have increasing compression. All models were

trained until at least 97.5% accuracy on the training set. More similar visualization examples are

also provided in Figure S3, where we can see that when reducing the number of stored bits, it is

increasingly difficult to reconstruct the original image.

Feature Quantization In Frederikson et al. [74] the authors note that rounding the floating point

numbers at the 0.01 level seems to make reconstruction difficult and offer that as mitigation strat-

egy. This suggests that compression of features will likely help defend against model inversion

6github.com/Koukyosyumei/secure_ml
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Original Image Reconstructed From

1024 bits1280 bits 128 bits 16 bits

Figure 3.6: Feature inversion with increasingly compressed features.

and we verify this here. For comparison, rounding a 32-bit float (less than 1) at the 0.01 level

corresponds to 200 different numbers which can be encoded in 8 bits, a 4-fold compression. Our

method can compress 512 32-bit floats (16,384 bits) into 10 bits, a 1,638-fold compression, while

having a defined performance on the original task.

k-Anonymity of Tiny Features

For a system that has N users and stores 10 bits (1,024 unique values), we can assure the user

that:

Any data that is stored is indistinguishable from the data from approximately 𝑁/1,024

other users.

This ensures privacy by implementing k-anonymity [73] assuming the 10 bits are uniformly dis-

tributed, for example if 𝑁=107, 𝑘≈10,000. Finally, we can use a variable number of stored bits to

ensure any stored bits are sufficiently non-unique, similar to hash-based k-anonymity for password

checking [95].

3.5.3 Video Summarization

With the compressed representation, we can create a video summary by finding the temporal

segments that contribute to most of the bits. We use Grad-CAM to calculate the bit activation

maps (detailed in Section 3.4.2) and compute the averaged bit activation value over frames.Then
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we select the 3 frames with top prominent peak values as the key frames.The summary is then the

combination of 1-sec clips centered around the key frames. To evaluate the summary, we calculate

its VideoQA performance on the original floating-point ClipBERT model.

Table. 3.6 quantitatively shows the MSRVTT-QA video summary performance, where we test

on videos ≥20 seconds. We compare to random summary from three 1-sec clips and summary

from floating-point feature (i.e., Grad-CAM applied over floating-point features). We also report

the ClipBERT 𝑇test=16 result on full-length videos (No-Summary). We can see 10-bit summary

yields the highest quality. Floats-summary are close to 1-bit and random, as it contains more noise.

We observe little room between random-summary and no-summary, probably because MSRVTT-

QA videos are not long enough to include many scene dynamics.

Table 3.6: VideoQA using 3-sec summaries extracted from MSRVTT-QA videos.

Random Floats 1-bit 10-bit 1000-bit No-Summary

Acc. 35.5 ± 0.2 35.6 35.6 36.0 35.7 37.0

3.6 Summary

In this chapter, we showcase how to adapt a video-language model M for low-bit representa-

tion by learning a task-specific feature compressor 𝛿. To this end, we introduce a novel Few-Bit

VideoQA problem, which aims to do VideoQA with only few bits of video information used; we

propose a simple and generic FeatComp approach that can be used to learn task-specific tiny fea-

tures. We experiment over VideoQA benchmarks and demonstrate a surprising finding that a video

can be effectively compressed using as little as 10 bits towards accomplishing a task, providing a

new perspective of understanding how much visual information helps in VideoQA. Furthermore,

we demonstrate the storage, efficiency, and privacy advantages of task-specific tiny features — tiny

features ensure no sensitive information is contained while still offering good task performance.

We hope these results will influence the community by offering insight into how much visual in-

formation is used by question answering systems, and opening up new applications for storing
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large amounts of features on-device or in the cloud, limiting privacy issues for stored features, or

transmitting only privacy-robust features from a device.
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Figure S1: Bit activation map visualization over frames w.r.t. FeatComp-10 compressed features
𝑥bin on TGIF-QA. Our learned compression captures salient regions.
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Figure S2: Averaged bit activation maps over time w.r.t FeatComp-10 compressed features 𝑥bin on
MSRVTT-QA. Our learned compression captures important scene changes.
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Q: What does the singer do 3 times ?
     A. roll  
     B. turn head  
     C. touch hair  
     D. tap  
     E. shake ball

Q: What does the man do 2 times ?
     A. step  
     B. bounce paw  
     C. shake left paw  
     D. touch woman  
     E. flip on the air

Q: What does the man do 4 times ?
     A. bounce egg  
     B. slide 
     C. point
     D. jump over blocks  
     E. bob shoulders

Q: What does the woman with a blue shirt 
do 10 or more than 10 times ?
     A. fluff blanket  
     B. blow smoke ring 
     C. beat hand drum
     D. roll  
     E. hit opponent

Q: What does the woman do 2 times ?
     A. leap paws  
     B. bounce paw 
     C. shake flower bouquet
     D. sway  
     E. spin on herself

Q: What does the man in top hat do 2 times ?
     A. shake both feet 
     B. blink
     C. kiss baby
     D. jerk head  
     E. glance

Q: What does the girl do 5 times ?
     A. bounce a ball  
     B. spin around  
     C. slip  
     D. circle right arm  
     E. wave a pen 

FeatComp-N

N=1 N=10 N=1000
FloatsQ-only

D B B

DD

C C D

A

A

B

B

C

DEE

D D D

DB B D

B

B

E

B

E

E

Q: What does the woman do 5 times ?
     A. chuckle  
     B. cough into hand 
     C. put palms up
     D. blink turnlight  
     E. spit ball

AAE AB

Q: What does the guy on right do 2 times ?
     A. lower eyebrows 
     B. extend left hand  
     C. return ping pong ball  
     D. point  
     E. wag legs 

A D B BD

Q: What do the women do 2 times ?
     A. stride 
     B. jump 
     C. splash puddle
     D. move steer wheel  
     E. shake fingers

B E E E E

Figure S3: Sample predictions made by Q-only, Floats and FeatComp at different bit levels. Cor-
rect predictions and answers are bold in green. In general, more bits are typically more likely to
lead to the correct answer.
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Original Image Reconstructed From

Figure S3: Feature inversion with increasingly compressed features.
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Chapter 4: Adapting Model for Sparsified Inputs

In many real-world scenarios, we’d want to keep videos in a human-interpretable format so

that not only machine systems, but also users can analyze the information by themselves. In this

chapter, we consider data efficiency challenges from long videos and seek to adapt deep learning

models for reducing video sequence into sparsified and interpretable formats. Figure 4.1 shows a

high-level illustration of the framework, where 𝛿 serves as a learnable input sparsifier that generates

sparse frames and/or texts for machine and human understanding.

4.1 Introduction

Watching long videos is time-consuming and easily loses user attention. How to efficiently

present videos to users is an important and practical problem in various video applications. For

example, for home surveillance videos which are usually recorded continuously throughout the

day, it is hard for users to capture a moment of package delivery from an hour-long video. More

generally speaking, for videos that are not carefully edited (e.g., Youtube videos), they often con-

tain purposeless parts and need pre-processing of content so that users can quickly get meaningful

information.

Videos often come from different modalities. Commonly, they are composed of image frame

sequences. With the advances of recording devices and editing tools, videos often contain speech

(e.g., Youtube videos recorded from user phones) and subtitles (e.g., in movies and TV-shows). It

has been shown that leveraging different modalities benefits various video tasks [2, 1]. However, it

is worthwhile noticing that the various modalities in video could be quite noisy and redundant —

meaningless utterances, repeating frames, etc. — causing computational inefficiency and distract-

ing model learning. Furthermore, the problem of modality imbalance [96] has been studied, where
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Figure 4.1: In this chapter, 𝛿 serves as an input sparsifier, which learns to sparsify video inputs
temporally for a specific task.

the unbalanced information across modalities could result in significant bias towards one modality.

For example, prior works [97] have shown that in TV-related videos, the major contribution for the

various video-language tasks comes from subtitles while the video frames play a negligible role.

In this chapter, we characterize the VideoQA problem from the perspective of input sparsity. As

illustrated in Figure 4.2, we aim to answer the question: “How much visual/textual signals are suf-

ficient for a task?” For VideoQA specifically, different questions require different amount of video

information to give the answer. For example, if the question asks about people, then theoretically

the system only needs to look at the moments where people are present. In the literature, there is

evidence showing that video action classification can be accomplished with single frame [98, 99].

Recently there have also been works that imply sparse uniform sampling of the video is sufficient

for video and language tasks [62], and an analysis tool which shows that video and language tasks

could be achieved by picking one optimal frame [100]. In this chapter, we instead move beyond

single frame input, and try to characterize the role of videos by learning to select an optimal set

of video inputs. We propose a generic framework which learns to drop video inputs while training

for the video-and-language task. This framework can be applied to different kind of video modali-

ties, and in our experiments we provide analysis on visual-only (i.e., video frames), text-only (i.e.,

video subtitles or key words), and visual-textual inputs.

We instantiate our underlying machine learning model M as a transformer-based video-language

model and adapt it for sparsified representation by designing a learnable sparsifier 𝛿 that can be
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Video

 Video Sparsification

Q: Is someone laughing?

Yes, the lady is laughing.

 {lady, black dress, dress, woman, 
   blue, blue shirt, man, smile, eyes, 
   people walking, ......}

Descriptions: 

 lady, 
 smile, 
 blonde

{
}

 

Figure 4.2: We study the Sparsified VideoQA problem, where we learn to sparsify the original long
video into very few inputs for QA. We design a video sparsification process to deal with video of
multiple modalities (frames, word and phrase descriptions, etc).

plugged at the input layer. From our experiments, we demonstrate that with very sparse inputs, the

task can still be accomplished pretty well. Specifically, we are able to achieve 5.2%−5.8% loss

of accuracy with only 10% length of the video, which corresponds to only 2−4 selected frames.

Meanwhile, we also observe complimentary behaviour between modalities even with sparsified

multi-modal inputs. Our finding suggests the potential of improving data efficiency under either

single or multi-modal settings for video-and-language tasks.

55



4.2 Related Works

Video Question Answering VideoQA is a video understanding task about predicting answers

given a video and a related question [77, 76, 54, 78, 79]. Recent works usually use multi-modal

transformer models [1, 62] and feed in a combined sequence of frame and question word tokens,

and the model processes the multi-modal inputs with attention mechanisms. To ensure full uti-

lization from a video, prior works usually sample dense frames and feed them altogether into the

model, trying to maintain as much information from the video as possible, and then perform anal-

ysis based on the assumption of minimal information loss from the video at the feature level. We

instead want to characterize the video behaviour of VideoQA task from the perspective of limited

information.

Vision vs. Language in Multi-modal Learning It has been pointed out by several works [62,

101] that there exists information imbalance between different modalities. Especially, [96] shows

the language bias in image-language tasks and provides a solution to overcome it. Recently, [101]

shows that video-language tasks can be accomplished pretty well with as little as 10-bit of in-

formation, again implying the strong bias towards language in video-language tasks. Recently,

[100] provides a detailed analysis showing video-language tasks weakly rely on the temporal in-

formation from video and that video-language tasks can be comparably accomplished by a strong

image-language baseline. Our work is also built upon these interesting observations and aim to

characterize the behaviour of multi-channel video inputs in different downstream tasks.

Efficient Video Understanding Our work is related to some recent works on improving video data

efficiency in video understanding applications. [62] shows that sparsely sampled video frames can

be trained end-to-end to perform video-language tasks well. [98] study how to reduce video frames

for fast video recognition tasks. There are some evidence [100, 101] showing video understanding

tasks can be accomplished even with reduced inputs. Prior works [100, 98] often focus on extract-

ing single key frames to represent video. More recently, [102] proposes efficient vision transformer

for video action recognition by dropping spatial-temporal tokens. We offer a way to analyze video-
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language tasks, which typically rely on transformer models, with inputs at user-controlled sparsity

levels. Given the multi-channel nature of videos, we can similarly study textual-based sparse rep-

resentation of videos as well.

4.3 Approach

In this section, we introduce our token sparsification approach. We first provide a brief prelim-

inary on multi-modal transformers. Then we explain how the learnable token sparsification works.

Finally, we explain how we can extend it to multi-modal setting.

4.3.1 Preliminaries — Multi-modal Transformers

To solve for video tasks that involve multi-modal inputs (e.g., VideoQA), current literature

usually converts both visual and textual signals into sequence of embeddings, projects them into a

common embedding space and applies a multi-modal transformer which takes the sequence con-

catenation to generate the final output. i.e.,

𝑦 = M([𝑣1, . . . , 𝑣𝑛;𝑤1, . . . , 𝑤𝑚]) , (4.1)

where M is the multi-modal transformer, 𝑦 is the task output (e.g., predicted answer in text), {𝑣𝑖}𝑛𝑖=1

is the sequence of video frame/segment features, and {𝑤 𝑗 }𝑚𝑗=1 is the sequence of word embeddings

for the text inputs.

To get {𝑣𝑖}, the common practice is to span the entire video, and use an off-the-shelf feature

extractor to get frame or segment level features (depending on whether the feature extractor is

image-based or segment-based). In this way, all the video information is included for the task.

However, videos contain a lot of redundant information which is not necessarily useful for the

task. For example, if the task is asking about “What the person is wearing”, intuitively it only

needs one video frame that contains the target person. From this perspective, we aim to design a

framework that learns to select only the key information for the task.
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Figure 4.3: The pipeline of our method. We insert a learnable selection module between the inputs
and the task transformer to sparsify the inputs. Our method can be generally applied to single or
multi- modal inputs from videos. The entire network is trained end-to-end using the task objective
as well as the input sparsity constraints.

4.3.2 Token Sparsification

Observing the architecture of transformers which treat visual and/or textual embeddings as se-

quence tokens, we propose to learn to sparsify the input tokens during training. Starting with single

modality inputs {𝑣𝑖}𝑛𝑖=1, we first generate the keeping probability 𝑠𝑖 for each token 𝑣𝑖 to estimate

how likely 𝑣𝑖 should be kept. To ensure 𝑠𝑖 is a valid probability value within the range of [0, 1],

we place a predictor 𝑓 (·) : R𝑑 → R2 to map each token 𝑣𝑖 to 2-dim, and apply a Softmax normal-

ization to re-scale the 2-dim vector into [0, 1], and take the first entry as the keeping probability 𝑠𝑖.

Specifically,

𝑠𝑖 =<
©­­«
1

0

ª®®¬ , Softmax( 𝑓 (𝑣𝑖)) >,

where < · > is the inner product function. At inference time, we can treat sparsification as a

ranking procedure, whereas we rank tokens according to their keeping probabilities and select

top-K tokens.
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During training, to facilitate the learnability of the network, we treat sparsification as a top-K

sampling procedure. That is, we draw K samples from {𝑣𝑖} from their keeping probabilities as the

sparsified inputs to the rest of the model. By default, the sampling process is not differentiable.

In order to overcome this non-differentiability, we refer to and extend the Gumbel-Softmax [103]

trick.

Gumbel-Softmax Straight-through Estimator [103] offers a differentiable way for single dis-

crete sampling. It first re-parameterizes the sampling distribution by adding Gumbel noise fol-

lowed by a Softmax normalization, i.e.,

𝑠
𝑔

𝑖
=

𝑒𝑥𝑝((log 𝑠𝑖 + 𝑔𝑖)/𝜏)∑𝑛
𝑗=1 𝑒𝑥𝑝((log 𝑠 𝑗 + 𝑔 𝑗 )/𝜏)

,

Then it follows the design of straight-through estimator [70] to get the sample index from 𝑘 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑖{𝑠𝑔𝑖 }𝑛𝑖=1 and select the corresponding 𝑣𝑘 in the forward pass while zeroing-out the rest. In

the backward propagation, the gradients of 𝑠𝑔
𝑖

are kept for use. We encourage referring to [103] for

more details and proofs.

Multi-Gumbel Straight-through Estimator. The standard Gumbel-Softmax STE trick only sup-

ports single sampling, as it performs along the sequence and only selects one most likely token. In

our context, would like to extend it to multi-sampling of most likely tokens. [104] introduces a

trick to perform sampling without replacement. In our implementation and experiment, we instead

modified [104] to two variants:

1. Gumbel-TopK Selection: select the top-K tokens with higher 𝑠𝑔
𝑖

values. And then use

straight-through estimator after selection, i.e., we only keep the selected tokens and zero-out

the rest, but in the backward pass, we still use the gradients of all 𝑠𝑔
𝑖
.

2. Ratio-controlled Gumbel: instead of hard selection of K samples, we allow sampling with

arbitrary number of tokens while keeping a sparsity ratio constraint in the loss during train-
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ing. Specifically, we add Gumbel disturbance to 𝑠𝑖:

𝑠
𝑔

𝑖
=

𝑒𝑥𝑝((log 𝑠𝑖 + 𝑔𝑖0)/𝜏)
𝑒𝑥𝑝((log 𝑠𝑖 + 𝑔𝑖0)/𝜏) + 𝑒𝑥𝑝((log(1 − 𝑠𝑖) + 𝑔𝑖1)/𝜏)

where 𝑔𝑖0 , 𝑔𝑖1 ∼ 𝐺𝑢𝑚𝑏𝑒𝑙 (0, 1) are Gumbel noises. We then keep all the tokens whose

perturbed keeping probability 𝑠𝑔
𝑖
> 0.5. For a human-selected target keeping ratio 𝑝, we add

a loss constraint on the overall keeping ratio over the batch:

L𝑠𝑒𝑙𝑒𝑐𝑡 =
1
𝐵

𝐵∑︁
𝑏=1

(𝑝 − 1
𝑛

𝑛∑︁
𝑖=1

1[𝑣𝑏𝑖 is kept])2,

where 𝐵 is the batch size, and 𝑣𝑏
𝑖

is denoted as the tokens within a batch.

The overall training loss generically is the weighted balance between the task loss and the selection

loss:

L = L𝑡𝑎𝑠𝑘 + 𝜆L𝑠𝑒𝑙𝑒𝑐𝑡 , (4.2)

where 𝜆 is the balancing weight between two loss components, and L𝑡𝑎𝑠𝑘 is the task loss. Note that

L𝑠𝑒𝑙𝑒𝑐𝑡 is not necessary required for the first variant and we can simply set 𝜆 = 0 in that case. The

method is generic and task-agnostic. For VideoQA, we refer to [1] for L𝑡𝑎𝑠𝑘 , which essentially

is a cross entropy loss between the predicted answer and the ground-truth answer word. During

inference, we directly rank {𝑠0} and select the inputs associated with the top-K scores. In this way,

we are able to get the sparsified video inputs for the target task.

4.3.3 Sparsified Positional Encoding

Positional encoding is a typical mechanism designed for transformers to encode the order of

tokens within a sequence. Typical designs for positional encoding are either fixed, such as sinu-

soidal function with selected frequencies [105], or learnable positional embeddings like [106]. In

our context, we make use of learnable positional embeddings following [1, 2]. For a full-length

sequence, each token 𝑣𝑖 is added to a unique learnable embedding vector 𝑝𝑖 that sticks to this po-
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sition 𝑖. After sparsification, tokens are dropped and kept by probability, so the remaining tokens

could be at various positions.

In our preliminary experiments, we found that inappropriate positional embedding could harm

training convergence, especially when we just leave the positional embeddings as they are in the

full sequence scenarios. As a result, in our implementation, we arrange the sparsified tokens {𝑣𝑘𝑖 }𝐾𝑖
into a new sequence {𝑣′

𝑖
}𝐾
𝑖

(where 𝑣′
𝑖
= 𝑣𝑘𝑖 ), and assign 𝑝𝑖 to 𝑣′

𝑖
accordingly. We observe a good

convergence behaviour and performance from this simple rearrangement.

4.3.4 Multi-modal Token Sparsification

We generalize the standard single modality token sparsification to multi-modal scenarios where

videos come with both visual and textual signals. Specifically, our method allows the inputs being

any kind of tokenized inputs. For videos that come with multi-channel inputs, e.g., subtitles, we

can directly concatenate time-stamped subtitles along with the frames as multi-modal inputs. Then

we can perform similar token sparsification on both of them. Specifically, we denote the multi-

modal inputs as {𝑣𝑖, 𝑤𝑖}𝑛𝑖=1 (note that we can assume same number of 𝑣𝑖’s and 𝑤𝑖’s by interpolating

or padding, etc). We first get the unified representation from multi-modal inputs by

𝑢1, . . . , 𝑢𝑛 = C𝑚 ( [𝑣1, . . . 𝑣𝑛;𝑤1, . . . , 𝑤𝑛]) (4.3)

where C𝑚 is a context model (e.g., cross-modal transformer) that exploits both visual 𝑣𝑖 and subtitle

𝑤𝑖 information. Then we apply the uni-modal sparsification technique introduced in Sec. 4.3.2 on

top of {𝑢𝑖} sequence to compute the keeping scores, and sparsify the original multi-modal input

sequence {𝑣𝑖, 𝑤𝑖} according to the score, to get the sparsified multi-modal sequence {𝑣𝑘𝑖 , 𝑤𝑘𝑖 }𝐾𝑖=1.

Then this sparsified sequence is fed to the task performer M to compute the outputs (eq. 4.1).

We also consider another approach where we ease the restriction on time-matched input pairs

and operate on each modality regardless of their timestamps. In this setting, we apply different

context model on each modality sequence, and then use separate selection loss to constrain the

61



sparsity. We will provide more details on this setting in the Experiment details, where we demon-

strate our idea with key-word selection that summarizes the videos.

4.4 Experiments

In this section, we provide our experiment results. First we detail our implementation and

VideoQA datasets; then we provide VideoQA results under different input sparsities, followed by

multi-modal results. Finally, we offer some qualitative visualization to analyze our approach.

4.4.1 Implementation Details

To verify our idea, we experimented on two state-of-the-art video-and-language models VQA-

T [2] and HERO [1]. HERO considers multi-channel videos where videos come with subtitles as

additional channel of inputs. HERO follows a hierarchical transformer architecture to first exploit

the information within video modalities and contexts, and then has another task head to operate

the task. VQA-T simply consists of two Distill-BERT models to deal with video+question inputs

and answer candidates, and computes the answer based on embedding similarity. For extracting

the video features, we follow [2] to use the S3D model pre-trained on Howto100M dataset. For

extracting the key word candidates, we use the model offered by [2] and the vocabulary from the

training split of the dataset to extract the words/phrases based on feature similarity.

4.4.2 Datasets and Metrics

We evaluate our idea on public VideoQA benchmarks including VLEP [107], VIOLIN [108]

and iVQA [2]. For VLEP and VIOLIN, we follow [1] to build our method on top of HERO. VLEP

and VIOLIN provide both raw videos and subtitles as inputs. Our selection is then based on the

multi-modal inputs. For iVQA, we follow [2] to build our method on top of VQA-T. We report

VideoQA accuracies across different input sparsity level: 10%, 30%, 50%, 70% and full (100%)

inputs.
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Table 4.1: Effect of the temperature 𝜏. Smaller 𝜏 leads to more exploitation while higher leads to
more exploration. We observe that more explorative selection is beneficial for denser inputs.

VLEP VIOLIN
Input Percentage 𝜏 = 0.01 𝜏 = 0.1 𝜏 = 0.5 𝜏 = 0.01 𝜏 = 0.1 𝜏 = 0.5

10% 60.25 56.01 58.94 56.25 60.57 58.80
30% 60.95 63.52 59.13 61.72 57.64 62.34
50% 63.05 63.64 64.30 65.57 64.48 66.06
70% 63.73 65.14 65.32 65.94 66.52 67.06

4.4.3 VideoQA Experiments

We present our single modality sparsified VideoQA results here. First, we study the design

choices of our two multi-gumbel estimator variants, followed by the comparison between our ap-

proach and other token sparsification baselines.

Effect of temperature 𝜏. In our experiments, we found that varying 𝜏 could result in very different

performance. We elaborate the result in Table 4.1 with our Gumbel-TopK selection variant, where

we choose 𝜏 = (0.01, 0.1, 0.5) for each sparsity level, and fix 𝜆 = 1.0. A smaller 𝜏 means the

model focuses more on exploitation, while a larger 𝜏 makes the model focus more on exploration.

We can observe that on both datasets, the model that is more explorative with denser inputs gives

a better results; but on sparser inputs, the model tends to stick to exploitation.

Effect of loss balancing weight 𝜆. We also study how the balancing weight 𝜆 affects the perfor-

mance with our ratio-controlled Gumbel estimator. In Table 4.2, we choose 𝜆 = 0.01, 0.1, 1.0 and

10.0, and then report the results at highly sparsified (10%) and lowerly sparsified (70%) levels on

VLEP dataset. We fix 𝜏 = 0.01 for 10% level and 𝜏 = 0.5 for 70% level. 𝜆 has slightly larger

impact on highly sparsified setting. We observe that 𝜆 = 1.0 yields the best balance and hence

choose it for all the other performance.

Comparison of two multi-gumbel variants. We compare the two variants of Gumbel estimator

for token sparsification. In Table 4.3, we compare these two variants at different sparsity lev-

els on VLEP. Our Gumbel-TopK selection variant is better than ratio-controlled Gumbel overall.

Ratio-controlled Gumbel is superior at highly sparsified level (10%) as it adds more flexibility in
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Table 4.2: Effect of the balancing weight 𝜆. 𝜆 balances the selection loss and task loss as specificed
in eq. 4.2. We report results on VLEP dataset and observe that 𝜆 = 1.0 yields the best balance.
Higher 𝜆 might lead to distraction of task, while lower 𝜆 might lead to insufficient sparsification.
We pick 𝜆 = 1.0 based on the following ablation.

Input Percentage 𝜆 = 0.01 𝜆 = 0.1 𝜆 = 1.0 𝜆 = 10.0

10% 59.12 59.85 60.25 59.90
70% 65.23 65.32 65.32 65.11

Table 4.3: Comparison of our two Gumbel variants. Overall the first variants perform slightly
better. The second variant is superior at highly sparsified level (10%) as it adds more flexibility in
individual sparsity levels across different videos.

Input Percentage 10% 30% 50% 70%

Gumbel-TopK Selection 60.25 63.52 64.30 65.32
Ratio-controlled Gumbel 61.43 63.42 63.49 65.01

individual sparsity levels across different videos.

Comparison with other sparsification approaches. To our knowledge, no prior work has studied

the same topic on VideoQA before, so there is no direct comparison. To validate our approach of

Multi-Gumbel Estimator, we define the baselines on our own:

1. Uniform(Fixed): Fixed uniform sampling of inputs w.r.t. different sparsity levels.

2. TopK: During training, directly select inputs with higher keeping probability 𝑠𝑖 after softmax

step, without noise perturbing.

3. Multi-Gumbel(Ours): Our approach which stochastically sparsifies tokens with Gumbel per-

turbing, we plot the better result from the two variants we introduced.

We show the accuracy vs. density curve in Figure 4.4. We can see that our Multi-Gumbel ap-

proach module is able to achieve the best performance across different sparsity levels. Compared

to learnable selection, fixed uniform sampling is weaker as it does not contain any form of task

adaptive selection. A direct TopK selection training performs weaker than training with stochastic

sampling, as we observe that the deterministic selection tends to a local optimal choice, while our
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Figure 4.4: Sparsified VideoQA results on VLEP and VIOLIN datasets. Accuracy at the 100%
level refers to the original full input baseline result. We can conclude that learnable sparsification
is better than fixed sampling (Uniform), and that stochasitic sampling is better than deterministic
selection (TopK). Our Multi-Gumbel estimator achieves the best result overall.

stochastic Multi-Gumbel approach gives more flexibility of by adding noises while learning. One

noticeable observation is that, at 10% level, which corresponds to very few frames (2 frames for

VLEP and 4 frames for VIOLIN), the performance is still quite good. It implies the potential of

accomplishing the task with very few inputs.
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Table 4.4: VideoQA results on iVQA. We apply our approach on the state-of-the-art method [2].
We consider multi-modal sparsification where we sparsify both visual (i.e., frames) and textual
(i.e., words) inputs. Compared to single-modality, multi-modal performance is stronger at different
sparsification levels. With additional extracted words, we also outperform the state-of-the-art result
on iVQA (last column).

Visual (Snippets)
0 1 snippet 2 snippets 5 snippets 20 snippets

Textual
(Words)

0 14.6 (Q-only) 28.65 30.24 31.26 35.43 [2]
5 words 17.5 28.68 30.31 31.70 35.43

10 words 18.22 29.87 31.43 31.88 36.01
25 words 20.14 30.16 31.59 32.03 36.09

100 words 26.75 31.47 32.11 33.21 36.42

4.4.4 Multi-modal Sparsification Results on iVQA

In the multi-modal experiments, we would like to study the relation between visual and textual

modalities under a controlled input setting. In order to do that, we extend our learnable selection

module to the multi-modal setting following Section 4.3.4 to generate key frames and key words

from the original video inputs. We first get a pool of candidate inputs from the raw video. The

candidate frames are directly sampled from the videos, while the candidate key words are extracted

using CLIP-based model, which finds the closest words or phrases using nearest embedding match-

ing. We use all the phrases and words from the iVQA training set as the vocabulary dictionary to

choose words from. To better demonstrate the results, we use the format of few-word or few-frame

inputs. For visual frame inputs, we process with the same method as before. For textual inputs,

we treat 5-word as one unit. 5-word/sec is the average reading speed for adults, which consumes

similar attention from watching a frame. So 5-word and one single frame could be thought of as

equivalent in consuming user attention. We combine the units into a sequence, then apply the same

selection method for word selection. For multi-modal setting, we concatenate the frames and word

units as a multi-modal sequence and select from both. We fix 𝜏 = 0.1 for training the models.

Our results are shown in Table 4.4. For single-modality inputs, we similarly observe an increas-

ing performance trend with increasing number of inputs. Even with very few inputs, the VideoQA
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performance is very close to the upper bound from dense inputs. We can also observe a boost

of performance from increasing density of inputs on both modalities at sparsified levels, which

validates the effectiveness of our sparsification techniques. In general, the visual inputs perform

stronger than textual inputs, which is mainly due to the fact that visual signals are much more

informative. On the other hand, we can still observe an increase of performance from adding even

very few multi-modal inputs. For example, adding only 5-word to the visual snippet could still

get some performance gains. This implies the complimentary manner from different modalities

from the perspective from strictly controlled inputs. Noticeably, as an intermediate output from

our learnable selection, we can get a few-frame and few-word summarization of the original video,

which is human-interpretable. We provide more examples and analysis in the following section to

demonstrate this advantage.

4.4.5 Qualitative Analysis

Here we provide visualizations on the selected frame and/or key words from iVQA dataset.

For illustration purposes, we present the result for single frame selection and 10-word extraction in

Figure 4.5, along with their associated questions and the predicted answer. Answer in green color

means the system correctly predicts the answer, while red color means the system predicts the

wrong answer and the ground truth is in parenthesis. In the successful cases, the sparsified output

is able to capture an appropriate figure for the topic, and the texts also contain words related to the

answer, which leads to the correct answer. In the first failure case, even though the selected frame

contains information related to the answer “shirt”, the textual component is a distraction, and the

system generates an answer more related to the key words which are closely describing pipes. In

the second failure case, the generated key frame and words are both irrelevant to the question. This

is probably because the question itself is asking something minor (since most of the video contents

are about the architectures and surroundings) while the model is trained to get information that is

of major interest for the overall dataset and task.

Additionally, we analyze the token importance using the tool provided by [109] which cal-
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Q: What is the man having in his hand in the first part of the video? Predicted Answer: Pants 

Key WordsKey Frame

Q: What facial hair does the man have? Predicted Answer: Mustache 

Key Frame Key Words

Q: What is the white striped item in the video? Predicted Answer: Wire (GT: Shirt) 

Key Frame Key Words

Q: What is the lady holding? Predicted Answer: Plant (GT: Glass) 

Key Frame Key Words

Figure 4.5: Qualitative examples on iVQA videos. Single frame and ten-word summary is gener-
ated from the original video for Video Question Answering task. First two examples demonstrate
successful cases where both visual and textual signals signals are able to capture the question-
relevant information. The last two examples show some failure cases where visual and/or textual
signals are distracted from the question.

culates the importance score of each input token w.r.t. to the task prediction. In Figure 4.6, we

provide some visualization examples where question words and video frame inputs are highlighted

according to their importance scores. For illustration purposes, we only sample 10 frames in each

sample. Words or frames that are of darker green color means they contribute more to the predic-

tion. From the given examples, we can see that not every video frame is of significant importance.

The model is able to discard frames that do not contain any useful information for the question

(e.g., in the second example, only the frames showing the fingers are contributing). On the other
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Video FramesQuestion

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7 Frame 8 Frame 9 Frame 10
What ingredients does she add in the pan ?

Frame 2 Frame 3Frame 1 Frame 4 Frame 5 Frame 6 Frame 7 Frame 8 Frame 9 Frame 10
What part of the person ’s body is showing ?

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7 Frame 8 Frame 9 Frame 10
What surrounds the girls ’heads ?

Figure 4.6: Frame importance visualization. Darker color means the corresponding word/frame
is of more importance to predict the answer. We can see that the model is able to discard some
repetitive frames or frames that are not relevant.

hand, in the example where the scene is relatively stable, we can also observe that the model fo-

cuses mostly on one of these similar frames (as in the third example), while the rest seems to be

diverging. These observations show the potential of dropping unnecessary video inputs to improve

the efficiency, which validates our motivation.

4.5 Summary

In this chapter, we show how we can adapt a transformer-based video-language model M

towards sparsified representation by designing a learnable sparsifier 𝛿 for the inputs. We propose to

use a learnable selection module to adaptively select the best and representative input. This allows

us to get multi-length input on different types of modalities. In our experiments, we characterize

video question answering from the perspective of sparsified inputs. We analyze the current Video

Question Answering benchmarks, where we can preserve a fair performance with a small input

budget. We also observe a complimentary behaviour between modalities, i.e., adding one modality

always helps with the other, meaningfully shows the potential of improving data efficiency under

various video representation types.
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Chapter 5: Model Adaptation for Open Recognition

A practical vision system would face a diverse open environment, where there could be new

objects of interest as well as disturbance information. It is important to build a robust model that

deals with both signals. In this chapter, we extend a recognition model with the capabilities of

new object recognition and outlier detection. Figure 5.1 shows a high-level illustration of our

idea where we instantiate 𝛿 as a negative prototype generator that models outliers towards robust

recognition.

5.1 Introduction

With the emergence of large-scale image datasets [110, 5, 111], deep learning has achieved

great success in various vision tasks [112, 113, 114, 115, 116, 117]. Current recognition systems

usually assume a predefined set of classes with sufficient number of labeled data. Each testing

sample is supposed to belong to these predefined classes so that the systems only need to perform

closed-set classification.

In real-world applications, we face more challenging recognition scenarios. First, sufficient

labeled training data are hardly guaranteed due to high cost of data collection and possibly limited

access to sensitive or rare data. Few-shot learning [118, 119, 120, 121] (FSL) typically tackles

data insufficiency scenario by fast adaptation of recognition system to new classes with access to

very few (e.g., only one) labeled instances. But FSL still holds a closed-set assumption.

In addition, there are existing efforts that aim to provide a recognition system with the ability

to handle out-of-distribution testing samples. Open-set recognition (OR) [122, 123, 124, 125, 126]

considers the case where testing samples could come from other unknown source under a large-

scale training setting. Real-world systems also need to detect queries from unknown classes (i.e.,
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Figure 5.1: In this chapter, 𝛿 serves as the negative prototype generator, which estimates the detec-
tion boundary for outlier signals.

negative queries). Current OR methods typically learns an open-set classifier by either calibrating

prediction scores or synthesizing negative queries. They rely on large amount of data, including

those for the unseen classes, to avoid overfitting and estimate distribution properly. But with only

a few labeled instances, it becomes hard to do so. Hence direct application of OR methods under

few-shot setting degrades the performance significantly[127, 128].

We aim to adapt a recognition model M pre-trained on many-shot classes for solving both

challenges, i.e., few-shot and open-set recognition (FSOR). The goal of FSOR is to both 1) accept

& recognize positive queries from few-shot classes with very few labeled samples and 2) detect

negative queries from undisclosed (negative) classes. The number of negative classes and negative

queries might vary, and we study the impact of the size of negative classes and queries in our

empirical analysis. Previous FSOR methods [127, 128] provide meta-learning-based solutions for

learning threshold-based negative detector. They calibrate few-shot close-set classifier and output a

rejection score for each testing sample. A sample is rejected if the rejection score is above a certain

rejection threshold, which has to be manually defined. However, as shown in Fig. 5.2, a good

recognition performance relies heavily on a good choice of threshold: (a) a few-shot classifier may

have similar detection score for a negative query and a positive query, where different thresholds

need to be set separately; (b) to reject a negative query, a threshold works properly for one task may

fail in other tasks. In summary, threshold tuning could be a challenging process as different FSOR

tasks contain different few-shot classes that may need very different rejection powers to determine

outliers.

Instead, we propose to solve this issue following our general M + 𝛿 framework. We propose

to integrate threshold tuning into the learning process for FSOR, yielding a threshold-free solu-
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Figure 5.2: (Up): For each few-shot class in few-shot open-set recognition (FSOR) task T1 and
T2, we calculate the detection scores (similarity) of both negative and positive queries and find
their mean and standard deviation. (We use the same negative queries for both tasks.) However, a
negative query may have similar detection score to the positive queries (highlighted by red box).
(Down): In addition, to reject a negative query, existing FSOR method relies on a manually selected
threshold. However, a rejection threshold working properly for T1 may fail in T2. Instead, we
propose to learn a negative prototype that automatically estimates a task-adaptive threshold for
negative detection.

tion. We extend the few-shot classifier with additional prototypes that represent the negative class.

Specifically, a negative generator 𝛿 is applied on few-shot class prototypes and learns negative

prototypes across tasks via meta-learning, so that negative prototypes can serve as task-adaptive

rejection boundaries for different FSOR tasks. A testing query is then rejected if the prediction

scores on all few-shot classes are lower than that on the negative prototype. We study the design of

negative generator and experimentally demonstrate an optimal solution that involves task-level in-

formation into the negative prototype envision. We also introduce the concept of conjugate task of

FSOR where two FSOR tasks are considered conjugate if the few-shot class in one task can be used

to simulate unknown sources in the other. To this end, we propose a conjugate training strategy to

facilitate the learning process. Moreover, we consider a new but more challenging problem, gen-
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eralized FSOR (GFSOR), where the recognition system needs to classify on both many-shot and

few-shot classes as well as reject negative samples. In this case, negative prototypes are generated

from both many-shot and few-shot classes. We name our method of learning negative prototypes

as task-adaptive negative class envision. Our method is validated by extensive experiments on

public benchmarks for both FSOR and GFSOR problems, where our approach is able to achieve

SOTA performance on FSOR benchmarkes, and also on shown effective on our newly formulated

GFSOR problem.

In the following sections, we will discuss related literature in FSL, OR and FSOR (Sec. 5.2); In

Sec. 5.3 we formally define FSOR and GFSOR tasks and go over existing threshold-based meta-

learning solutions. In Sec. 5.4 we present our approach of task-adaptive negative envision. Finally

in Sec. 5.5 we demonstrate the experimental analysis and results of our approach.

5.2 Related Works

Few-Shot Learning. FSL aims for fast adaptation to new recognition task with very few labeled

examples. Meta-learning is widely used to learn transferable knowledge upon a set of tasks using

episodic training. There are mainly two types of meta-learning approaches: 1). Optimization-

based method [118, 129, 130, 131] modifies the gradient back-propagation so that the parameter

updates can be more sensitive to the few training examples; 2). Metric-based methods [120, 121,

119, 132, 133, 134, 135, 136] learns to obtain an optimal metric space so that a class with the

highest similarity is assigned to the query. As an extension on FSL, generalized FSL (GFSL) [137]

learns to expand many-shot classifier with novel classes using a few training data. Both (G)FSL

hold a closed-set assumption where testing queries belong to novel classes (or many-shot classes

in GFSL). Our work instead extends (G)FSL to open-set setting.

Large-Scale Open-Set Recognition. OR aims to learn a classifier sensitive to negative queries that

come from unknown classes. OR methods typically include class probability re-calibration [123,

124, 138] and negative sample synthesis with generative methods [139, 140]. Those methods typ-
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ically assume large number of training data. A most relevant work to us [141] also proposes to

augment classifier to learn adaptive rejection thresholds. But it relies on large-scale data to train

the augmented classifier from scratch, while ours generates negative prototypes based on few-shot

classes. Direct application of OR methods to few-shot setting fails or degrades the performance

[127, 128] mainly due to over-fitting. Our work instead provides a few-shot-specific OR solution

to deal with limited data.

Few-Shot Open-Set Recognition. To bridge FSL and OR, recently [127] provides a meta-learning-

based solution for FSOR that introduces an open-set loss in the meta-training process to calibrate

few-shot prototype-based classifier. [128] improves the limitation of negative sampling in [127] by

imposing a transformation consistency regularization on few-shot samples. However, their meth-

ods are threshold-based, which require careful selection of thresholds to perform good recognition.

Instead, we propose a threshold-free solution to overcome the challenge.

5.3 Problem Formulation

With only a few labeled training samples, few-shot open-set recognition (FSOR) aims to 1)

detect negative queries that come from unknown sources and 2) correctly classify positive queries.

Formally, a FSOR task can be denoted as T = (S,Q 𝑓 ,Q𝑛 |C 𝑓 ) where C 𝑓 refer to the few-shot

classes that have few labeled training samples (also called supports): S = ∪𝑐∈C 𝑓S𝑐. The goal

is to learn a recognition model with the supports so that during testing time, it can successfully

classify positive queries Q 𝑓 and detect negative queries Q𝑛. We denote Q = Q 𝑓 ∪ Q𝑛 as the entire

query set. We call a FSOR task 𝑁-way 𝐾-shot if we have |C 𝑓 | = 𝑁 and |S𝑐 | = 𝐾 for all 𝑐 ∈ C 𝑓 .

Briefly speaking, the only difference between FSOR and conventional FSL tasks is that FSOR has

additional negative queries that need to be rejected.

Existing FSOR approaches [127, 128] are built upon the popular metric-based FSL method

ProtoNet[121], and our approach also follows the same fashion. Below we provide more context
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on ProtoNet.

ProtoNet[121] learns a prototype-based few-shot classifier. In detail, each few-shot class

𝑐 ∈ C 𝑓 is represented by a prototype p𝑐, computed by the average of 𝐾 support features: p𝑐 =

1
𝐾

∑
𝑠∈S𝑐

𝑓 (𝑠), where 𝑓 is a feature extractor and 𝑓 (𝑠) ∈ R𝑑 . Then, all prototypes P 𝑓 = {p𝑐}𝑐∈C 𝑓

build up a closed-set classifier where a positive query 𝑞 ∈ Q 𝑓 can be classified by nearest neigh-

borhood search, i.e.,

argmax𝑐
(
{ 𝑓𝑠 ( 𝑓 (𝑞), p𝑐)}𝑐∈C 𝑓

)
, (5.1)

where 𝑓𝑠 (·, ·) is a function to measure the closeness between two inputs, e.g., cosine similarity.

In order to learn an open-set classifier, existing FSOR approaches [127, 128] calibrate the

few-shot close-set classifier to get per-class detection scores and reject via thresholding. As il-

lustrated in Fig. 5.3(a), for threshold-based FSOR methods, a threshold 𝜃𝑚 needs to be manually

set and a negative query 𝑞 ∈ Q𝑛 will be rejected if all of the detection scores are below 𝜃𝑚, i.e.,

max
(
{ 𝑓𝑠 ( 𝑓 (𝑞), p𝑐)}𝑐∈C 𝑓

)
< 𝜃𝑚.

In addition to FSOR tasks, we further consider a more realistic situation where both few-

shot classes C 𝑓 and many-shot classes C∗ (i.e., containing large amount of labeled data) exist,

resulting an imbalanced distribution. To this end, we formulate the generalized few-shot open-set

recognition (GFSOR) task T ∗ = (S,Q∗,Q 𝑓 ,Q𝑛 |C∗, C 𝑓 ) where Q∗ are queries from C∗. And the

goal is to correctly classify both Q∗∪Q 𝑓 and reject negative query Q𝑛. Similarly, we call a GFSOR

task 𝑁-way 𝐾-shot if we have |C 𝑓 | = 𝑁 and |S𝑐 | = 𝐾 for all 𝑐 ∈ C 𝑓 .

We also provide Table 5.7 summarizing the symbols for clearer reference.

5.4 Approach

Here we present our threshold-free approach towards (G)FSOR. We first provide an overview

of how to use negative envision to estimate task-adaptive rejection boundaries; then we provide a

list of negative generators used in practice; finally we introduce conjugate training which encour-

ages the learning process from task mutual supervision.
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Figure 5.3: (a) Comparison between conventional threshold-based FSOR methods and ours with
negative envision. Conventional methods reject a sample if the detection scores of all classes are
below a carefully selected threshold (𝜃𝑚1). An improperly selected threshold (𝜃𝑚2), on the other
hand, would result in recognition failure. Instead, we propose to envision a negative prototype to
learn to estimate threshold (𝜃𝑎) for each instance dynamically within the task. (b) For a GFSOR
task, the negative prototype is generated from both many-shot and few-shot prototypes.

5.4.1 Overview

Fig. 5.3 provides an overview of our Task-Adaptive Negative Envision approach and how it

compares to threshold-based methods. Threshold-based methods [127, 128] calculate per-class

detection scores and manually define a threshold for rejection. Without a carefully cherry-picked a

threshold for each task, it’s hard to successfully detect 𝑞 ∈ Q𝑛 across different tasks (Fig. 5.3(a)).

Instead, we expand classifier with negative prototype p− that are computed from few-shot class

prototypes P 𝑓 via a negative generator 𝑔𝑛 (·). When a query comes in, it’s able to automatically

calculate a task-specific threshold from the negative prototype:

𝜃𝑎 = 𝑓𝑠 ( 𝑓 (𝑞), p−). (5.2)
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Then, a negative query 𝑞 ∈ Q𝑛 will be rejected if max
(
{ 𝑓𝑠 ( 𝑓 (𝑞), p𝑐)}𝑐∈C 𝑓

)
< 𝜃𝑎. As such,

rejection boundaries are dynamically estimated with respect to few-shot classes C 𝑓 and support

instances S. Our approach can be also applied to GFSOR tasks where the negative prototype are

generated from both few-shot and many-shot class prototypes to get task-adaptive threshold with

respect to both few-shot and many-shot classes.

5.4.2 Negative Generator

To find the best negative generator 𝑔𝑛 (·), we explore different choices which we describe below

in detail.

MLP

We start with a simple generator that consists of a single MLP layer applied on averaged class

prototypes, i.e.,

p− = 𝑓𝑛 (p−
𝑎𝑣𝑔), p−

𝑎𝑣𝑔 =
1
𝑁

∑︁
𝑐∈C 𝑓

p𝑐 (5.3)

where 𝑓𝑛 is a MLP that takes p−
𝑎𝑣𝑔, the mean of P 𝑓 , as input so that p− is independent from

the prototype order. Meanwhile, we set p−
𝑎𝑣𝑔 as a naive baseline (AVG) as p−

𝑎𝑣𝑔 is also order-

independent.

ATT

Transformers[105] are proved effective in exploiting relations, which is also independent from

the input order (without positional encoding). We apply a standard Transformer attention block

over few-shot class prototypes to generate the negative prototype. Specifically, we calculate the

self-attention weight between class prototypes, i.e.,

A(P 𝑓 ,P 𝑓 ) =
1
√
𝑑
(P 𝑓K𝑞 (P 𝑓K𝑘 )𝑇 ),
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where A(P 𝑓 ,P 𝑓 ) ∈ R |C 𝑓 |×|C 𝑓 | is the attention weights matrix, and K𝑞,K𝑘 ∈ R𝑑×𝑑 are trainable linear

projection kernels. Then, we normalize the weights and output

P
′
= P 𝑓 + 𝜎(A(P 𝑓 ,P 𝑓 )) (P 𝑓K𝑣),

where 𝜎(·) is a softmax function for each row in A(P 𝑓 ,P 𝑓 ) and K𝑣 ∈ R𝑑×𝑑 is another trainable

linear projection kernel. Then, we feed the average of P′
to a MLP function 𝑓𝑛 to get the negative

prototype p−.

ATT-G

The above generators is suitable for FSOR problem. Now we consider the more challenging

GFSOR task. Directly employing the above methods may introduce bias towards C∗ as C∗ has

plenty of training samples and the prototype P∗ can be better-estimated compared against the few-

shot prototypes P 𝑓 . Hence we need another negative generator compatible with GFSOR , which

should take care of both C∗ and C 𝑓 . We build our ATT-G generator on top of a popular GFSL

method [137], which uses an attention mechanism to calibrate few-shot prototypes P 𝑓 with P∗.

Specifically, we follow [137, 142, 143] to first train a network under large-scale classification task

using the labeled samples of C∗ (i.e., pre-training) and use the weight in the last linear layer as

many-shot class prototypes P∗. Then we apply the attention block between P 𝑓 and P∗ to generate

the negative prototype p−, i.e.,

A(P 𝑓 ,P∗) =
1
√
𝑑
(P 𝑓K𝑞 (P∗K𝑘 )𝑇 ), (5.4)

P
′
= P 𝑓 + 𝜎(A(P 𝑓 ,P∗)) (P∗K𝑣), (5.5)

and p− is similarly computed by feeding the average of P′
into a MLP 𝑓𝑛. Furthermore, we’d like

to filter out task-irrelevant information by applying a channel-wise gating mechanism on top of
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P 𝑓 :

p′
𝑐 = p𝑐 ⊙ 𝜙( 𝑓𝑔 (

1
𝑁 − 1

∑︁
𝑖∈C 𝑓 \{𝑐}

p𝑖)), (5.6)

for 𝑐 ∈ C 𝑓 where ⊙ and 𝜙 denote element-wise multiplication and sigmoid operation, and 𝑓𝑔 is a

fully-connected layer. Then, we use the updated P 𝑓 ′ to replace the input P 𝑓 in Eq. 5.4. Finally, we

follow the order of many-shot prototypes P∗, few-shot prototypes P 𝑓 , and negative prototype p−

to build the open-set classifier for a GFSOR task, where P∗ are the weights in the last linear layer

after pre-training.

SEMAN-G

Inspired by recent cross-modal FSL works [144, 145], we further explore how class semantics

could help model negative class. Specifically, we use a cross-modal attention mechanism on top of

ATT-G. For each class 𝑐 ∈ C 𝑓 ∪ C∗, we concatenate p𝑐 with its word embedding e𝑐 ∈ R𝑤 along

the channel to have z𝑐 = [p𝑐, e𝑐] ∈ R𝑤+𝑑 . Then we use Z 𝑓 and Z∗ instead of P 𝑓 ,P∗ in Eq. 5.4 to

calculate the attention. And stick to Eq. 5.5 to take P∗ as input since we are still comparing visual

features for recognition.

Multiple Negative Prototypes

In addition, we can easily extend from single negative generation to multiple negative genera-

tion. Specifically, we can learn a set of generators {𝑔𝑛,𝑖}𝑀𝑖=1 to generate multiple negative prototypes

for each task. For ATT, ATT-G, and SEMAN-G, to reduce the number of trainable parameters, we

choose to share the linear projection kernels in attention mechanism used to calculate P′
, but just

train separate MLPs { 𝑓𝑛,𝑖}𝑀𝑖=1 to synthesis multiple negative prototypes. In this way, we get mul-

tiple thresholds {𝜃𝑎,𝑖}𝑀𝑖=1. Then the maximum threshold 𝜃𝑎 = max
(
{𝜃𝑎,𝑖}𝑀𝑖=1

)
is used as the final

threshold for open-set recognition.

79



5.4.3 Conjugate Training

Here we present our conjugate training strategy towards (G)FSOR. Conjugate training is built

upon the standard FSOR meta-training approach [127, 121]. We first go over the standard FSOR

meta-training then introduce our method.

Standard FSOR Meta-Training

Standard FSOR meta-training strategy [127, 121] trains the model by simulating FSOR tasks

from the given base dataset D𝐵. Specifically, it trains on a set of tasks sampled from the base

dataset D𝐵 where the images are from base classes C𝐵. Within an 𝑁-way 𝐾-shot FSOR task T ,

unknown sources are simulated using a different set of 𝑁 classes C𝑛, i.e., C𝑛 ⊂ C𝐵 − C 𝑓 where

|C𝑛 | = 𝑁 , and then randomly sample images belonging to C𝑛 from D𝐵 for Q𝑛. Then the model is

trained using an objective, typically an open recognition loss within the sampled T . The standard

FSOR meta-training can be generalized to GFSOR. For a GFSOR task T ∗, we can sample C 𝑓 and

C∗ from C𝐵 and then simulate unknown sources as C𝑛 ⊂ C𝐵 − (C 𝑓 ∪ C∗) where |C𝑛 | = 𝑁 . And

a GFSOR training objective may be specified to learn the model for GFSOR. Note that, during

inference time (i.e., meta-testing), tasks are sampled from novel dataset D𝑁 where the images are

from classes C𝑁 and no sample from C𝑁 is seen during meta-training, i.e., C𝐵 ∪ C𝑁 = ∅.

Conjugate Tasks

The idea of conjugate training is to sample task pairs whose few-shot examples of one task are

used as the negative source of the other. Formally, we define two tasks T1 = (S1,Q 𝑓

1 ,Q
𝑛
1 |C

𝑓

1 ) and

T2 = (S2,Q 𝑓

2 ,Q
𝑛
2 |C

𝑓

2 ) as a conjugate task pair when Q𝑛
1 = Q 𝑓

2 and Q 𝑓

1 = Q𝑛
2 , i.e., the few-shot

classes C 𝑓

1 (C 𝑓

2 ) in T1(T2) is used as the negative source in task T2(T1). For a conjugate GFSOR

task pair (T ∗
1 ,T

∗
2 ), in addition, T ∗

1 and T ∗
2 share the same many-shot class C∗ and its queries Q∗.
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Conjugate Training Loss

We use a standard cross-entropy loss L𝐶𝐸 (·, ·) [146]. For an FSOR task T , we use cosine

similarity as 𝑓𝑠 and use Q 𝑓 ∪ Q𝑛 to perform (𝑁 + 1)-way classification. For each positive query

𝑞 ∈ Q 𝑓 , we learn to maximize the class score of its label category by minimizing L𝐶𝐸 (𝑦𝑞, 𝑞)

where 𝑦𝑞 ∈ {1, ..., 𝑁} is the class label of 𝑞. For each negative query 𝑞 ∈ Q𝑛, we set its ground

truth label as 𝑁 +1 and maximize the threshold 𝜃𝑎 by minimizing L𝐶𝐸 (𝑁 +1, 𝑞). During conjugate

training, we consider the dependency of negative sampling mentioned in [128]. Without loss of

generality, for a positive query 𝑞 ∈ Q 𝑓

2 belonging to class 𝑐𝑛 ∈ C 𝑓

2 in T2, it is used as the negative

query and is trained to have high similarity with the negative prototype in T1.

With a simple classification loss, the negative prototypes are optimized to learn a tight rejection

boundary for a specific task. Besides, for the attention-based generators, we also regularize the in-

termediate variables P′
as class-specific negative prototypes. For each prototype p′

𝑐 ∈ P′
generated

from a positive prototype p𝑐, we can think of p′
𝑐 as the negative prototype for class 𝑐. Then, for

each p′
𝑐, we minimize its similarity with queries of class 𝑐 and maximize its similarity of negative

queries with a binary cross-entropy loss L𝐵𝐶𝐸

L𝑛𝑒𝑔 (𝑐) =
1

|Q 𝑓

𝑐,1 |

∑︁
𝑞∈Q 𝑓

𝑐,1
L𝐵𝐶𝐸 (0, 𝑓𝑠 ( 𝑓 (𝑞), p′

𝑐))

+ 1
|Q𝑛

1 |
∑︁

𝑞∈Q𝑛
1
L𝐵𝐶𝐸 (1, 𝑓𝑠 ( 𝑓 (𝑞), p′

𝑐))

where Q 𝑓

𝑐,1 = {𝑞 |𝑞 ∈ Q 𝑓

1 , 𝑦𝑞 = 𝑐} and 𝑦𝑞 denotes the class label of 𝑞. Finally, without loss of

generality, for T1 in the conjugate task pair (T1,T2), we have

LT1
= L𝐶𝐸 (Q 𝑓

1 ∪ Q𝑛
1) +

1
|C 𝑓

1 |

∑︁
𝑐∈C 𝑓

1
L𝑛𝑒𝑔 (𝑐), (5.7)

and the total conjugate training loss is L = LT1
+ LT2

.

Similarly, for the network trained on GFSOR tasks, given a conjugate task pair (T ∗
1 ,T

∗
2 ), we
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have

L∗
T ∗

1
= L𝐶𝐸 (Q∗

1 ∪ Q 𝑓

1 ∪ Q𝑛
1) +

1
|C 𝑓

1 |

∑︁
𝑐∈C 𝑓

1
L𝑛𝑒𝑔 (𝑐),

where the class label for a negative query is 𝑁 + 1+ |C∗ |, and the total loss being L∗ = L∗
T ∗

1
+L∗

T ∗
2

.

In this way, our conjugate training involves the class-correlation during network training.

5.5 Experiments and Analysis

Datasets

For FSOR tasks, we evaluate on two widely used public benchmarks: MiniImageNet [120],

TieredImageNet [147]. MiniImageNet [120] contains 100 classes and the class split for (meta-

training, meta validation,meta-testing) is (64,16,20). Each class has 600 images. TieredImageNet

[147] contains 608 classes and the class split is (351, 97, 160) while the base dataset contains

around 450K images. We evaluate GFSOR on MiniImageNet [120] and set the base classes during

meta-training as the many-shot classes during meta-testing. We follow [137] and use another 300

images for each base class for the GFSOR simulation. All images for the two datasets are sized

to 84×84. For SEMAN-G, we extract word embedding using GloVe [148]. More details of the

datasets can be found in the supp. material.

Implementation Details

We use ResNet12 [149] network as the feature backbone. Following [142, 143], we pre-train

the ResNet12 and a classifier (a linear layer) with cross-entropy loss and a self-supervised rotation

loss on the base set under fully-supervised classification task for 90 epochs using a SGD optimizer

with learning rate 0.05 decayed by 10 at epoch 60. The weights in the linear layer are used as

base-class many-shot prototypes P∗ for ATT-G and SEMAN-G. Through the experiment, we in-

terchangeably use the term base and many-shot. During meta-training, the learning rate is set to

0.0001 for the ResNet12 feature extractor, and 0.05 for all other layers in the negative prototype

generator. The entire network is trained for 18𝑘 tasks with a SGD optimizer, where the learning
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rate is decayed when the validation accuracy saturates. During meta-testing, we follow [128, 127]

to randomly sample 600 tasks, and report the average value with 95% confidence interval for all

the metrics. We use cosine similarity [137] as the similarity function to compute per-class predic-

tion scores. For FSOR evaluation, we follow [127] to sample training and testing tasks, where we

set 𝑁 = 5 and 𝐾 = 1, 5. For each task, we sample 15 positive queries from each few-shot class.

For negative detection, we sample 5 negative classes with each containing 15 negative queries.

For each GFSOR task, in addition to query samples from few-shot and negative classes, we select

75 query samples for the base classes (each class has at least one sample). Following the setup

in [120], we randomly sample 1000 5-way GFSOR tasks to learn to generate an open-set classifier

for the union of 64 base classes and 5 novel classes.

Metrics

To measure the standard closed-set classification performance, we report top-1 accuracy for

FSOR tasks over few-shot classes. For GFSOR, we follow the protocol defined in [150, 151],

and report both arithmetic mean and harmonic mean between mean accuracy of base samples and

mean accuracy of novel samples. In addition, we report Δ-value to measure the accuracy drop

between prediction among specific classes (base or novel classes) and prediction among all com-

bined classes, where a better classifier is supposed to balance the prediction and have low Δ-value.

To measure the negative detection performance, we follow the protocol in [127, 128] to report

AUROC (area Under ROC Curve). To measure the overall open-set recognition performance, we

follow the protocol in [141] to report macro-averaged F1-scores on all many-shot/few-shot and

negative classes.

5.5.1 FSOR Results

Comparison of Negative Generator

We first compare different choices of negative generators on FSOR tasks in Tab. 5.1. Note that

ATT-G and SEMAN-G can also be applied for FSOR and compared to other approaches since all

83



Table 5.1: F1-score comparison on 5-way 1-shot FSOR tasks on Mini-ImageNet. ∗: our imple-
mentation.

Neg. Gen. 0.3 0.5 0.7 0.9
PEELER 34.01 40.71±0.59 41.44 35.30

Dynamic+PEELER 38.19 45.34±0.64 44.10 30.95
Neg. Gen. Single Neg. Multi Neg.

AVG 45.6±0.71 -
MLP 46.12±0.74 47.21±0.72
ATT 46.38±0.73 47.29±0.70

ATT-G 47.03±0.74 48.19±0.71
SEMAN-G 47.95±0.72 50.10±0.69

models are trained using base set only (including base prototype) and doesn’t use any extra data.

We can see that attention-based methods are effective in negative generation as they are good at

modeling inter-class relations. Adding class semantic information is also beneficial for discrimi-

nation. Meanwhile, by enabling multiple negative prototypes, i.e., 𝑀 = 5, we can automatically

estimate the threshold 𝜃𝑎 with more flexibility, which then achieve consistent performance gain

in F1-score, when compared generating a single negative prototype 𝑀 = 1. For the following

experiment results, we set 𝑀 = 5 for our methods.

Comparison with Threshold-based Classifier

For threshold-based methods, threshold-tuning is crucial to get good recognition performance.

To evaluate the overall open-set recognition, we compare macro-weighted F1-score. For threshold-

based approaches, we define different thresholds and compute the corresponding F1-score. We

illustrate our result in both Tab. 5.1 and Fig. 5.4(a), where we consider two threshold-based

classifiers PEELER[127] and a combination of PEELER and our ATT-G method baseline, Dy-

namic[137], which calibrates novel prototype with base-class prototypes. In detail, we apply

PEELER’s open-set training strategy on top of Dynamic.

We implement PEELER and Dynamic+PEELER using the same feature extractor (ResNet12)

as ours, which is first pre-trained on the base set. (1) PEELER: Our training and sampling strategy

are built upon PEELER [127], and hence pick it as one threshold-based method for comparison

84



in Fig. 3 and Tab. 1. In detail, we implement PEELER using our pre-trained feature extractor,

and then perform meta-training with PEELER’s open-set loss. Then rejection score is calculated

as argmax𝑦∈ C 𝑓 𝑝(𝑥 |𝑦). (2) Dynamic+PEELER: To compare to ATT-G more fairly, we combine

PEELER with Dynamic as another threshold-based approach in Fig. 3 and Tab. 1. Specifically,

we use PEELER’s loss and training strategy on top of the calibrated few-shot prototypes. Then the

rejection score is calculated as argmax𝑦∈ C 𝑓 𝑝(𝑥 |𝑦).

In Fig. 5.4(a), we simulate 45k FSOR tasks and find their optimal rejection thresholds 𝜃𝑚 for the

threshold-based approach Dynamic+PEELER. We plot the distribution of 𝜃𝑚, which shows that it

covers a wide range between 0 and 1. It demonstrates that different FSOR tasks may need very dif-

ferent rejection threshold in practice with current threshold-based approach. And the overall recog-

nition performance largely depends on threshold selection, as is shown in Tab. 5.1. Our method

instead automatically learn a task-adaptive rejection boundary, and we can see from Tab. 5.1 that

all our negative envision instantiations outperform threshold-based methods. Fig. 5.4(b) further

analyze the recognition behaviour under different openness [152]:

openness = 1 −

√︄
2|C 𝑓 |

2|C 𝑓 | + |C𝑛 |

where we fix |C 𝑓 | = 5 and vary |C𝑛 | from 5 to 15. Similarly, we test for 600 randomly selected

FSOR tasks and take the average. As is validated by Fig. 5.4, our method clearly outperforms

threshold-based methods at all openness levels.

Comparison with SOTA Methods

We compare our method with other SOTA methods. The baselines we compare to include

standard FSL methods (ProtoNet, FEAT), large-scale OR methods (OpenMax, CounterFactual),

and existing FSOR methods (PEELER, SnaTCHer). We cite most of the baseline results from

[128], and additionally compare to CounterFactual, a generative OR method which synthesize

fake negative images and then train a 𝑁 + 1 classifier. To apply in our FSOR setting, we first train

its GAN network on base set and use the support set to synthesize fake images. The averaged fake
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Figure 5.4: (a) Distribution of optimal rejection thresholds with Dynamic+PEELER on Mini-
ImageNet. (b) Comparison of open recognition performance under different openness.

image feature is used as the negative prototype for FSOR.

Tab. 5.2 demonstrates the results. Standard FSL methods perform poorly in negative detection

due to its closed-set nature. Large-scale OR methods yields unsatisfactory performance especially

on 1-shot classification. Interestingly, CounterFactual gives a relatively fair performance on neg-

ative detection, which also validates our concept of negative envision. But it’s still much worse

than our few-shot-specific negative generation strategy, which validates that our approach better

suits for the limited data scenario. Both ATT-G and SEMAN-G outperform other methods on

Mini-ImageNet and get comparable result on Tiered-ImageNet.

Ablation Study on Conjugate Training

Tab. 5.3 shows the impact of conjugate training. We observe consistent improvement on all

metrics and datasets, validating that conjugate training efficiently boosts the learning process by

enabling mutual supervision from two tasks.
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Table 5.2: 5-way 1-shot and 5-shot FSOR results. ∗: our implementation.

Algorithm
MiniImageNet,5-way TieredImageNet,5-way

1-shot 5-shot 1-shot 5-shot
Acc AUROC Acc AUROC Acc AUROC Acc AUROC

ProtoNet [121] 64.01±0.88 51.81±0.93 80.09 60.39 68.26 60.73 83.40 64.96
FEAT [153] 67.02±0.85 57.01±0.84 82.02 63.18 70.52 63.54 84.74 70.74

OpenMax [123] 63.69±0.84 62.64±0.80 80.56 62.27 68.28 60.13 83.48 65.51
CounterFactual∗ [140] 63.7±0.83 64.17±0.88 81.44±0.54 71.58±0.76 70.08±0.94 71.04±0.80 85.36±0.60 78.66±0.62

PEELER [127] 65.86±0.85 60.57±0.83 80.61 67.35 69.51 65.20 84.10 73.27
SnaTCHer-T [128] 66.60±0.80 70.17±0.88 81.77 76.66 70.45 74.84 84.42 82.03
SnaTCHer-L [128] 67.60±0.83 69.40±0.92 82.36 76.15 70.85 74.95 85.23 80.81

ATT (ours) 67.64±0.81 71.35±0.68 82.31±0.49 79.85±0.58 69.34±0.95 72.74±0.78 83.82±0.63 78.66±0.65
ATT-G (ours) 68.11±0.81 72.41±0.72 83.12±0.48 79.85±0.57 70.58±0.93 73.43±0.78 85.38±0.61 81.64±0.63

SEMAN-G (ours) 68.24±0.82 72.85±0.69 83.48±0.48 82.07±0.58 71.06±0.92 74.27±0.77 86.02±0.58 82.59±0.57

Table 5.3: Ablate study on conjugate training. We report 5-way-1-shot FSOR result using ATT-G
over three metrics on both datasets.

Dataset Metric w/o Conjugate w/ Conjugate
ACC 66.28±0.84 68.11±0.81

Mini AUROC 71.80±0.77 72.41±0.72
ImageNet F1-score 46.94±0.68 48.19±0.71

ACC 70.08±0.94 70.58±0.93
Tiered AUROC 71.84±0.82 73.43±0.78

ImageNet F1-score 50.23±0.77 51.56±0.81

Table 5.4: 5-way generalized few-shot open-set recognition results on Mini-ImageNet.†: Imple-
mented by CASTLE [154]. ∗: our implementation.

Algorithm
1-shot 5-shots 1-shot 5-shots 1-shot 5-shots

Arith. Mean Δ Arith. Mean Δ Harmonic Mean AUROC
IFSL [150] 54.95±0.3 11.84 63.04±0.3 10.66 - - - -

L2ML [155] 46.25±0.04 27.49 45.81±0.03 35.53 2.98±0.06 1.12±0.04 - -
ProtoNet2 † 53.93±0.08 22.09 72.64±0.08 11.41 27.73±0.19 68.99±0.11 - -

CASTLE [154] 66.48±0.11 9.94 76.25±0.09 8.14 64.29±0.14 75.79±0.1 - -
DynamicFSL∗ [137] 60.85±0.14 12.97 73.1±0.13 10.92 60.13±0.13 69.8±0.09 67.56±0.17 72.86±0.11

ATT-G(ours) 65.49±0.13 11.25 75.51±0.10 10.97 63.94±0.12 73.89±0.12 73.12±0.16 77.22±0.13
SEMAN-G(ours) 66.83±0.11 10.24 77.02±0.08 9.78 64.77±0.12 75.62±0.09 73.55±0.14 78.22±0.11

5.5.2 GFSOR Results

In Tab. 5.4, we compare ATT-G and SEMAN-G with other standard methods on GFSOR tasks.

We implement some of the baseline methods, which are marked with ∗ in the main paper. For

fair comparison, all the re-implemented methods use the same feature extractor (ResNet12) as

ours, which is first pre-trained on the base set.
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We implement DynamicFSL [137] on our own using ResNet12 backbone, using the standard

Transformer attention block. We calculate its accuracy in the normal way, while for AUROC, we

take argmax𝑦∈ C 𝑓∪C∗ 𝑝(𝑥 |𝑦) as the rejection score.

Under the more challenging GFSOR setting, we achieve comparable GFSL classification ac-

curacy with SOTA method and significantly improve the AUROC score which measures negative

query detection. In addition, as GFSL methods are not trained to envision negative prototype but

has more classes to recognize during evaluation, it will be challenging to manually set a threshold

to reject negative queries while maintaining high classification accuracy. Thus, it is necessary to

learn to dynamically generate threshold for each query for GFSOR.

5.5.3 More Experiments

We further conduct FSOR experiments on two few-shot benchmark datasets: CIFAR-FS[156],

FC100 [132]. CIFAR-FS [156] contains 100 classes with the class split for (64,16,20). FC100 [132]

contains 100 classes with the class split (60,20,20). Each class has 600 images and all images for

the two sets are of size is 32×32. As shown in Tab. 5.5 and 5.6, we compare our methods with

the threshold-based methods and direct application of large-scale open-set recognition methods.

Consistent with Tab. 5.2, for low-resolution dataset, our method achieves the best performance on

both classification accuracy and negative query rejection, which again demonstrates the effective-

ness of our approach. For OpenMax results, we follow [128] to fit Weibull models over training

tasks using the predicted class scores (i.e., logits). Then the mean activation vectors are used for

negative detection.

5.6 Summary

In this chapter, we consider the case where M is a standard recognition model trained with

many-shot data, and we adapt it to better perform few-shot open-set recognition tasks. We show the

limitation of threshold-based approaches for few-shot open-set recognition where different tasks

may need very different rejection threshold and hence the tuning process could be challenging.
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Table 5.5: 5-way FSOR results CIFAR-FS.∗: our implementation.

Algorithm
1-shot 5-shot

Acc AUROC Acc AUROC
OpenMax[123]∗ 71.65±0.65 50.21±0.07 85.66±0.48 75.78±0.47

CounterFactural[140]∗ 71.71±0.65 72.57±0.61 85.71±0.45 80.44±0.37
PEELER[127]∗ 71.47±0.67 71.28±0.57 85.46±0.47 75.97±0.33
Dynamic[137]∗ 71.56±0.67 66.89±0.52 85.78±0.49 76.03±0.37
ATT-G (ours) 72.43±0.65 76.72±0.59 86.52±0.49 84.64±0.38

SEMAN-G (ours) 74.55±0.65 78.10±0.58 86.71±0.47 86.47±0.37

Table 5.6: 5-way FSOR results on FC100. ∗: our implementation.

Algorithm
1-shot 5-shot

Acc AUROC Acc AUROC
OpenMax[123]∗ 44.70±0.60 50.10±0.11 60.11±0.62 57.78±0.44

CounterFactural[140]∗ 44.53±0.60 57.20±0.47 61.12±0.60 62.35±0.45
PEELER[127]∗ 44.45±0.57 55.86±0.44 60.86±0.59 61.07±0.40
Dynamic[137]∗ 44.88±0.59 55.62±0.54 60.45±0.61 59.01±0.52
ATT-G (ours) 45.11±0.60 59.55±0.57 61.18±0.61 63.34±0.50

SEMAN-G (ours) 46.01±0.60 59.73±0.53 62.18±0.57 64.46±0.50

To this end, we propose our task-adaptive negative envision approach towards (G)FSOR. Given

a standard recognition model M, we propose to add a negative generator 𝛿 to compute negative

prototypes from few/many-shot class examples. We study the different design of negative generator

𝛿, and find attention-based generator works the best; adding class semantics further improves the

performance. We also introduce a new conjugate class training strategy to better facilitate the

learning process. Extensive experiments demonstrate the effectiveness of our approach. We note

the limitation where we assume the negative source only being the images from other categories.

Other possible negative sources include, e.g., data from different domains, adversarial data, etc.

We will leave those as future work and study they affect our approach.
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Table 5.7: Summary of Symbol Notation

Variable Definition Note

T a few-shot open-set recognition task

T ∗ a generalized few-shot open-set recognition task

C 𝑓 the set of few-shot classes

C∗ the set of many-shot classes

C𝑛 the set of negative classes (simulate unknown sources)

C𝐵/C𝑁 base/novel class set class split in experiment

D𝐵/D𝑁 base/novel class dataset dataset split in experiment

S training samples (support) set of few-shot classes

S𝑐 training samples (support) set of few-shot class 𝑐 (character sub-index)

Q 𝑓 /Q∗/Q𝑛 testing samples (query) set of few-shot/many-shot/negative classes

P 𝑓 few-shot prototype vectors (average the support feature vectors)

P∗ many-shot prototype vectors (classifier weights after pretraining)

Z 𝑓 /Z∗ semantic-visual vectors for few/many-shot classes

p𝑐 a prototype feature of class 𝑐

p− a negative prototype feature

e𝑐 word embedding (semantic representation) of class 𝑐

z𝑐 semantic-visual vector for class 𝑐 concatenate p𝑐 and e𝑐
K𝑞,K𝑘 ,K𝑣 learnable kernels for attention calculation

A((𝑥,𝑦)) the unnormalized attention weights between 𝑥 and 𝑦

𝑠 a support sample

𝑞 a query sample its label is 𝑦𝑞
𝑓 feature extractor function, extract one feature vector for each image

𝑓𝑠 distance function, calculate similarity between two feature vectors

𝑓𝑛 an MLP for negative prototype generation

𝑓𝑔 gating function used in ATT-G and SEMAN-G

𝑔𝑛 general representation for the negative prototype generation function 𝑔𝑛,𝑖 the 𝑖-th function

𝜃𝑚 manual threshold for negative query detection

𝜃𝑎 automatic/task-adaptive threshold 𝜃𝑎,𝑖 the 𝑖-th threshold

𝜏 a margin between rejection score and positive detection scores the margin value is positive

⊙ element-wise multiplication

𝜙 element-wise sigmoid operation

𝜎 row-wise softmax operation

Note: the numerical sub-index used in the paper is for the definition of conjugate tasks and their related calculation
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Chapter 6: Adapting Models for Unseen Domains

Vision data from different source, environments and scenes would have different visual prop-

erties. A vision system should be capable of adapting to various domains towards a more universal

utility. In this chapter, we design efficient model adaptation approaches from one domain to other

domains with only domain-level information. Figure 6.1 shows a high-level illustration of the idea

and framework, where 𝛿 is instantiated as a domain translator to bridge the gap between visual

domains.

6.1 Introduction

In recent years, the success of large-scale pre-trained models has been evident across a wide

range of computer vision applications such as object recognition and detection [149, 157, 158, 159,

160, 161, 162], which brings steps further into vision-capable AI systems. Despite their effective-

ness, challenges arise when deploying these models into real scenarios. One typical challenge is

that, in real open world, data are diverse and not necessarily seen by the model before. For a vi-

sion system to operate in practice, one important capability is to deal with data from new unseen

domains.

Researchers have formulated this challenge as domain generalization problem, which aims to

enhance model robustness by transferring learned representations from a source domain to tar-

get domains. Many research endeavors have been put into adapting pre-trained models to new

domains, since the pre-trained models might fail to perform well due to the divergence between

the training and test domains. These approaches [163, 164, 165, 166, 167] usually design spe-

cific training strategies for handling out-of-distribution data [168]. However, traditional domain

generalization methods typically require access to target domain data, even if unlabeled, posing
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Figure 6.1: In this chapter, 𝛿 serves as a domain translator that translates a source domain visual
embedding to another target domain.

challenges in scenarios where data availability is limited, as is often the case in situations such

as rare diseases or when data are sensitive. Recognizing this limitation, there is a growing need

for domain generalization techniques that can effectively adapt pre-trained models to new domains

without relying on extensive labeled data from the target domain.

In this chapter, we investigate the problem of domain generalization without target data. We

believe a desired vision system should be both robust to unseen domains but also not rely on addi-

tional target domain data. We are inspired from the recent vision-and-language model CLIP [158]

that exhibits strong transferrable ability on vision applications, and propose to translate visual em-

beddings from source to target domain using the semantic information (e.g., domain descriptions)

that is bridged using common space projection. Our insight is that the domain-level knowledge en-

coded by large multi-modal models like CLIP [158] is able to address domain shifts in an efficient

manner, i.e., with rapid training process.

Though we may directly extract the rich visual embeddings from pre-trained models and apply

to new domains, we notice that they might show strong bias towards the source domain, especially

when the source domain data are well seen by the pre-trained models during their pre-training

stages. For example, CLIP performs well on natural images or photos as it may have encountered

majority of photo images when it was initially trained. Thus, to improve the generalization on

target domains, it is essential to disentangle the domain invariant representation from the domain

specific counterpart.

To this end, we consider a machine learning model M trained with source domain data, and
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Domain 
Translator

Source: “A photo of a bird”
Target: “A painting of a bird”

Language Guided Training

Figure 6.2: In this chapter, we investigate the problem of domain generalization, where the model
is learned to be adapted to unseen domain without any access to the target domain images. To this
end, we propose a language-guided domain translator framework to effectively transform source
domain data into target domain.

seek to adapt it for target domain by adding a small domain translator 𝛿 to it. Specifically, we

develop a language-guided domain translator framework that transform visual embeddings to the

target domain via language guidance. Fig. 6.2 illustrates a high-level concept of our goal. Specifi-

cally, our domain translator contains two parts: feature disentangler and feature hallucinator. Fea-

ture disentangler is used to disentangle the domain-invariant component from source-domain visual

embedding, and then fed into feature hallucinator to get target-domain visual embedding. As we

do not have access to any target domain images, we propose to design language-guided losses to

learn the domain translator. We construct text prompts describing the source domain as well as

the class names, and use them to guide the disentanglement process. The translated target domain

embedding is then supervised by the text prompt combing domain and class names. In this way,

we are able to generate pseudo target domain visual features that can be used for learning a robust

classifier.

We further identify the limitation of current domain generalization mechanisms where they are

usually designed for one-to-one generalization, where we assume all the samples coming from this

single target domain. Towards a more realistic setting, we propose to extend our method to deal
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with one-to-many scenario, where during test time, the samples might come from a mixture of

target domain. Specifically, we design a domain scorer that predicts scores for estimating which

domain it belongs to. We validate our framework on four major domain generalization benchmarks

which show promising performance gains under different evaluation settings.

6.2 Related Work

Domain Adaptation & Generalization This problem has been broadly studied in the literature,

which aims to adapt models to a new target domain while still performing well. Earlier works [163,

164, 165, 166] assume access to target domain images, and design methods based on different

availability of the target image annotations. To ease the efforts on annotation, various works [169,

170] are centered around the setting where target domain images are unlabeled, proposing to learn-

ing a classifier invariant to source and target domains. More recently, research efforts turn to an

even more challenging setting where there lacks the target domain images as well. Works such

as [171, 172] investigate domain adaptation with very few number (for example only one) of target

domain images. The most relevant work to ours is LADS [173] which requires zero image from

target domain but only language descriptions of the new domains. Specifically, it trains a data

augmentation network that transforms source domain embeddings to the target domain. However,

its approach only works on one-to-one domain generalization, that is, we assume the prior knowl-

edge of which specific target domain the test-time sample belongs to. In our work, we ease this

strong assumption by providing a one-to-many domain translator that handles the situation where

test-time samples could come from multiple domains.

Zero-shot Model Adaptation Our work in general is related to Zero-shot model adaptation, where

we are not provided task-specific training data. The emergence of large pre-trained models like

CLIP [158] has proven powerful in various downstream applications under zero-shot settings [174,

175], showing the strong transferrable ability of these pre-trained embeddings. When new labeled

data come in, they are also quickly tuned towards task-specific data. One insight for zero-shot

transfer is to use semantic embeddings to transfer concepts across modalities and domains, as de-
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scribed in [176, 177]. For example, [176] propose to utilize semantic relations between categories

to perform zero-shot transfer. We similarly follow this insight and propose to translate visual em-

beddings across domains using semantic description, under the context of domain generalization.

Multi-modal Learning The field studies how to better exploit and utilize information from dif-

ferent modalities, typically from visual signals (e.g., images and videos) and textual signals (e.g.,

sentences, phrases and paragraphs). Earlier works [105, 178, 179, 180] focus on designing spe-

cific architectures for modelling the interaction and fusion of different modalities. More recently,

CLIP [158] and its variants come out, which provides powerful visual and textual encoders that are

trained on huge number of image-text pairs, which are designed to project visual and textual em-

beddings into a common space. In this way, if offers strong visual and textual embeddings that can

be directly applied for different tasks. Our model is related to multi-modal learning as well since

we learn to map textual embedding domain descriptions to same space as for visual embeddings,

so that it can be easily transferred to unseen domain even without seeing new domain images.

6.3 Preliminary

Here we go over our formulation of domain generalization problem. Overall all our approach

is based on pre-trained CLIP-based model, which consists of a visual encoder 𝑀𝑉 and textual

encoder 𝑀𝑇 . We fix these two encoders throughout the process. Given an image, we can get

its original visual embedding 𝑥 = 𝑀𝑉 (𝑖𝑚) ∈ R𝑑; given a text or phrase, we can get its textual

embedding 𝑒 = 𝑀𝑇 (𝑖𝑚) ∈ R𝑑 . Since our approach is built upon these pre-extracted visual and

textual features, we will use 𝑥 and 𝑒 to represent the inputs. We denote D𝑡𝑟𝑎𝑖𝑛
𝑠 = {(𝑐, x)} as

the training data from source domain 𝑠, where 𝑐 ∈ C is the class name of image x. Domain

generalization aims to adapt the model to unseen target domain 𝑡 while still retain the capability

on source domain. We denote D𝑡𝑒𝑠𝑡
𝑡 as the target domain query at inference time, and D𝑡𝑒𝑠𝑡

𝑠 as the

source domain query at inference time. The model is expected to perform well on both D𝑡𝑒𝑠𝑡
𝑡 and

D𝑡𝑒𝑠𝑡
𝑠 .

95



“A photo of something”

!!(#)

Feature 
Hallucinator !"%#

Feature 
Disentangler !!

# !"(!!(#))

%$

Training Domain Translator !" ∘ !! 

#	 − !!(#)

)%&'_)*+
)%&'_,-./

)012

“A painting of a bird”“An image of a bird”

%$ %$

Figure 6.3: Our training pipeline for domain translator. Our framework is built on top on CLIP-
based multi-modal model, where 𝑀𝑉 refers to the visual encoder, and 𝑀𝑇 refers to the textual
encoder. The domain translator is composed of two parts: feature disentangler 𝑓𝐷 and feature hal-
lucinator 𝑓𝐻 . For a source domain visual embedding 𝑥, we first disentangle the domain invariant
component 𝑓𝐷 (𝑥), as well as its domain-specific component 𝑥 − 𝑓𝐷 (𝑥). Then the domain invari-
ant part is transformed to the target domain as 𝑓𝐻 ( 𝑓𝐷 (𝑥)). We use three textual prompts to put
constraints, where a domain-only description is used for guiding the domain-specific 𝑥 − 𝑓𝐷 (𝑥),
a class-only description is used for guiding the domain-invariant 𝑓𝐷 (𝑥) and finally we use target
description to guide the target visual embedding. When the domain translator is done training, we
use all the translated visual embeddings to fit a linear classifier on top of the original CLIP visual
encoder 𝑀𝑉 that is used for recognizing new-domain images.

6.4 Approach

Here we talk about our language-guided domain translation framework, as illustrate in Fig 6.3.

6.4.1 Language guided domain translator

We propose to use a domain translator to transform source-domain visual embedding to new

target domain. Our approach is inspired by the recent study [173] which implies that a visual

feature could be represented by the sum of a domain-invariant and a domain-specific component

embeddings. Hence our domain translator consists two parts: feature disentangler 𝑓𝐷 and feature
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hallucinator 𝑓𝐻 . Feature disentangler 𝑓𝐷 aims to disentangle the domain invariant part of the

original visual feature 𝑥, denoted as 𝑓𝐷 (𝑥). A good domain invariant component should contain

information irrelevant to the domain. We model its domain-specific counterparts as 𝑥− 𝑓𝐷 (𝑥) which

is supposed to only contain domain-specific information. Then we build feature hallucinator on

top of the domain-invariant feature 𝑓𝐷 (𝑥) to get the translated target domain embedding :

𝑥 = 𝑓𝐻 ( 𝑓𝐷 (𝑥))

Since we do not have any target domain images, we propose to use domain and class descrip-

tions to guide the generation of each component. Specifically, we use three textual prompts to put

constraints, where a domain-only description is used for guiding the domain-specific 𝑥 − 𝑓𝐷 (𝑥),

a class-only description is used for guiding the domain-invariant 𝑓𝐷 (𝑥) and finally we use target

description to guide the target visual embedding. We use the following text templates to construct

our three prompts:

• class prompts: we use the template [A image of a {class}];

• domain prompts: we use the template [A {domain} of something];

• domain-class prompts: we use the template [A {domain} of a {class}].

We extract their embeddings, denoted as 𝑒𝑐,𝑒𝑑 ,𝑒𝑥 , using 𝑀𝑇 . And use them to guide the training

of 𝑓𝐷 and 𝑓𝐻 . We propose the combination of three losses. First, we put a constraint on domain-

invariant component. Our insight is that this component should retain class information. As such,

we use a cross entropy loss on its cosine similarity with all the class prompts:

L𝑑𝑜𝑚−𝑖𝑛𝑣 = Cross-entropy( 𝑓𝐷 (𝑥), 𝑒𝑐𝑖 ; 𝑐)

Then we would want the domain-specific part to only contain domain information, so we maximize
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Figure 6.4: We can extend our approach to multi-domain generalization where during test time the
samples come from mixture of target domains. We propose to train a domain scorer to identify the
most probable domain and use its corresponding classifier to perform the task.

its similarity with domain prompts

L𝑑𝑜𝑚−𝑠𝑝𝑒𝑐 = 1 − Cosine(𝑥 − 𝑓𝐷 (𝑥), 𝑒𝑑)

Finally we put constraint on the hallucinated target domain feature, forcing it to perform well with

domain-class based classifier.

L𝑡𝑎𝑟 = Cross-entropy(𝑥, 𝑒𝑥; 𝑐)

Then our total loss is the weighted sum of these three parts.

L = L𝑑𝑜𝑚−𝑖𝑛𝑣 + 𝛼1L𝑑𝑜𝑚−𝑠𝑝𝑒𝑐 + 𝛼2L𝑡𝑎𝑟

6.4.2 Training strategy

Our full training process contains two steps. First, we train the domain translator as described

above, where for each source domain visual embedding 𝑥 from D𝑡𝑟𝑎𝑖𝑛
𝑠 , we can get its hallucinated

feature 𝑥 = 𝑓𝐻 ( 𝑓𝐷 (𝑥)) for the target domain 𝑡. When we are done translating the source domain

data, we will get a pseudo target domain set ˆD𝑡𝑟𝑎𝑖𝑛
𝑠 D𝑡𝑟𝑎𝑖𝑛

𝑠 = {(𝑐, 𝑥)}. Finally we fit a linear

classifier C𝑡 using ˆD𝑡𝑟𝑎𝑖𝑛
𝑠 ∪D𝑡𝑟𝑎𝑖𝑛

𝑠 . During inference time, when testing query 𝑥
′ ∈ D𝑡𝑒𝑠𝑡

𝑡 comes in,

we extract its CLIP feature 𝑀𝑉 (𝑥
′) and use C𝑡 for predicting the class label.
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6.4.3 Multi-domain Generalization

We further extend our framework to the multi-domain generalization setting, where during

test-time the queries might come from 𝑛 different target domains, and the model should be able

to identify the correct domain and the task. To do so, we propose to additionally train a domain

scorer 𝑓𝑆 on top of our domain translated features. It outputs 𝑛 scores representing how likely

the sample goes into this domain. Then it will select the classifier for this domain and predict the

class label. During training, we first fit multiple domain-specific classifier C𝑡1 , . . . , C𝑡𝑛 using our

one-to-one approach. Then we train 𝑓𝑆 using the combination of target domain translated features

using a cross-entropy loss between the domain scorer and their domain labels. During inference

time, we rank the scores and select the domain with the highest score 𝑖∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖=1,...,𝑛 (𝑑𝑖) and

use C𝑡𝑖∗ for label prediction. We illustrate our multi-domain generalization pipeline in Fig. 6.4.

6.5 Experiments

In this section, we present and analyze the experimental results for domain adaptation. We first

introduct the evaluation setups, implementation details, followed by concrete results across four

public domain adaptation benchmarks as well as ablation study.

6.5.1 Implementation and Evaluation Setups

Datasets. We validate our approach on four public benchmarks:

• CUB-Painting: 200 finegrained classes of bird species from natural and painting domains

respectively. It is constructed as subsets selection from CUB-200-2011 [181] and CUB-200-

Paintings [182], where the first are real photo images and the latter are paintings collected

from the web. The number of training, validation and testing samples are (5994, 2897, 3047).

• DomainNetMini [183]: a subset of DomainNet [184] containing 40 classes from four differ-

ent domains: sketch, real, clipart and painting. We use this dataset for both one-to-one

and one-to-many evaluation. For one-to-one, we follow the commonly used evaluation
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setup [173] where the model is trained on “sketch” domain (source) while leaving the rest

for test-time evaluation. The number of training, validation and testing samples are (5537,

1200, 11468).

• Colored MNIST [185]: it is constructed upon the MNIST Digits [186], where numbers are

colored as red or blue. The model is trained with even numbers red and odd numbers being

blue, while during test-time, the colors are random. The recognition task is to classify the

digits from 0 to 9. The number of training, validation and testing samples are (30000, 5000,

5000).

• Waterbirds [187]: It is a synthetic dataset composed of landbird and waterbird images taken

from CUB-200 dataset. The bird images are synthesized with either forest or water back-

ground using Places [188] dataset. The model is trained with landbirds in forest and water-

birds in water, while during test-time, there is a randome mixture of birds and backgrounds.

The task is to recognize from two types of bird species. The number of training, validation

and testing samples are (4795, 600, 2897).

Evaluation Metrics. We report the classification accuracy for both source and target domains.

For one-to-one domain generalization results on DomainNetMini, we report the average of the

accuracies across different target domains.

Baselines. We mainly compare our approach to the following baselines methods:

• CLIP-ZS-G [158]: zero-shot recognition using CLIP embeddings where the classifier uses

the class name (e.g., "bicycle") along as the prompt.

• CLIP-ZS-G [158]: zero-shot recognition using CLIP embeddings where the classifier uses

the class name along with the domain as the prompt (e.g., "a photo of a bicycle").

• CLIP-LP: extracts the CLIP visual embeddings and fits a linear classifier using source do-

main images.

• CLIP-LP-ZS: similar to CLIP-LP but initialize the classifier with CLIP textual embeddings.
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• WiSE-LP [189]: similar to CLIP-LP but using a weighted ensemble of linear classifiers

consisting of the zero-shot and the fine-tuned linear classifier.

• VQGAN+CLIP [190]: a generative method that generates target-domain images using the

text prompt and source-domain images. Then a linear probe is trained on top of generated

image embeddings. We cite the results from [191].

Implementation Details. We fix the parameters of CLIP encoders, and train our domain translator

on top. We instantiate it with two light-weight architectures: two-layer MLPs, or one standard

transformer block. We will report results for both of them. We train the network on one TiTAN

RTX GPU with batch size being 64. We tune and select different the learning rate for each dataset,

with learning rate being 0.001 for CUB-Paintings, Colored MNIST and Waterbirds and 0.0003 for

DomainNetMini.

6.5.2 Results

One-to-one domain generalization We first present in Tab. 6.1 and 6.2 the standard one-to-one

domain generalization results. We are able to outperform our baselines on different benchmarks.

We can see from the CLIP-ZS results that directly application of CLIP features do not transfer well

on new unseen domain, since CLIP is not trained for it. This validates the motivation of domain

generalization problem in general. Compared to other techniques, we still get performance gains,

which validates our idea of modeling the problem as a domain translation. We can observe a more

significant boost of performance on CUB dataset compared to others. Our insight is that CLIP

does not specifically tackle fine-grained bird specifics, hence making it more challenging problem

on identifying fine-grained classes. Our approach distills class information during the tranlation

process, which could well mitigate this issue.

One-to-many domain generalization Here we present in Tab. 6.3 the one-to-many domain gen-

eralization results on a subset of DomainNetMini. For comparison, we extend CLIP-ZS and CLIP-

LP to multi-domain setting, where we build the classifier with all the possible combination between

domain and class, i.e., [A {domain} of a {class}] for all domains and classes, then select
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Table 6.1: One-to-one domain generalization results on CUB-Painting and DomainNetMini.

Approach
CUB-Painting DomainNetMini

Source Target Average Source Target Average
CLIP Zero-Shot [158] 60.34 52.84 56.59 93.49 95.94 94.72
CLIP Zero-Shot* [158] 61.93 54.38 58.16 93.24 96.01 94.62

CLIP LP 85.91 64.33 75.12 95.03 93.75 94.39
WiSE-LP [189] 81.74 64.80 73.27 95.19 93.68 94.44

DomTrans (Ours) 86.27 66.76 76.52 95.34 96.04 95.69

Table 6.2: One-to-one domain generalization results on Colored MNIST and Waterbirds.

Approach
Colored MNIST Waterbirds

ID OOD Extended ID OOD Extended
CLIP ZS-G [158] 57.88 55.44 56.66 83.04 65.43 74.23
CLIP ZS-A [158] 79.96 77.44 78.70 83.86 72.58 78.22

CLIP LP 99.45 39.57 69.51 97.79 61.12 79.66
WiSE-LP [189] 99.38 58.50 78.94 90.06 68.45 79.25

DomTrans (Ours) 99.48 75.10 87.29 98.01 72.93 85.47

the one with highest probability. We can see from the results also reflect the effectiveness of our

approach. We report the domain only, class only and overall accuracy defined as

• domain accuracy =
#correct domain predictions

𝑁

• class accuracy =
#correct class predictions

𝑁

• oevrall accuracy =
#correct <domain,class> pair predictions

𝑁

where 𝑁 is the total number of test samples. We can see from the table that our approach works

better than other alternatives.

Domain generalization with additional unlabeled data Previous results assume model only

trained with source domain images. Here we study an interesting setting where we assume ac-

cess to additional task-relevant data, which are unlabeled. This is a practical assumption since

collecting data are cheap, rather than annotating data. Inspired by the emergence of large-scale

image-text dataset constructed from web, we investigate the impact of training from additional

unlabeled image-text pairs. Specifically, we use ImageNet-1K [192], which is a subset of LAION

database [193] consisting of 10M image-text pairs as our additional data. We train our domain
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Table 6.3: One-to-many domain generalization results on DomainNetMini Subset.

Approach Domain Accuracy Class Accuracy Overall Accuracy
CLIP ZS-A [158] 80.31 96.01 77.48

CLIP LP 79.12 93.75 73.31
DomTrans (Ours) 82.53 96.04 78.79

translator module using contrastive loss on them, and then finetune with our domain generalization

losses. We present in Tab. 6.4 the results on CUB-Painting and DomainNetMini. We can observe

that additional unlabeled data is beneficial for domain generalization.

Table 6.4: Study of the effects of additional image-text pair data on domain generalization.

Training Data
CUB-Painting DomainNetMini

Source Target Average Source Target Average
Source Images 86.27 66.76 76.52 95.34 96.04 95.69

Source Images + Image-text pairs 88.13 67.62 77.89 95.79 96.41 96.1

6.5.3 Ablation Study and Analysis

Here we provide a few ablation study analyzing our approach. We ablate the component of

our training loss in Tab. 6.5 on CUB dataset, where we can see all components contribute to the

performance, validating the effectiveness of our domain-invariant vs domain-specific design.

6.6 Summary

In this chapter, we present a language-guided domain translator framework for adapting a

source-domain model M to target domain using a light-weight domain translator 𝛿. The domain

Table 6.5: Ablation study of our loss components on CUB-paintings.

Loss Components Accuracies
L𝑡𝑎𝑟 L𝑑𝑜𝑚−𝑠𝑝𝑒𝑐 L𝑑𝑜𝑚−𝑖𝑛𝑣 Source Target Average

✓ 83.23 64.18 73.71
✓ ✓ 84.02 65.89 74.96
✓ ✓ ✓ 86.27 66.76 76.52
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translator module 𝛿 is light-weight and could be generically applied on various vision-language

common space models. Specifically, we use the language embeddings of domain descriptions to

guide the visual embeddings to disentangle its domain invariant component, which can be used

for recognizing images in unknown domains. Coupled with this framework, we propose a training

loss consisting domain invariance and specific objectives. The approach is further extended to one-

to-many domain generalization, where the test-time samples could come from multiple unknown

domains. Towards this challenge, we learn a domain scorer that differentiate between different

domains. We validate our approach on public benchmarks, showing the potential for a more robust

and adaptable recognition system in real-world scenarios.
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Chapter 7: Conclusion

7.1 Summary of Contributions

This thesis is dedicated to developing practical deep learning models for real-world challenges.

Towards this goal, we offer a general model adaptation framework, 𝑀 + 𝛿, to adapt deep learning

models for practical data challenges in computer vision applications. We focus on two main chal-

lenges: model adaptation for efficient data representations (Chapter 2, 3, 4) and model adaptation

for open environment (Chapter 5, 6).

For efficient representation challenges, we start with Chapter 2 exploring efficient compressed

modalities from modern video codecs, and propose a fine-to-coarse knowledge distillation ap-

proach to accomplish the transition from decoded-domain two-stream network to compressed do-

main, which obtains a significant speedup of the network inference and reduce the performance

gap between decoded and compressed domain video recognition. Inspired by the advantages from

efficient data modalities, we then propose different modal adaptation techniques for learning effi-

cient video representations, following our general 𝑀 + 𝛿 framework. In Chapter 3, we formulate

a novel few-bit VideoQA task and propose to train a task-specific feature compressor that learns

low-bit representations. We instantiate 𝛿 as a light-weight intermediate module that compresses

data, with a straight-through estimator to facilitate end-to-end training. Our approach is able to get

minor drop of VideoQA performance using as small as 10-bit features, which captures compact

task-specific information. We provide an insight about the advantages of tiny features, including

its storage and privacy advantages for on-device and cloud computing. Then we investigate the

challenge from another perspective, where we’d like to find efficient video representation that is

human-interpretable. In Chapter 4, we introduce the problem of sparsified VideoQA, where videos

are represented as few frames or text descriptions that are useful for the question answering. We
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propose a learnable token sparsification approach that extracts sparse frames or word phrases to-

wards task completion, where we instantiate our 𝛿 as a token sparsifier. We demonstrate that the

proposed method effectively learn summaries, in either visual or textual or both formats, of the

videos, which provide the advantages for both machine interpretation and human perception.

For open environment challenges, we inspect the scenarios where the model encounters un-

known classes and unknown domains respectively. In Chapter 5 we aim to adapt a model for open

recognition, where it should be able to adapt to new classes and be robust to outliers. We propose

a negative envision framework for modeling the negative classes as an additional negative proto-

type. Then we propose a new conjugate training strategy to learn to adapt model for new classes

even with limited labeled samples. Our approach gets significant performance improvement under

multiple practical evaluation settings, demonstrating the advantage of negative modeling which

is handled by the negative generator 𝛿. On the other hand, in Chapter 6, we tackle the problem

of adapting model for unseen domains, where we develop a language-guided domain generaliza-

tion framework. We design 𝛿 as the domain translator that is trained with our domain-invariant

and domain-specific losses. We also propose a learnable domain scorer that adapts model to a

more realistic multi-domain scenario. We demonstrate the effectiveness of our approach on public

benchmarks under different evaluation settings.

7.2 Future Work and Open Issues

Here we discuss a few future directions and open issues beyond this thesis.

Generalizable Efficient Representation Data efficiency is a broad topic in practical computer

vision systems. This thesis mainly investigates this issue by controlling the information flow, par-

ticularly in the context of videos as a complex media characterized by large sizes and challenging

processing requirements. We show that task knowledge is useful in discarding non-essential in-

formation in features for enhanced data efficiency. Future endeavors may delve into simplifying

task priors. For example, for tasks concerned with understanding complex activities composed of

a sequence of actions, how to learn efficient representation to capture the action components and
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their underlying temporal order with only activity-level knowledge; for the efficient representation

learned from indoor activities, how can it be generalize to tasks involving understanding outdoor

activities, without knowing what specific outdoor environment looks like in advance. This could

involve designing mechanisms that facilitate the creation of universally applicable and efficient

representations, establishing precise controls over the encoded information necessary for general-

izing across specific scenarios.

Adapting Model to Complex Environment The second part of the thesis focuses on model adap-

tation under two typical open environment scenario:dealing with unknown classes and unfamiliar

domains. In real-world applications, systems often encounter a significantly more intricate envi-

ronment where out-of-distribution data can manifest in various forms. For instance, the system

might be required to process images featuring both unknown objects and scenes that are entirely

new. It would be interesting direction to investigate the feasibility of model designs capable of

effectively managing such complex environmental changes.

Extend to Other Modalities The thesis primarily centers on the analysis of visual data and pro-

poses design approaches aligned with the characteristics of visual signals. However, there is an

opportunity to broaden the scope of the thesis to encompass additional data modalities, including

languages, remote-sensing data, medical images, and combinations of multiple data types. We

posit that the practical challenges addressed in the thesis are prevalent across various data applica-

tions. Exploring the development of modality-specific model adaptation approaches represents an

intriguing direction for further investigation.

Practical Deployment of the Framework The thesis provides a general M + 𝛿 framework and

discusses its concrete usecases for different applications. To ensure the practical implementation of

the proposed framework, a more thorough examination is needed regarding the specific deployment

of different modules and components within the framework. For example, to facilitate the adoption

of the framework in edge applications, it is essential to pinpoint the optimal deployment locations

for the original model M and the adaptor module 𝛿. This necessitates further research into the

communication dynamics between the cloud and local device, as well as the precise design of
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data-model interactions.
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