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Abstract

Automatic Speech Separation for Brain-Controlled Hearing Technologies

Cong Han

Speech perception in crowded acoustic environments is particularly challenging for hearing

impaired listeners. While assistive hearing devices can suppress background noises distinct from

speech, they struggle to lower interfering speakers without knowing the speaker on which the

listener is focusing. The human brain has a remarkable ability to pick out individual voices in a

noisy environment like a crowded restaurant or a busy city street. This inspires the

brain-controlled hearing technologies. A brain-controlled hearing aid acts as an intelligent filter,

reading wearers’ brainwaves and enhancing the voice they want to focus on. Two essential

elements form the core of brain-controlled hearing aids: automatic speech separation (SS), which

isolates individual speakers from mixed audio in an acoustic scene, and auditory attention

decoding (AAD) in which the brainwaves of listeners are compared with separated speakers to

determine the attended one, which can then be amplified to facilitate hearing. This dissertation

focuses on speech separation and its integration with AAD, aiming to propel the evolution of

brain-controlled hearing technologies. The goal is to help users to engage in conversations with

people around them seamlessly and efficiently.

This dissertation is structured into two parts. The first part focuses on automatic speech

separation models, beginning with the introduction of a real-time monaural speech separation

model, followed by more advanced real-time binaural speech separation models. The binaural

models use both spectral and spatial features to separate speakers and are more robust to noise



and reverberation. Beyond performing speech separation, the binaural models preserve the

interaural cues of separated sound sources, which is a significant step towards immersive

augmented hearing. Additionally, the first part explores using speaker identifications to improve

the performance and robustness of models in long-form speech separation. This part also delves

into unsupervised learning methods for multi-channel speech separation, aiming to improve the

models’ ability to generalize to real-world audio. The second part of the dissertation integrates

speech separation introduced in the first part with auditory attention decoding (SS-AAD) to

develop brain-controlled augmented hearing systems. It is demonstrated that auditory attention

decoding with automatically separated speakers is as accurate and fast as using clean speech

sounds. Furthermore, to better align the experimental environment of SS-AAD systems with

real-life scenarios, the second part introduces a new AAD task that closely simulates real-world

complex acoustic settings. The results show that the SS-AAD system is capable of improving

speech intelligibility and facilitating tracking of the attended speaker in realistic acoustic

environments. Finally, this part presents employing self-supervised learned speech representation

in the SS-AAD systems to enhance the neural decoding of attentional selection.
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Chapter 1: Introduction

1.1 Motivation

Audio and speech technologies have revolutionized the way we interact with the world and each

other [1, 2, 3]. Voice assistants like Siri, Alexa, Google Assistant, and ChatGPT voice chat are now

a part of our everyday life. They help us manage tasks, answer questions, and control devices in

our homes. Speech recognition and speech synthesis technologies have been transformed into

a range of applications such as closed captions, speech translation [4], and text-to-speech [5, 6,

7]. Nowadays, it is common to see people wearing noise-cancelling earbuds everywhere. Speech

technologies have increased human productivity and improved the quality of our lives.

On the one hand, we enjoy the benefits of technological progress; on the other hand, we have to

deal with the complex effects of living in a more advanced world. Today, we are always surrounded

by countless sounds, way more than we were decades ago. These sounds range from necessary

ones to irrelevant and distracting noises like bustling crowds, operating machinery, and heavy

traffic. We can understand and adjust to the acoustic world because our auditory systems can

analyze complex sounds, integrate the sound attributes linked to a particular source, and segregate

them from those associated with other sources [8]. However, this capacity is limited by strong

distractors or listening fatigue. It is even worse for people with hearing disabilities. The next

frontier for hearing technology is intelligent hearing assistance devices. They are expected to

help people dynamically analyze surrounding acoustic environments and modify or even recreate

acoustic scenes to facilitate listening. Imagine we are walking through a busy street, intelligent

hearing devices can not only filter out the overwhelming traffic noise to protect our hearing and

help us focus on conversations with friends, but also enhance the sounds of approaching vehicles

or emergency signals to ensure our safety. In a nature park, intelligent hearing devices can keep

1



the sounds you find pleasant such as bird singing and river flowing, while minimizing the intrusion

of unrelated human chatter. In addition, we expect the device to quickly figure out where we are

directing our attention and respond better to our specific auditory needs.

As we anticipate the superhuman abilities that intelligent hearing devices may provide in the

future, our current priority is to develop a smart hearing aid to address an accessibility challenge

faced by many people. In a natural auditory environment, people with normal hearing can effort-

lessly concentrate on a single speaker among many and switch their attention between speakers

seamlessly. However, for those with hearing impairments, this task becomes extremely difficult.

People with hearing impairments may need to expend extra listening effort and rely on higher-

level compensatory cognitive processes. Traditional hearing aids have seen substantial progress in

suppressing background noises that are acoustically different from speech [9, 10], but they cannot

enhance a target speaker without knowing which speaker the listener is conversing with [11]. It is

therefore important for a hearing aid to be able to automatically distinguish between attended and

unattended speakers to selectively enhance the attended speaker’s speech.

Fortunately, recent discoveries of the properties of speech representation in the human audi-

tory cortex have shown an enhanced representation of the attended speaker relative to unattended

sources [12]. These findings have inspired the idea of auditory attention decoding (AAD) which

uses the listener’s brain activity to determine which talker the listener is attending to. Knowing

the attended speaker, the device can amplify that speaker relative to others to facilitate hearing in

a crowd. This provides the solution to creating brain-controlled hearing aids. AAD has been suc-

cessfully implemented with various ways of acquiring brain activity such as magnetoencephalog-

raphy (MEG) [13], electroencephalography (EEG) [14], and electrocorticography (ECoG) [12].

However, a critical component for actualizing an AAD system is to get access to individual speak-

ers in mixed audio because the attentional focus of the subject is determined by comparing the

brainwaves of the listener with each speaker. In real-world scenarios where only mixed audio is

available, the AAD system must be able to separate mixed audio into individual sound sources

first. We refer to this as the speech separation problem. After speech separation, the AAD sys-
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Figure 1.1: Schematic of the proposed brain-controlled assistive hearing device. A brain-
controlled assistive hearing device can automatically amplify one speaker among many. A deep
neural network automatically separates each of the speakers from the mixture and compares each
speaker with the neural data from the user’s brain to accomplish this goal. Then, the speaker that
best matches the neural data is amplified to assist the user.

tem can detect the attended source and subsequently amplify it. Figure. 1.1 shows a schematic of

the proposed brain-controlled assistive hearing device that combines speech separation and AAD

techniques to selectively amplify the attended speaker.

This dissertation focuses on addressing the speech separation problem to advance brain-controlled

hearing technologies. We will use such hearing technologies to help hearing impaired listeners

more easily communicate in crowded environments and help these people become more socially

engaged and stay connected with family and friends.

1.2 Background

Speech separation has been an important research topic in signal processing for a long time.

The main goal is to separate each speaker’s voice from mixed sounds. It has benefited a wide range

of applications such as telecommunications, automated speech recognition, and the innovation of

hearing aids, which we will explore in-depth in this dissertation. Speech separation can be gener-

alized to universal sound separation [15], which aims to separate arbitrary classes of sound from

each other. This broader concept is crucial for the future intelligent hearing assistants we discussed
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earlier, which enable us to understand and adjust the sounds around us. In this dissertation, our

emphasis is on speech separation. In this section, we highlight several critical aspects of speech

separation, especially for its application in hearing devices.

Speaker-Independent Speech Separation

Before the deep learning era, popular speech separation techniques included non-negative ma-

trix factorization (NMF) [16, 17], probabilistic models [18], and computational auditory scene

analysis (CASA) [19]. These methods are speaker-dependent, which means they can be applied

to closed-set speakers but not unknown speakers. Brain-controlled hearing aids equipped with

these separation models can help a user interact with known speakers, such as family members,

but cannot generalize to new, unseen speakers, making it ineffective if the user converses with a

new person.

Speaker-independent automatic speech separation means the separation of speakers can be per-

formed without any prior speaker information or training on target speakers, so it can generalize to

unseen speakers. Speaker-independent speech separation has been one of the most difficult speech

processing problems to solve. Two main contributions to the development of this problem are the

deep clustering network (DPCL) and the permutation invariant training method (PIT). DPCL [20,

21] maps the time-frequency (T-F) bins to a high-dimensional embedding space such that each

T-F bin is represented by an embedding vector. The training objective is set to minimize a given

distance metric of embeddings whose T-F bins belong to the same speaker and maximize that of

different speaker’s embeddings. After training, traditional clustering algorithms can be applied to

the embeddings to calculate the source assignments as the estimated T-F masks. PIT is a general

method for any type of objective functions to solve the output permutation problem [22, 23]. It

determines the correct output permutation by calculating the lowest value on the selected objective

function through all possible output permutations. PIT’s effectiveness has significantly accelerated

the development of speaker-independent speech separation. It has been a standard choice for sep-

aration model training.

4



Low Latency

Hearing aids have strict requirements for low-latency processing. When a superposition of the

original noisy signal and the enhanced signal with delay arrives at the ear drum, it creates unwanted

comb filter effects. To avoid this, hearing aids endeavor to introduce a delay of less than 10 ms [24].

The latency of speech separation systems mainly comes from two sources: processing latency and

algorithmic latency. Processing latency depends on the model’s computational complexity and the

hardware’s capabilities, while algorithmic latency is determined by the model’s configuration. The

majority of speech separation models rely on noncausal configurations, which means they need fu-

ture information to improve speech separation. This need for future data inevitably leads to latency,

which is an obstacle to applying these models in hearing devices. For real-time speech separation,

models need to be causal, relying only on the current time frame and past information. Common

strategies to convert a noncausal configuration into a causal one include but are not limited to mod-

ifying the padding in convolutional layers, adjusting attention masks in transformer layers, and

changing how statistics of activations are calculated in normalization layers. The model’s latency

is also highly related to the length of its analysis windows. In time-frequency domain models, a

lengthy temporal window, e.g., 32 ms, is often used for short-time Fourier transform (STFT) calcu-

lations to ensure adequate frequency resolution, which results in considerable latency. Differently,

time-domain models [25] use linear encoders with very short filter lengths to replace STFT. So,

time-domain models with causal configurations have lower algorithmic latency and are well-suited

for applications requiring real-time processing. In Chapter 2, we will introduce a causal separa-

tion model in the time-frequency domain to meet the low-latency requirement. Then, we will also

present causal separation models in the time domain with even lower latency.

Preserving Spatial Cues

In real-world multi-talker acoustic environments, humans can easily separate speech and accu-

rately perceive the location of each speaker due to the binaural acoustic features such as interaural
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time differences (ITDs) and interaural level differences (ILDs). Speech processing methods aimed

to modify the acoustic scene are therefore required to not only separate sound sources, but do so in

a way to preserve the spatial cues needed for accurate localization of sounds. However, most of the

binaural speech separation systems [26, 27, 28] are multi-input-single-output (MISO), and hence

lose the interaural cues at the output level which are important for humans to perform sound lat-

eralization and localization [29, 30]. One approach uses head-related transfer function (HRTF) to

recreate spatial sound. However, this approach requires robust speaker localization algorithms and

either measuring or estimating the HRTF of the listener, adding complexity and making the system

dependent on the listener. A more desirable system would directly output stereo sound without re-

quiring additional listener-specific information. Conventional signal processing has explored ways

to preserve spatial cues in stereo outputs [31, 32, 33, 34, 35, 36, 37, 38, 39]. As deep learning

methods have greatly improved the performance of speech separation, we realized preserving spa-

tial cues had been less studied for deep learning-based models. To address this, we have proposed

multi-input-multi-output (MIMO) time-domain speech separation network (TasNet) and optimized

the training objective functions to both improve speech signal quality and preserve interaural cues

[40]. Additionally, we observed that many separation methods are based on the assumption that

sound sources remain stationary, a limitation that restricts their practical application in real-world

scenarios. We have addressed this challenge by developing MIMO TasNet on datasets consisting

of moving sources [41]. Our deep learning-based model demonstrates superior separation per-

formance and more accurate spatial cue preservation compared to traditional methods. We will

introduce them in detail in Chapter 2.

Using Speaker Embedding as Long Contextual Information to Improve Local Separation

A speech signal is typically a very long time-sequence signal. For instance, a 10-second wave-

form sampled at 16 kHz results in 160,000 time steps, or transformed to thousands of frames in

a time-frequency representation. Addressing the challenges of modeling such long sequences is

crucial. Various approaches, including stacked dilated convolution layers [25], dual-path RNN
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architectures [42, 43, 44, 45], and long-range attention [46], have been introduced to handle long

sequences in speech separation tasks. However, the role of extended context in speech separation

is less obvious than in speech recognition tasks, where longer context provides informative textual

information. It is unclear how much contextual information a separation model really needs. Sim-

ply increasing the receptive field size of the convolutional models does not guarantee improved

performance [25]. Instead, utilizing higher resolution local information, by reducing the stride size

(also termed as hop size) of the analysis window, tends to yield more benefits. Therefore, it is

important to effectively use long contextual information for speech separation rather than simply

enabling models to look at farther and farther distances. We argue that a speaker embedding, such

as i-vector [47] or d-vector [48], is a form of long contextual information that can be used to im-

prove speech separation explicitly. Speaker embeddings provide globally consistent information

that reflects unique voice characteristics of each speaker, which are helpful for local speech separa-

tion. Additionally, since speech separation models often output isolated speaker streams without a

predetermined order, speaker embeddings can serve as a reliable cue for tracking individual speak-

ers. There have been numerous studies using speaker embeddings to isolate speakers [49, 50, 51,

52, 48, 53]. However, they require prior information of the target such as a snippet of voice, which

contradicts the assumption of speaker-independent speech separation. To address this, we have de-

veloped methods that can infer speaker embeddings from mixed audio without extra information

and then use speaker embeddings to enhance model performance and robustness [54, 55]. We will

introduce these two methods in Chapter 3.

Adapting to Real-World Recordings

Most deep learning-based separation models require supervised training data with input sound

mixtures paired with isolated sounds as ground-truth targets. However, recording such pairs of iso-

lated sounds and their mixtures in a real environment is not feasible. Thus for supervised training,

input mixtures are constructed by synthetically mixing isolated sound sources. Usually, individual

sound sources are also simulated to add environmental effects such as room reverberation. How-
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ever, models trained on synthetic data can degrade on real recordings due to a mismatch between

training and test data. Unsupervised methods overcome these problems by requiring only mixed

speech signals. A general category of unsupervised approaches utilizes spatial information to clus-

ter sound sources in space [56, 57, 58, 59]. The posterior cluster labels can be used as masks to

isolate the target speech. An approach using the complex angular-central Gaussian mixture model

(cACGMM) [57] clusters the signals, and the resulting labels are used as pseudo-target to train

a deep clustering model [20]. However, directly applying these unsupervised models on mixed

audio can yield undesired performance because the clustering-based methods perform poorly in

challenging conditions where spatial features are smeared by room reverberance and strong back-

ground noise, especially diffuse noise with no distinct directional features. To mitigate these is-

sues, one strategy is to collect moderately noisy recordings without access to ground-truth signals

in real scenarios, which can be well processed by the unsupervised clustering methods. Then, we

mix several recordings into a much noisier mixture and take advantage of supervised learning to

predict the clean speech signals from the mixture [60]. Another strategy is to design more power-

ful unsupervised methods that enable the training of separation models directly on real recordings.

Training on real recordings can further mitigate the mismatch between synthetic mixed audio and

real recordings. Mixture invariant training (MixIT) [61] is a recent unsupervised approach that

has demonstrated competitive single-channel sound separation performance. MixIT uses mixtures

of mixtures as the “noisy” input and uses the individual mixtures as weak references. The model

estimates individual sound sources that can be recombined to reconstruct the original reference

mixtures. MixIT has been effective at adapting single-channel [62] and multi-channel [63] speech

separation models to real-world meetings. We will introduce both strategies in detail in Chapter 4.

Why Is Speech Separation Necessary in a Brain-Controlled Hearing System?

In this dissertation, we use speech separation models to isolate individual sound sources from

mixed audio. Then, by comparing these isolated sound sources with neural activities, we identify

and amplify the attended one. A key question arises: Is it necessary to separate every speaker
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in mixed audio when our ultimate interest lies in the attended speaker? An alternative approach

simultaneously processes both mixed audio and brain activities to extract the attended sound source

[64, 65, 66, 66]. However, the extensive time and resources required to gather sufficient brain data

is a significant bottleneck in training DNN-based brain-informed (alternatively referred to as brain-

assisted or neuro-steered) speaker extraction models. Therefore, most models use non-invasive

EEG data, which is relatively easier and less expensive to collect compared to invasive neural data.

The models mentioned above were trained on non-invasive EEG datasets that contain about 20-30

hours of speech-neural data pairs [67, 68, 69]. Although EEG data can provide enough information

needed to decode the attentional focus [14, 70, 71], The SNR of non-invasive EEG is not as high

as that of invasive EEG, thus this may come at the expense of reducing the decoding speed of the

AAD. While Hosseini et al. [64] showed that their model could track the listener’s attention almost

instantaneously, there remains uncertainty about the model’s efficacy in preserving the high quality

of extracted speech while rapidly detecting shifts in attention in single-trial cases.

Rapid advancements in speech BCI research have involved invasive neural recordings [72, 73].

The precision and speed offered by invasive recordings are currently unmatched by non-invasive

techniques, making them essential for exploring the upper limits of AAD performance. Our focus

in this dissertation is therefore on invasive recordings, aiming to design brain-controlled hearing

devices that can quickly and accurately adapt to changes in the listener’s attention. However, build-

ing a sufficient dataset to train DNN models is particularly challenging for invasive EEG which are

costly and difficult to collect. The amount of invasive EEG data we use in this dissertation is less

than 30 minutes. As a result, directly training a brain-informed speaker extraction model on this

small dataset is suboptimal. How to use large amounts of speech data and tiny amounts of neural

data to train a DNN model remains a challenge. Ceolini et al. [74] proposed using a “bridge”

feature, such as speech envelope, that can be reconstructed from brain activities and be utilized

by the speech extraction model to isolate the target speaker. This approach allows the extraction

model to train on arbitrary amounts of audio data, independent of brain signals. A major challenge,

however, is the mismatch between the clean envelope used during training and the imperfect en-
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velope reconstructed from the brain during inference. To mitigate this mismatch, Gaussian noise

was added to the clean envelope during training. Despite this, the stability of this method does not

match the system to be introduced in this dissertation. Another issue is the selection of the ap-

propriate bridge feature. As demonstrated in Chapter 7, speech envelope is not the most effective

feature for attentional decoding, leading to further questions about the optimal choice of bridge

feature and training of extraction models independent of scarce brain data.

Another notable limitation of these brain-informed speaker extraction models is their “black

box” nature, where only input and output are visible and explainable. It is difficult to track how

well these models follow the listener’s attention in real-time especially when the listener switches

attention among speakers. They may extract the unwanted speakers instead of the attended one

[75]. In addition, this framework provides less flexibility in controlling the volume of the attended

speaker and the other sound sources.

The advantage of performing the speaker separation and speaker selection steps independently

is that the method allows us to concentrate exclusively on refining the separation models without

the need to model brain signals simultaneously. Therefore, we can use vast amounts of audio data

to develop better separation models without being upper bounded by the limited amount of neural

data, as shown in Chapter 2, 3, and 4. Simultaneously, the low quantity yet high quality inva-

sive data is sufficient to identify the attended source fast and accurately even in complex acoustic

environments, as presented in Chapter 5, 6, and 7. At the intersection of separated speech and

neural signal, we can explicitly tell how confident the listener is attending to a particular sound

source. We can flexibly adjust the volume of both the attended and unattended speakers and even

non-speech sound sources, tailoring the audio output to match the listener’s preferences.

1.3 Contribution and Dissertation Outline

This dissertation consists of two parts, exploring speech separation models and their integration

with auditory attention decoding to create brain-controlled augmented hearing aids, respectively.

Part I is about pure speech separation without any use of brain data:
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Figure 1.2: Dissertation contributions: Part I, automatic speech separation (top) and Part II, brain-
controlled augmented hearing (bottom). SS-AAD means the integration of speech separation and
auditory attention decoding.

In Chapter 2, we design a single-channel speech separation model with low latency first. Then,

we make a step forward from single-channel speech separation to multi-channel speech separation.

We introduce a binaural speech separation model that not only efficiently separates mixed sounds

but also accurately preserves interaural cues. This binaural model is designed to enhance immer-

sive listening experiences for hearing aid technologies. The content of this chapter is primarily

derived from the previously published work by Han et al. [76, 40, 41].

In Chapter 3, we incorporate speaker information, such as speaker embeddings, into separation

models to benefit long-form speech separation. We introduce methods of inferring speaker em-

beddings from mixed audio directly without requiring extra message and show that using speaker

embeddings enhances separation performance and improves speaker tracking capabilities. The

content of this chapter is primarily derived from the previously published work by Han et al. [54,

55].

In Chapter 4, we present methods of training multi-channel speech separation models on real-
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world audio without ground-truth targets. The content of this chapter is primarily derived from the

previously published work by Han et al. [60, 63].

Part II introduces brain-controlled augmented hearing systems:

In Chapter 5, we address the problem of speaker-independent AAD without clean sources using

the proposed online deep attractor network to automatically separate unseen sources in real time.

This chapter proves that integrating speech separation into the AAD framework is a promising

approach for developing brain-controlled hearing aids. The content of this chapter is primarily

derived from the previously published work by Han et al. [77]. I and James O’Sullivan equally

contribute to this chapter.

In Chapter 6, we introduce a realistic AAD experiment paradigm with concurrent conversations

and propose the second generation brain-controlled hearing aid that can deal with complex acoustic

scene settings with moving talkers and background noise. This chapter represents a substantial leap

in applying AAD to real-world settings. The content of this chapter is primarily derived from an

unpublished manuscript that was under peer review at the time of writing the dissertation. Vishal

Chaudhari and I equally contribute to this chapter.

In Chapter 7, we bring the advancements in self-supervised speech representation learning

to the AAD task. This chapter presents a comprehensive demonstration of how self-supervised

learned speech representations outperform traditional hand-engineered acoustic features in AAD

algorithms. The content of this chapter is primarily derived from the previously published work by

Han et al. [78].

At the conclusion of this dissertation, we summarize our key findings and contributions and

discuss potential future work in this field.
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Chapter 2: Real-Time Speech Separation

Speaker-independent speech separation is a challenging audio processing problem, and recent

progress in deep learning has significantly advanced the state of this problem. Deep clustering

(DPCL) and permutation invariant training method (PIT) are the two main categories of methods.

However, most separation models use noncausal implementation which limits their application in

real-time scenarios such as in wearable hearing devices and low-latency telecommunication. In

this chapter introduces real-time speech separation models in both categories mentioned above.

First, within DPCL, we introduce a real-time monaural speech separation model that utilizes an

online clustering strategy in the time-frequency domain. Experimental results that the proposed

causal model has competitive performance with other noncausal models employing offline cluster-

ing approaches. Second, we propose a real-time binaural speech separation model using PIT in the

time domain. The model processes binaural mixed audio, simultaneously separates target speakers

in both left and right channels, and maintains the interaural cues of the separated sources. For its

application to real-world scenarios with freely moving speakers, we created datasets containing

moving sound sources and then developed the model on these datasets. Experimental results show

that the proposed binaural model is able to significantly improve the separation performance and

keep the perceived location of the modified sources intact in various acoustic scenes.

2.1 Monaural Speech Separation

2.1.1 Introduction

Speaker-independent monaural speech separation is a challenging problem in audio processing.

Advancements in deep learning have greatly progressed in addressing this problem. An important

example is deep clustering (DPCL) [20, 21] based methods. DPCL maps the time-frequency (T-F)
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bins to a high-dimensional embedding space such that each T-F bin is represented by an embedding

vector. The training objective is set to minimize a given distance metric of embeddings whose T-F

bins belong to the same speaker and maximize that of different speaker’s embeddings. After train-

ing, clustering algorithms can be applied to the embeddings to calculate the source assignments

as the estimated T-F masks. Deep Attractor Network (DAN) [79, 80], an extension to DPCL,

was proposed to incorporate the clustering step into the network, allowing end-to-end training and

evaluation. DAN maps each T-F bin of the mixture spectrogram to a high-dimensional embedding

space similar to DPCL, and it explicitly forms clusters by calculating the oracle cluster centers

based on the oracle embedding assignment (i.e., ideal T-F mask). The oracle cluster centers are

called attractor points, and the embeddings that correspond to a specific speaker are constrained

to be close to the corresponding attractor point.

However, the successful separation of these models is contingent upon noncausal configuration,

which means they require future information from the utterance. This greatly limits the deployment

of such systems in real-time applications such as wearable hearing devices. In this section, we

propose online DAN (ODAN), a causal extension of the previous noncausal DAN that enables

causal and real-time separation. ODAN calculates attractor points for the speakers at each frame,

and the sequence of attractor points is tracked with a dynamic weighting function motivated by the

online clustering methods [81, 82]. This allows us to perform online clustering and estimate the

source assignment frame-by-frame. Experiments show that the proposed ODAN has comparable

performance with the noncausal DAN in both two-speaker and three-speaker separation tasks.
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2.1.2 Method: Online Deep Attractor Network

Defining the Frequency-Domain Speech Separation

The problem of speech separation is formulated as estimating C sources, s1, . . . , s𝑐 ∈ R𝑇 from

the mixture waveform x ∈ R𝑇 ,

x(𝑡) =
𝐶∑︁
𝑖=1

s𝑖 (𝑡). (2.1)

Taking the short-time Fourier transform (STFT) of both sides formulates the source separation

problem in the T-F domain where the complex mixture spectrogram is the sum of the complex

source spectrograms,

X( 𝑓 , 𝑡) =
𝐶∑︁
𝑖=1

S𝑖 ( 𝑓 , 𝑡), (2.2)

where X and S𝑖 ∈ C𝐹×𝑇 . One common approach for recovering the individual sources, S𝑖, is to

estimate a real-valued T-F mask for each source, M ∈ R𝐹×𝑇 , such that

|Ŝ𝑖 ( 𝑓 , 𝑡) | = |X( 𝑓 , 𝑡) |M( 𝑓 , 𝑡). (2.3)

The waveforms of the separated sources are then approximated using the inverse STFT of |Ŝ𝑖 |

using the phase of the mixture audio,

ŝ𝑖 = IFFT
(
|Ŝ𝑖 | ⊙ ∠X̂𝑖

)
. (2.4)

The mask for each source needs to be estimated directly from the mixture spectrogram,

M𝑖 = H(|X|; 𝜃), (2.5)

where H(·) is the mask estimation model defined by parameter 𝜃.
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Figure 2.1: Speaker-independent speech separation with ODAN. (A) The flowchart of the
ODAN for speech separation. (B) The T-F representation of the mixture sound is projected into
a high-dimensional space in which the T-F points that belong to the same speaker are clustered
together. (C) The center of each speaker representation in the embedding space is referred to as
the attractors. The distance between the embedded T-F points and the attractors defines a mask
for each speaker that multiplies the T-F representation to extract the speakers. (D) The location of
the attractors is updated at each time step. First, the previous location of the attractors is used to
determine the speaker assignment for the current frame. (E) Then, the attractors are updated based
on a weighted average of the previous attractors and the center of the current frame defined by the
speaker assignments.

Online Deep Attractor Network

Figure 2.1A shows the flowchart of the ODAN algorithm. In this novel extension of DAN,

source separation is performed by first projecting the mixture spectrogram onto a high-dimensional
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space where T-F bins belonging to the same source are placed closer together to facilitate their

assignment to the corresponding sources. This procedure is performed in multiple steps. First, the

mixture magnitude spectrogram, |X|, is projected onto a tensor, V ∈ R𝐹×𝑇×𝐾 , where each T-F bin

is represented by a vector of length K (Fig. 2.1B),

V = Φ( |X|; 𝜃), (2.6)

where the separation model, Φ(·), is implemented using a deep neural network with parameter

𝜃. We refer to this representation as the embedding space. The neural network that embeds the

spectrogram consists of a four-layer long short-term memory (LSTM) network, followed by a fully

connected layer (FC). To assign each embedded T-F bin to one of the speakers in the mixture, we

track the centroid of the speakers in the embedding space along time. We refer to the centroids of

the source i and at time step 𝜏 as the attractor points, A𝑖 (𝜏) ∈ R𝐾 , because they pull together and

attract all the embedded T-F bins that belong to the same source. Therefore, the distance (defined

as the dot product [83]) between the embedded T-F bins to each of the attractor points determines

the source assignment for that T-F bin, which is then used to construct a mask to recover that source

(Fig. 2.1C),

M( 𝑓 , 𝜏) = Softmax
(
A𝑖 (𝜏)VT( 𝑓 , 𝜏)

)
, (2.7)

and the Softmax function is defined as

Softmax(𝑥𝑖) =
𝑒𝑥𝑖∑𝐶
𝑗 𝑒

𝑥 𝑗
. (2.8)

The masks subsequently multiply by the mixture magnitude spectrogram to estimate the mag-

nitude spectrograms of each source (Fig. 2.1C and Eq. 2.3). All the parameters of the ODAN are

found jointly during the training phase by minimizing the source reconstruction error of the entire
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utterance,

L =
∑︁
𝑖, 𝑓 ,𝑡

∥|S𝑖 ( 𝑓 , 𝑡) | − |X( 𝑓 , 𝑡) |M𝑖 ( 𝑓 , 𝑡)∥2
2. (2.9)

Initializing Attractor Points. The initial position of the attractor points at 𝜏 = 0 in the embed-

ding space is chosen from a set of N predetermined points, which we refer to as anchor points

[80]. During the training phase, we create N randomly initialized, trainable anchor points in the

embedding space V, which are denoted by 𝐵 𝑗 = 1, . . . , 𝑁 . During the training of the network,

the position of the anchor points are jointly optimized to maximize the separability of the mixture

sounds. After the training is performed, the anchor points are fixed. To separate a mixture that

contains C speakers during the test phase, we first choose all possible C combinations of the N an-

chor points, resulting in
(𝑁
𝐶

)
subsets of the N anchors. Next, we find the distance of the embedded

T-F bins at 𝜏 = 0 from the anchor points in each of the
(𝑁
𝐶

)
subsets. The C initial attractors for a

particular mixture are the ones in the subset that minimize in-set similarity between the attractors

(i.e., maximizing the in-set distance between the chosen attractor points).

Online Tracking of the Attractor Points. While DAN uses the embedding of the entire mixture

utterance to calculate the attractor points [79, 80], ODAN estimates the attractor locations at each

time step using only the current and past inputs. The location of the attractor points in the embed-

ding space is initialized at 𝜏 = 0. Updating the attractor points in each time step is performed using

a one-step generalized expectation maximization (EM) algorithm [84]. At time step 𝜏, we first

calculate the source assignment vectors for each speaker, Y𝑖 ( 𝑓 , 𝜏), from the embedded frequency

channels V( 𝑓 , 𝜏) by comparing the distance of each embedded T-F bin to each attractor from the

previous time step, A𝑖 (𝜏 − 1) (Fig. 2.1D),

Y( 𝑓 , 𝜏) = Softmax
(
A𝑖 (𝜏 − 1)VT( 𝑓 , 𝜏)

)
. (2.10)
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A Softmax function is applied to enhance the source assignment contrast. Next, we update the

location of the attractors based on the centroid of the current frame, the previous location of the

attractors, and the current input (Fig. 2.1E),

A𝑖 (𝜏) = (1 − 𝛼𝑖 (𝜏))A𝑖 (𝜏 − 1) + 𝛼𝑖 (𝜏)C𝑖 (𝜏) (2.11)

C𝑖 (𝜏, 𝑘) =
∑
𝑓 V( 𝑓 , 𝜏, 𝑘)Y𝑖 ( 𝑓 , 𝜏)∑

𝑓 Y𝑖 ( 𝑓 , 𝜏)
, (2.12)

where C𝑖 (𝜏) ∈ R𝐾 is the centroid of the embeddings of source i at time step 𝜏, and parameter

𝛼𝑖 determines the rate of the update at time 𝜏 by controlling the trade-off between the previous

location of the attractors and the centroid of the sources in the current frame. If 𝛼 is too small,

the attractor changes position too quickly from one frame to the next, which may result in a noisy

estimate and unstable separation. If 𝛼 is too large, the attractor will be too slow to track the changes

in the mixture condition, which could be problematic if the speakers in the mixture change over

time. To optimally estimate 𝛼, we calculate a dynamic weighting function to control the relative

weight of previous and current estimates using a parameter, Q, for each source i at time step 𝜏.

Q𝑖 (𝜏) = 𝜎 (h(𝜏 − 1)W + X(𝜏)U + A𝑖 (𝜏 − 1)J + b) , (2.13)

where 𝜎(·) is the sigmoid activation function, h(𝜏 − 1) is the output of the LSTM layer in the last

time step, X(𝜏) is the current mixture feature, and W, U, J, 𝑎𝑛𝑑 b are parameters that are jointly

learned during the training of the network. Given parameter Q𝑖 (𝜏), the update parameter 𝛼𝑖 (𝜏) is

estimated using the following equation

𝛼𝑖 (𝜏, 𝑘) =
∑
𝑓 Y𝑖 ( 𝑓 , 𝜏)

Q𝑖 (𝜏, 𝑘)
∑𝜏−1
𝑡=0 Y𝑖 ( 𝑓 , 𝑡) +

∑
𝑓 Y𝑖 ( 𝑓 , 𝜏)

, (2.14)

where Q𝑖 (𝜏) adjusts the contribution of previous and current attractor estimates at time step 𝜏.

Once the attractors for the current frame are updated, the masks for separating the current frame

are calculated using the similarity of the T-F embeddings and each attractor (Fig. 2.1C).

20



2.1.3 Experimental Settings

ODAN Network Architecture

The network consisted of four unidirectional LSTM layers with 600 units in each layer. The

embedding dimension was set to 20 based on the observations reported earlier [80], which resulted

in a fully connected layer of 2580 hidden units (20 embedding dimensions times 129 frequency

channels) after the LSTM layers. The number of anchors was set to 6 [80]. We trained the models

using curriculum training [80], in which we first trained the models on 100-frame-long input seg-

ments (0.8 s) and continued training thereafter on 400-frame input segments (3.2 s). The batch size

was set to 128. Adam [85] was used as the optimizer with an initial learning rate of 1e-4, which

was halved if validation error does not decrease after three epochs. The total number of epochs was

set to 150, and early stopping was applied if validation error is not decreased after 10 consecutive

epochs. All models were initialized using a pretrained LSTM DAN model. A gradient clip with a

maximum norm of 0.5 was applied to accelerate training.

Dataset

The neural network models were trained by mixing speech utterances from the Wall Street

Journal corpus [86]. We used the WSJ0-2mix and WSJ0-3mix datasets, which contain 30 hours

of training, 10 hours of validation, and 5 hours of test data. The mixed sounds were generated by

randomly selecting utterances from different speakers in the WSJ0 training set and mixing them

at various signal-to-noise ratios (SNRs), randomly chosen between -2.5 and 2.5 dB. The test set

contained 3000 mixtures generated by combining utterances from 16 unseen speakers from the

si_dt_05 and si_et_05 subsets. All sounds were resampled to 8 kHz to simplify the models and to

reduce computational costs. The input feature is the log magnitude spectrogram computed using

a STFT, with 32-ms window length (256 samples) and 8-ms hop size (64 samples), and weighted

by the square root of a hamming window. Wiener filter–like masks [20] were used as the training

objective.
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Table 2.1: Comparison of speech separation accuracy of ODAN with two other methods for
separating two-speaker mixtures (WSJ0-2mix dataset) and three-speaker mixtures (WSJ0-3mix
dataset). The separation accuracy of ODAN, which is the causal system, is slightly worse but com-
parable to the other noncausal methods.

Number of
Speakers Method Causal

SI-SNRi
(dB)

SDRi
(dB) PESQ ESTOI

Two speakers Original mixture - 0 0 2.02 0.56
DAN-LSTM [80] No 9.1 9.5 2.73 0.77
uPIT-LSTM [23] Yes - 7.0 - -

ODAN Yes 9.0 9.4 2.70 0.77
Three speakers Original mixture - 0 0 1.66 0.39

DAN-LSTM [80] No 7.0 7.4 2.13 0.56
uPIT-BLSTM [23] No - 0.74 - -

DPCL++ [21] No 7.1 - - -
ODAN Yes 6.7 7.2 2.03 0.55

Evaluation Metrics

We evaluated and compared the separation performance on the test set using the following

metrics: SDR, SI-SNR [80], and PESQ score [87], as well as ESTOI [88] for the evaluation of

speech quality and intelligibility.

2.1.4 Results and Discussion

Table 2.1 shows the comparison of the ODAN method with other state-of-the-art speaker-

independent speech separation methods on two-speaker and three-speaker mixtures. As seen in

Table 2.1, the ODAN method performs well in separating speakers in the mixture and even per-

forms on par with the noncausal DAN method, which computes the separation from the entire

utterance using a global clustering of the embeddings.

We also tested the ability of the ODAN in dealing with an unknown number of speakers in the

mixture. This was done by assuming the maximum number of speakers to be three and training the

algorithm on both two-speaker (WSJ0-2mix) and three-speaker (WSJ0-3mix) datasets. During the

test phase, no information about the number of speakers was provided, and the outputs that have

low power (less than 20 dB relative to the other outputs) were discarded. As seen in Table 2.2, the
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Table 2.2: Speech separation accuracy of ODAN in separating one-, two-, and three-speaker mix-
tures (WSJ0-mix2 and WSJ0-mix3 datasets). The ODAN was trained on both the WSJ0-mix2 and
WSJ0-mix3 datasets and used in all cases.

Number of
Speakers Causal

SI-SNRi
(dB)

SDRi
(dB) PESQ ESTOI

3 Yes 7.0 7.5 2.08 0.56
2 Yes 8.9 9.3 2.63 0.76

1 Yes
SI-SNR

24.4
SDR

25.0 4.14 0.98

same ODAN network can successfully separate one-, two-, or three-speaker mixtures without any

prior information on the number of sources in the mixture during the test phase.

2.2 Binaural Speech Separation with Preserved Spatial Cues

2.2.1 Introduction

Section 2.1, we have introduced a monaural speech separation model. However, monaural

signals do not provide directional information. In real-world multi-talker acoustic environments,

humans can easily separate speech and accurately perceive the location of each speaker due to the

binaural acoustic features such as interaural time differences (ITDs) and interaural level differences

(ILDs). Speech processing methods designed to alter the acoustic scene are therefore required to

not only separate sound sources but also preserve the spatial cues crucial for accurate localization

of sounds.

Additionally, the developments in hardware technologies have made it possible to build binau-

ral hearing devices with microphones placed on both left and right ears that can communicate wire-

lessly. These technological advances have enabled binaural speech separation algorithms [89, 26,

27, 28] with simultaneous access to both microphone signals. However, most of binaural speech

separation systems are multi-input-single-output (MISO), and hence lose the interaural cues at the

output level which are important for humans to perform sound lateralization and localization [29,

30]. To achieve binaural speech separation as well as interaural cue preservation, the multi-input-
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multi-output (MIMO) setting is necessary, and currently, such setting can be divided into three

main categories.

The first category of methods add another stage for binaural sound rendering, such as head-

related transfer function (HRTF) hypotheses, after a MISO system [36]. This method decouples

speech separation and spatial cues preservation, however, it requires robust speaker localization

algorithms and a priori knowledge about the HRTF of the listener [90]. Thus, it not only requires

additional effort but limits the system to be listener-dependent.

The second category calculates a real-valued spectro-temporal mask and then applies the same

mask to both left and right microphone channels [31, 32, 33, 34, 35, 36]. Because both sides obtain

the same zero-phase gain, the original interaural cues are preserved. However, the separation

performance may be limited because of the single-channel mask estimation and the constraint due

to the same gain assumption.

In the third category, complex-valued filters are applied to all available microphone signals

simultaneously to generate binaural outputs with an additional constraint on interaural cue preser-

vation. One approach is to use two beamformers at the same time to generate left and right outputs

respectively, such as generalized sidelobe canceller (GSC) [37] and binaural minimum variance

distortionless response (MVDR) beamformer [38]. Another approach is multi-channel Wiener fil-

ter (MWF) [39] that is equivalent to the combination of spatial filtering and spectral post-filtering.

There has been a method that exploits the deep neural network to estimate complex ideal ratio

masks (cIRM) for both left and right channels [91]. Since these multi-channel methods aim at es-

timating the desired separated sources in each channel, the spatial information could be naturally

preserved.

One common issue for the systems mentioned above is that the system latency can be perceiv-

able by humans, and the delayed playback of the separated speakers might affect the localization of

the signals due to the precedence effect [92]. To decrease the system latency while maintaining the

separation quality, we can use time-domain speech separation methods network (TasNet) [25]. Dif-

ferent from time-frequency domain models, such as online deep attractor network in Section 2.1,
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which use lengthy analysis windows in the short-time Fourier Transform (STFT) operation, TasNet

uses learnable encoder and decoder with much smaller window size. Recent TasNet-based mod-

els have proven their effectiveness in achieving high separation quality and decreasing the system

latency [93, 94, 25, 95].

This section looks into multiple methods for formulating TasNet into MIMO systems and in-

vestigates their capability of high-quality separation and interaural cue preservation. We propose

a MIMO TasNet that takes binaural mixture signals as input and simultaneously separates speech

in both channels, then the separated signals can be directly rendered to the listener without post-

processing. The MIMO TasNet exploits a parallel encoder to extract cross-channel information

for mask estimation and uses mask-and-sum method to perform spatial and spectral filtering for

better separation performance. Experiment results show that MIMO TasNet can perform listener-

independent speech separation across a wide range of speaker angles and preserve both ITD and

ILD features with significantly higher quality than the single-channel baseline. Moreover, the min-

imum system latency of the systems can be less than 5 ms, showing the potential for real-world

implementation in hearable devices.

2.2.2 MIMO TasNet for Binaural Speech Separation

Problem Definition

The problem of binaural speech separation is formulated as the separation of𝐶 sources s𝐿,𝑅
𝑖

(𝑡) ∈

R𝑇 , 𝑖 = 1, . . . , 𝐶 from the binaural mixtures x𝐿 (𝑡), x𝑅 (𝑡) ∈ R𝑇 , where the superscripts 𝐿 and 𝑅 de-

note the left and right channels, respectively. For preserving the interaural cues in the outputs, we

consider the case where every single source signal is transformed by a set of head-related impulse

response (HRIR) filters for a specific listener:


s𝐿
𝑖
= ŝ𝑖 ⊛ h𝐿𝑖

s𝑅
𝑖
= ŝ𝑖 ⊛ h𝑅𝑖

𝑖 = 1, . . . , 𝐶 (2.15)
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where ŝ𝑖 ∈ R𝑇 ′
is the monaural signal of source 𝑖, h𝐿𝑖 , h

𝑅
𝑖 ∈ R𝑇−𝑇 ′+1 are the pair of HRIR fil-

ters corresponding to the source 𝑖, and ⊛ represents the convolution operation. Using the HRIR-

transformed signals as the separation targets forces the model to preserve interaural cues introduced

by the HRIR filters, and the outputs can be directly rendered to the listener.

MIMO TasNet

TasNet overview. TasNet has been shown to achieve superior separation performance in single-

channel mixtures [25]. TasNet contains three modules: a linear encoder first transforms the mixture

waveform into a two-dimensional representation similar to spectrograms; a separator estimates 𝐶

multiplicative functions similar to time-frequency masks based on the 2-D representation; and a

linear decoder transforms the 𝐶 target source representations back to waveforms.

Various approaches have been proposed to extend TasNet into the multi-channel framework

[96, 97]. A standard pipeline is to incorporate cross-channel features into the single-channel model,

where spatial features such as interaural phase difference (IPD) are concatenated with the mixture

encoder output on a selected reference microphone for mask estimation [96]. In various scenarios,

such configuration has led to a significantly better separation performance than the signal-channel

TasNet.

Feature concatenation for MIMO TasNet. Recent studies have proposed several approaches to

allow TasNet to take multi-channel inputs. A common approach is the integration of cross-channel

features into single-channel models. Gu et al. [96] concatenated IPD feature with the encoder

output at a selected reference microphone to perform single-channel separation, where the IPD

between the complex-valued spectrograms of two signals X,Y ∈ C𝐹×𝑇 is defined as:

IPD(X,Y) = ∠X − ∠Y (2.16)

where ∠(·) denotes the element-wise function for calculating the angle of a complex number. Prac-

tically the IPD features transformed by cosine or sine functions are used for better performance
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[96]. As IPD is a T-F domain feature, the window size for short-time Fourier transform (STFT)

is typically much larger than that of TasNet. We calculated the IPD feature in T-F domain using

a context window whose center is the corresponding window for TasNet. We kept both frequency

resolution and time resolution of T-F domain features for separation only in the center window.

Different from multi-channel signals received by the far-field microphone array whose inter-

channel level differences can be ignored, binaural signals contain distinct interaural level differ-

ences (ILDs), where ILD between the complex-valued spectrograms of two signals X,Y ∈ C𝐹×𝑇

is defined as:

ILD(X,Y) = 10 log10

(
|X|
|Y|

)
(2.17)

so, ILD is also concatenated with IPD and the encoder output along the feature dimension. To

adapt to a MIMO system, each of the left and right channel signals will be selected as the reference

channel and performed separation. For example, given X,Y as left and right channel mixtures, we

choose X as the reference and concatenate IPD(X,Y) and ILD(X,Y) with the encoder output in

the single-channel model to separate X, meanwhile we take Y as the reference and add IPD(Y,X),

ILD(Y,X) to separate Y.

Design of MIMO TasNet. The proposed MIMO TasNet uses a parallel encoder for spectro-

temporal and spatial features extraction and a mask-and-sum mechanism for source separation.

A primary encoder is always applied to the channel to be separated, and a secondary encoder is

applied to the other channel to jointly extract cross-channel features. In other words, the sequential

order of the encoders determines which channel (left of right) the separated outputs belong to. The

outputs of the two encoders are concatenated and passed to the separator, and 2𝐶 multiplicative

functions are estimated for the 𝐶 target speakers. 𝐶 multiplicative functions are applied to the

primary encoder output while the other 𝐶 multiplicative functions are applied to the secondary

encoder output, and the two multiplied results are then summed to create representations for 𝐶

separated sources. We denote it as the mask-and-sum mechanism to distinguish it from the other
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Figure 2.2: The architecture of the proposed binaural speech separation network. Two en-
coders are shared by the mixture signals from both channels, and the encoder outputs for each chan-
nel are concatenated together and passed to a mask estimation network. Then, spectral-temporal
and spatial filtering are performed by applying the masks to the corresponding encoder outputs and
sum them up on both left and right paths. Finally, binaural separated speech are reconstructed by
a linear decoder.

methods where only 𝐶 multiplicative functions were estimated from the separation module and

applied to only the reference channel. Similar to TasNet, a linear decoder transforms the 𝐶 target

source representations back to waveforms. Figure 2.2 shows the flowchart of the system design.

Note that a parallel encoder design for multi-channel TasNet has been discussed in a previous

literature [96]. For a 𝑁-channel input, 𝑁 encoders are applied to each of them and the encoder

outputs are summed to create a single representation. The multiplicative function is also estimated

on the single representation, which results in a MISO system design. We can easily find that it

is a special case of MIMO TasNet where the two multiplicative functions for the two encoders

are equal. Although a previous study found that the feature concatenation method performed

comparably to the parallel encoder design, we will show that MIMO TasNet is able to significantly

surpass feature concatenation TasNet in various configurations in both separation performance and

spatial cue preservation accuracy in Section 2.2.4.
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Training objective. Section 2.1 has introduced the deep clustering approach for tackling the

speaker-independent speech separation challenge. Another very important method that has signifi-

cantly advanced speech separation is permutation invariant training (PIT). PIT is a general method

for any type of objective functions to solve the output permutation problem [22, 23]. It determines

the correct output permutation by calculating the lowest value on the selected objective function

through all possible output permutations. Variants on the network architecture design and objective

function design have proven the effectiveness of this training method [25]. Due to its broad applica-

bility and effectiveness, PIT has become the most favored training method in speaker-independent

speech separation. In this section, we used utterance-level permutation invariant training (u-PIT)

[23],

L = min
𝜋∈𝑃

𝐶∑︁
𝑐=1

𝜓(ŝ𝐿𝑐 , s𝐿𝜋(𝑐)) + 𝜓(ŝ
𝑅
𝑐 , s𝑅𝜋(𝑐)) (2.18)

where 𝜓 (·) is the objective function between estimated signals and target signals, ŝ𝐿 , ŝ𝑅 ∈ R𝑇 are

the separated signals in left and right channels, respectively, s𝐿 , s𝑅 ∈ R𝑇 are the corresponding

target signals, the subscript 𝑐 is the speaker index, and P is the set of all C! permutations.

Most separation models use scale-invariant signal-to-distortion ratio (SI-SDR) as both the eval-

uation metric and objective function (𝜓 (·)). SI-SDR between a signal s ∈ R𝑇 and its estimate

ŝ ∈ R𝑇 is defined as:

SI-SDR(s, ŝ) = 10 log10

(
| |𝛼s| |22

| |ŝ − 𝛼s| |22

)
(2.19)

where 𝛼 = ŝs⊤/ss⊤ corresponds to the rescaling factor. Although SI-SDR is sensitive to time

shift of the estimated signal and thus able to implicitly preserve the ITD information, the scale-

invariance property of SI-SDR makes it insensitive to power rescaling of the estimated signal,

which may fail in preserving the ILD between the outputs. Hence instead of using SI-SDR as the
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training objective, we used the plain signal-to-noise ratio (SNR), defined as:

SNR(s, ŝ) = 10 log10

(
| |s| |22

| |ŝ − s| |22

)
. (2.20)

2.2.3 Experimental Settings

Datasets

We generated an anechoic speech dataset from the WSJ0-2mix dataset [20]. 30 hours of train-

ing data, 10 hours of validation data and 5 hours of test data were generated with the same configu-

ration as the single-channel WSJ0-2mix data, while the clean speech was convolved with randomly

sampled HRIR filters from the CIPIC HRTF Database [90]. The CIPIC HRTF Database contains

real-recorded HRIR filters for 20 subjects across 25 different interaural-polar azimuths from −80◦

to 80◦ and 50 different interaural-polar elevations from −90◦ to 270◦. Two speaker locations were

randomly sampled from the database for spatial rendering. We used 27 subjects for the training

and validation sets and 9 unseen subjects for the test set, ensuring that the model was evaluated in

a listener-independent way. All mixtures were downsampled to 8k Hz.

The anechoic WSJ0-3mix dataset with spatial cues was generated by using the same method as

above. To generate the noisy WSJ0-2mix dataset, we added to the training set the noise from one

out of eight environmental noises (washing room, kitchen, sport field, city park, office, meeting

room) chosen from DEMAND dataset [98] with SNR between -2.5 and 15 dB. The noise in the

test set was from another eight scenarios (subway station, restaurant, public square, traffic inter-

section, subway, private car). To generate the echoic WSJ0-2mix dataset, we obtained HRIR filters

from the BRIR Sim Set1, which was simulated with different reverberation time (T60). We added

reverberation using rooms with T60 0.1s, 0.2s, 0.4s, 0.5s, 0.7s, 0.8s, 1.0s for training and 0.3s,

0.6s, 0.9s for testing.

1http://iosr.uk/software/index.php
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Evaluation Metrics

We evaluated the model with both the separation quality and the ability to preserve interaural

cues. SNR improvement (SNRi) was used as the signal quality metric instead of SI-SDR improve-

ment according to our discussion in Section 2.2.2. ITD and ILD errors between the separated and

target clean signals were used as the metric for the accuracy of preserving interaural cues, which

are defined as:

Δ𝐼𝑇𝐷 =
��ITD(sL, sR) − ITD(ŝL, ŝR)

�� (2.21)

Δ𝐼𝐿𝐷 =

�����10 log10
| |s𝐿 | |22
| |s𝑅 | |22

− 10 log10
| |ŝ𝐿 | |22
| |ŝ𝑅 | |22

����� (2.22)

where | | · | | denotes the 𝐿2-norm of the signal. We used generalized cross-correlation phase trans-

form (GCC-PHAT) algorithm [99] to compute time difference of arrival (TDOA) of s𝐿 and s𝑅 as

ITD(sL, sR). The tool is available online2.

Network Architectures

The configurations of the MIMO TasNet variants were based on the causal setting of the single-

channel TasNet [25]. In the linear encoder and decoder, we utilized 64 filters, each with a filter

length of 2 ms, which equates to 16 samples at a sampling rate of 8 kHz. In the causal temporal

convolutional network (TCN), there were 4 repeated stacks and each one included 8 1-D convolu-

tional blocks. The number of parameters in all models was fixed at 1.67M for a fair comparison.

For baseline models, we adopt the following configurations:

1. Single-channel TasNet: the single-channel model is applied to each channel independently.

2. Feature concatenation TasNet: cross-channel features are concatenated to the encoder output

in the same way as [96]. Spatial features used include sin(IPD), cos(IPD) and ILD, where

2https://www.mathworks.com/help/phased/ref/gccphat.html
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the IPD and ILD are defined as

IPD(X,Y) = ∠X − ∠Y (2.23)

ILD(X,Y) = 10 log10 ( |X| ⊘ |Y|) (2.24)

where X,Y are the spectrograms of the two channel mixtures, ⊘ means element-wise divi-

sion. The window length of STFT for calculating spectrograms is 256 samples.

3. Parallel encoder TasNet: the same configuration as in [96] which is also discussed in Sec-

tion 2.2.2.

2.2.4 Results and Discussion

Table 2.3 compares different MIMO TasNet variants at various speaker locations on anechoic

spatialized WSJ0-2mix. The single-channel baseline is able to achieve the smallest ILD error

across all models when the speaker angle is very small, which indicates that the interaural features

in this scenario are not helpful in preserving the absolute energy of the separated speech. For all

other speaker locations, both the ILD error and separation quality for the single-channel model are

significantly worse than all the MIMO variants. For TasNet concatenated with sin(IPD), cos(IPD)

and ILD features, we can observe significant signal quality improvement and ITD/ILD error re-

duction across all angle ranges, and better performance is achieved with larger speaker angle. This

confirms the previous observations regarding the effectiveness of cross-channel features in end-to-

end frameworks [96]. The parallel encoder method has on par performance in preserving ITD/ILD

with feature concatenation method, but achieves better separation performance except when the

speaker angle is small (less than 15°). The significant improvement for signal quality (SNRi) indi-

cates that the parallel encoders are able to implicitly extract more effective cross-channel features

than cross-domain features IPD/ILD for multi-channel speech separation. The further improve-

ment from mask-and-sum mechanism indicates the effectiveness of combining spatial filtering and

spectral filtering to separate sources. The correlation (Pearson’s r) between SNRi and Δ𝐼𝑇𝐷 and be-
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Table 2.3: SNR improvement (dB), ITD error (𝜇s), and ILD error (dB) for different variants of
TasNet on anechoic spatialized WSJ0-2mix. The averaged performance on different ranges of
speaker angles is reported.

Method
SNRi / Δ𝐼𝑇𝐷 / Δ𝐼𝐿𝐷

Angle
<15° 15-45° 45-90° >90° Average

TasNet 10.0 / 6.0 / 0.29 10.0 / 5.8 / 0.39 10.3 / 4.8 / 0.56 10.7 / 6.4 / 0.59 10.2 / 5.8 / 0.46
+ILD 11.1 / 3.1 / 0.31 13.4 / 1.9 / 0.12 14.4 / 1.3 / 0.16 14.8 / 1.9 / 0.17 13.4 / 2.0 / 0.19
+sin(IPD), cos(IPD) 11.7 / 2.4 / 0.34 14.1 / 1.7 / 0.14 14.7 / 1.4 / 0.20 15.3 / 2.0 / 0.20 13.9 / 1.9 / 0.22
+sin(IPD), cos(IPD), ILD 11.8 / 2.4 / 0.33 14.5 / 1.6 / 0.11 15.3 / 1.2 / 0.16 15.8 / 1.8 / 0.18 14.4 / 1.8 / 0.20
+parallel encoder 10.6 / 3.0 / 0.47 15.1 / 1.5 / 0.11 16.8 / 1.2 / 0.11 17.7 / 2.0 / 0.12 15.0 / 2.0 / 0.20
+parallel encoder, mask&sum 10.7 / 2.8 / 0.47 15.6 / 1.3 / 0.13 17.7 / 1.1 / 0.09 18.3 / 1.8 / 0.09 15.6 / 1.8 / 0.19

tween SNRi and Δ𝐼𝐿𝐷 are -0.77 and -0.85, respectively (p <0.0001 for both), which means higher

separated signal quality helps in preserving ITD/ILD better.

To further examine our proposed MIMO TasNet in more adverse environments, we tested the

separation accuracy in three speaker mixtures, noisy speech separation and speech separation with

room reverberation. Note that in the evaluation of these three cases, the top 5% Δ𝐼𝑇𝐷 and Δ𝐼𝐿𝐷

were dropped before averaging to prevent the errors incurred by outliers.

When testing the model on the noisy WSJ0-2mix dataset, we set the noise power range at

three levels. As shown in Table 2.4, additive noise contaminates both speech quality and ITD/ILD

preservation, but the overall performance compared to the clean condition is still superior and

MIMO TasNet with parallel encoder and mask-and-sum achieves the best performance in all met-

rics across all noise levels, which proves the MIMO TasNet is more robust to the noise.

We observe that three-speaker separation is more challenging than noisy speech separation.

Both ITD and ILD preservation downgrade significantly compared to the two-speaker case. That

is because the model had failed to separate some of speech with very small power compared to

the other two speakers or speech with very similar spatial features to others, and the failure of

separation leads to the failure of ITD/ILD preservation.

Finally, we evaluated the model on the echoic spatialized WSJ0-2mix dataset. The target is the

reverberant clean signal. Not surprisingly, convolutive room reverberation is a more challenging

condition than additive environmental noises in terms of both signal quality improvement and pre-
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Table 2.4: Evaluation of TasNet with parallel encoder on several adverse conditions: three-speaker
separation, two-speaker separation with environmental noise, and with room reverberance.

Method
SNRi / Δ𝐼𝑇𝐷 / Δ𝐼𝐿𝐷

3 speaker 2 speaker with noise (SNR) 2 speaker with reverberance (RT60)

12.5 dB 5 dB -2.5 dB 0.3s 0.6s 0.9s
TasNet 9.1 / 6.3 / 0.74 9.8 / 3.4 / 0.31 10.9 / 3.7 / 0.31 13.8 / 5.2 / 0.57 7.2 / 10.8 / 0.46 6.2 / 45.1 / 0.47 5.7 / 44.5 / 0.50
+parallel encoder 11.3 / 12.3 / 0.84 13.7 / 2.3 / 0.16 15.0 / 2.5 / 0.18 17.8 / 3.0 / 0.23 9.2 / 6.5 / 0.20 7.7 / 33.2 / 0.25 6.9 / 17.7 / 0.30
+parallel encoder, mask&sum 12.1 / 5.7 / 0.45 14.3 / 2.2 / 0.14 15.3 / 2.3 / 0.15 18.2 / 2.8 / 0.21 9.4 / 5.9 / 0.23 7.8 / 30.0 / 0.21 7.1 / 15.6 / 0.25

serving spatial cues as the sparseness properties of the speech are affected by room reverberation.

The smearing caused by reverberation means that the mixture at each instance includes compo-

nents of the same and different speakers, which makes the mask prediction and TDOA estimation

more difficult. As a result, SNRi and Δ𝐼𝑇𝐷 are more easily affected by the reverberation. Also,

using only two channels does not fully take advantage of multi-channel algorithms to reduce the

influence of reverberation. Nonetheless, the averaged 9.4 dB SNR improvement, 5.9 𝜇𝑠 ITD error

and 0.23 dB ILD error show that the performance of MIMO TasNet is still helpful in the moderate

reverberant environment.

2.3 Binaural Speech Separation of Moving Speakers

2.3.1 Introduction

In Section 2.2, we have introduced a real-time binaural speech separation model that can pre-

serve the spatial cues such as interaural level difference (ILD) and the interaural time difference

(ITD) of all directional sources to enable a listener to perceive the correct location of sources in

space. Similar to most conventional speech separation models, it assumes the sources are not

moving, which limits its application in real-world scenarios. A commonly used solution to ad-

dressing moving sources is block-wise adaptation of models, meaning to split the signal into very

short blocks in which the sources within each block are assumed stationary since spatial features

vary smoothly and slowly [100, 101, 102]. Choosing an appropriate block size is not trivial: on

one hand, the block size must be small enough to satisfy the stationarity assumption; on the other

hand, the block size should be long enough for successful separation. For example, independent
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component analysis (ICA) methods require a block size that is large enough for the independence

assumption to hold within the block. Besides, block-wise methods require a tracking module to

resolve the source permutation problem across consecutive blocks [103, 104].

An alternative solution is to divide the moving source separation problem into speech source

localization, tracking, and separation problems, and to tackle them separately [105, 106] or jointly

[107]. Taseska et al. [108] used an approximate Bayesian tracker that employs the Markovian

property of the speaker motion model to associate time-frequency bins to each source, based on

which spatial filters are estimated to separate moving sources. However, these approaches depend

on the high fidelity of source localization and/or tracking. In real scenarios, speech turns, speaker

appearance and disappearance, and room reverberation [109] complicate the source tracking con-

siderably. Moreover, the tracking methods mainly utilize the past spatial information but do not

take advantage of long-term spectral information. Long-term spectral information has proven ben-

eficial for source separation [25, 44]. Instead, a method that is able to use both spectral-temporal

and spatial-temporal information in a larger context is desired for resolving these challenges.

This section aims to enhance the binaural speech separation model to handle scenarios with

moving speakers effectively. To achieve this, we developed a dataset that replicates the dynamics

of moving speakers in reverberant environments. Training the model on this dataset allows it

to utilize extended contextual information at the utterance level, thereby improving its ability to

separate speech and track speaker movements within an utterance. This approach eliminates the

need for extra localization and tracking modules. Experimental results show that utterance-level

separation significantly outperforms the block-wise adaptation methods in terms of both signal

quality and spatial cue preservation.

2.3.2 Method

Figure 2.3 shows the overall flowchart of the proposed framework. In the first step, the binaural

speech separation module simultaneously separates the speaker in each channel of the mixed input.

In the second step, the binaural post enhancement module enhances each speaker individually.
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Figure 2.3: The architecture of the proposed system. Two moving speakers, denoted in blue and
red are being separated. The bottom left and bottom right figures illustrate the details of binaural
speech separation and binauarl post enhancement modules.

The binaural speech separation module presented in this section is almost identical to the one

described in Section 2.2.2, with a key distinction: here, the module concurrently separates speakers

in both the left and right channels, rather than processing the two channels independently. There

is an additional binaural post enhancement module to enhance the model’s resilience against back-

ground noise and reverberation in difficult environments. While this module may introduce some

latency, the TasNet architecture effectively maintains acceptable overall latency. To evaluate the

effectiveness of our model in preserving interaural cues in the stereo output, a speaker localizer is

employed to test whether the separated speakers can be accurately localized.

Binaural Post Enhancement Module

Each stereo sound, s𝐿
𝑖

and s𝑅
𝑖

, from the separation module, combined with the mixed signals

(y𝐿 , y𝑅), is sent to a multi-input-single-output (MISO) TasNet for post enhancement. Similar to

the speech separation module, we concatena all the encoder outputs and pass them to the TCN

blocks for estimating multiplicative functions M𝐿
𝑖 ,M

𝑅
𝑖 ∈ R2×𝑁×𝐻 ,

s𝐿𝑖 = decoder(E𝐿 · M𝐿
𝑖 [0, :, :] + E𝑅 ⊙ M𝐿

𝑖 [0, :, :]) (2.25)

s𝑅𝑖 = decoder(E𝐿 · M𝐿
𝑖 [1, :, :] + E𝑅 ⊙ M𝐿

𝑖 [1, :, :]) (2.26)
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where, ⊙ denotes element-wise multiplication. Different from the speech separation module that

only applies multiplicative functions, which is equivalent to spectral filtering, speech enhancement

module performs multiplication and sum, which is equivalent to both spectral and spatial filtering.

This is similar to multichannel Wiener filtering [39]. We denote it as mask-and-sum.

Since the input stereo sound, s𝐿
𝑖

, s𝑅
𝑖

, contains both spectral and spatial information of the

speaker 𝑖, the enhancement module essentially performs informed speaker extraction without the

need for permutation invariant training.

Speaker Localizer

The speaker localizer adopts a similar architecture as the speech enhancement module but

performs classification of the direction of arrival (DOA). We discretize the DOA angles into K

classes. The speaker localizer takes only stereo sound, s𝐿
𝑖

, s𝑅
𝑖

, as input, concatenates two encoders’

outputs, and passes them to the TCN blocks to estimate a single-class classification matrix V𝑖 ∈

(0, 1)𝐾×𝐻 , where “single-class” means that in each time frame, there is exactly one class labeled

with 1 and all the other classes are labeled with 0.

We split V𝑖 into B small chunks
{
V𝑏
𝑖

}𝐵
𝑏=1 ∈ R𝐾×𝑄 , where Q is the number of time frames in

each chunk and 𝐵 = 𝐻
𝑄

. In each chunk, we count the frequency of each class labeled with 1, and

regard the most frequent class as the estimated DOA for that chunk.

Training Objective

The training objective for the speech separation and enhancement modules is SNR, which is

sensitive to both time shift and power scale of the estimated waveform, so it is able to force the

ITD and IPD to be preserved in the estimated waveform. In the speech separation module, we used

utterance-level permutation invariant training [23] (see Section 2.2.2). To minimize utterance-level

separation error, the model must accurately separate and track speakers throughout the utterance.

Therefore, the model learns to utilize a significantly longer contextual window than a small block,

enabling effective speaker separation and tracking, even in cases of speaker movement.
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2.3.3 Experimental Settings

Binaural Room Impulse Responses and Speech Data

We used two types of binaural room impulse responses (BRIRs): one obtained from simulated

rooms and the other was measured in real rooms3. There were 11 simulated rooms with reverber-

ation time (RT60) varying from 0 to 1 s with 0.1 s increments. In this study, only 8 rooms with

RT60 from 0 to 0.7 s were used. There were 4 real rooms with RT60 0.32 s, 0.47 s, 0.68 s, 0.89 s,

respectively. The impulse responses were calculated with the sound source located on the frontal

azimuthal plane between −90◦ and 90◦ with 5◦ increments at a distance of 1.5 m to the receiver.

Two speakers were randomly selected from the 100-hour Librispeech dataset [110]. Both speech

data and BRIRs were sampled at 16 kHz.

Moving Source Simulation

Given a monaural speech s and a set of BRIRs
{
ℎ𝐿
𝑗

}𝑁
𝑗=1
,

{
ℎ𝑅
𝑗

}𝑁
𝑗=1

∈ R𝐿ℎ , where ℎ𝐿
𝑗

and ℎ𝑅
𝑗

are

the BRIR filters of length 𝐿ℎ from the location j to the left ear and right ear, respectively, and N is

the number of locations (37 in this study), the moving binaural source was simulated as:

s𝐿 [𝑛] =
𝑁∑︁
𝑗=0

𝐿ℎ∑︁
𝑘=0
I 𝑗 (𝑛) · ℎ𝐿𝑗 [𝑘] · 𝑠[𝑛 − 𝑘] (2.27)

s𝑅 [𝑛] =
𝑁∑︁
𝑗=0

𝐿ℎ∑︁
𝑘=0
I 𝑗 (𝑛) · ℎ𝑅𝑗 [𝑘] · 𝑠[𝑛 − 𝑘] (2.28)

where I 𝑗 (𝑛) is an indicator function which is 1 when s is at location j at time step n, and is 0

otherwise. This method simulates the stereo sound with time-varying spatial cues.

Training, Development, and Test Sets

For the training, development, and test set, we respectively created 40000, 10000, and 6000

utterances of length 2.4-second using only the simulated BRIRs. For each utterance, we ran-

3http://iosr.uk/software/index.php
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domly sampled a set of BRIRs and two speech samples. The speech signals were rescaled to a

random relative SNR between 0 and 5 dB. The moving velocity of each speaker was randomly

chosen between 8 and 15◦/𝑠 and the moving direction was randomly chosen between clockwise

and counter-clockwise. In addition, to compare the proposed method in different rooms with dif-

ferent velocities, we chose 3 simulated rooms with RT60 0.3 s, 0.5 s, 0.7 s; 3 real rooms with RT60

0.32 s, 0.47 s, 0.68 s; and 3 velocity ranges 5 − 10◦/𝑠, 10 − 15◦/𝑠, 15 − 20◦/𝑠, and generated 1000

utterances on each condition for testing only.

Evaluation Metrics

Similar to the evaluation in Section 2.2, we assessed the models by evaluating both the quality

of speech separation and the preservation of spatial cues. SNR was employed as the metric for

signal quality. However, ITD and ILD errors are not suitable for utterance-level evaluation of

spatial cue preservation because the moving sources are at different locations in an utterance. To

address this, we trained a speaker localizer for moving source localization on reverberant clean

signals. We set the chunk size as 80 ms, so the localizer predicts the DOA every 80 ms. Since the

DOA classes are ordered, even a wrong classification can correspond to a close DOA estimation,

e.x., 5◦ angular error. Therefore, we opted to report the absolute DOA errors as our metric for the

accuracy of preserving spatial cues.

Network Architectures

Our MIMO TasNet was built upon the causal configuration of TasNet as detailed in [25]. In

the linear encoder and decoder, we employed 64 filters, each with a 4 ms filter length, which

corresponds to 64 samples at a 16 kHz sampling rate. The TCN module comprised five repeated

stacks, each containing seven 1-D convolutional blocks. This configuration gives the model an

effective receptive field of approximately 2.5 seconds. We set the STFT window size to 32 ms and

the window shift to 2 ms when calculating cosIPD, sinIPD, and ILD.
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Table 2.5: Experimental results of moving source separation in reverberant rooms with various
configurations of TasNet. SNR (dB) and DOA error (°).

Method Context
size (s)

SNR
(dB)

DOA
error (°)

Unprocessed - 0 -
SIMO TasNet 2.4 5.1 20.9

MIMO TasNet+block-wise
0.1 5.7 16.3
0.2 6.0 15.4
0.3 6.2 14.1

MIMO TasNet
2.4

8.4 8.3
-sinIPD, cosIPD, ILD 7.3 11.0

MISO TasNet
2.4

9.4 6.1
-mask&sum 8.8 7.3

Reverberant clean - 0.5

2.3.4 Results and Discussion

Table 2.5 compares different methods for moving source separation. The single-input-multi-

output (SIMO) TasNet uses only spectral-temporal information for separation, yielding an average

of 5.1 dB SNR improvement. The block-wise adaptation of MIMO TasNet with oracle block track-

ing achieves better performance than the SIMO TasNet even though it relies on a much shorter

context window. This observation suggests the importance of spatial information in source sepa-

ration. As the duration increases, both SNR and DOA estimation become better. When the MIMO

TasNet performs utterance-level separation, it achieved 8.4 dB SNR improvement, outperforming

block-wise adaptation by a large margin. The huge improvement confirms the effectiveness of the

longer context for moving source separation, as the model could take advantage of longer spectral-

temporal and spatial-temporal information. We also notice that the performance of MIMO TasNet

drops greatly when the frequency-domain features, i.e., cosIPD, sinIPD, and ILD, are removed. It

is likely because the frequency-domain features provide more stable spatial features than those ex-

tracted by the parallel encoders in the reverberant environments as STFT uses a longer window size

than the linear encoders. In the binaural enhancement stage, the MISO TasNet further improves

the SNR and reduces the DOA error. The performance gain from the mask-and-sum mechanism
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Figure 2.4: SNR improvement (top) and DOA estimation (bottom) over time for two moving
speakers on three examples of trajectories in the reverberant room with RT60 0.2s. The result for
each trajectory is averaged over 100 instances of speech separation.

shows the effectiveness of combining spatial filtering and spectral filtering to separate sources. Our

results show that better signal quality (higher SNR) always leads to better preservation of spatial

cues (lower DOA error), which is consistent with the observations in [76, 111] that conducted

source separation on nonmoving sources.

Figure 2.4 reports SNR improvement and DOA estimation on three example trajectories. In

example A, two speakers move in left and right planes, and the proposed method achieves good

performance constantly because two speakers always have distinct spatial information. In B and C

trajectories, the SNR improvement becomes less as the two speakers move closer to each other, and

improves when they move apart. Interestingly, we notice that the DOA estimation is less affected

by speakers’ co-location than the SNR. A possible explanation is that the speaker localizer uses

the velocity and directional information to compensate for decreased signal quality.

Table 2.6 compares the proposed method on speakers with different moving velocities in dif-

ferent rooms. The model trained in the simulated rooms can generalize to the real rooms well.

In both simulated and real rooms, reverberation substantially deteriorates the performance of the

model in terms of the signal quality and accuracy of the preserved spatial cues. This degradation

is due to the temporal smearing of the mixed signal which combines the components of the same

and different speakers over time and makes the mask estimation more challenging. We notice that
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Table 2.6: Experimental results of the proposed system with different moving velocity in different
rooms. SNR (dB) and DOA error (°) are reported.

Room condition (RT60)
Velocity of motion (°/s)

5-10 10-15 15-20

Simulated room
a (0.3 s) 8.8/5.8 8.7/5.6 8.9/6.2
b (0.5 s) 7.6/7.7 7.6/7.3 7.5/8.3
c (0.7 s) 6.8/9.2 6.7/9.3 6.7/10.0

Real room
A (0.32 s) 7.5/9.6 7.5/9.9 7.5/9.3
B (0.47 s) 6.6/15.2 6.5/15.0 6.5/15.2
C (0.67 s) 6.5/11.9 6.5/12.3 6.3/12.3

velocity has little impact on SNR and, DOA estimation only becomes slightly worse in the highest

velocity range. It shows the robustness of the system across various conditions.

2.4 Conclusion

This chapter tackles the challenge of speaker-independent speech separation with an emphasis

on low latency. Our first contribution is a real-time single-channel speech separation model, online

deep attractor network, which employs an online clustering strategy. We show that the online deep

attractor network is competitive with other noncausal models using offline clustering. Then, we

propose a real-time binaural speech separation model, MIMO TasNet that simultaneously separate

speakers in both the left and right channels. Our experimental results indicate that MIMO TasNet

not only achieves superior separation performance but also effectively preserves interaural time

difference and interaural level difference in the separated outputs, outperforming existing TasNet

variants. Furthermore, we investigated the problem of moving source separation. We upgraded

the MIMO TasNet to a two-stage framework that performs utterance-level binaural speech sep-

aration and enhancement sequentially. The method fully utilizes long-term spectral and spatial

information and implicitly tracks the speakers within the utterance without the need for the exter-

nal speaker tracking module. Experiments show that the model significantly improves separation

performance and more accurately preserves spatial cues compared to the traditional block-wise

adaptation method.
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Chapter 3: Using Speaker Identifications to Improve Speech Separation

The models introduced in Chapter 2 do not specifically leverage speaker information for speech

separation. However, this information can be advantageous in certain situations. For example, in

the separation of long recordings, maintaining a consistent allocation of speakers to output chan-

nels is a challenge, particularly when speakers move freely. In such contexts, the use of speaker

information could facilitate more accurate tracking of speakers. Similarly, in a scenario like a

conference room with ten individuals conversing, knowing each participant’s unique vocal char-

acteristics could benefit the separation process. This chapter explores the application of speaker

information to improve speech separation in these scenarios. Importantly, the methods introduced

in this chapter do not rely on pre-recorded samples of the speakers’ voices. Instead, they are

designed to intelligently extract speaker information directly from the mixed audio.

3.1 Online Binaural Speech Separation of Moving Speakers With a Wavesplit Network

3.1.1 Introduction

We have introduced a deep learning approach that performs utterance-level source separation of

moving speakers in Section 2.3. The model utilizes longer spectral and spatial information and im-

plicitly tracks the speakers within the utterance which significantly outperforms block-wise adap-

tation methods. Although the model shows promising results with sentence-length waveforms,

robust tracking moving speakers in long-form speech separation is still challenging, primarily due

to the speaker swap problem. The speaker swap problem refers to a scenario in which even though

the overlapped sources can be well separated, the ordering of outputs may be inconsistent over

time. For example, when separating speakers in a long mixture of A+B, the model outputs [A,B]

between time 𝑡1 and 𝑡2 but outputs [B,A] between time 𝑡2 and 𝑡3. This phenomenon is annoying
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and frequent, and it can occur when speaker energy varies or a period of silence exists amid the

mixture. Separating moving speakers is even more prone to the speaker swap problem than sepa-

rating stationary speakers, especially at times when speakers move closer to each other in space.

It is likely because similar spatial information results in speaker tracking ambiguity. To make

the speaker order consistent in the sequence, a stitching-based algorithm was proposed, which di-

vides the long-form outputs into several overlapped segments, calculates the similarity between the

overlapped regions in adjacent segments, and re-orders the segments [112, 44]. Others designed a

tracking network to track the segments [113]. These methods are effective for non-causal systems

but not suitable for causal systems which require low latency.

An alternative solution for real-time systems is speaker-informed speech separation. In this

method, the model is conditioned on a representation of each speaker which is used to track the

speakers over time. The representation is usually a speaker-discriminative embedding such as i-

vector [47] or d-vector [48]. There are multiple ways to acquire speaker representations. A general

approach is to use a speaker ID neural network to compute speaker embedding from a voice snippet

of the target speaker [49, 50, 52, 53]. Speaker representations can also be derived from the sound

mixture itself. Wavesplit [114] jointly trains a speaker stack and a separation stack where the

speaker stack predicts an embedding per speaker at each time frame, aggregates them across the

whole input, and uses the aggregated representation to guide the speaker stack.

In this section, we address the speaker swap problem in the task of binaural speech separation

for moving speakers. We propose a new model inspired by the Wavesplit approach. The speaker

profile module infers speaker representations from the mixture over time, which are then utilized

by the extraction module and localization module to track each speaker reliably. Experimental

results show that the proposed method can mitigate the speaker swap problem while achieving

comparable performance with u-PIT models with ground truth tracking in both separation quality

and preserving the spatial cues in long-form speech separation. Moreover, all the modules in the

system are causal and have low latency, making the system suitable for applications in hearable

devices.
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Figure 3.1: Schematic of the proposed system.

3.1.2 Method

Figure 3.1 illustrates the overall flowchart of the proposed framework. The speaker profile

module estimates an embedding for each speaker at each time frame from the binaural mixture,

but the ordering of the embeddings is not necessarily consistent over time. During training, a pre-

trained speaker ID network generates oracle embeddings from individual sources to serve as the

training target for the speaker profile module. Frame-level permutation invariant training (PIT) is

used to choose the best match and re-order the estimated embedding sequence. In inference, online

k-means is performed to cluster embeddings and update the centroids. The re-ordered embedding

sequence or the centroid sequence informs the localization and separation modules to jointly local-

ize and separate the corresponding speaker. The interaural cues are preserved in the stereo output.

Speaker Profile Module

Given the binaural mixed signals Y ∈ R2×𝐿 , where L is the signal length, the speaker profile

module estimates N sequences of speakers vectors, H ∈ R𝑁×𝑇×𝐷 , where N is the number of speak-

ers presented in the mixture, T is the time frames, and D is the vector dimension. In this study, N is

fixed to be two. h(𝑛, 𝑡) ∈ R𝐷 denotes the n-th vector of H at the time frame t. It is noted that there

is no predetermined ordering of the speaker embeddings at each time frame and the ordering across

frames is not necessarily consistent. For example, h(1, 𝑡1) and h(2, 𝑡3) can represent the speaker

A while h(2, 𝑡1) and h(1, 𝑡3) represent the speaker B as shown in Figure 3.1. The embeddings

are speaker-discriminative so that 1) they can be clustered into individual speaker groups; 2) each
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group of embeddings can guide the separation of the corresponding speaker from the mixture.

To facilitate training, we made some modifications to Waveplit. Instead of maintaining a

speaker embedding table, we trained a speaker ID network (SNet) to extract the oracle speaker em-

beddings from the individual sources. SNet follows the design in Zhou et al. [115] and is trained to

predict the M different speaker identities using the cross-entropy loss. The SNet takes the source

i, s𝑖 ∈ R𝐿 , as input and outputs an embedding sequence Ei ∈ R𝑇×𝐷 . E = [E1, ...,E𝑁 ] ∈ R𝑁×𝑇×𝐷 is

the oracle speaker embeddings. Different from H, the ordering of speakers in E is consistent in the

sequence. To force the embeddings to have small intra-speaker and large inter-speaker distances,

we randomly sample time frames {𝑝, 𝑞} and add a triplet loss,

Ltriplet =
∑︁
𝑖, 𝑗

∑︁
𝑝,𝑞

max{|e(𝑖, 𝑝) − e(𝑖, 𝑞) |−

|e(𝑖, 𝑝) − e( 𝑗 , 𝑝) | + m, 0},
(3.1)

where e(𝑖, 𝑝) is the vector of speaker i at the time step p and m is the margin. Then, the frame-level

PIT loss is used to train the speaker profile module,

LPIT(H,E) =
𝑇∑︁
𝑡=1

min
𝜋∈𝑃

𝑁∑︁
𝑖=1

|h(𝑖, 𝑡) − e(𝜋(𝑖), 𝑡) |, (3.2)

where P is the set of all N! permutations. The best match between the oracle embeddings and

estimated embeddings at each frame can be used to re-order the estimated speaker embeddings in

an order consistent with the oracle ones. The re-ordered embeddings Ĥ(𝑖) ∈ R𝑇×𝐷 , 𝑖 = 1...𝑁 is the

i-th speakers’ profile used to guide the speech separation.

In inference, online k-means is performed on H, which keeps updating the cluster centroids

over time. The sequence of the centroids C(𝑖) ∈ R𝑇×𝐷 is the i-th speaker’ profile.

Speaker Localization Module and Extraction Module

We train a multi-input-multi-output (MIMO) TasNet to separate the targeted speaker. Follow-

ing the design in Section 2.3, we use 1-D convolution layers to extract the time-domain features
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from the waveform, and then concatenate the time-domain features and frequency-domain fea-

tures, i.e., interaural phase difference (IPD) and interaural level difference (ILD) as input features

which contain spectro-temporal and spatial-temporal information. The difference is that the model

is conditioned by a speaker profile. Previous research has shown that feature-wise linear modu-

lation (FiLM) [116] is an effective conditioning method for neural networks, so we use the same

method here. Specially, FiLM learns two linear functions 𝑓𝑙 ∈ R𝐷×𝐷 and 𝑔𝑙 ∈ R𝐷×𝐷 at layer 𝑙

which project the speaker profile Ĥ(𝑖) to 𝛾𝑙 (𝑖) ∈ R𝑇×𝐷 and 𝛽𝑙 (𝑖) ∈ R𝑇×𝐷 , respectively,

𝛾𝑙 (𝑖) = Ĥ(𝑖) · 𝑓𝑙 , 𝛽𝑙 (𝑖) = Ĥ(𝑖) · 𝑔𝑙 , (3.3)

where 𝛾𝑙 (𝑖) and 𝛽𝑙 (𝑖) modulate the activation 𝑥𝑙 at layer i,

FiLM(𝑥𝑙 |𝛾𝑙 (𝑖), 𝛽𝑙 (𝑖)) = 𝛾𝑙 (𝑖) × 𝑥𝑙 + 𝛽𝑙 (𝑖). (3.4)

We add one FiLM before each convolutional block in TasNet.

The system jointly localizes and separates the target speaker. The localization module per-

forms the classification of the direction of arrival (DOA) at each time frame. The DOA angles are

discretized into K classes. The localization module estimates a classification matrix V(𝑖) ∈ R𝑇×𝐾

for the speaker i. To train the localization module, we compute the cross-entropy loss between

V(𝑖) and the target DOA labels. We split V(𝑖) into B small chunks with each chunk containing Q

time frames, 𝑇 = 𝐵 × 𝑄, and count the frequency of each DOA class in each chunk, and consider

the most frequent class as the estimated DOA for that chunk. The explicitly estimated trajectories

enable us to determine the moving source we are interested in and to modify the acoustic scene

accordingly, for example, by amplifying or attenuating individual sources.

We concatenate V(𝑖) with other fusion features to extract the target speaker Ŝ𝑖 = [ŝ𝐿 , ŝ𝑅],

where ŝ𝐿𝑖 and ŝ𝑅𝑖 are the estimated left- and right-channel signals of the source i. Since the target

speaker is determined by Ĥ(𝑖), there is no permutation problem. The reconstruction loss Lextraction
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is:

Lextraction = SNR(s𝐿𝑖 , ŝ𝐿𝑖 ) + SNR(s𝑅𝑖 , ŝ𝑅𝑖 ), (3.5)

SNR(x, x̂) = 10 log10

(
| |x| |22

| |x̂ − x| |22

)
. (3.6)

The speaker profile module, localization module, and extraction module were trained sepa-

rately and then trained jointly.

3.1.3 Experimental Settings

Dataset

The binaural room impulse responses, speech data, and moving source simulation method used

here are consistent with those described in Section 2.3.3.

Evaluation Metrics

In addition to assessing separation quality and spatial cue preservation, we also evaluated the

model’s robustness against the speaker swap problem. Following [41], we trained a speaker lo-

calizer to examine the locational information encoded in stereo outputs. The localizer predicts the

DOA every 80 ms. We calculated absolute DOA errors as the metric for the accuracy of preserv-

ing spatial cues. It is noted the localization model for evaluation here is different from the one in

Section 3.1.2 as the latter one aims to decode the trajectory of the target speaker to facilitate the

separation. When evaluating long-form speech separation, we divided the separation outputs into

N segments and checked if the order of outputs in adjacent segments was consistent. The number

of speaker swaps within the separation outputs was counted and used as a metric to gauge the

model’s robustness against the speaker swap issue. Figure 3.2 shows three examples. The duration

of long recordings is 24 seconds, and N is 10.
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A. zero swap

B. one swap

C. two swaps

Figure 3.2: Examples of speaker swap in separation outputs. Blue bar denotes the speaker 1 and
red bar denotes the speaker 2.

Network Architectures

All the modules, except for the localization module, were built upon the causal configuration

of TasNet [25]. We used 64 filters in the linear encoder and decoder with a 4-ms filter length (i.e.,

64 samples at 16 k Hz). We used 5 repeated stacks for the speaker profile module and speaker ID

network, 2 repeated stacks for the fusion module, and 3 repeated stack for the extraction module

with each stack having seven 1-D convolutional blocks. The localization module is a two-layer

uni-directional LSTM.

Models for Comparison

We used several monaural and binaural separation models for comparison. The single-input-

multi-output (SIMO) TasNet is a monaural model that separates the mixture in left- and right-

channels independently. Block-wise MIMO TasNet and uPIT-MIMO TasNet (in Section 2.3) are

binaural baselines. Block-wise MIMO TasNet separates speech in each short block independently

and concatenates the block outputs using oracle tracking information. SPK-MIMO TasNet is the

proposed method in this chapter, and oracle SPK-MIMO TasNet means the model is conditioned on

the oracle speaker profiles from the pre-trained speaker ID network. We add the same post binaural

speech enhancement (in Section 2.3) after each binaural separation model for comparison, denoted
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Table 3.1: Experimental results of moving source separation on 2.4-second recordings.

Method Context
size (s)

SNR
(dB)

DOA
error (°)

Unprocessed - 0 -
SIMO TasNet 2.4 5.1 20.9

Block-wise MIMO TasNet
0.1 5.7 16.3
0.2 6.0 15.4
0.3 6.2 14.1

uPIT-MIMO TasNet
2.4

8.4 8.3
SPK-MIMO TasNet 8.3 8.2
Oracle SPK-MIMO TasNet 8.9 7.4
uPIT-MIMO TasNet + Enh

2.4
9.4 6.1

SPK-MIMO TasNet + Enh 9.4 6.0
Oracle SPK-MIMO TasNet + Enh 9.6 5.8
Reverberant clean - 0.5

as “+enh" in Table 3.1. When evaluating models on long recordings, we divided the separation

outputs of uPIT-MIMO TasNe into segments as shown in Figure 3.1 and re-ordered the segments

using the ground truth signals, which is referred to as uPIT-MIMO TasNet w/ tracking in Table 3.2

and Table 3.3.

3.1.4 Results and Discussion

Table 3.1 compares different methods for moving source separation on 2.4 s recordings. uPIT-

MIMO TasNet outperforms both the SIMO TasNet and block-wise adaptation methods by a large

margin because uPIT-MIMO TasNet takes advantage of longer spectral-temporal and spatial-temporal

information for moving speaker separation. Oracle SPK-MIMO TasNet, conditioned on the ora-

cle speaker profile, achieves 0.5 dB SNR gain over uPIT-MIMO TasNet, proving the effectiveness

of speaker-informed speech separation in moving speaker cases. The performance drops slightly

when we use the speaker profiles inferred from the mixture. It is different from the results in

Zeghidour et al. [114] where using inferred speaker representation greatly outperforms uPIT-based

models. One explanation is that Wavesplit employs various forms of regularization to improve the

generalization capability during training. The other is that inferring long-form speaker represen-
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Table 3.2: Experimental results on 24-second long recordings.

Method # of
swaps

SNR
(dB)

DOA
error (°)

uPIT-MIMO TasNet w/o tracking 3.4 1.2 35.3
uPIT-MIMO TasNet w/ tracking 3.4 7.6 10.0

SPK-MIMO TasNet 0.6 7.7 9.3
oracle SPK-MIMO TasNet 0.4 8.2 8.1

tations that are only related to voice characteristics from moving speakers is more challenging,

especially in reverberant environments. Moreover, our system is in causal configuration, and the

speaker profiles are updated over time, so the speaker profiles become stable after several time

frames. In real applications, we can select the source of interest based on the speaker representa-

tion, decoded moving trajectory, and the separated waveforms and employ a post binaural speech

enhancement module to enhance the result. We notice that a post binaural speech enhancement

module lets both uPIT-MIMO TasNet and SPK-MIMO TasNet improve the SNR and reduce the

DOA error.

Table 3.2 compares methods on 24 s recordings. We see that uPIT-MIMO TasNet has multiple

times of speaker swaps in long-form speech separation, which severely affects the overall SNR.

The speakers are separated but not consistently placed in certain output channels. With the ground

truth tracking, the overall SNR is improved from 1.2 dB to 7.5 dB and the overall DOA error

is reduced from 35.3°to 10.0°. We see that SPK-MIMO TasNet and oracle SPK-MIMO TasNet,

which are conditioned on a speaker representation, are less prone to speaker swap and tend to

assign each speaker to a certain output channel. The model conditioned on the inferred speaker

profiles is slightly worse than that conditioned on the oracle speaker profile but is slightly better

than the u-PIT based model with tracking. This shows the proposed method is more robust with

respect to a targeted moving signal.

We also compared the models on 24 s recordings simulated using real room impulse responses

with different reverberant time as shown in Table 3.3. All the models trained in the simulated rooms

can generalize to the real rooms well. Stronger room reverberation deteriorates the performance of
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Table 3.3: Experimental results on 24-second long recordings in different rooms. The number of
swaps / SNR (dB) / DOA error (°) are reported.

Model
Rooms

A (0.32 s) B (0.47 s) C (0.67 s)
uPIT-MIMO TasNet w/o tracking 3.6/1.3/37.2 3.5/1.2/36.4 3.6/1.0/38.0
uPIT-MIMO TasNet w/ tracking 3.6/7.0/11.6 3.5/6.1/15.1 3.6/6.0/16.3

SPK-MIMO TasNet 0.6/7.2/10.0 0.8/6.3/13.4 0.6/6.2/13.2
oracle SPK-MIMO TasNet 0.3/7.6/9.6 0.4/6.5/12.1 0.4/6.4/12.9

the model in terms of the signal quality and accuracy of the preserved spatial cues. However, room

reverberation has little impact on the number of speaker swaps.

3.2 Continuous Speech Separation Using Speaker Inventory for Long Recording

3.2.1 Introduction

In Section 3.1, we have demonstrated that speaker embeddings can enhance the model’s ability

to robustly track speakers. Besides this study, leveraging speaker information has received increas-

ing attention [49, 50, 52, 53, 117, 118, 119]. We can categorize them into two main categories. The

first category is informed speech extraction, which exploits an additional voice snippet of the target

speaker to distinguish his/her speech from the mixture. SpeakerBeam [49, 50] derives a speaker

embedding from an utterance of the target speaker by using a sequence summary network [51] and

uses the embedding to guide an extraction network to extract the speaker of interest. VoiceFilter

[52] concatenates spectral features of the mixture with the d-vector [48] of a voice snippet to extract

the target speaker. Xiao et al. [53] used an attention mechanism to generate context-dependent bi-

ases for target speech extraction. Informed speech extraction solves the permutation problem and

does not need to predetermine the number of outputs. However, it has two limitations. Firstly, the

computation cost is proportional to the number of speakers to be extracted, so in a multi-speaker

conversation, the system needs to run multiple times to extract each speaker one by one. Most

importantly, the extraction usually fails when the target speaker’s biased information is not strong

enough [50].
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The second category is speech separation using speaker inventory (SSUSI) [119]. The method

employs a pool of additional enrollment utterances from a list of candidate speakers, from which

profiles of relevant speakers involved in the mixture are first selected. Then the method fuses

the selected profiles and the mixed speech to separate all speakers simultaneously. As multiple

profiles are provided during separation, more substantial speaker discrimination can be expected,

which yields better speech separation. The method can also employ permutation invariant training

(PIT) [22] to compensate for weak biased information and wrong selection.

Though with prior promising results, methods in both categories assume additional speaker

information is available ahead of extraction or separation, which may be impractical in real sce-

narios. Wavesplit approach, as we adopt in Section 3.1, infers speaker embeddings for each source

at each time step from the mixture, aggregates them across the whole input, and uses aggregated

representation to guide speaker separation. However, most methods mentioned above prove their

successes on fully overlapped speech. The practicality of these methods is unclear as the overlap

in real conversation usually possess very different characteristics [120, 121, 122, 123].

In this section, we address these problems on the continuous speech separation (CSS) task

[124, 112]. CSS focuses on separating long recordings where the overall overlap ratio is low and

the speaker activations are sparse. A large amount of non-overlapped regions in the recording

enables the derivation of robust features for the participants. We adopt the SSUSI in the CSS

task and propose continuous SSUSI (CSSUSI), which constructs the speaker inventory from the

mixed signal itself, instead of external speaker enrollments, by using speaker clustering methods.

CSSUSI informs the separation network with relevant speaker profiles dynamically selected from

the inventory to facilitate source separation at local regions. The outputs from local regions are

then concatenated such that the output audio streams are continuous speech that do not contain

any overlap. We created a more realistic dataset that simulates natural multi-talker conversations

in conference rooms to test CSSUSI on the CSS task. Experimental results show that CSSUSI can

build a speaker inventory from the long speech mixture using the clustering-based method and take

advantage of the global information to improve separation performance significantly.
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3.2.2 Method

SSUSI Using Pre-Enrolled Utterance

We first overview the original SSUSI system [119], which requires pre-enrolled speaker sig-

nals. A SSUSI system contains three modules: a speaker identification module, a speaker profile

selection module, and a biased speech separation module. The speaker identification module is

responsible for extracting embeddings from both the speaker enrollments and input mixture. Em-

beddings of speaker enrollments are used for speaker inventory construction. The speaker profile

selection module selects from the inventory the best-matched speaker profiles with the mixture em-

beddings. The selected profiles are then fed into the biased separation module to separate speakers

in the mixture.

Since each speech segment is short (4 s in this study) and typically contains at most two speak-

ers, we focus on two-speaker separation for each segment, and the model always generates two

outputs. Moreover, we make several modifications to the original SSUSI architecture [119] for

better performance.

The speaker identification module constructs the speaker inventory first. The inventory is a

pool of 𝐾-dimensional speaker embeddings
{
e 𝑗

}𝑀
𝑗=1 , e

𝑗 ∈ R𝐾 , which are extracted from a collec-

tion of time-domain enrollment speech
{
a 𝑗

}𝑀
𝑗=1 , a

𝑗 ∈ R𝐿𝑎 𝑗 , where 𝐿𝑎 𝑗
is the temporal dimension

of speech signal a 𝑗 . 𝑀 is typically larger than the maximum number of speakers in the mixture

to be separated. We also assume that each speaker only has one enrollment sentence. The embed-

ding E 𝑗 ∈ R𝑇 𝑗×𝐾 is extracted from a 𝑗 by a speaker identification network (SNet), where 𝑇𝑗 is the

temporal dimension of the embedding sequence. Here we simply use mean-pooling across the 𝑇𝑗

frames of E 𝑗 to obtain the single vector e 𝑗 ∈ R𝐾 . The mixture embeddings E𝑦 ∈ R𝑇𝑦×𝐾 are directly

extracted from the input mixture y ∈ R𝑇 by SNet , where T and 𝑇𝑦 are the temporal dimension of

the input mixture and the mixture embeddings, respectively.

The speaker profile selection module selects the relevant speaker profiles from the inventory

that are best matched with the mixture embeddings E𝑦. The selection is performed by calculating
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the similarity between the mixture embeddings and items in the inventory, and two items with the

highest similarity are selected. The similarity are calculated by applying the Softmax function on

the dot-product between the mixture and inventory embeddings:

d𝑦, 𝑗𝑠 = e𝑦𝑠 · e 𝑗

w𝑦, 𝑗
𝑠 =

exp(dy,j
s )∑𝑀

𝑝=1 exp(dy,p
s )

(3.7)

where e𝑦𝑠 denotes E𝑦 at temporal index 𝑠. We then calculate the average score w𝑦, 𝑗 across the 𝑇𝑦

frames:

w𝑦, 𝑗 =

∑𝑇𝑦

𝑠=1 w𝑦, 𝑗
𝑠

𝑇𝑦
(3.8)

Two inventory items e𝑝1 and e𝑝2 are then selected according to the two highest scores in
{
w𝑦, 𝑗

}𝑀
𝑗=1.

The biased speech separation module is then adapted to the speech characteristics of the

speakers selected from the inventory. This module contains three layers, a feature extraction layer,

a profile adaptation layer, and a separation layer. Both feature extraction and separation layers

are 2-layer BLSTM in this study. Previous research [49] has shown that a multiplicative adap-

tation layer, i.e., multiplying the speaker embedding with the output of one of the middle layers

of the network, is a simple yet effective way to realize adaptation, so we use the same method

here. Given the two selected speaker profiles e𝑝1 and e𝑝2 , two target-biased adaptation features are

calculated by frame-level element-wise multiplication between the profiles and the output of the

feature extraction layer:

a𝑝1
𝑙

= b𝑙 ⊙ e𝑝1 (3.9)

a𝑝2
𝑙

= b𝑙 ⊙ e𝑝2 (3.10)

where b𝑙 ∈ R𝐾 denotes the output of the feature layer, 𝑙 denotes the frame index, and ⊙ denotes
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Figure 3.3: (A) The architecture of the proposed continuous speech separation using speaker in-
ventory. The Speaker inventory construction module forms the speaker inventory from the long
mixture by using Kmeans clustering; the long mixture is split into small segments, and the speaker
profile selection module selects two relevant profiles from the inventory for each segment; the
speech separation module fuses the selected speaker profiles into the system for source separation.
(B) Stitching procedure of adjacent segment outputs in a long recording. (C) Multiplicative adap-
tation of the selected profiles e𝑝1 and e𝑝2 .

the element-wise multiplication. The two target-biased features are then concatenated:

A = concat( [Ap1 ,Ap2]) (3.11)

where A𝑝1 = [a𝑝1
1 , . . . , a

𝑝1
𝐿
] ∈ R𝐿×𝐾 , A𝑝2 = [a𝑝2

1 , . . . , a
𝑝2
𝐿
] ∈ R𝐿×𝐾 , and A ∈ R𝐿×2𝐾 . The

separation layer takes A as the input and estimates two time-frequency (T-F) masks M1,M2 ∈

R𝐿×𝐹 .

Continuous SSUSI Using Self-Informed Mechanism for Inventory Construction

SSUSI assumes that pre-recorded utterances of all speakers are available for the speaker in-

ventory construction. However, such an assumption may not be realistic, especially for unseen

speakers or meeting scenarios where the collection of pre-recorded speech from the participants is
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not feasible.

Continuous speech separation (CSS) aims at estimating individual target signals from a con-

tinuous speech with a long duration. The continuous speech contains both overlapped and non-

overlap speech, and the overlap ratio is relatively low. Therefore, the single-speaker regions can

be exploited to derive robust acoustic characteristics of participating speakers without the need for

external utterances, which makes the self-informed speaker inventory construction possible. This

section introduces how we adopt SSUSI in the CSS task and eliminate the need for pre-recorded

speech by using a clustering method.

Figure 3.3 (A) shows the overall flowchart of the continuous SSUSI (CSSUSI) framework. The

main difference between CSSUSI and the original SSUSI is in the construction of the speaker in-

ventory. Original SSUSI applies the speaker identification module on extra enrollment utterances,

whereas CSSUSI first splits the mixture recording y into 𝐵 small chunks, and directly extracts the

mixture embeddings
{
e𝑦
𝑏

}𝐵
𝑏=1, where e𝑦

𝑏
∈ R𝐾 denotes the embedding vector in chunk b. Then,

CSSUSI applies Kmeans clustering on
{
e𝑦
𝑏

}𝐵
𝑏=1 to form 𝑀 clusters, and the cluster centroids form

the speaker inventory. In Section 3.2.4 we will show that the separation performance is insensitive

to the choice of 𝑀 as long as 𝑀 is no smaller than the actual number of active speakers in the

recording.

CSUSSI uniformly segments the mixture recording and exploits the inventory to facilitate

source separation in each segment. Except for the self-informed speaker inventory, CSSUSI uses

the same speaker profile selection and biased speech separation methods as introduced in SSUSI

above, respectively. To stitch the outputs from each segment into output streams where each stream

only contains non-overlapped speakers, the similarity between the overlapped regions in adjacent

segments determines which pair to be stitched. Figure 3.3 (B) shows the stitching procedure of

adjacent segments.
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3.2.3 Experimental Settings

Dataset

In our training set, we randomly generated 3000 rooms. The length and width of the rooms are

randomly sampled between 5 and 12 meters, and the height is randomly sampled between 2.5 and

4.5 meters. A microphone is randomly placed in the room, and its location is within 2 meters of the

room center. The height of the microphone is randomly sampled between 0.4 and 1.2 meters. We

randomly sample 10 speakers from the LibriSpeech corpus [125] for each room. All the speakers

are at least 0.5 meters away from the room walls and the height of the speakers are between 1 and

2 meters. The reverberation time is uniformly sampled between 0.1 and 0.5 seconds. We randomly

chose 2 speakers as relevant speakers and arrange them according to one of the four following

patterns:

1. Inclusive: one speaker talks a short period while the other one is talking.

2. Sequential: one talks after the other one finishes talking.

3. Fully-overlapped: two speakers always talk simultaneously.

4. Partially-overlapped: two speakers talk together only in a certain period.

We selected four patterns with respective frequencies of 10%, 20%, 35%, and 35%. The min-

imal length of the overlapped periods in inclusive and partially-overlapped patterns is set to 1

second. The maximal length of the silent periods between the two speakers in the sequential pat-

tern is 0.5 second. Moreover, to generate single-speaker utterances, there is a 0.1 probability that

one of the speakers is muted in each pattern. We used the remaining 8 speakers as the irrelevant

speakers that will not appear in the mixture. Each of the room configurations is used for 8 times.

The mixture length is 4 seconds. So, the total training time is 3000 × 8 × 4𝑠 = 26.7 hours. For

both the relevant and irrelevant speakers, a 10-second utterance is sampled to form the speaker

inventory. All speech signals are single-channel and sampled at 16 kHz. Gaussian noise with SNR

randomly chosen between 0 and 20 dB is added into the mixture.
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Table 3.4: SNR (dB) on eight-speaker long recordings (segment-wise evaluation). The perfor-
mance on different overlap ratios is reported.

Method Speaker enrollment
Overlap ratio in %

0 0-25 25-50 50-75 75-100 Average
Unprocessed - 8.6 -9.7 -1.2 -0.9 -0.7 -0.1

BLSTM - 15.5 8.0 8.6 7.5 6.9 10.6

SSUSI
Two wrong profiles 15.2 7.1 8.4 7.8 7.1 10.3

One correct and one wrong profiles 15.4 7.8 9.0 8.2 7.6 10.7
Two correct profiles 15.9 9.5 10.6 9.4 8.7 11.9

Selected profiles 15.7 8.8 10.0 9.0 8.3 11.5

In our testing set, we set three configurations: 60-second mixture containing 2 speakers, 150-

second mixture containing 5 speakers, and 240-second mixture containing 8 speakers. We gen-

erated 300 recordings for each configuration. The overall overlap ratio of each recording is 30%

complying with natural conversion [126].

Implementation Details

All the models contained 4 bidirectional LSTM (BLSTM) layers with 600 hidden units in each

direction. The speaker identification module, which adopts a previous design [115], was pretrained

on the VoxCeleb2 dataset [127] and achieved 2.04% equal error rate on the VoxCeleb1 test set

[128]. The module extracts 128-dimensional speaker embeddings for every 1.2-second (30-frame)

segment. We used SNR as the objective function [40] for separation modules and Adam [85] as

the optimizer with initial learning rate of 0.001. The learning rate was decayed by 0.98 for every

two epochs.

3.2.4 Results and Discussion

Table 3.4 compares different DNN models on 4-second segments of eight-speaker recordings.

The inventory contains eight speakers’ profiles that are derived from eight external utterances.

SSUSI achieves leading performance on all levels of overlap ratios when two correct speaker pro-

files are used; however, the performance of SSUSI drops greatly with two wrong speaker profiles
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Table 3.5: SNR (dB) on long recordings with different configurations (segment-wise evaluation).

# Speaker Method External utterances Clusters Avg.

2 speakers

Unprocessed - - 1.6
BLSTM - - 11.2
SSUSI 2 No 12.2

CSSUSI No
2 12.1
3 11.9
4 11.9

5 speakers

Unprocessed - - 0
BLSTM - - 10.6
SSUSI 5 No 11.5

CSSUSI No

3 10.9
5 11.3
8 11.2

10 11.2

8 speakers

Unprocessed - - -0.1
BLSTM - - 10.6
SSUSI 8 No 11.5

CSSUSI No

5 11.0
8 11.3

12 11.3
16 11.2

randomly chosen from the 8 irrelevant speakers, which indicates that performance gain obtained

by SSUSI mainly comes from leveraging the target speaker information. We also notice that the

performance of SSUSI with two wrong profiles is only slightly worse than the baseline BLSTM,

and when only one correct speaker profile is enrolled, SSUSI can still outperform the baseline

model, which proves that PIT can compensate for wrong selection and the separation module is

robust to adaptation features. When the speaker profiles are selected by the profile selection mod-

ule, the SSUSI model performs slightly better on the non-overlapped mixtures (overlap ratio is 0)

but much better on the overlapped mixtures at all overlap ratios. This confirms the effectiveness

of the SSUSI framework on improving separation performance across various settings, which is

consistent with previous experimental results on Librispeech although the model architectures are

different [119].

Table 3.5 compares CSSUSI with different clusters on recordings with different number of

60



Table 3.6: Utterance-level evaluation. SI-SDR(dB) is reported.

Method Need external utterances? 2 spk 5 spk 8spk
Unprocessed - 6.0 4.5 4.3

BLSTM No 11.7 10.8 10.6
SSUSI Yes 13.2 12.0 11.7

CSSUSI No 13.1 11.9 11.7

speakers. Since the number of participating speakers in a meeting may be unknown, we intend

to do over-clustering, i.e., setting the number of clusters greater than the number of speakers in

a meeting. Table 3.5 compares CSSUSI with different clustering settings. The performance of

CSSUSI is almost identical once the number of clusters is not fewer than the number of speakers.

Over-clustering has very little impact on the performance as it ensures each speaker possesses at

least one cluster center. Some extra clusters may represent acoustic characteristics of overlapped

regions, which will be regarded as irrelevant profiles during profile selection. We see that CSSUSI

outperforms the baseline model BLSTM on all configurations. As we conclude from Table 3.4, the

performance gain is achieved via leveraging relevant speakers’ information. So the performance

gain from CSUSSI suggests the successful construction of the speaker inventory from the mixture

itself and effective utilization of speaker information. Furthermore, we compare CSSUSI with

SSUSI that derives speaker profiles from external utterances that contain only a single speaker in

each utterance. CSSUSI sacrifices very little performance but does not require external utterances,

which shows CSSUSI is a better model than SSUSI for long recording speech separation.

Table 3.6 compares utterance-wise separation performance. After segments are stitched, each

complete utterance is extracted from the output streams by using ground-truth segmentation infor-

mation, i.e., onset and offset of each utterance. We find that CSSUSI surpasses the baseline in all

configurations by a large margin, which further proves that the speaker embeddings can be derived

from the raw mixture and enhance speech separation in the long recordings.
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3.3 Conclusion

This chapter investigates using speaker information to improve speech separation in certain

situations. First, we addressed the problem of binaural speech separation of moving speakers while

preserving interaural cues for long recordings. We propose a Wavesplit-based model that estimates

speaker embeddings per speaker and per frame from the mixture, performs online clustering to

aggregate the embeddings into individual speaker profiles, and conditions on each speaker profile

to localize and separate the speaker faithfully. Objective evaluations demonstrate that the proposed

model mitigates the swap problem while achieving on par performance with uPIT-based models

with ground truth tracking.

Second, we present continuous speech separation using speaker inventory for long audio record-

ings of multi-talker meetings. Recognizing that meeting audio recordings generally contain a large

amount of non-overlapped regions, we propose CSSUSI that can construct a speaker inventory

from the long recordings and then utilize the inventory to improve speech separation. CSSUSI

overcomes the limitation of the original SSUSI that requires external enrollments. Experiments

on a simulated noisy reverberant dataset show that CSSUSI significantly outperforms the baseline

models across various conditions.

The application of speaker information, however, is not confined to these two scenarios. Future

research will investigate its broader application across a more diverse range of situations.
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Chapter 4: Developing Separation Models Using Real Recordings

In this chapter, we introduce using unsupervised learning methods to improve speech separa-

tion performance on real recordings. In the first section, we recorded audio data with reverberation

and moderate environmental noise using a pair of microphone arrays placed around each of the

two ears and then mixed sound recordings to simulate adverse acoustic scenes. Then, we trained a

multi-channel speech denoising network (MCSDN) on the mixture of recordings. To improve the

training, we employ an unsupervised method, complex angular central Gaussian mixture model

(cACGMM), to acquire cleaner speech from noisy recordings to serve as the learning target. We

propose a MCSDN-Beamforming-MCSDN framework in the inference stage. The results of the

subjective evaluation show that the cACGMM improves the training data, resulting in better noise

reduction and user preference, and the entire system improves the intelligibility and listening ex-

perience in noisy situations.

In the second section, we extend the recently-proposed mixture invariant training (MixIT) al-

gorithm to perform unsupervised learning in the multi-channel setting. We use MixIT to train a

model on far-field microphone array recordings of overlapping reverberant and noisy speech from

the AMI Corpus. The models are trained on both supervised and unsupervised training data, and

are tested on real AMI recordings containing overlapping speech. To objectively evaluate our mod-

els, we also use a synthetic multi-channel AMI test set. Holding network architectures constant, we

find that a fine-tuned semi-supervised model yields the largest improvement to SI-SNR and to hu-

man listening ratings across synthetic and real datasets, outperforming supervised models trained

on well-matched synthetic data. Our results demonstrate that unsupervised learning through MixIT

enables model adaptation on both single- and multi-channel real-world speech recordings.
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4.1 Refine Supervised Training Data Using Gaussian Mixture Model

4.1.1 Introduction

Removing noise from speech signals is a good way to improve a user’s experiences in noisy

environments. New hardware allows for multiple microphones near the ear and the processing

power to learn from these signals, which can deliver a better auditory experience. This work

describes a system for denoising speech signals captured by a pair of microphone arrays near the

ears under noisy conditions. We capitalize on deep neural network (DNN) architectures for speech

enhancement, along with multi-channel beamforming.

DNN training requires a large quantity of realistic training data. For speech enhancement,

the labeled data is a pair of noisy and clean speech signals. One can create arbitrary amounts of

noisy data by adding reverberation and noise; however there is still a mismatch between simulated

noisy mixtures and real-world audio due to the complex acoustics of real environments. This could

degrade the DNN’s performance when it is applied to real-world data.

In this work we instead measured a large quantity of speech and noise signals in a real room,

and create mixtures from these recordings. This is good for realism but also includes room tone.

An important part of this work is a method for preprocessing the recorded sound to remove this

background noise so that it can be used as ground truth. We demonstrate improvements in noise

reduction and listening preference due to the preprocessing.

Related Work

Speech enhancement has been actively studied for decades [129, 130, 131, 37]. In recent years,

deep neural networks have greatly advanced speech enhancement using both supervised [132, 133,

134] and unsupervised methods [56, 57, 58, 59, 135]. Supervised methods have achieved over-

whelming performance, but they require access to ground-truth signals, and thus they can degrade

on real recordings which are mismatched with the simulated data used for training. Unsupervised

methods overcome these problems by requiring only the noisy speech signals.
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A general category of unsupervised approaches utilizes spatial information to cluster sound

sources in space [56, 57, 58, 59]. The posterior cluster labels can be used as masks to isolate the tar-

get speech. An approach using the complex angular-central Gaussian mixture model (cACGMM)

[57] clusters the signals, and the resulting labels are used as pseudo-target to train a deep clustering

model [20].

This chapter employs cACGMM to extract cleaner speech signals from the recordings to serve

as the training target. Our motivation is that we can easily collect moderately noisy recordings

without access to ground-truth signals in real scenarios, which can be well processed by the un-

supervised clustering methods. Then, we mix several recordings into a much noisier mixture and

take advantage of supervised learning to predict the clean speech signals from the mixture. The dif-

ference compared to prior work is that we do not apply the clustering model to the noisy mixture

directly, because the clustering-based methods perform poorly in challenging conditions where

spatial features are smeared by room reverberance and strong background noise, especially diffuse

noise with no distinct directional features.

Using a DNN to predict the masks that estimate the spatial covariance, which steers the beam-

former toward the target signal, is a popular method to combine DNNs and conventional beam-

forming methods [136, 137, 138]. The linear beamformers effectively keep speech free of nonlin-

ear distortion, which is essential for good perceptual quality of speech in communication. How-

ever, the linear beamformer cannot cancel all interference, especially those close in space to the

speech source. To reduce the residual noise, the beamforming output can be filtered by the mask

used for beamforming [136] or can be processed by a new post enhancement neural network [139]

or even more iterations of neural network and beamforming [140]. However, adding a new neural

network increases the size of the system, which is undesired for its deployment on hardware with

limited capacities, such as hearing aids. In this chapter, we employ the exact same multi-channel

DNN to predict masks for both the estimation of beamformer weights and post enhancement.
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Figure 4.1: Overview of the speech denoising system. (A) The training stage, and (B) the in-
ference stage. Blue blocks denote the same multi-channel speech denoising network. MVDR is a
minimum variance distortionless response beamformer.

4.1.2 Method

Figure 4.1 shows an overview of the proposed method for training and inference. During

training we use cACGMM to generate a better target to train a conventional multi-channel speech

denoising network (MCSDN). In inference, we first apply the pretrained MCSDN, beamforming,

and the same MCSDN sequentially. The final denoised signal is a weighted linear combination of

the second MCSDN output and the beamforming result.

Complex Angular Central Gaussian Mixture Model

Give an M-channel recording S ∈ R𝑀×𝑇×𝐹 in the short-time Fourier transform (STFT) domain,

where 𝑇 and 𝐹 denote the time frame and frequency bin, respectively, we use the complex angular

central Gaussian mixture model (cACGMM) [141] to isolate the speech source Ŝ ∈ R𝑀×𝑇×𝐹 and

remove noisy sources from unwanted directions. cACGMM models the directional observations

Z𝑡, 𝑓 =
S𝑡 , 𝑓

| |S𝑡 , 𝑓 | | with a Gaussian mixture model,

𝑝(Z𝑡, 𝑓 ;Θ 𝑓 ) =
𝐾∑︁
𝑘=1

𝛼𝑘𝑓A(Z𝑡, 𝑓 ; B𝑘
𝑓 ), (4.1)

where Θ 𝑓 = {𝛼𝑘
𝑓
,B𝑘

𝑓
∀𝑘} denotes the model parameters, {𝛼𝑘

𝑓
∀𝑘} is a set of 𝑘 mixture weights,

which are probabilities that sum to 1. A(s𝑡, 𝑓 ; B𝑘
𝑓
), a complex angular central Gaussian distribution
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Figure 4.2: The cACGMM extracts a cleaner speech (right) signal from the recording (left) as the
training target. The red rectangle highlights an instance where the background noise is attenuated.

(cACG) [142], models the distribution of Z𝑡, 𝑓 for the component 𝑘 in the mixture model as follows:

A(Z𝑡, 𝑓 ; B𝑘
𝑓 ) =

(𝑀 − 1)!
2𝜋𝑀det(B𝑘

𝑓
)

1
(Z𝐻

𝑡, 𝑓
(B𝑘

𝑓
)−1Z𝑡, 𝑓 )𝑀

. (4.2)

We estimate the parameters Θ 𝑓 with the expectation-maximization (EM) algorithm. The posterior

probability of Z𝑡, 𝑓 belonging to class k is:

Γ𝑘𝑡, 𝑓 =
𝛼𝑘
𝑓
A(Z𝑡, 𝑓 ; B𝑘

𝑓
)∑𝐾

𝑘=1 𝛼
𝑘
𝑓
A(Z𝑡, 𝑓 ; B𝑘

𝑓
)
. (4.3)

Since cACGMM models each frequency independently, there can be a frequency permutation

problem [143], i.e., the same index 𝑘 in different frequency bins point to different sources. This

problem is addressed by permutation alignment [143]. Finally, we use Γ𝑠 as the mask to extract

speech,

Ŝ = S ⊙ Γ𝑠, (4.4)

where the superscript s indicates the speech, and ⊙ denotes element-wise multiplication.
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MCSDN-Beamforming-MCSDN Framework

We train a multi-channel speech denoising network (MCSDN) based on the temporal convolu-

tional network (TCN) [144] in Conv-TasNet [25] to predict a time-frequency mask M𝑠 ∈ R𝑇×𝐹 for

the target Ŝ from the multi-channel noisy signal Y ∈ C𝑀×𝑇×𝐹 . Similar to Section 2.2, we concate-

nate the log power spectrogram of the reference channel signal and inter-channel phase differences

(IPDs) between the reference channel and other channels as input features, since IPDs indicate

which 𝑇-𝐹 bins belong to the same directional source in each frequency band. Specifically, we

calculate sin(IPD) and cos(IPD) as inter-channel features. The training objective is defined as:

L = |Y ⊙ M𝑠 − Ŝ|. (4.5)

We use the estimated mask M𝑠 from the MCSDN for mask-based beamforming. We employ

minimum variance distortionless response (MVDR) beamforming [145], which is optimized with a

constraint that minimizes the power of the noise without distorting the target speech. One solution

is:

w 𝑓 =
(𝚽𝑛

𝑓
)−1𝚽𝑠

𝑓

Trace((𝚽𝑛
𝑓
)−1𝚽𝑠

𝑓
)
u, (4.6)

where 𝚽𝑛
𝑓

and 𝚽𝑠
𝑓

are the covariance matrices of the speech and noise, respectively:

𝚽𝑠
𝑓 =

1∑
𝑡 M𝑠

𝑡, 𝑓

∑︁
𝑡

M𝑠
𝑡, 𝑓Y𝑡, 𝑓Y𝐻

𝑡, 𝑓 , (4.7)

𝚽𝑛
𝑓 =

1∑
𝑡 (1 − M𝑠

𝑡, 𝑓
)
∑︁
𝑡

(1 − M𝑠
𝑡, 𝑓 )Y𝑡, 𝑓Y𝐻

𝑡, 𝑓 , (4.8)

and u is a one-hot vector indicating the reference channel. H denotes conjugate transposition.

Then, the linear filter w 𝑓 ∈ C𝑀 is applied to Y𝑡, 𝑓 ∈ C𝑀 to generate the beamforming output BF𝑡, 𝑓 :

BF𝑡, 𝑓 = w𝐻
𝑓 Y𝑡, 𝑓 . (4.9)
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Next, we use the trained MCSDN to denoise the beamforming output. To extend the single-

channel beamforming output to a multi-channel one, BF ∈ C𝑀×𝑇×𝐹 , we stack the beamforming

output on each channel [BF1,BF2, . . . ,BF𝑚] by shifting the one-hot vector u in Equation 4.6

without introducing any new computation. Finally, the MCSDN takes BF as input and estimates a

speech mask M̂𝑠 ∈ R𝑇×𝐹 to further denoise the beamforming output:

S = M̂𝑠 ⊙ BF. (4.10)

We can view the pipeline in this way: the first time-frequency mask M𝑠 is for mask-based beam-

forming that results in a less noisy mixture, then the second mask M̂𝑠
is to extract the speech from

the less noisy signal. However, using the spectral mask estimated by neural networks to extract

speech will inevitably cause non-linear speech distortion, which is undesirable for human listeners.

We balance the noise reduction and speech distortion by mixing the beamforming output and the

neural network output using a gate 𝛼 ∈ [0, 1],

S̃ = 𝛼 · BF + (1 − 𝛼) · S. (4.11)

4.1.3 Experimental Settings

Data Collection

We recorded a collection of in-room speech and ambient sound samples to be used to generate

sound mixtures. Each sample captures the real room acoustics, including reverb and background

noise. The recording room has the dimensions 7.5 (length) x 3.5 (width) x 3 (height) meters (T60

≈ 0.37𝑠). A Bruel and Kjaer Type 4128-C Head and Torso Simulator (HATS) is placed in the

center of the room on a motorized turntable, which sits atop a wooden table that spans the majority

of the room length-wise. For this experiment, we used two proprietary arrays of 16 microphones,

one placed around each of the two ears. Surrounding the HATS are six Genelec 8020D 4" powered

studio monitors for audio source playback. All speakers face towards the HATS. The speakers are
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placed at azimuth values ranging from 0 to 360°, and the distance from the HATS and elevation

from the ground values ranges among 1, 2, or 3 meters. Once placed, the speaker locations are

fixed and do not change for the given room.

Playback source data consists of the sound clips from FSD50K [146] (∼50h and 11h from

training and test sets) and LibriSpeech [125] (∼40h and 11h from training and test sets). We

resampled the playback data to 48 kHz, and pre-processsed to trim silence from the beginning and

end of each clip. We manually normalized the ound clips so that the clip’s db SPL at the speaker is

as close as possible to a real-world example for that sound class. The target db SPL values for each

sound class have a random variance of ±5 db SPL. We played each sound clip through a speaker

assigned at random, and recorded through the microphone arrays at 48 kHz with 32-bit floating

point precision.

Acoustic Scene Generation

For the training and development sets, we generated 12,000 and 4,000 9-second mixtures, re-

spectively. For each mixture, we randomly draw one speech recording and three distractor record-

ings from the in-room recordings and mix them to simulate challenging environments. We ex-

cluded the following broad class labels from FSD50K: speech, alarm, domestic animal sounds,

domestic sounds (faucet, cutlery, drawers, etc.). A clip of ambient noise recorded in the room

without loudspeakers playing is also added into the mixture. The overall SNR of the mixture with

respect to the speech recording varies between -3 dB and -30 dB. We resampled mixtures to 16

kHz.

Networks

We adopt the TCN module in Conv-TasNet[25] with STFT as the encoder, iSTFT as the de-

coder, and use 4 repeated stacks each having 6 1-D convolutional blocks in the masking network.

STFTs are computed with a window size of 32 ms and a hop size of 8 ms. The effective receptive

field of the model is approximately 4 s. For computational efficiency, only 8 of the channels (4
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from each array) were used to train the MCSDN. Adam is employed as the optimizer with an initial

learning rate of 0.001.

Evaluation

We performed two subjective evaluations: one to measure the listening improvement, and the

second to evaluate the importance of cACGMM in the training. We recruited 60 self-reported

normal-hearing subjects who are native English speakers to participate in a listening test on Ama-

zon Mechanical Turk [147]. Subjects were instructed to wear headphones or earphones during the

test.

The test is a simplified version of multiple stimuli with hidden reference and anchor (MUSHRA)

[148]. We use 10 sets of male speaker samples and 10 sets of female speaker samples for the test.

When evaluating each set of sounds, the subjects are instructed to listen to a 9-second unpro-

cessed noisy speech sample first, and then listen to and rate the processed speech without knowing

which algorithm had been applied. The processed speech came from 1) MCSDN, 2) MCSDN-

Beamforming (mask-based MVDR beamforming), 3) MCSDN-Beamforming-MCSDN, 4) the re-

mixed one with 20% from the beamforming and 80% from the second MCSDN, and 5) the target

speech signal from cACGMM as shown in Equation 4.4. The subjects rate each processed speech

sample on a scale with the following labels: bad (1), poor (2), fair (3), good (4), and excellent (5)

on the following four aspects:

1. Intelligibility: How well can you recognize what the speaker is saying?

2. Noise reduction level: How much of the noise is removed compared to the unprocessed

speech?

3. Free of distortion: How distortionless is the speech signal?

4. Listening improvement: How much the processed signal improves listening compared to the

unprocessed one, e.g., how much would you like to use such a device to help them improve

listening?
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Figure 4.3: Subjective evaluation results shown as boxplots. Pseudo-target (from cACGMM) is the
training target of MCSDN. The red line represents the median (all the ratings are discrete numbers
from 1 to 5, so the median is discrete). The number in white denotes the mean.

Similar to MUSHRA, we used the speech signals from cACGMM as a hidden reference that

were used to disqualify subjects who gave low-intelligibility and noise-reduction scores. Because

the hidden reference signals were processed from individual recordings, they contained almost no

noise and should have good intelligibility scores. Then, the ratings for a set of signals from a

subject were disqualified and dropped if the sum of intelligibility and noise reduction scores for

the hidden reference is lower than the bottom 15% of this summation from all subjects.

The setup for the second (cACGMM) experiment was similar to the first experiment. We

provided two re-mix models with the MCSDNs trained with and without cACGMM, respectively,

and asked the subjects to rate them for noise reduction and listening improvement.

4.1.4 Results and Discussion

Figure 4.3 compares different models in terms of the factors described above. First, all models

improve the average intelligibility score over the unprocessed mixture. We notice some subjects

gave high intelligibility scores to some of the unprocessed signals even when they had low SNRs.

We think this is because humans can attend to a source in the presence of multiple distracting

stimuli thanks to the cocktail party effect [149], thus they may focus on and exert themselves to

understand the target speech. But overall, the strong background noise makes the speech much less

intelligible. While the MCSDN has a high score for noise reduction due to the power of nonlinear

models, it can cause speech distortion. If the mixture is too noisy, the model may also filter out

speech components when it removes the noise. Therefore, the MCSDN only provides a slight
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Figure 4.4: Comparison between the re-mix model using DNNs trained with cACGMM and with-
out cACGMM. The red line represents the median (all the ratings are discrete numbers from 1 to
5, so the median is discrete). The number in white denotes the mean.

intelligibility improvement and poor listening improvement.

The MVDR beamformer uses linear filters to avoid distortion, which sacrifices the ability to

cancel some noise. So, it has a lower noise-reduction score but a higher “free of distortion" score.

The intelligibility and listening improvement are better than those for MCSDN.

The second MCSDN, following the beamformer, reduces the residual noise noticeably but still

lifts speech distortion slightly. It does not affect intelligibility and achieves slightly better listening

improvement than beamforming. All metrics at the output of the second MCSDN are significantly

better than the first MCSDN.

When 20% of the beamforming output and 80% of the second MCSDN output are mixed as

a new signal, we see it improves the intelligibility score over other models and achieves the best

listening improvement. Some subjects mentioned they felt comfortable when the sound contained

a little background noise. One explanation is that it is more realistic than over-denoised sound.

Moreover, the beamforming output can mask the distorted components introduced by the neural

networks.

The cACGMM target output achieves the highest mean scores in all aspects. This is expected

because it is processed from moderately noisy recordings while the models’ outputs are processed

from much noisier mixtures. Here, cACGMM is shown to be able to produce good quality signals

to serve as the training target for MCSDN. More than 75% of the intelligibility, noise reduction,

and overall listening improvement scores have a rating of at least 4. We notice the score for “free

of distortion" is lower, perhaps because cACGMM estimates a probabilistic time-frequency mask
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through spatial clustering, which may introduce nonlinear distortion.

Figure 4.4 compares the output of the full re-mix model when the DNNs are trained with and

without the cACGMM. We see the model trained using the cleaner target speech provided by

cACGMM results in better noise reduction and thus better listening improvement. This demon-

strates that cACGMM can help improve the quality of training data coming from real recordings.

4.2 Unsupervised Multi-Channel Separation and Adaptation

4.2.1 Introduction

In Section 4.1, we present a method that employs spatial clustering in an unsupervised manner

to extract cleaner speech signals from real recordings to serve as the training target. However, the

subsequent steps still adhere to supervised learning protocols. We construct mixtures by syntheti-

cally mixing several recordings. Unfortunately, this can result in a mismatch in the distribution of

sound types and acoustic conditions between the simulated sound mixtures and real-world audio.

For example, conversational speech is mismatched to the read speech that is typically used to train

speech enhancement and separation models. Ideally, unsupervised methods alone should help to

overcome the mismatch problem by directly training on real recordings from the target domain,

without the need for subsequent supervised learning. However, the spatial clustering based meth-

ods [141, 150, 151, 58] including the one we use in Section 4.1, often struggle with co-located

sources and strongly reverberant environments. Consequently, these unsupervised techniques are

typically utilized to generate pseudo-targets, aiding further supervised training. We need more

poweful unsupervised learning methods capable of handling complex mixtures effectively.

Mixture invariant training (MixIT) [61] is a recent unsupervised approach that has demon-

strated competitive single-channel sound separation performance. MixIT uses mixtures of mix-

tures as the “noisy” input and uses the individual mixtures as weak references. The model esti-

mates individual sound sources that can be recombined to reconstruct the original reference mix-

tures. Note that MixIT incurs another type of mismatch in which there are more active sources

in the mixture-of-mixtures than there are in an individual mixture. Experiments have shown that
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when unsupervised training with MixIT and supervised training are performed jointly, the mis-

match introduced by one training method is mitigated by the other. MixIT has been shown to be

effective at adapting single-channel speech separation models to real-world meetings [62].

In this section, we extend MixIT to multi-channel data, allowing the model to use both spatial

and spectral information to better separate sound sources. We use a separation model with multi-

channel input and multi-channel output that employs a temporal convolutional network (TCN) [25,

15] and a transform-average-concatenate (TAC) module [152, 153], which enables the model to

be applied to any number of microphones and any array geometries. This flexibility is particu-

larly advantageous for models trained on diverse real-world meeting data captured by different

microphone arrays. We show that when used with our flexible multi-microphone neural network,

MixIT training on real mixtures improves separation and enhancement of speech on real meetings

containing spontaneous speech and recorded with multiple microphones.

4.2.2 Method

Fig. 4.5(A) describes our multi-channel speech separation model. It accepts waveform input

from multiple microphones and produces the multi-channel image of each source. This separa-

tion model can be trained through supervised learning with permutation invariant training (PIT)

[22], through unsupervised learning with multi-channel mixture invariant training (MC-MixIT),

or through a combination of both as shown in Fig. 4.5(B). We describe the extension of MixIT to

MC-MixIT in this section.

Multi-Channel Speech Separation Model

The model is a variant of a single-channel separation model, TDCN++ [15]. To enable use

on multi-channel audio, we interleave transform-average-concatenate (TAC) layers [152] between

temporal convolutional neural networks (TCNs) [25] to exploit spatio-temporal information across

channels. The model shares some similarities with VarArray [153]. Both models are designed to

be invariant to microphone array geometry and the number of microphones used. However, there
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Figure 4.5: (A) The architecture of the proposed multi-channel input and multi-channel output
speech separation model. Blocks with the same color share parameters. (B) The schematic of
supervised learning with PIT on synthetic data (top) and unsupervised learning with MixIT on real
recordings (bottom).

are two main differences between our model and VarArray. First, VarArray calculates a feature

set from STFT coefficients, while our model takes the raw waveform directly as input. Second,

VarArray merges all channels at an intermediate layer and estimates a single time-frequency mask

for each source, while our model estimates a multi-mic waveform for each source.

Given a C-channel time-domain signal 𝑿 ∈ R𝑇×𝐶 , where 𝑇 is the duration of the signal, we

apply a linear encoder followed by a ReLU activation to transform each channel 𝒙𝑐 ∈ R𝑇 , 𝑐 =

1, ..., 𝐶 to a two-dimensional representation 𝑬𝑐 ∈ R𝐹×𝐿 , where F is the number of encoder bases

and 𝐿 is the number of time frames. Then, {𝑬𝑐}𝐶𝑐=1 is fed into a series of alternating TCN and TAC

layers. A TCN block comprises multiple dilated convolution layers, with the output of the 𝑖th TCN

block in channel 𝑐 denoted as 𝑷𝑐
𝑖
∈ R𝐾×𝐿 , where K is the number of features. To extract cross-

channel features, we employ TAC layers that aggregate the outputs from each channel, extract

cross-channel information, and feed it back to individual channels. Following the approach in

[153], the output of the i-th TAC layer in channel c, denoted as 𝑸𝑐
𝑖
∈ R2𝐾×𝐿 , is:

𝑸𝑐
𝑖 =

[
ReLU(𝑾𝑖𝑷

𝑐
𝑖 ),

1
𝐶

∑︁
𝑐

ReLU(𝑼𝑖𝑷𝑐𝑖 )
]
, (4.12)

where 𝑾𝑖,𝑼𝑖 ∈ R𝐾×𝐾 are linear transforms. After the final TCN block, we use a sigmoid activation

to predict a mask for each source in each channel and use a linear decoder to transform the masked

representation back to the waveform. Note that if we remove all the TAC layers, the architecture is
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equivalent to independently applying a single-channel TDCN++ to individual channels. The TCN

blocks process each channel locally while the TAC layers allow for inter-channel information flow.

MixIT

MixIT uses 𝑁 (typically 𝑁 = 2) reference mixtures 𝒙𝑛 ∈ R𝑇 , which are the columns of a

matrix 𝑿 ∈ R𝑇×𝑁 . A mixture of mixtures (MoM) is formed by summing these reference mixtures

to produce 𝒙̂ =
∑
𝑁 𝑥𝑛. The network then generates 𝑀 > 𝑁 estimated sources

{
𝒔𝑚 ∈ R𝑇

}𝑀
𝑚=1,

which are the columns of a matrix 𝑺 ∈ R𝑇×𝑀 . The MixIT loss estimates a mixing matrix 𝑨 ∈ B,

where B = {0, 1}𝑀×𝑁 is a constrained set of 𝑀 × 𝑁 binary matrices where each row sums to 1:

that is, the set of matrices which assign each estimated source 𝒔𝑚 to one of the reference mixtures

𝒙𝑛. Given the mixing matrix, a signal level loss, L, measures the error between reference mixtures

and their assigned estimates:

LMixIT(𝑿, 𝑺) = min
𝐴∈B

L(𝑿, 𝑺𝑨). (4.13)

where L typically operates column-wise, so that L(𝑿, 𝑺) = ∑
𝑛 L(𝒙𝑛, (𝑺𝑨)𝑛). In this study, L is

negative thresholded SNR:

L(𝒚, 𝒚̂) = 10 log10

(
| |𝒚 | |2

| | 𝒚̂ − 𝒚 | |2 + 𝜏 | |𝒚 | |2

)
, (4.14)

where 𝜏 is a soft limit on the maximum SNR. We select 𝜏 = 0.001.

Multi-Channel MixIT

We extend MixIT by applying the same mixing matrix to all the channels of each source. We

write the multi-channel references 𝑿𝑐 and sources 𝑺𝑐 at channel 𝑐. The MixIT loss requires finding
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the optimal mixing matrix 𝑨 ∈ B across all channels:

LMC-MixIT({𝑿𝑐} , {𝑺𝑐}) = min
𝐴∈B

∑︁
𝑐

L(𝑿𝑐, 𝑺𝑐𝑨). (4.15)

By sharing 𝑨 across microphones, the loss encourages the order of the separated sources in the

model outputs to be consistent across all channels.

4.2.3 Experimental Settings

Our experimental approach largely follows that of Sivaraman et al. [62]. We conducted ex-

periments using the AMI Corpus [121] of meeting room recordings for evaluation data and as one

source of training data. Hyperparameters were fixed to values in Table 4.1 across all experiments;

only training procedures were varied.

Table 4.1: Hyperparameter values.

Category Hyperparameter value

Model

TCN superblocks 4
TCN blocks per superblock 8

TCN kernel width 3
TCN window size 64 samples

TCN hop size 32 samples
TCN bottleneck dim 128
TCN conv channels 512
TAC projection dim 128
# of output sources 8

Data
Unsup example len 10 seconds

Sup example len 5 seconds
Audio sample rate 16 kHz

Training

Trainable weights 4.7 million
Optimizer Adam
Batch size 256

Learning rate 3 ∗ 10−4

Training steps 1 million
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Training

All models have 𝑀 = 8 output sources, though depending on the training configuration, there

may be fewer target sources. When there are fewer than 8 target sources, our negative thresholded

SNR loss is applied to only the non-zero sources, and we rely on mixture consistency [154] to push

unused outputs to zero.

Our training configurations are shown in Figure 4.5 (B). For unsupervised (MixIT) training,

we use mixtures of randomly chosen segments from the AMI Corpus. Our AMI training split is 71

hours.

For supervised (PIT) training, we use single-talker segments of the AMI Corpus to synthesize

training mixtures where each source has only a single active talker, as identified using the AMI

annotations. To generate each training example, two such segments are taken from the same room

but from different speakers, who we refer to as speaker 1 and speaker 2. These are used as refer-

ences that are added together to create a synthetic input mixture. We experiment with two different

approaches for constructing references.

The first approach addresses this problem by creating a cleaner reference following the pro-

cedure described in Sivaraman et al. [62] to create “synthetic overlapping AMI” (referred to as

“synth AMI” in Table 4.2 and Table 4.3). To define a nearly noise-free speech reference, we use

the headset mic recording for speaker 2’s segment and find the multi-channel filter that optimally

matches the microphone array signal. We define that multi-channel filtered headset signal to be the

training target for speaker 2. We define the training target for speaker 1 to be the microphone ar-

ray recording of speaker 1’s segment (including background noise), and we define a third training

target that is the residual from speaker 2’s microphone array recording after subtracting the filtered

headset target. These three targets add up to the sum of the two microphone array segments, but

they are asymmetric with respect to the speakers. Because the speaker 2 reference is cleaner, we

focus on speaker 2 during evaluation, below. See Sivaraman et al. [62] for additional details.

In the second approach, we directly use the array signals for speaker 1 and speaker 2 as ref-

erences; we refer to this as “mixed AMI” in Table 4.3. A caveat with this approach is that both
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reference signals contain some background noise, and thus the mixture contains double background

noise. As training targets, the noisy references may lead the model to preserve noise in its speech

estimates. For evaluation these references may not be as accurate as desired.

For 1-microphone training, we use only the first channel of the AMI recordings. For 2-

microphone, 4-microphone, and 8-microphone training, we use 2, 4, and 8 microphones from

the circular table-mounted microphone array at 180◦, 90◦, and 45◦ separation from one another,

respectively. For all model evaluation, we evaluate only the first channel of the output. Train,

validation, and test splits follow the standard AMI “full-corpus” partition of meetings.

As a baseline and as a model from which to warm-start, we train a single-channel model on

1600 hours of audio from videos in the YFCC100M corpus with train, validation, and test splits

from Wisdom et al. [61].

All models are trained with a mixture consistency hard constraint [154] on their outputs and

with feature-wise layer normalization as described in Kavalerov et al. [15]. We train all models

for one million steps.

Evaluation

To objectively evaluate our methods on synthetic AMI, we use scale-invariant signal-to-noise

ratio improvement (SI-SNRi) with the filtered headset signal as reference [155]. To measure sub-

jective audio quality, we use the multiple stimulus with hidden reference and anchors (MUSHRA)

[148] for the synthetic AMI evaluation dataset, with the filtered headset as reference. For real AMI

data, where we do not have a known clean reference, we adopt a variant of MUSHRA that allows

for imperfect references called MUSHIRA [62]. For MUSHIRA on real AMI data, the imperfect

reference is a headset recording of a target speaker that contains cross-talk. For all listening tests,

audio is presented diotically, with the signal corresponding to the first microphone being presented

to both ears. We collect 5 ratings per example for both MUSHRA and MUSHIRA.

We trained two instances of each configuration and report averages across model instances for

all metrics in both Table 4.2 and Table 4.3.
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Table 4.2: Cross-evaluation by number of mics. Values are SI-SNRi in dB. “S1” and “S2” refer to
the full-duration speaker and the overlapping speaker, respectively. Due to space constraints, we
report results on only “synth AMI” training data without warm start.

# of mics Training 1-mic eval 2-mic eval 4-mic eval 8-mic eval
- training method S1 S2 S1 S2 S1 S2 S1 S2

1-mic
Sup 4.3 6.0 4.5 6.5 4.5 6.5 4.5 6.6

Unsup 3.7 10.0 3.6 9.9 3.6 9.9 3.6 9.9
Semi 6.0 10.3 6.1 10.6 6.1 10.6 6.1 10.6

2-mic
Sup 1.8 -3.5 5.8 7.9 6.1 8.4 6.2 8.5

Unsup 3.2 8.6 4.6 11.8 4.7 11.7 4.8 11.9
Semi 4.3 5.5 6.8 11.8 6.8 12.0 6.9 12.1

4-mic
Sup 0.5 -7.3 4.8 6.1 6.3 9.7 6.3 9.7

Unsup 1.5 3.1 4.2 10.9 4.8 12.8 4.9 13.0
Semi 2.6 2.3 5.9 10.5 7.0 12.8 7.0 12.8

8-mic
Sup -0.8 -8.6 3.8 4.4 5.8 9.9 6.3 10.6

Unsup 1.3 3.0 4.3 10.9 4.9 12.9 5.0 13.6
Semi 2.5 3.4 5.6 9.5 6.6 11.4 7.1 11.2

4.2.4 Results and Discussion

Our TCN-TAC architecture allows models trained with any number of input microphones to be

applied to data with a different number of microphones. Table 4.2 cross-evaluates models trained

on 𝑁 microphones on the evaluation sets for 𝑀 microphones, for 𝑁, 𝑀 ∈ [1, 2, 4, 8]. We observe

that 1-mic trained models perform nearly the same no matter how many input mics are provided.

For 𝑁 > 1, quality is best when the number of training microphones equals the number of input

microphones, but models degrade gracefully when given a different number of microphones, and

in some cases quality improves modestly when additional mic inputs are provided beyond what

was used for training. We also observe that unsupervised learning outperforms supervised learning

in most cases on speaker 2 (which we focus on because its reference is cleaner as described in

Section 4.2.3), and combining both training methods can further improve the performance.

Due to human evaluation capacity constraints, we were unable to do human listening eval of

all models. Instead, in Table 4.3, we take 1-microphone and 4-microphone models as examples

and provide a comprehensive comparison of different model training configurations in terms of
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Table 4.3: AMI data results. “S1” and “S2” refer to SI-SNRi for the full-duration speaker and
the overlapping speaker, respectively. The first microphone is used as the reference for reference-
based metrics. For full synthetic AMI, the absolute input SI-SNRs are 0.5 dB for S1 and -9.2 dB
for S2, which are used in the SI-SNRi computation. “Warm” indicates loading the model weight
pre-trained with MixIT on 1600 hours of YFCC100M data (single-channel). The pooled 95%
confidence intervals are ±1.1 for the MUSHRA and ±2.2 for the MUSHIRA ratings.

Model Configuration Synthetic AMI Real AMI
Sup PIT Unsup MixIT Warm S1 S2 MUSHRA MUSHIRA

Baselines
Headset – – 96.6 93.4

Headset filtered to distant mic ∞ ∞ 64.5 50.0
Distant mic 0.0 0.0 33.1 38.8

1-microphone
– YFCC – 2.1 2.5 29.1 29.8
– AMI – 3.6 10.0 38.4 43.5

Mixed AMI – – -1.0 6.7 39.4 38.9
Synth AMI – – 4.3 6.0 35.8 40.9
Mixed AMI AMI – 0.0 10.2 41.8 39.8
Synth AMI AMI – 6.0 10.3 39.0 41.8

– AMI YFCC 3.7 9.8 40.4 41.1
Mixed AMI AMI YFCC -0.4 9.4 42.1 42.6
Synth AMI AMI YFCC 6.4 14.1 42.9 41.7

4-microphone
– AMI – 4.8 12.8 43.7 44.3

Mixed AMI – – 0.4 10.9 43.9 43.8
Synth AMI – – 6.3 9.7 37.5 38.2
Mixed AMI AMI – 1.9 12.5 44.7 43.9
Synth AMI AMI – 7.0 12.8 40.9 46.2

– AMI YFCC 4.5 12.0 44.2 44.3
Mixed AMI AMI YFCC 0.2 12.5 43.8 42.7
Synth AMI AMI YFCC 7.2 16.4 46.5 46.1

SI-SNRi scores on the fully synthetic AMI evaluation dataset, MUSHRA scores for a subset of a

few hundred synthetic AMI examples, and MUSHIRA scores for about 100 real overlapping AMI

examples.

In the 1-microphone subtable, unsupervised training with MixIT on AMI outperforms super-

vised training on either mixed AMI or synthetic AMI across most metrics. However, it falls short

in terms of the MUSHRA score compared to supervised training on mixed AMI (38.4 v.s. 39.4),

and in terms of SI-SNRi for speaker 1 compared to supervised training on synthetic AMI (3.6 v.s.
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4.3). Combined supervised and unsupervised training further improves the SI-SNRi and MUSHRA

scores on synthetic AMI, but does not improve the MUSHIRA score on real AMI.

The model trained with MixIT on YFCC100M performs quite poorly on the AMI eval set

across all metrics. However, using the YFCC100M-trained model to warm-start can further im-

prove MUSHRA and MUSHIRA scores when using mixed AMI as the supervised dataset, while

improving SI-SNRi and MUSHRA scores when using synthetic AMI as the supervised dataset.

Each 1-microphone model has a 4-microphone counterpart, with the exception of the single-

channel separation model trained on YFCC100M, which is evaluated alongside other models and

also used to warm-start some other configurations. Each pair of 1-microphone and 4-microphone

models share the same learning strategies, with the only difference being that the 4-microphone

models take advantage of multi-channel signals by using TAC modules to exploit spatial features

for better separation. (TAC modules are present in both 1- and 4-microphone models, but they only

have the effect of transferring information across channels in the 4-microphone models.) Notice

that all 4-microphone models significantly outperform their 1-microphone counterparts in terms

of SI-SNRi, MUSHRA, and MUSHIRA scores, except for the 4-microphone model trained super-

vised on synthetic AMI, which had a lower MUSHIRA score (38.2) compared to 1-microphone

(42.9).

Overall, the results demonstrate that multi-channel models achieve better separation perfor-

mance in supervised learning, unsupervised learning, and their combination. This confirms that

multi-channel models can also take advantage of unsupervised learning to adapt on real-world

multi-channel recordings. Notably, when training the multi-channel model using both MC-MixIT

unsupervised and PIT supervised on synthetic AMI, warm-starting from a model pre-trained with

MixIT on monaural YFCC100M achieves significant improvement across all synthetic AMI eval

metrics. It is likely YFMCC100m contains rich acoustics including diverse speakers and envi-

ronmental conditions. In the pre-training stage, the model focuses on separating sources using

solely spectral-temporal information and ends with an effective model weight initialization which

benefits the model further exploring spatial information to improve separation in the next stage.

83



Warm-starting a 4-microphone model using a 1-microphone model is feasible thanks to the archi-

tecture’s invariance to the number of microphones. This highlights the potential of pre-training

models on a large amount of general audio data that contains a wide variety of real-world speech

and then adapting these models on a smaller number of domain-specific speech recordings from

multi-mic arrays.

Finally, the most effective configuration for achieving optimal performance is the multi-microphone

model that is pre-trained on YFCC100M and then employs semi-supervised training with PIT on

synthetic AMI and MixIT on real AMI.

4.3 Conclusion

This chapter investigates using unsupervised learning methods to mitigate the data mismatch

problem in speech separation. We explored two different directions. In the first direction, we

recorded real-world audio to capture the complex acoustics of real environments that synthetic

audio struggles to replicate. We mixed individual recordings with reverberation and moderate

noise into a mixture with multiple distractors. Instead of using speech recordings as the learning

target, we applied cACGMM on individual recordings to extract clean speech signals to serve as

the target for learning, which significantly improves the training dataset. Experiments show that

the supervised model trained using the cleaner target speech provided by cACGMM results in

better noise reduction and thus better listening improvement.

In the second direction, we generalized a single-channel unsupervised learning method, MixIT,

to multi-channel settings. We show that multi-channel MixIT enables model adaptation on real-

world multi-channel unlabeled spontaneous speech recordings. Our best-performing system com-

bines pre-training with MixIT on a large amount of single-channel data from YFCC100M, super-

vised training with PIT on synthetic multi-channel data, and unsupervised training with MixIT on

multi-channel target domain data. In the future, we plan to explore integrating two directions and

to investigate using larger and more diverse amounts of open-domain data to improve separation

performance.
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Part II

Brain-Controlled Hearing
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Chapter 5: Speaker-Independent Auditory Attention Decoding Without

Access to Clean Speech Sources

Speech perception in crowded environments is challenging for hearing-impaired listeners. As-

sistive hearing devices cannot lower interfering speakers without knowing which speaker the lis-

tener is focusing on. One possible solution is auditory attention decoding (AAD) in which the

brainwaves of listeners are compared with sound sources to determine the attended source, which

can then be amplified to facilitate hearing. In realistic situations, however, only mixed audio is

available. This chapter addresses this major obstacle in actualization of AAD by using the speech

separation model introduced in Chapter 2.1 to automatically separate speakers in mixed audio.

Our results show that AAD with automatically separated speakers is as accurate and fast as using

clean speech sounds. The integration of speech separation with AAD significantly improves the

subjective and objective quality of the attended speaker.

5.1 Introduction

Speech communication in acoustic environments with more than one speaker is extremely

challenging for hearing-impaired listeners [156]. Assistive hearing devices have seen substan-

tial progress in suppressing background noises that are acoustically different from speech [9, 10],

but they cannot enhance a target speaker without knowing which speaker the listener is conversing

with [11]. Recent discoveries of the properties of speech representation in the human auditory cor-

tex have shown an enhanced representation of the attended speaker relative to unattended sources

[12]. These findings have motivated the prospect of a brain-controlled assistive hearing device

to constantly monitor the brainwaves of a listener and compare them with sound sources in the

environment to determine the most likely talker that a subject is attending to [14]. This process
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is termed auditory attention decoding (AAD), a research area that has seen considerable growth

in recent years. Then, this device can amplify the attended speaker relative to others to facilitate

hearing that speaker in a crowd.

Multiple challenging problems, including nonintrusive methods for neural data acquisition and

optimal decoding methods for accurate and rapid detection of attentional focus, must be resolved

to realize a brain-controlled assistive hearing device. In addition, we have only a mixture of sound

sources in realistic situations that can be recorded with one or more microphones. Because the at-

tentional focus of the subject is determined by comparing the brainwaves of the listener with each

sound source, a practical AAD system needs to automatically separate the sound sources in the

environment to detect the attended source and subsequently amplify it. One solution that has been

proposed to address this problem is beamforming [157]; in this process, neural signals are used

to steer a beamformer to amplify the sounds arriving from the location of the target speaker [158,

159]. However, this approach requires multiple microphones and can be beneficial only when

ample spatial separation exists between the target and interfering speakers. An alternative and

possibly complementary method is to leverage the recent success in automatic speech separation

algorithms that use deep neural network models [79, 80]. In one such approach, neural networks

were trained to separate a pretrained, closed set of speakers from mixed audio [160]. Next, sepa-

rated speakers were compared with neural responses to determine the attended speaker, who was

then amplified and added to the mixture. Although this method can help a subject interact with

known speakers, such as family members, this approach is limited in generalization to new, unseen

speakers, making it ineffective if the subject converses with a new person, in addition to the diffi-

culty of scaling up to a large number of speakers. To alleviate this limitation, in Section 2.1, we

have proposed a causal, speaker-independent single-channel speech separation model, online deep

attractor network (ODAN), that can generalize to unseen speakers, meaning that the separation of

speakers can be performed without any prior training on target speakers.

In this chapter, we address the problem of speaker-independent AAD without access to clean

sources by using ODAN to automatically separate unseen sources. Because this system can gener-
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alize to new speakers, it overcomes a major limitation of the previous AAD approach that required

training on the target speakers [20]. The AAD framework enhances the subjective and objective

quality of perceiving the attended speaker in a multi-talker (M-T) mixture. By combining recent

advances in automatic speech processing and brain-computer interfaces, this chapter represents

a major advancement toward solving one of the most difficult barriers in actualizing AAD. This

solution can help people with hearing impairment communicate more easily.

5.2 Materials and Methods

5.2.1 Participants and Neural Recordings

Three subjects who were undergoing clinical treatment for epilepsy at North Shore University

Hospital contributed to the data described in this chapter. All patients provided informed consent

as monitored by the local institutional review board and in accordance with the ethical standards

of the Declaration of Helsinki. The decision to implant the electrode targets and the duration

of implantation were made entirely on clinical grounds without reference to this investigation.

Patients were informed that participation in this study would not alter their clinical treatment and

that they could withdraw at any time without jeopardizing their clinical care. All subjects had

self-reported normal hearing.

Two subjects (subjects 1 and 2) were implanted with high-density subdural electrocorticogra-

phy (ECoG) arrays over their language dominant temporal lobe, providing coverage of the superior

temporal gyrus (STG), which selectively represents attended speech [12]. The third subject (sub-

ject 3) was implanted with bilateral stereoelectroencephalography (sEEG), with depth electrodes

in Heschl’s gyrus (containing primary auditory cortex) and STG. This implantation resulted in

varying amounts of coverage over the left and right auditory cortices of each subject. Figure 5.1

plotted the electrodes on the average Freesurfer brain template [161].
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Fig. S1. Electrode coverage and speech responsiveness for each subject. Subjects 1 and 2 were 

implanted with high-density subdural electrode arrays over their left (language dominant) temporal 

lobe with coverage over the superior temporal gyrus (STG; orange). Subject 3 partook in stereotactic 

EEG (sEEG) in which they were implanted bilaterally with depth electrodes. These differences in 

implantation resulted in varying coverage of the STG, Heschl’s gyrus (HG; green) and planum 

temporale (PT; yellow) in the left and right auditory cortices. The t-value resulting from t-test 

between speech versus silence is plotted on a red color scale. 
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Figure 5.1: Electrode coverage and speech responsiveness for each subject. Subjects 1 and
2 were implanted with high-density subdural electrode arrays over their left (language dominant)
temporal lobe with coverage over the superior temporal gyrus (STG; orange). Subject 3 partook
in stereotactic EEG (sEEG) in which they were implanted bilaterally with depth electrodes. These
differences in implantation resulted in varying coverage of the STG, Heschl’s gyrus (HG; green)
and planum temporale (PT; yellow) in the left and right auditory cortices. The t-value resulting
from 𝑡-test between speech versus silence is plotted on a red color scale.

5.2.2 Data Preprocessing and Hardware

Neural data were recorded using Tucker Davis Technologies hardware and sampled at 2441

Hz. The data were resampled to 500 Hz. A first-order Butterworth high-pass filter with a cutoff

frequency at 1 Hz was used to remove DC drift. Data were subsequently re-referenced using a

local scheme, whereby the average voltage from the nearest neighbors was subtracted from each

electrode. Line noise at 60 Hz and its harmonics (up to 240 Hz) were removed using second-order

infinite impulse response (IIR) notch filters with a bandwidth of 1 Hz. A period of silence was

recorded before each experiment, and the corresponding data were normalized by subtracting the

mean and dividing by the SD of this prestimulus period.

Next, neural data were filtered into the high-gamma band (70 to 150 Hz); the power of this

band is modulated by auditory stimuli [12, 162, 163]. To obtain the power of this broad band, we

first filtered the data into eight frequency bands between 70 and 150 Hz with increasing bandwidth

using Chebyshev type 2 filters. Then, the power (analytic amplitude) of each band was obtained

using a Hilbert transform. We took the average of all eight frequency bands as the total power of
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the high-gamma band.

5.2.3 Stimuli and Experimental Design

Each subject participated in the following experiments for this study: single-talker (S-T) and

multi-talker (M-T) experiments. In the S-T experiment, each subject listened to four continuous

speech stories (each story was 3 min long), for a total of 12 min of speech material. The stories

were uttered once by a female and once by a male speaker (hereafter referred to as Spk1 and

Spk2, respectively). For the M-T experiment, the subjects were presented with a mixture of the

same speech stories as those in the S-T experiment, where both speakers were combined at a 0-

dB target-to-masker ratio. The M-T experiment was divided into four behavioral blocks, each

containing a mixture of two different stories spoken by Spk1 and Spk2. Before each experimental

block, the subjects were instructed to focus their attention on one speaker and to ignore the other.

All the subjects began the experiment by attending to the male speaker and switched their attention

to the alternate speaker on each subsequent block. To ensure that the subjects were engaged in

the task, we intermittently paused the stories and asked the subjects to repeat the last sentence of

the attended speaker before the pause. All the subjects performed the task with high behavioral

accuracy and were able to report the sentence before the pause with an average accuracy of 90.5%

(S1, 94%; S2, 87.%; and S3, 90%). Speech sounds were presented using a single Bose SoundLink

Mini 2 loudspeaker placed in front of the subject at a comfortable hearing level, with no spatial

separation between the competing speakers.

5.2.4 Speaker-Independent AAD

Figure 1.1 shows a schematic of the proposed speaker-independent AAD framework. A speaker

separation algorithm first separates the speakers in M-T mixed audio. Next, the spectrograms of

the separated speakers are compared with the spectrogram that is reconstructed from the evoked

neural responses in the auditory cortex of the listener to determine the attended speaker. Then, the

attended speaker is amplified relative to other speakers in the mixture before it is delivered to the
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listener.

In this chapter, we employed the online Deep Attractor Network (ODAN), as introduced in

Section 2.1, for speaker separation. ODAN, a causal and speaker-independent automatic speech

separation algorithm, is capable of generalizing to speakers it has not seen before. This feature

allows the AAD system to access individual speakers’ speech without prior information about

them. We refer to this integrated setup as the ODAN-AAD system. To compare separated speech

with clean individual speech in AAD, we also considered an ideal scenario where we have access

to individual clean speech, which is impractical without speech separation in real-life situations.

We label this system as the Clean-AAD system.

5.2.5 Stimulus Reconstruction

To determine the attended speaker, we used a method known as stimulus reconstruction [164,

165]. This method applies a spatiotemporal filter (decoder) to neural recordings to reconstruct

an estimate of the spectrogram that a user is listening to. The decoder is trained by performing

linear regression to find a mapping between the neural recordings and spectrogram. We trained

the decoders on S-T data to minimize any potential bias that may result from training the decoders

on the M-T data. After we trained the decoders using S-T data, we used the same decoders to

reconstruct spectrograms from the M-T experiment [12].

The decoders were trained using the electrodes that were significantly more responsive to

speech than to silence. To perform these statistical analyses, we segmented the neural data into

500-ms chunks and divided them into the following categories: speech and silence. Significance

was determined using unpaired 𝑡-test (false discovery rate corrected, q < 0.05). This electrode

selection resulted in varying numbers of electrodes for each subject (see Fig. 5.1). The decoders

were trained with time lags from -400 to 0 ms. See [164] for further information on the stimulus

reconstruction algorithm.
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5.2.6 Decoding Accuracy

Determining to whom the subject is attending requires correlation analysis, commonly using

Pearson’s r value [14, 70]. Typically, the spectrogram that has the largest correlation with the

reconstructed spectrogram is considered the attended speaker. We used window sizes ranging

from 2 to 32 s to calculate correlations (in logarithmically increasing sizes). We defined decoding

accuracy as the percentage of the segments in which the reconstructions had a larger correlation

with the attended spectrogram than with the unattended spectrogram.

5.2.7 Dynamic Switching of Attention

To simulate a dynamic scenario in which a subject was switching attention between two speak-

ers, we divided and concatenated the neural data into consecutive segments in which subjects were

attending to either speaker. Specifically, we divided the data into 10 segments, each lasting 60

s. Subjects attended to the male speaker for the first segment. To assess our ability to track the

attentional focus of each subject, we used a sliding window approach whereby we obtained cor-

relation values every second over a specified window. We used window sizes ranging from 2 to

32 s (in logarithmically increasing sizes). Larger windows should lead to more consistent (less

noisy) correlation values, thus providing a better estimate of the attended speaker. However, this

approach should also be slower at detecting a switch in attention, therefore leading to a reduction

in decoding speed.

5.2.8 Psychoacoustic Experiment

To test if the difficulty of attending to the target speaker is reduced using the ODAN-AAD sys-

tem, we performed a psychoacoustic experiment on 20 healthy controls using Amazon Mechanical

Turk (www.MTurk.com). The stimuli used for this experiment were the same as those used for the

neural experiment, i.e., subjects were always presented with a mixture of Spk1 and Spk2. How-

ever, for ODAN-AAD and clean-AAD systems, the decoded target speaker was amplified by 12

dB. This particular amplification level has been shown to significantly increase the intelligibility
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of the attended speaker while keeping the unattended speakers audible enough to enable attention

switching [166].

The experiment was divided into six blocks, each containing nine trials. Each trial consisted

of a single sentence. One-third of the trials consisted of the raw mixture, another third contained

modified audio using the ODAN-AAD framework, and the remaining third contained modified

audio using the clean-AAD system. The trial order was randomized. Before each block, the

subjects were instructed to pay attention to one of the speakers. After each trial (sentence), we

asked the subjects to indicate the difficulty they had in understanding the attended speaker on a

scale of 1 to 5 as follows: very difficult [156], difficult, not difficult, easy, and very easy [12].

From these responses, we calculated the mean opinion score (MOS) [167]. In total, the experiment

lasted approximately 15 min.

5.3 Results

5.3.1 Reconstruction of the Attended Speaker from Evoked Neural Activity

The reconstructed spectrogram from the auditory cortical responses of a listener in an M-T

speech perception task is more similar to the spectrogram of the attended speaker than that of the

unattended speaker [12]. Therefore, the comparison of the neurally reconstructed spectrogram

with the spectrograms of individual speakers in a mixture can determine the attentional focus of

the listener [14]. We used a linear reconstruction method to convert neural responses back to the

spectrogram of the sound (see Section 5.2.5).

To examine the similarity of the reconstructed spectrograms from the neural responses to the

spectrograms of the attended and unattended speakers, we measured the correlation coefficient

(Pearson’s r) between the reconstructed spectrograms with both ODAN and the actual clean spec-

trograms of the two speakers. The correlation values were estimated over the entire duration of the

M-T experiment. As shown in Fig. 5.2C, the correlation between the reconstructed and clean spec-

trograms was significantly higher for the attended speaker than for the unattended speaker (paired

𝑡-test, P < 0.001; Cohen’s D = 0.8). This observation shows the expected attentional modulation
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Figure 5.2: Evaluating the accuracy of speech separation and attention decoding methods.
(A) Comparison of separation between the representation of the two speakers in the T-F (left) and
embedding space (right). The axis represents the first two principal components of the data that
are used to allow visualization. Each dot represents one T-F bin (left) or one embedded T-F bin
(right), which are colored based on the relative power of the two speakers in that bin. (B) Separation
accuracy as a function of time. The dashed line shows the time at which the speakers in the mixture
are switched. (C) Correlation values between the reconstructed spectrograms (from neural data)
and the attended/unattended spectrograms. Correlation values were significantly higher for the
attended speaker (paired 𝑡-test, P < 0.001; Cohen’s D = 0.8), thus confirming the effect of attention
in the neural data. The correlation with the clean spectrograms was slightly higher than that with
the ODAN outputs, but the differences between the attended and unattended speakers were the
same for both clean and ODAN outputs. (D) Attention decoding: The percentage of segments in
which the attended speaker was correctly identified for a varying number of correlation window
lengths when using ODAN and the actual clean spectrograms. There was no significant difference
between using the clean and the ODAN spectrograms (Wilcoxon rank sum test, P = 0.9). (E)
Dynamic switching of attention was simulated by segmenting and concatenating the neural data
into alternating 60-s bins. The dashed line indicates switching attention. The average correlation
values from one subject are shown using a 4-s window size for both ODAN and the actual clean
spectrograms. The shaded regions denote SE. (F) The transition time in detecting a switch of
attention was calculated as the time at which the correlation difference between the two speakers
crossed zero. The average transition time across subjects increased with larger window sizes;
however, there was no significant difference between the transition time of ODAN and the actual
clean spectrograms (Wilcoxon rank sum test, P > 0.6).

94



of the auditory cortical responses [12]. The comparison of the correlation values of ODAN and

the actual clean spectrograms (Fig. 5.2C) shows a similar difference value between the attended

and unattended spectrograms (average correlation difference for clean = 0.125 and for ODAN =

0.128), suggesting that ODAN spectrograms can be equally effective for attention decoding. Fig-

ure 5.2C also shows a small but significant decrease in the correlation values of the reconstructed

spectrograms with ODAN compared with those of the actual clean spectrograms. This decrease is

caused by the imperfect speech separation performed by the ODAN algorithm. Nevertheless, this

difference is small and equally present for both attended and unattended speakers. Therefore, this

difference did not significantly affect the decoding accuracy as shown below.

5.3.2 Decoding the Attentional Focus of the Listener

To study how the observed reconstruction accuracy with attended and unattended speakers

(Fig. 5.2C) translates into attention decoding accuracy, we used a simple classification scheme in

which we computed the correlation between the reconstructed spectrograms with both clean at-

tended and unattended speaker spectrograms over a specified duration. Next, the attended speaker

is determined as the speaker with a higher correlation value. The duration of the signal used for

the calculation of the correlation is an important parameter and affects both the decoding accuracy

and speed (see Section 5.2.6). Longer durations increase the reliability of the correlation values,

hence improving the decoding accuracy. This phenomenon is shown in Fig. 5.2D, where the vary-

ing duration of the temporal window was used to determine the attended speaker. The accuracy

in Fig. 5.2D indicates the percentage of segments for which the attended speaker was correctly

decoded. The accuracy was calculated for the following cases: when using ODAN spectrograms

and when using the actual clean spectrograms. We found no significant difference in decoding ac-

curacy with ODAN or the clean spectrograms when different time windows were used (Wilcoxon

rank sum test, P = 0.9). This finding confirms that automatically separated sources by the ODAN

algorithm result in the same attention decoding accuracy as that with the actual clean spectrograms.

As expected, increasing the correlation window resulted in improved decoding accuracy for both

95



ODAN and actual clean sources (Fig. 5.2D).

Next, we examined the temporal properties of attention decoding when ODAN and the actual

clean spectrograms were used. We simulated a dynamic switching of attention where the neural

responses were concatenated from different attention experiment blocks such that the neural data

alternated between attending to the two speakers. To accomplish this, we first divided the neural

data in each experiment block into 60-s segments (total of 12 segments) and interleaved segments

from the two attention conditions (see Section 5.2.7). We compared the correlation values between

the reconstructed spectrograms with both ODAN and the actual clean spectrograms using a sliding

window of 4 s. Then, we averaged the correlation values over the segments by aligning them

according to the time of the attention switch. Figure 5.2E shows the average correlation for one

example subject over all the segments where the subject was attending to Spk1 in the first 60 s and

switched to Spk2 afterward. The overlap between the correlation plots calculated from ODAN and

the actual clean spectrograms shows that the temporal properties of attention decoding are the same

in both cases; hence, ODAN outputs can replace the clean spectrograms without any significant

decrease in decoding speed. We quantified the decoding speed using the transition time, which

is the time it takes to detect a switch in the listener’s attention. Transition times were calculated

as the time at which the average correlation crossed the zero line. Figure 5.2F shows the average

transition times for the three subjects for five different sliding window durations. As expected,

the transition times increase for longer window lengths, but there were no significant differences

between ODAN and the clean spectrograms (paired 𝑡-test, P > 0.7; Fig. 5.2F).

5.3.3 Increased Subjective and Objective Perceived Quality of the Attended Speaker

We performed a psychoacoustic experiment (see Section 5.2.8) comparing the original mixture

and the enhanced sounds from the ODAN-AAD system and the enhanced sounds from the clean-

AAD system. The bar plots in Fig. 5.3A show the median MOS ± standard error (SE) for each

of the three conditions. The average subjective score for the ODAN-AAD shows a significant

improvement over the mixture (56% improvement; paired 𝑡-test, P < 0.001), demonstrating that the
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Figure 5.3: Improved subjective quality and objective quality and intelligibility of the ODAN-
AAD system. (A) Subjective listening test to determine the ease of attending to the target speaker.
Twenty healthy subjects were asked to rate the difficulty of attending to the target speaker when
listening to (i) the raw mixture, (ii) the ODAN-AAD amplified target speaker, and (iii) the clean-
AAD amplified target speaker. The detected target speakers in (ii) and (iii) were amplified by 12
dB relative to the interfering speakers. Subjects were asked to rate the difficulty on a scale of 1 to
5 (MOS). The bar plots show the median MOS ± SE for each condition. The enhancement of the
target speaker for the ODAN-AAD and clean-AAD systems was 100 and 118%, respectively (P <
0.001). (B and C) Objective quality (PESQ) and intelligibility (ESTOI) improvement of the target
speech in the same three conditions as in (A). ★★★★ P < 0.0001, 𝑡-test.

listeners had a stronger preference for the modified audio than for the original mixture. Figure 5.3A

also shows a small but significant difference between the average MOS score with the actual clean

sources and that with ODAN separated sources (78% versus 56% improvement over the mixture).

The MOS values using the clean sources show the upper bound of AAD improvement if the speaker

separation algorithm was perfect. Therefore, this analysis illustrates the maximum extra gain that

can be achieved by improving the accuracy of the speech separation algorithm (14% over the

current system). Figure 5.3B shows a similar analysis when an objective perceptual speech quality

measure is used (PESQ) [87], showing a result similar to what we observed in the subjective tests.

Together, Fig. 5.3 demonstrates the benefit of using the ODAN-AAD system in improving the

perceived quality of the target speaker.
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5.4 Discussion

We present a framework for AAD that addresses the lack of access to clean speech sources

in real-world applications. Our method uses a real-time, speaker-independent speech separation

algorithm that uses deep-learning methods to separate the speakers from a single channel of audio.

Then, the separated sources are compared with the reconstructed spectrogram from the auditory

cortical responses of the listener to determine and amplify the attended source. The integration of

speaker-independent speech separation in the AAD framework enables a brain-controlled hearing

assistant system. We tested the system on two unseen speakers and showed improved subjective

and objective perception of the attended speaker when using the ODAN-AAD framework.

A major advantage of our system over previous work [160] is the ability to generalize to un-

seen speakers, which enables a user to communicate more easily with new people. Because ECoG

electrodes reflect the summed activity of thousands of neurons in the proximity of the electrodes

[168], the spectral tuning resolution of the electrodes is relatively low [169]. As a result, the recon-

struction filters that map the neural responses to the stimulus spectrogram do not have to be trained

on specific speakers and can generalize to novel speakers, as we have shown previously [12, 165].

Nonetheless, generalization to various noisy, reverberant acoustic conditions is still a challenging

problem and requires training on a large amount of data recorded. In addition to increasing the

amount of training data and training conditions, separation accuracy can be significantly improved

when more than one microphone can be used to record mixed audio. The advantage of enhancing

speech with multiple microphones has been demonstrated in Chapter 2, particularly in severely

noisy environments or when the number of competing speakers is large (e.g., more than two).

In Chapter 6, we will use a binaural speech separation model to significantly enhance the AAD

system in more challenging environments.

One major limitation in advanced signal processing approaches for hearing technologies is

the limited computation and power resources that are available in wearable devices. Neverthe-

less, designing specialized hardware that can efficiently implement deep neural network models
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is an active research area that has recently seen substantial progress [170, 171, 172]. Specialized

hardware also significantly reduces the power consumption needed for computation. In addition,

hearing aid devices can already perform off-board computation by interfacing with a remote de-

vice, such as a mobile phone, which provides another possibility for extending the computational

power of these devices [9].

The accuracy of AAD also critically depends on the decoding algorithm being used [173, 174].

For example, the accuracy and speed of decoding can be improved when stochastic models are

used to estimate the attention focus using a state-space model [175] instead of the moving average

that we used in this chapter. In addition, while we used fixed reconstruction filters derived from the

S-T responses, this experimental condition may not always be available. In these scenarios, it is

possible to circumvent the need for S-T responses by online estimation of the encoding/decoding

coefficients from the responses to the mixture [175, 176], which may lead to more flexible and

robust estimation of the decoding filters. Last, decoding methods that factor in the head-related

filtering of the sound can also improve the attention decoding accuracy [177]. In Chapter 7, we

will take advantage of the advances in self-supervised speech representation learning to improve

decoding algorithm.

In summary, our proposed speaker-independent AAD system represents a feasible solution for

a major obstacle in creating a brain-controlled hearing device, therefore bringing this technology a

step closer to reality. Such a device can help hearing-impaired listeners more easily communicate

in crowded environments and reduce the listening effort for normal-hearing subjects, therefore

reducing listening fatigue.
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Chapter 6: Brain-Controlled Augmented Hearing in Realistic Acoustic

Environments

Chapter 5 has introduced a brain-controlled augmented hearing system that decodes the user’s

brainwaves to selectively amplify the speech of the attended speaker. However, prior auditory at-

tention decoding (AAD) studies have relied on oversimplified scenarios with stationary talkers. In

this chapter, we present a realistic AAD task that mirrors the dynamic nature of acoustic settings.

This task involves focusing on one of two concurrent conversations, with multiple talkers taking

turns and moving continuously in space with background noise. We upgrade the brain-controlled

augmented hearing system by incorporating the binaural speech separation model introduced in

Section 2.3. Thus, This system is more adept at handling complex acoustic scenarios and can

preserve the spatial information of separated speakers. Our subjective and objective evaluations

demonstrate that the new brain-controlled augmented hearing system enhances speech intelligi-

bility and facilitates conversation tracking while maintaining spatial cues and voice quality in

challenging acoustic environments. This chapter demonstrates the potential of our approach in

real-world scenarios and marks a significant step towards developing assistive hearing technolo-

gies that adapt to the intricate dynamics of everyday auditory experiences.

6.1 Introduction

In Chapter 5, we have shown that auditory attention decoding can be combined with speech

separation techniques to enable brain-controlled augmented hearing technologies. The automatic

speech separation algorithm isolates individual talkers from a mixture of talkers in an acoustic

scene, while the auditory attention decoding algorithm determines which talker is the attended

talker. The attended talker can then be enhanced relative to the background to assist the user of the
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brain-controlled hearing device.

Past studies have established the feasibility of decoding auditory attention from both invasive

[12, 160, 74] and non-invasive [14, 178, 179] neural recordings. Despite these advancements,

existing studies predominantly employ overly simplistic acoustic scenarios that do not mimic the

real world scenarios [160, 74, 180, 14, 178, 181]. Common experimental setups have been limited

to stationary talkers without background noise, and primarily focus on distinguishing between

two concurrent talkers. This lack of realism in experimental design is a significant barrier to

the generalization of these technologies to everyday life scenarios. Real-world listening involves

dynamic conversation involving multiple talkers, often engaged in turn-taking while moving in

space, all amidst varying background noises. This chapter aims to bridge this gap by simulating

a more realistic experimental paradigm, therefore advancing the field of AAD towards practical

applications.

Another important factor that past research has often overlooked is the listeners’ desire to

track moving talkers in space. This aspect is crucial for natural listening [182] and, thus, for

the effectiveness of brain-controlled hearing devices. A successful brain-controlled hearing device

must separate speech streams as they move in space while preserving the perceived spatial location

of each talker (see Section 2.3). Previous studies of AAD have been based on decoding only the

spectrotemporal features of speech. However, recent scientific studies have shown that the human

auditory cortex also encodes the location of the attended talker [183, 177] which can potentially

lead to the ability to decode the spatial trajectory of attended talkers. This chapter takes a crucial

step by investigating whether adding talker trajectories can improve the AAD performance.

Another persistent challenge in AAD research is the difficulty in accurately determining the

specific talker to which a subject is attending, especially with high temporal resolution. Previous

methods often assume that subjects continuously focus on a pre-designated talker, overlooking

the possibility of inadvertent attention shifts [184]. This assumption can lead to mislabeling in

data and biasing the performance evaluation of AAD algorithms. This chapter addresses this issue

by integrating a behavior measure into our experimental design to ascertain the ongoing focus of
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the subject more precisely, thereby enhancing the reliability of our data and the validity of our

evaluation metrics.

In this chapter, we present a comprehensive and novel approach to AAD that uses complex, dy-

namic stimuli that more closely resemble real-world acoustic environments. Specifically, we use

two concurrent conversations that feature moving talkers and natural background noise, alongside

speaker turn-taking among attended and unattended conversations. Furthermore, we introduce a

novel task for determining the ground truth labels in attention-focused conversation by requiring

the subject to detect deliberately placed repeated words (1-back task) [185, 186]. Lastly, we en-

hance the brain-controlled augmented hearing system through two key upgrades: (1) We improve

the speech separation module by employing the binaural speech separation algorithm described

in Section 2.3 which is more robust in complex acoustic scene settings with moving talkers and

background noise; (2) We refine the AAD module to utilize both spectral and spatial information

for more accurate attention decoding. We show that the proposed system enhances speech intel-

ligibility and facilitates conversation tracking while maintaining spatial cues and voice quality in

challenging acoustic environments, hence taking a significant step toward brain-controlled hearing

devices in realistic listening environments.

6.2 Materials and Methods

6.2.1 Participants and Neural Recordings

Three new subjects contributed to the data described in this chapter. Subjects 1 and 2 were

from North Shore University Hospital (NSUH), and Subject 3 was from Columbia University

Irving Medical Center (CUIMC). The participants provided informed consent as per the local In-

stitutional Review Board (IRB) regulations. Subjects 1 and 2 were both implanted with subdural

electrocorticography (ECoG) grid and stereo-electroencephalography (sEEG) depth electrodes on

their left-brain hemispheres. Subject 3 only had sEEG depth electrodes implanted over their left-

brain hemisphere. The procedures followed were identical to those described in Section 5.2.1.

Subject 1, 2, 3 had 17, 34 and 42 speech-responsive electrodes respectively as shown in Fig. 6.1.
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Superior Temporal Gyrus (STG)

Subject 3

Figure 6.1: Sites of speech-responsive electrodes used for analysis from the three subjects. All
subjects had coverage over their left temporal lobe.

6.2.2 Data Preprocessing and Hardware

The neural data of participants from NSUH (Subjects 1 and 2) were recorded using Tucker-

Davis Technologies (TDT) hardware using a sampling rate of 1526 Hz. The neural data of the

participant from CUIMC (Subject 3) was recorded using Natus Quantum hardware using a sam-

pling rate of 1024 Hz. Neural data was pre-processed following the procedures described in Sec-

tion 5.2.2.

6.2.3 Stimuli Design and Experimental Paradigm of a Realistic AAD Task

The experiment consisted of 28 multi-talker trials with a mean trial duration of 44.2 s (SD

= 2.0 s). The total experiment lasted 26 minutes. As shown in Fig. 6.2a, the trials consisted of

two concurrent and independent conversations (one to-be-attended, one to-be-ignored) that were

spatially separated and continuously moving in the frontal half of the horizontal plane of the sub-

ject. The distances of these conversations from the subject were equal and constant throughout

the experiment. Both conversations were of equal power (RMS). Talkers were all native American

English speakers. Monaural background noise [187, 188] (either “pedestrian” or “speech babble”)

was also mixed along with the conversations at power either 9 dB or 12 dB below the power of
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Figure 6.2: Experiment design. (a) Every trial consisted of two concurrent conversations moving
independently in the front hemifield of the subject. Each conversation had two distinct talkers
taking turns. (b) Repeated words were inserted across the two conversations as highlighted in
pink. The cued (to-be-attended) conversation had a talker switch at 50% trial time mark whereas
the uncued (to-be-unattended) conversation had two talker switches, at 25% and 75% trial time
marks.

a conversation stream. Stimuli was delivered to the participants with a sampling rate of 44.1 kHz

through stereo earphones (Panasonic RP-HJE120). The to-be-ignored conversation started 3 s later

than the to-be-attended conversation. The participants were cued to attend to the conversation that

started first.

A total of eight native American English voice actors (four male, four female) were recruited

to voice these conversations. These conversations were based on general daily life situations.

Every trial consisted of four talkers: two for the to-be-attended conversation (say A and B), two

for the to-be-unattended conversation (say C and D). As shown in Fig. 6.2b, in the to-be-attended

conversation, a talker switch took place at around 50% trial time mark whereas for the to-be-

unattended conversation, two talker switches took place, one at around 25% trial time mark and

the other nearly at the 75% trial time mark. Thus, the talker in the to-be-attended conversation

would transition from A to B and the talker in the to-be-ignored conversation would transition

from C to D to back to C.
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In order to check to which conversation a participant might be attending, repeated words were

artificially inserted in both the to-be-attended and the to-be-ignored conversations. Participants

were asked to press a button upon hearing a repeated word in the to-be-attended conversation. They

were expected to ignore the repeated words in the to-be-unattended conversation. The conversation

transcripts were force aligned with the audio recordings of the voice actors using the Montreal

Forced Aligner tool [189]. The repeated words were inserted in the conversations based on the

following criteria: (1) the number of repeated words to be inserted in a conversation of a trial was

determined by dividing the trial duration (in seconds) by 7 and rounding the result; (2) for every

trial, an equal number of repeated words were inserted in the to-be-attended and the to-be-ignored

conversations; (3) a word could be repeated only if its duration was at least 300 ms; (4) to make

repeated words sound smooth and natural, a Hanning window of 30 ms was applied to both sides

of the audio segment corresponding to the repeated word; (5) the audio segment corresponding

to a repeated word was also prefixed and postfixed with 200 ms of silence; (6) the time interval

between the onsets of two repeated words in a conversation was constrained to lie between 5.5 s to

9.5 s; (7) there was always one repeated word whose onset was within 1.5 s post talker switch in the

to-be-attended conversation. This was done to check if participants tracked the switch in talkers in

the to-be-attended conversation; (8) the onset of the first repeated word in a trial was constrained

to lie between 5 - 8 s from trial start time. This first repeated word could occur either in the to-

be-attended conversation or the to-be-ignored conversation; (9) the minimum time gap between

a repeated word onset in the to-be-attended conversation and a repeated word onset in the to-be-

ignored conversation was set to be at least 2.5 s. This was done to prevent simultaneous overlap

of repeated words in the two conversations and to allow for determining to which conversation a

participant was attending to.

Google Resonance Audio software development kit (SDK) was used to spatialize the audio

streams of the conversations [190]. The trajectories for these conversations were confined to the

frontal half of the horizontal plane of the subject in a semi-circular fashion. In other words, the

conversations were made to move on a semi-circular path at a fixed distance from the subject
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spanning -90 degrees (right) to +90 degrees (left). The trajectories were initially generated with

a resolution of 1 degree and a sampling rate of 0.5 Hz using a first order Markov chain. This

Markov chain had 181 states (-90 degrees to +90 degrees with a resolution of 1 degree). All

states were equally probably of being the initial state. The subsequent samples of a trajectory

were generated with a probability transition matrix. The resulting trajectories were smoothed with

a moving average of five samples and then stretched to span the whole frontal half plane. The

trajectories were further upsampled using linear interpolation to 10 Hz. A pair of trajectories

corresponding to a pair of conversations in a trial also followed the following criteria: (1) The

spatial separation between the conversations when the second conversation starts was set to be at

least 90 degrees; (2) the spatial separation between the conversations during the talker switch in

the to-be-attended conversation was ensured to be at least 45 degrees; the correlation of the two

trajectories were ensured to be less than 0.5. A total of 1000 trajectory sets (each with 28 pairs,

one for each of the 28 trials) were generated based on the above criteria. To have the trajectories

span a uniform joint distribution, the set with the highest joint entropy (computed with a bin size

of 20 degrees) was chosen as final.

6.2.4 A Brain-Controlled Augmented Hearing System

In this chapter, we propose an innovative brain-controlled hearing system designed for binaural

hearing. The system has two microphones to capture the left and right components of the sounds

arriving at the ears of the wearer (see Fig. 6.3a). Building upon the foundation laid in Chapter 5,

the upgraded framework for the brain-controlled hearing system in this chapter transitions from

the monaural speech separation model to a binaural speech separation model, and replaces the

stimulus reconstruction-based attention decoder with a canonical correlation analysis (CCA)-based

attention decoder (see Fig. 6.3b). The binaural speech separation model, introduced in Section 2.3,

as also shown in Fig. 6.3c, separates a binaural mixture of speech streams of two moving talkers

(recorded by the binaural microphones) into their individual speech streams while also preserving

their spatial cues. As spatial cues are preserved in the separated speech streams of the talkers, the
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Figure 6.3: The proposed framework for a binaural brain-controlled hearing device. (a) The
framework requires two microphones, one each on both the left and the right ear. The micro-
phones separately capture the left and the right mixtures of sound sources arriving at the ears. (b)
The speaker separation works with these microphone recordings to binaurally separate the speech
streams while also estimating the trajectories of the talkers. These outputs are used in combination
with the wearer’s neural data to decode and enhance the attended talker. (c) The binaural speaker
separation model consists of an initial separation module whose outputs are further improved by a
post-enhancement module.

model is also able to estimate the trajectories of the moving talkers in the acoustic scene. Auditory

attention decoding is enabled by performing CCA which uses the wearer’s neural data and the

talkers’ separated speech and estimated trajectory streams to determine and enhance the attended

talker.

In this Chapter, we trained the binaural speech separation model using a different dataset from

that in Section 2.3.3. Here, we created 24,000 9.6-second binaural audio mixtures. Each mixture

comprised of two moving speakers and one isotropic background noise. The moving speech stimuli

were created using the methods described in Section 6.2.3. Speech was randomly sampled from
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the Librispeech dataset [125]. For half of the training data, we chose pairs of trajectories that

spanned uniform distribution (quantified by joint entropy); and for another half of the training

data, we chose pairs of trajectories whose average distance difference was smaller than 15 degrees

to enhance the separation model’s ability to handle closely spaced moving speakers. We randomly

chose noise from DEMAND dataset [98]. The SNR, defined as the ratio of the speech mixture in

the left channel to the noise, ranged from -2.5 to 15 dB. All sounds were resampled to 16 kHz.

6.2.5 Canonical Correlation Analysis

In Chapter 5, we used the stimulus reconstruction method for attentional decoding where only

the spectrogram of the attended talker is estimated. In this chapter, we used CCA [174] to pre-

dict the attended talker. From the stimuli side, the inputs involved both talker spectrograms and

trajectories. We chose a 20-bin mel spectrogram representation obtained with a window duration

of 30 ms and a hop size of 10 ms. Audio was downsampled to 16 kHz before mel spectrogram

extraction. The mel spectrograms of left and right channels were concatenated along the bin di-

mension. All trajectories were upsampled to 100 Hz from 10 Hz to match the sampling rate of

the neural data. Trajectories were pooled across all trials and normalized. Spectrograms were also

normalized on a bin-by-bin basis. We chose a receptive field size of 500 ms for neural data and

200 ms for stimuli spectrograms and trajectories. The starting sample of these receptive fields were

aligned in time. Time-lagged matrices were then generated individually for neural data, trajectory

and spectrograms.

As done in a previous study [174], principal component analysis (PCA) was applied individ-

ually to time-lagged versions of both spectrogram and trajectory. PCA was also applied to the

time-lagged neural data matrix. The top PCA components explaining at least 95% of the variance

were retained. This was done to reduce the risk of overfitting in CCA.

During training, the CCA models simultaneously learn forward filters on attended talker’s clean

speech spectrogram and trajectory (after PCA) and backward filters on the neural data (after PCA)

such that upon projection with these filters, the neural data and the attended talker stimuli would
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be maximally correlated. During testing, these learnt filters are applied to the neural data (after

PCA) as well as to every talker’s speech spectrogram and trajectory (after PCA). The talker which

yields the highest correlation score (based on voting of the top three canonical correlations) was

determined as the attended talker.

We used behavioral measurements to correct the “attended” and “unattended" labels for the two

conversation streams . For trials in which two or more repeated words were detected in the uncued

conversation, the corresponding portions (bounded by button press timings) of the cued to-be-

attended and uncued to-be-unattended stimuli were swapped before model training and evaluation.

For models trained without correction, no such swapping was done based on behavior.

6.2.6 Psychoacoustic Experiment

The online psychoacoustic experiment to evaluate the performance of the brain-controlled hear-

ing system was conducted with 24 self-reported normal hearing participants from Amazon MTurk.

These participants were native speakers of American English located in the US. The experiment

lasted for a total of 30 minutes per participant and each participant was paid with 10 dollars. All

participants were required to wear stereo earphones.

Every MTurk participant listened to a total of 15 trials, 5 trials from each of the following

conditions.

1. System Off: The raw mixture stimuli that was played to the subjects from whom neural data

was recorded.

2. System On (Separated): Mixture in which the attended talker, as determined by the neural

signatures, was enhanced using the output of the binaural speaker-separation model.

3. System On (Clean): Mixture in which the attended talker was enhanced using clean ground

truth speech.

The trial order was randomized and the participants were unaware of the conditions assigned to

the trials. Enhanced mixtures were generated by suppressing the un-attended talker and the back-
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ground noise in the mixture by the same scale factor such that the resulting power difference

between the attended and the unattended talker was 9 dB. Like the iEEG participants, the MTurk

participants were also instructed to follow the cued conversation (conversation that starts first)

and press space bar on their keyboards upon hearing the repeated words in the conversation being

followed. After every trial, the participants were prompted with the following four questions:

1. Comprehension: A multiple choice question based on the content in the to-be-attended con-

versation with a single correct answer. This tested the intelligibility of the conversations.

2. Difficulty: Participants were asked to rate how difficult or easy it was for them to follow the

cued conversation on a scale from 1 to 5 (1 = very difficult, 2 = difficult, 3 = neutral, 4 =

easy, 5 = very easy).

3. Sound Localization: The last three seconds of the trial was allowed to be replayed multi-

ple times by the participants. Participants were asked to indicate from one of five equally

partitioned sectors of the frontal half plane (left, front left, center, front right, right) where

the cued conversation ended. This tested weather the spatial information of the separated

speakers were accurately preserved.

4. Voice Quality: Participants were also asked to rate the quality of voices in the cued conver-

sation on a scale from 1 to 5 (1 = bad, 2 = poor, 3 = fair, 4 = good, 5 = excellent).

6.3 Results

6.3.1 Behavioral Data Analysis

The push button responses of subjects to repeated words in the conversation being followed

help in determining to which conversation a subject was attending. A repeated word in a conver-

sation was considered as correctly detected only if a button press was captured within two seconds

of its onset. As shown in Fig. 6.4, all subjects tracked more than 65% of the repeated words in the

cued (to-be-attended) conversation. We assign these as hits. However, we see that subjects also
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Figure 6.4: Proportion of repeated words detected in the cued (to-be-attended) and uncued (to-
be-unattended) conversations by the subjects across all trials. Subjects mostly attend to the cued
conversation, but sometimes they also pay attention to the uncued one.

tracked a non-zero fraction of repeated words in the uncued (to-be-unattended) conversation (false

alarms) indicating that there might have been occasions when the subjects were attending to the

uncued (to-be-unattended) conversation. We combined the hit rate and false alarm rate for each

subject to generate a sensitivity index (𝑑′) inspired by signal detection theory [185, 191] (SDT).

Sensitivity index for each subject was calculated as: 𝑑′ = z(False Alarm Rate) – z(Hit Rate), where

z(x) is the z-score corresponding to the right-tail p-value of x [191]. Subjects were ranked based

on their sensitivity indices (S1: 2.8, S2: 2.3, S3: 1.9).

6.3.2 Auditory Attention Decoding

Section 6.2.5 introduces the CCA algorithm that compares neural signals with both speech

spectrogram and trajectory of each talker to predict the attended talker. Subject-wise CCA models

were trained, and their performance was evaluated using leave-one-trial-out cross validation, i.e.,

training on N - 1 trials and testing on the windows from the N-th trial. We evaluated auditory

attention decoding accuracies for all subjects for a range of window sizes from 0.5 s to 32 s for the

following two stimuli versions:

1. Clean Stimuli: Using the clean (before mixing) ground truth speech spectrograms and tra-

jectories of individual talkers in the acoustic scene.
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Figure 6.5: Evaluating AAD performance. (a) AAD accuracies averaged across subjects as a
function of window size. The decoding accuracies are comparable between the clean and sepa-
rated versions (Wilcoxon signed-rank test, p-val = 0.13). Error bars indicate the standard error
of mean. (b) Scatter plots comparing trial-wise AAD accuracies for a window size of 4 s when
using only spectrogram vs spectrogram + trajectory. Each point represents a trial. AAD accu-
racies improved significantly when talker trajectories were also incorporated in addition to their
speech spectrograms for both clean (paired 𝑡-test, p-val = 0.002) and separated (paired 𝑡-test, p-val
= 0.010) versions.

2. Automatically Separated Stimuli: Using the speech spectrograms and estimated trajectories

of talkers yielded by the binaural speech separation model.

Figure 6.5a shows the attended talker decoding accuracies averaged across subjects as a func-

tion of window size for both clean and separated versions after correcting for behavior. For both

versions, the attended talker decoding accuracies increase as a function of window size. This is

expected since with larger window sizes, more information is available to determine the attended

talker. Stimuli version had a very small effect on the AAD accuracies across subjects and win-

dow sizes (Wilcoxon signed-rank test, p-val = 0.13). This indicates that the AAD performance

with automatically separated stimuli is as good as the performance with original clean stimuli (in

Fig. 6.5a), confirming the efficacy of the proposed speech separation module.

We studied the improvement in AAD performance when talker trajectories are included in

addition to talker spectrograms. For this comparison, we trained and tested CCA models (post

behavior correction) with only talker spectrograms without trajectories. As shown in Fig. 6.5b, we

found that trial-wise AAD performance improved when talker trajectories were also incorporated

in addition to talker spectrograms for both clean (paired 𝑡-test, p-val = 0.002) and automatically
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of models were trained without correcting for behavior. The decoding accuracies are plotted for the
clean version of speech for both with and without behavior correction. Not correcting for behavior
can lead to significant underreporting of AAD performance (Wilcoxon signed-rank test, p-val <
0.001) (b) For models trained without correcting for behavior, trial-wise behavioral performance
and AAD accuracies are significantly correlated (Pearson’s r = 0.639, p-val < 0.001). (c) An
example trial from one of the subjects who shifts attention from the cued conversation (Conv. 1) to
the uncued conversation (Conv. 2) in the middle of the trial. Repeated words in the conversation
streams are shaded in pink. Button press responses to the repeated words are shown in green (red)
for the cued (uncued) conversation. The last plot shows the first canonical correlation for both the
conversation streams obtained by continuously sliding a 4 s window. Behavior is well correlated
with the canonical correlations.
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separated (paired 𝑡-test, p-val = 0.010) versions of the stimuli.

Lack of having a behavioral measure and not correcting for the same can lead to underreporting

of AAD performance. To study this, we also trained a set of CCA models assuming that the subjects

always paid attention to the cued (to-be-attended) conversation. Figure 6.6a compares the AAD

performance for clean stimuli when correcting and not correcting for behavior. Not correcting for

behavior significantly hurts AAD performance (Wilcoxon signed-rank test, p-val < 0.001). This

is also true when evaluating with the automatically separated version of the stimuli (Wilcoxon

signed-rank test, p-val < 0.001).

Next, for the models trained without correcting for behavior, we examined whether the be-

havioral performance on the repeated word detection task could explain the AAD performance

on a trial-by-trial basis. We first computed the proportion of repeated words detected in the cued

conversation (hit rate) for each trial and for each subject. We also computed corresponding trial-

wise AAD accuracies for a window size of 4 s. As shown in Fig. 6.6b, we found that hit rate on

the repeated word detection task was significantly correlated with the trial-wise AAD accuracies

(Pearson’s r = 0.639, p-val < 0.001). Figure 6.6c shows an example trial from one of the subjects

who, based on behavioral responses, was initially attending to the cued (to-be-attended) conver-

sation and then later attends to the uncued (to-be-unattended) conversation after the conversations

cross in space. The canonical correlations mapping the neural data with both the cued and uncued

stimuli also capture this shift of attention from one conversation to the other. Thus, the repeated

word detection task helps explain AAD performance on a trial-by-trial basis.

6.3.3 System Dynamics During Talker Transitions

Turn-takings during conversations create talker switches in the attended conversation. For good

user experience, it is important that the system tracks the talker switch and seamlessly enhances the

new attended talker. Our experiment paradigm, inspired by real-world settings, had asynchronous

talker switches in both to-be-attended and to-be-unattended conversations (see Section 6.2.3). Fig-

ure 6.7a shows the system was able to seamlessly track turn-takings in conversations.
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Figure 6.7: System dynamics during talker transitions. (a) The proposed system seamlessly
tracks turn-takings. This is facilitated by the speaker separation module which places talkers in
a conversation on the same output channel by relying on location and talker continuity cues. At-
tended conversation is highlighted with a pink shade. Correlations showed are the average of the
top three canonical correlations for separated version of the stimuli. (b) Attention switch from one
conversation to another can be simulated by swapping the output channels of the binaural sepa-
ration system. (c) Channel preference dynamics after simulated attention switch for a decoding
window size of 4 s. (d) Transition times as a function of decoding window size. No significant
differences were observed between the clean and separated versions (Wilcoxon signed-rank test,
p-val = 0.70). Error bars in all plots indicate the standard error of mean.

In some cases, the wearer of the hearing device might switch attention from a conversation

at a particular location to another conversation at a different location. To study how our system

responds in such cases, we artificially swapped the outputs of the binaural speech separation system
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at the point of talker switch in the cued conversation, as shown in Fig. 6.7b. Since we combine the

results of the top three canonical correlations based on voting to determine the attended talker or

channel, we define a metric channel preference index (CPI), i.e.,

CPI =
# of votes favoring Channel 1

3
− 0.5. (6.1)

Thus, a positive CPI would indicate a preference to Channel 1 whereas a negative CPI would

indicate a preference to Channel 2. In Fig. 6.7c, we show the CPI averaged across trials for one of

the subjects (S3) when attention switch is simulated. We define the transition time as the time point

where the average CPI crosses 0. Figure 6.7d shows the transition times (averaged across subjects)

as a function of window size for both clean and separated versions. No significant difference was

found in the transition times across subjects and window sizes between the clean and separated

versions (Wilcoxon signed-rank test, p-val = 0.70).

6.3.4 Evaluation of System Performance

Part A: Subjective

We recruited human participants to evaluate the performance of the proposed system (see Sec-

tion 6.2.6). As shown in Fig. 6.8a, under both “system on” conditions, the repeated word detection

accuracy in the cued conversation is enhanced when compared to the “system off” condition (paired

𝑡-test, p-val < 0.001), whereas for the uncued conversation (in Fig. 6.8b), the detection accuracy is

reduced (paired 𝑡-test, p-val < 0.01). This means that the system helps track the cued conversation

and prevents unintentional tracking of the uncued conversation. We also find that intelligibility

of the cued conversation is significantly enhanced under the “system on” conditions (in Fig. 6.8c,

paired 𝑡-test, p-val < 0.05). No significant differences are observed between the clean and sepa-

rated versions of the “system on” condition. Ease of attending to the cued conversation increases

from “system off” condition to “system on with separated speech” condition (paired 𝑡-test, p-val

< 0.0001) to “system on with clean speech” condition (paired 𝑡-test, p-val < 0.01), as shown in
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     can still be localized in 
     space.

 f. Talker voice quality is 
    preserved.

Figure 6.8: Subjective evaluation of system outputs show enhanced tracking of the cued con-
versation, improved intelligibility and retention of talker cues and voice quality. (a) Repeated
word detection accuracy in the cued conversation increases significantly when the system is turned
on for both clean as well as separated versions (paired 𝑡-test, p-val < 0.001). (b) Repeated word
detection accuracy for the uncued conversation drops significantly when the system is turned on
(paired 𝑡-test, p-val < 0.01). (c) Intelligibility of the cued conversation is significantly increased
under the system on conditions (paired 𝑡-test, p-val < 0.05) (d) Attending to the cued conversation
is easier under the system on conditions (paired 𝑡-test, p-val < 0.0001). (e) Participants can localize
talkers in space equally well in all conditions. (f) No significant difference in voice quality ratings
was observed between the system off condition vs the system on with separated speech condition.
However, participants rated the voice quality of the system on with clean speech condition to be
relatively higher (paired 𝑡-test, p-val < 0.05). Error bars in all plots indicate the standard error of
mean.

Fig. 6.8d. Surprisingly, no differences in voice quality of the talkers in the cued conversation

were observed between the “system off” and the “system on with separated speech” condition (in

Fig. 6.8f). However, participants rated the voice quality in the “system off with clean speech”

condition higher than the other two (paired 𝑡-test, p-val < 0.05). These results indicate that a scope

for improvement exists for the binaural speech separation model and its upper bounds (when there

is ideal separation) are captured by the “system on with clean speech” condition. The ability to
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Figure 6.9: Improved objective quality and intelligibility. (a and b) Both PESQ and ESTOI
scores increase from “system off” condition to “system on with separated speech” condition to
“system on with clean speech” condition (paired 𝑡-tests, p-val < 0.0001). Error bars in all plots
indicate the standard error of mean.

localize talkers in space, as shown in Fig. 6.8e, was comparable across all the three conditions

highlighting retention of the attended talker spatial cues when the system is turned on. In sum-

mary, the system helps follow the conversation of interest, increases its intelligibility and the ease

of attending to it while also preserving spatial cues.

Part B: Objective

In addition to subjective evaluation, we also performed an objective evaluation where the same

system simulated outputs in the subjective evaluation were compared with their corresponding

clean to-be-attended conversation waveforms (as reference) to calculate narrowband MOS-mapped

Perceptual Evaluation of Speech Quality (PESQ) [87] and Extended Short-Time Objective Intelli-

gibility (ESTOI) [88] scores. As expected, in Fig. 6.9, we see a significant improvement in these

scores as we progress from “system off” condition to “system on with separated speech” condition

to “system on with clean speech” condition (paired 𝑡-tests, p-val < 0.0001).
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6.4 Discussion

We introduced a novel AAD experimental paradigm that diverges from existing studies by in-

corporating concurrent conversations with natural turn-takings where talkers move in space amidst

background noise. This approach represents a substantial advancement in creating realistic audi-

tory scenarios for AAD research. Our binaural speaker separation model successfully separated

these dynamic conversations into individual streams while preserving talker spatial cues and sup-

pressing background noise. Additionally, the speech separation system provides real-time talker

trajectory to the AAD algorithm, enhancing its decoding accuracy and speed. The use of repeated

word detection tasks across the conversations provided a robust ground truth label for the attended

conversation with a high temporal resolution and explained AAD performance on a trial-by-trial

basis. Evaluations of the proposed system revealed improved tracking of the attended conversation

and increased its intelligibility while preserving the perceived location of each talker in space.

The primary aim of this chapter was to address the limitations of previous AAD research that

predominantly assumed two stationary talkers [160, 180, 14, 179], thereby restricting the appli-

cability of such research to real-world scenarios. In realistic acoustic scenes, we normally listen

to simultaneous conversations which can involve multiple talkers. Our research extends previous

work by replacing concurrent talkers with concurrent conversations involving natural turn-taking.

By utilizing the speaker-independent speech separation model introduced in Section 2.3 that lever-

ages both spatial and spectro-temporal information, our research marks a significant step toward

creating an immersive listening experience that closely mimics natural environments. This separa-

tion model not only separates the speech of moving talkers but also allows listeners to accurately

track their locations, an aspect crucial for realistic AAD applications. An essential contribution

of our study is that incorporating real-time talker trajectories estimated by speech separation algo-

rithm in addition to spectrotemporal information can improve AAD accuracy and speed [183, 192,

193, 194]. Further research is needed to distinguish listener motion-induced from talker motion-

induced acoustic change and how it could be encoded differently in the human auditory cortex.
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Another contribution of this chapter is introducing a behavioral task of repeated word detection

across conversations, allowing us to identify the actual attended conversation with high temporal

resolution. This method addresses a common issue in previous AAD studies where subjects’ at-

tention could inadvertently shift to the unattended stream [184], leading to mislabeled data and

affecting the training and evaluation of AAD models. By incorporating a behavioral measure into

our experiment design, we have enhanced the accuracy of determining the attended talker or con-

versation. In future AAD studies with moving talkers, a higher degree of temporal resolution can

be achieved by asking the subjects also to report the spatial trajectory of the conversation fol-

lowed. Additionally, further research is needed to investigate the difference between endogenous

and exogenous auditory attention switches and how they may be decoded differently [195].

While our study focused on neural activity in the high gamma band, incorporating low-frequency

neural activity, which has been shown to track motion and attention, could improve AAD accu-

racies. Prior invasive [162] and non-invasive [14, 13] AAD studies have shown signatures of

auditory attention (via tracking of the envelope of the attended speech) in the lower frequencies

(1 – 7 Hz). A recent study [196] also showed that low-frequency neural activity also tracks the

location of the attended talker, especially in delta (< 2 Hz) phase and alpha (8-12 Hz) power. In-

cluding low-frequency neural signals might provide a more comprehensive understanding of the

neural underpinning of auditory attention and enhance the performance of AAD systems.

A critical aspect of future research should involve transitioning to a real-time, closed-loop

system. This requires the integration of speech separation and AAD components to work syn-

chronously in a causal, real-time manner. Furthermore, determining how to optimally manipulate

the acoustic scene based on the decoded attended talker remains an area for further investigation.

Such acoustic modifications should help the listener follow the attended conversation while still

maintaining the ability to switch to the unattended one. Our experiment design could be further

aligned with real-world scenarios by introducing more complex motion patterns for talkers, such

as radial motion and motion pauses. This would add a layer of complexity to the auditory scene,

presenting conversations with time-varying power and potentially challenging the current speaker
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separation model. Addressing this challenge may involve retraining or fine-tuning the model on

datasets with these characteristics.

A brain-controlled hearing device that can quickly and accurately adapt to changes in the lis-

tener’s attention is a challenge that may be more effectively addressed with invasive neural record-

ing techniques. However, a critique of our approach is the reliance on invasive neural recordings

which might be perceived as less accessible. Considering the rapid advancements in speech BCI

research involving invasive neural recordings [72, 73], these methods are becoming increasingly

common and feasible. The precision and speed offered by invasive recordings are currently un-

matched by non-invasive techniques, making them essential for exploring the upper limits of AAD

performance. While future research continues to explore less invasive or alternative neural record-

ing methods, our current focus on invasive recordings is crucial for advancing the field and setting

benchmarks for performance of these systems and establishing minimum required performance for

listeners to prefer AAD functionality.

This chapter contributes significantly to AAD research and brain-controlled hearing devices by

introducing more realistic experimental paradigms and advancing the technology toward practical

applications. The insights from this research enhance our understanding of auditory attention in

complex environments and pave the way for future innovations in assistive hearing technologies.
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Chapter 7: Improved Decoding of Attentional Selection in Multi-Talker

Environments with Self-Supervised Learned Speech Representation

In Chapter 5 and 6, we have used auditory attention decoding (AAD) technique to identify

the talker that a listener is focused on in a noisy environment. This is done by comparing the

listener’s brainwaves to a representation of all the sound sources to find the closest match. The

representation is typically the spectrogram of the sounds. However, it is uncertain whether this

representation for AAD is optimal. In this chapter, we examine the use of self-supervised learned

speech representation in improving the accuracy and speed of AAD. We used WavLM to extract

a latent representation of each talker and trained a spatiotemporal filter to map brain activity to

intermediate representations of speech. During the evaluation, the reconstructed representation is

compared to each speaker’s representation to determine the target speaker. Our results indicate

that speech representation from WavLM provides better decoding accuracy and speed than the

speech envelope and spectrogram. Our findings demonstrate the advantages of self-supervised

learned speech representation for auditory attention decoding and pave the way for developing

better brain-controlled hearable technologies.

7.1 Introduction

Auditory attention decoding (AAD) uses brain activity to predict which talker the listener is

attending to. Most AAD algorithms reconstruct a representation of speech from the brain activity

and compare it to all the talkers in the environment [14, 12]. The talker with the highest correla-

tion is considered the attended talker. Typically, the representation of sound that is used in AAD is

either the envelope or spectrogram. However, it is not clear if either of these are optimal for neural

decoding. A good representation of sound for AAD should be easily reconstructed from brain
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activity. In particular, learning a complex nonlinear mapping from brain signals to the representa-

tion can be challenging due to the limitations in recording the brain signals. Additionally, a good

representation should have a stronger correlation with the attended speaker than with unattended

speakers.

Self-supervised representation learning (SSL) for speech has been successfully applied in many

applications [197, 198, 199]. SSL learns representations through designed pretext tasks, where

the input and learning targets are derived from the input signal itself. Because of this, SSL can

be easily scaled up with a large amount of unlabeled speech data. The self-supervised learned

representations are often used as input features for downstream tasks to reduce the need for a large

amount of labeled training data and improve task performance. Studies have shown that the learned

speech representations can improve various downstream tasks such as speech recognition, speaker

identification, and intent classification [200].

Several self-supervised speech representation learning approaches have been proposed recently,

with wav2vec 2.0 [197] and HuBERT [198] being two of the most well-known. Both models have

a similar architecture but differ in their pre-training strategies. Wav2vec 2.0 uses a contrastive

loss to differentiate between positive and negative samples, while HuBERT uses an offline clus-

tering approach to assign labels to speech units, and then trains the model through a BERT-like

masked speech prediction task. This forces the model to learn both acoustic and language features

from unlabeled speech data. WavLM [199], a variant of HuBERT, adds a speech denoising task

during pre-training to improve its ability to handle non-ASR tasks such as speech diarization and

separation. WavLM Large, trained on 94k hours of diverse speech data, outperforms previous self-

supervised speech models on SUPERB [200], demonstrating its high capacity to model speech

speaker, content, and semantics. Given its strong performance, we selected WavLM Large for this

study, as it has the best potential to improve attended-or-unattended talker classification accuracy.

Decoding attentional selection is therefore regarded as a downstream task of WavLM.

A recent study indicates that the functional hierarchy of latent layers of a self-supervised speech

model aligns well with the cortical hierarchy of speech processing [201]. Additionally, the learned
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representations have been found to be more effective at predicting cortical responses to speech

[202] and being predicted from them [203], compared to hand-engineered acoustic features, further

motivating the idea that they may be related to attention and superior to traditional acoustic features

used in the AAD task.

In this chapter, we propose to use self-supervised learned speech representations to improve

the neural decoding of attentional selection. We used an intermediate layer of the pre-trained

WavLM model as the reconstruction target from the brain signals instead of using traditional

speech envelope and spectrogram features. Our experimental results show a significant improve-

ment in decoding accuracy when using these learned speech representations. Furthermore, we

adapted the WavLM model to a causal setup for real-time implementation testing and showed

that it still surpasses speech envelope and spectrogram features, suggesting that transformer-based

self-supervised representations excel as candidates for brain-controlled hearable devices.

7.2 Material and Method

7.2.1 Neural Data Acquisition and Preprocessing

We used the same materials as in Chapter 6. For details on participants and neural recordings,

refer to Section 6.2.1; for data preprocessing information, see Section 6.2.2; and for specifics on

stimuli design, see Section 6.2.3.

7.2.2 Extraction of Speech Representations

The WavLM Large model 1 is composed of a convolutional encoder and 24 transformer layers.

The convolutional encoder converts a waveform sampled at 16 kHz to a feature sequence at a 50

Hz framerate (one frame every 20ms), with each frame encoding about 25 ms of the waveform.

Each transformer layer has an embedding dimension of 1024 and 12 self-attention heads.

We used WavLM to extract the latent representation 𝑋 ∈ R1024∗𝑇 of speech waveforms from

1The pre-trained model can be found at https://github.com/microsoft/unilm/tree/master/
wavlm
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Figure 7.1: Diagram showing the process of auditory attention decoding. (A) Neural activity is
monitored while a subject listens to a mixture of two talkers and focuses on one of them. WavLM
extracts the representation of individual talkers obtained through a speech separation model. The
predicted representation from the neural activity is compared to the representation of individual
talkers to determine the most similar talker. (B) WavLM consists of a CNN encoder and trans-
former, producing layers of features. One intermediate layer is used as the speech representation.
(C) Linear spatiotemporal filters map the neural activity, with time-lags ranging from −400 ms to
100 ms, to the learned representation.

the i-th layer, where T is the number of time frames. We upsampled X to 100 Hz to match the

rate of the neural data. Since our speech duration is long, we limited the attention span of each

frame in the transformer layers to 6 seconds (∼ 300 time frames) with 3 seconds before and 3

seconds after the frame. However, WavLM is a noncausal model because each time frame attends

to future time frames. For a fair comparison with the speech envelope and spectrogram, and to

enable real-time AAD, we modified WavLM for a causal configuration. First, we set the attention

weights of all the future frames as zero to force each frame to only attend to the past 6 seconds, and

we refer to this model as “WavLM w/ causal ATT". The transformer layer in WavLM is equipped

with a convolution-based position embedding where the convolution operation has access to the

future frames, which results in noncausal computation. To avoid this, we changed the noncausal

convolution to a causal convolution, and the resulting model is referred to as “WavLM w/ causal

ATT & PE". Note that we did not finetune WavLM after we modified the attention weights or

positional embedding. In case of random effects that cause performance gain for WavLM, we

added WavLM with random initialization as a control.
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7.2.3 Representation Reconstruction for Decoding Attention

We employed the linear reconstruction method as introduced in Section 5.2.5, with a slight

modification: we reconstructed representations of both attended and unattended talkers. This ad-

justment is based on previous research [13, 14] which demonstrated the feasibility of separately

extracting attended and unattended speech from neural data. Specifically, two subject-wise liner

spatiotemporal filters 𝐺𝐴 and 𝐺𝑢 were learned to map neural activity R to the speech representa-

tions of the attended (𝑋̂𝐴) and unattended (𝑋̂𝑈) talkers,

𝑋̂𝐴 (𝑛, 𝑡) =
∑︁
𝑒

∑︁
𝜏

𝐺𝐴 (𝑛, 𝑒, 𝜏)𝑅(𝑒, 𝑡 − 𝜏) (7.1)

𝑋̂𝑈 (𝑛, 𝑡) =
∑︁
𝑒

∑︁
𝜏

𝐺𝑈 (𝑛, 𝑒, 𝜏)𝑅(𝑒, 𝑡 − 𝜏), (7.2)

where 𝑛 is the channel index of the representation, 𝑒 is the neural electrode index, and 𝜏 is the time

lag, ranging from −400 ms to 100 ms in this study. The linear filters were optimized by minimizing

the mean-squared errors between the reconstructed and the actual representations.

A leave-one-out cross-validation approach was used, wherein the subject-wise filters were

trained on N - 1 trials and used to reconstruct representations 𝑋̂𝐴, 𝑋̂𝑈 on the left out trial. We

calculated Pearson’s correlation coefficient between the reconstructed representations 𝑋̂𝐴, 𝑋̂𝑈 and

the representations of two talkers 𝑋𝑠𝑝1, 𝑋𝑠𝑝2. The correlation coefficient is estimated across a win-

dow of seconds, which is referred to as the decoding window duration. We used sliding window

of 0.5 s, 1 s, 2 s, 4 s, and 8 s, respectively, throughout the trial duration. We defined an attentional

modulation index (AMI) as,

𝐴𝑀𝐼 = 𝑐𝑜𝑟𝑟 ( 𝑋̂𝐴, 𝑋𝑠𝑝1) − 𝑐𝑜𝑟𝑟 ( 𝑋̂𝐴, 𝑋𝑠𝑝2)

+ 𝑐𝑜𝑟𝑟 ( 𝑋̂𝑈 , 𝑋𝑠𝑝2) − 𝑐𝑜𝑟𝑟 ( 𝑋̂𝑈 , 𝑋𝑠𝑝1).
(7.3)

A positive value of this index suggests that speaker 1 is the attended speaker, and a negative value

votes speaker 2 to be the attended speaker for this window. Decoding accuracy is defined as the
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Figure 7.2: Accuracy of attention decoding using representations from each layer of WavLM with
a 4-second decoding window. The 11-th layer shows the best average performance across subjects.

percentage of windows that were correctly classified.

7.3 Results and Discussion

7.3.1 Decoding Accuracy for Each Layer of the SSL Model

Fig. 7.2 shows the effect of different layer representations from WavLM on decoding accuracy.

The accuracy improves as the layer depth increases, then slightly decreases before climbing again.

The 11-th layer produces the best performance on average for the three subjects. The first layer,

which is the output of the CNN encoder, extracts local features (∼ 25 ms) from speech, resembling

a spectrogram. The subsequent layers contain semantic information with more context. A recent

layer-wise analysis of wav2vec 2.0 found an acoustic-linguistic hierarchy in layer-wise represen-

tation evolution, where shallow layers encode local acoustic information, followed by phonetics,

word identity, and word meaning [204]. Therefore, Fig. 7.2 suggests that speech’s higher-level

features may be better decoded from the brain to enhance attention decoding accuracy. Pasad et

al. [204] also noticed a reverse trend starting from the middle layer, which they attributed to the

transformer layers’ autoencoder-style behavior where deeper layers become closer to the input.
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Table 7.1: Accuracy of attention decoding using various features extracted from clean speech (Avg.
Over 3 Subjects, in %)

Feature Decoding window size
0.5s 1s 2s 4s 8s

Envelope 63.3 71.6 79.5 86.0 91.3
Mel-spectrogram 65.6 72.3 80.8 88.5 91.5
WavLM 72.9 78.7 85.2 90.3 92.6
WavLM w/ causal ATT 72.2 78.5 84.6 89.4 92.3
WavLM w/ causal ATT & PE 72.0 77.9 84.1 89.1 92.5
WavLM w/ random init. 62.8 68.4 74.1 79.8 87.1

7.3.2 Decoding Accuracy for Different Reconstruction Targets

Table 7.1 compares the results of different features used for auditory attention decoding. The

acoustic features envelope and 28-basis Mel-spectrogram are the baseline features. The envelope

and Mel-spectrogram features were Z-scored before training and inference. Results show that all

the features extracted from WavLM consistently outperform the baseline (paired 𝑡-test, p < 0.001

for win sizes 0.5 s, 1 s, 2 s, and 4 s; p < 0.05 for win size 8 s). WavLM performs especially

well compared to the baseline when the decoding window size is small. The causal configuration

resulted in a slight performance decrease, but it is expected that further fine-tuning can reduce

this decrease. A control experiment using WavLM with random initialization shows significantly

worse results than the baseline, confirming that the performance gain for WavLM was due to self-

supervised learned representations, not due to its architecture or feature dimension.

Because clean speech of individual speakers is usually unavailable, we used an automatic

speech separation model introduced in Section 2.3 to separate the mixed speech. Results in Table

7.2 show a slight decrease in accuracy compared to those in Table 1 due to imperfect speech sep-

aration, but this difference is small and all features are similarly affected. Despite this, WavLM

remains superior to speech envelope and Mel-spectrogram.
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Table 7.2: Accuracy of attention decoding using various features extracted from separated speech
(Avg. Over 3 Subjects, in %)

Feature Decoding window size
0.5s 1s 2s 4s 8s

Envelope 63.0 70.1 78.5 85.2 90.1
Mel-spectrogram 64.6 71.1 79.2 86.3 90.4
WavLM 72.2 77.8 83.9 88.6 92.4
WavLM w/ causal ATT 70.8 76.6 82.5 88.1 92.1
WavLM w/ causal ATT & PE 70.6 76.1 82.3 88.1 91.7
WavLM w/ random init. 62.8 68.4 74.1 79.8 84.6

7.3.3 Number of Principle Components

We reduced the dimension of WavLM features using Principal Component Analysis (PCA).

Table 7.3 presents the decoding accuracy for WavLM features with varying numbers of PCA com-

ponents. Although accuracy decreases slightly with fewer components, with the same number of

components, WavLM surpasses Mel-spectrogram notably.

Table 7.3: Accuracy of attention decoding using WavLM feature with various component numbers.

Feature Decoding window size
0.5s 1s 2s 4s 8s

Mel-spectrogram (28 dims) 64.6 71.1 79.2 86.3 90.4
WavLM causal (1024 dims) 70.6 76.1 82.3 88.1 91.7

200 PCs 70.3 75.7 82.2 88.1 91.7
100 PCs 70.0 75.5 81.9 87.8 91.7
50 PCs 69.5 75.2 81.8 87.4 91.4
28 PCs 69.0 74.8 81.5 87.7 91.7

7.3.4 Dynamic Switching of Attention

We simulated dynamic attention switching by concatenating the first 10 seconds and last 10

seconds of neural responses in each trial where the subject was attending to Spk1 in the first 10 s

and switched to Spk2 afterward. We calculated AMI scores for WavLM w/ causal ATT & PE and
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Figure 7.3: (1) The upper plot displays attention switching from speaker 1 to speaker 2. The
dashed line represents the switch in attention. The average AMI for the three subjects is shown
with a 4-second decoding window. (2) The bottom plot shows the transition time for detecting
a switch which was measured as the moment when AMI crosses zero. Statistical significance is
indicated by asterisks: ★ for 𝑝 < 0.05 and ★★ for 𝑝 < 0.01.

Mel-spectrogram, respectively, using a sliding window of 4s. The upper panel of Fig. 7.3 shows

the AMI scores averaged over all the subjects and trials. The averaged AMI scores were scaled

between -1 and 1. WavLM and spectrogram exhibit a similar pattern but WavLM detects the switch

faster. The bottom panel of Fig. 7.3 shows the average transition times for five different sliding

window durations. As expected, the transition times increase for longer durations. There are no

significant differences between WavLM and spectrogram for window size 2 s and below (paired

𝑡-test, 𝑝 > 0.2); However, WavLM has a shorter transition time for window sizes 4 s (𝑝 < 0.05)

and 8 s (𝑝 < 0.01).

7.3.5 Comparison of Features in Predicting Neural Activity

To gain further insight into why SSL features provide a higher neural decoding accuracy, we

used a forward model to predict the response of single neural sites from different layers of WavLM.

While the stimulus reconstruction method uses a backward model, here we trained forward models,

spatiotemporal filters, 𝐺𝑅, that predict neural activity based on various stimulus features. The
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Figure 7.4: The improvement in r-value between the actual and predicted neural activity using
WavLM features compared to using spectrogram for each layer and electrode. A positive value
indicates WavLM features provide a better prediction of the neural activity at that electrode than
the spectrogram, while a negative value indicates that the spectrogram is more accurate. Zeros
(show in white) indicate no significant difference between the two features (𝑝 > 0.05). The bar
plots show the proportion of electrodes that are more responsive to WavLM features (red) and to
spectrogram (blue), respectively.

mathematical principle is similar to that of stimulus reconstruction, just in the opposite direction,

𝑅̂(𝑒, 𝑡) =
∑︁
𝑒

∑︁
𝜏

𝐺𝑅 (𝑒, 𝑛, 𝜏)𝑋𝐴 (𝑛, 𝑡 − 𝜏), (7.4)

where the time lag 𝜏 ranges from 0 to 200 ms. We measured the correlation (r-value) between the

reconstructed and actual neural activity for each electrode. We assessed the improvement in r-value

using each layer of WavLM compared to the Mel-spectrogram, where we utilized the first 100 PCs

of WavLM features. If the results of a paired 𝑡-test showed no statistical difference between using

WavLM features and the Mel-spectrogram (with a 𝑝 > 0.05), the improvement value was set to

zero. Additionally, we calculated the percentage of electrodes that were more accurately predicted

using spectrogram and the percentage of electrodes that were more accurately predicted using

WavLM features for each layer.

The results for the three subjects are presented in Fig. 7.4. The middle layers of WavLM gen-

erally provided better predictions compared to the shallow layers and the deepest layers. Although

some electrodes were more accurately predicted using the acoustic spectrogram (shown in blue),

a larger proportion of electrodes were better predicted using WavLM features (shown in red). The

results in Fig. 7.4 indicate that different regions of the auditory cortex encode different levels of

speech information, inspiring combining different layers of WavLM features to further improve
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AAD accuracy.

7.4 Conclusion

This chapter investigates the use of self-supervised speech representations to enhance atten-

tional decoding in multi-talker situations. Results show that substituting traditional speech fea-

tures with latent features from WavLM result in improved attention decoding accuracy and speed,

paving the path to more swift brain-controlled hearing devices. These findings suggest the need

for further exploration of self-supervised speech representations in auditory neural decoding and

their potential to improve our understanding of how the human brain makes attentional selections.
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Conclusion and Future Work

In this dissertation, we designed speech separation models for brain-controlled hearing

technologies. We used deep learning methods and investigated multiple prevalent challenges,

including improving signal quality of separated speech, improving model robustness against

adverse environments with background noise, room reverberation, and source motion, and

improving the models’ generalization capabilities for real-world recordings. In addition to these

challenges, we considered key factors for hearing device development, such as designing

separation models with causal configurations for low-latency separation and designing binaural

separation models for preserving spatial the cues of individual speakers. A critical part of this

dissertation is the integration of speech separation with auditory attention decoding, which we

refer to as SS-AAD systems. We first designed a basic AAD experiment to validate the concept.

Subsequently, we progressed to developing a realistic AAD paradigm that replicates the complex

acoustics of real-world environments. This step is essential for bringing SS-AAD systems closer

to real-world use. The evaluation results show that the proposed SS-AAD systems enhance

subjective and objective quality of perceiving the attended speaker and reduce listening effort in a

multi-talker mixture. By combining the advances in automatic speech separation and

brain-computer interfaces, this dissertation provides a solution to brain-controlled hearing that

can dramatically improve the quality of life for the hearing-impaired and augment hearing

capabilities for the general public.

Below I outline a few open questions and future directions.
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Better separation performance for human listening. Recent years have witnessed

significant progress in deep neural network-based speech separation models. The scale-invariant

signal-to-distortion ratio improvement (SI-SDRi) of the leading model has seen a remarkable rise,

from 10.8 dB in 2015 [20] to 23.9 dB in 2023 [205], on the WSJ0-2mix dataset. Currently, most

separation and enhancement models are trained using SI-SDR or similar metrics, such as SNR,

SI-SNR and MSE, to optimize speech signal quality. However, an increased signal quality does

not necessarily lead to improved human auditory perception. In Chapter 6, we revealed that while

deep neural networks excelled in noise reduction due to the power of nonlinear models, they

offered only marginal improvements in speech intelligibility and were rated poorly in human

listening tests. To investigate the potential of deep neural networks for hearing devices, we must

rethink both the training objectives and objective evaluation metrics. Luo et al. [206] designed

auxiliary autoencoding training (A2T) to control the distortion on the direct-path signals and

improve the recognition accuracy in reverberant separation. Adversarial loss [207, 208] has also

been explored to approximate the distribution of clean speech. Moreover, recent studies have

started optimizing speech separation and enhancement models using perceptual-related measures

such as STOI [209, 210], PESQ [211, 212, 213], and human-assessed MOS [214]. However, there

remains a lack of comprehensive studies exploring the extent to which perceptually-related

objectives improve models for human listening. The exploration of other novel objectives to

optimize speech separation models for better human listening experience continues to be an

important direction of research.

Multi-modal speech separation. In this dissertation, our focus is on speech separation

using audio signals alone. However, there have been extensive studies improving speech

separation models by adding visual information, such as lip motion and face features [215, 216,

217]. These visual cues, correlated to speech content and speaker characteristics, usually remain

consistent across different acoustic environments and, therefore, could benefit speech separation

in challenging acoustic environments like cocktail parties. Another emerging multi-modal

approach is text-informed speech separation [218, 219, 220]. In the context of hearable devices,
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this is termed as semantic hearing [221] where users can use semantic instructions to guide

devices in focusing on or filtering out specific sounds in real-world environments. With the

advent of large language models (LLMs) [222], text-promptable models have become a popular

topic across various fields. There is a growing trend of using natural language to instruct models.

It has been shown a simple textual description of the desired audio source can inform the

separation model to isolate that source [223, 224]. We anticipate in the future users will

effortlessly communicate with smart hearing aids using typed instructions or voice commands.

Users can also directly modify acoustic scenes to their preference directly. Interesting questions

arise regarding how to involve these advancements with brain-computer interface technologies.

The integration of brain signals with these novel, multi-modal approaches will open up the

possibility of developing smart hearing aids that are more intuitive and responsive to the user’s

auditory needs and preferences. Moreover, identifying the joint semantic space between brain

activities and these new modalities will also be an area of interest.

On-device models. Deploying speech separation models to devices requires low latency,

minimal computational complexity, lightweight model structures, and low power consumption.

We have investigated efficient model architectures that decrease the model size and complexity

without sacrificing the performance [225, 226]. Continued development of efficient and effective

models for hearing aids remains a critical direction. A noteworthy trend in recent years is training

large models on large datasets. The supervised model, Whisper, with 1.6 billion parameters, is

trained on 680,000 hours of data [227]. Similarly, self-supervised speech representation learning

models wav2vec [197], HuBERT [198], wavLM [199] with billions of parameters are trained on

substantial volumes of unlabeled data and have been used as an upstream model in many speech

tasks. Audio foundation model is an emerging topic, aiming to unify common audio and speech

tasks in a generative framework. Drawing inspiration from the successes of large language

models [228], there is an expectation of similar emergent capabilities from large-scale audio

models. However, the direct application of these large models in hearing aids is impractical due to

their size and complexity. Therefore, future research should look into ways of adapting the
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capabilities of these advanced models for use in on-device applications.

Closed-loop AAD. Most AAD studies, including the one in this dissertation, have used an

open loop setup where the data was recorded and analyzed offline, and the audio that was

delivered to the listener was not modulated by attention. A realistic brain-controlled hearing

device requires real-time closed-loop implementation. This would require all the blocks of the

proposed framework, including speech separation and AAD to work together synchronously and

be implemented in a causal real-time manner. Moreover, how to best manipulate/re-mix the

acoustic scene once the attended talker has been decoded also requires further investigation. A

recent closed-loop AAD study [229] using scalp EEG found that it is imperative for the system to

quickly track switches in attention in order to achieve desirable user experience. Fast detection of

attention switches requires shorter window durations, made possible with invasive EEG

techniques. A closed-loop version of our study, in which the attended talker is enhanced in an

online real-time fashion and fed back to the subject, will be an important research direction in the

future.
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