
1. Introduction
Tree rings, with annual resolution and precise dating, can provide temporally high-resolution proxy records of past 
climate. However, annually-resolved tree ring data still restrict how tree-ring-based paleoclimate reconstructions 
can be used in subsequent applications, where finer resolutions are desirable. For example, it is often difficult 
to  compare annual climate reconstructions against historical events, because an event may have happened outside 
the target season of the reconstruction, or two opposite events (a flood and a drought) may be smoothed out by a 
reconstruction that targets the annual average (Wise, 2021). In addition, and specific to water resources, annual 
streamflow reconstructions have provided important insights into surface water availability, but cannot be used 
directly in water management models which require monthly, weekly, or even daily data (Galelli et al., 2021).

How do we obtain subannual climate reconstructions from annual tree rings? Earliest attempts used statistical 
methods to disaggregate each annual value to multiple subannual ones, assuming a fixed relationship between 
the two resolutions (Prairie et al., 2007, 2008; Saito et al., 2015; Sauchyn & Ilich, 2017). Later works incorpo-
rated multiple species and sites, leveraging the fact that different tree species have different seasonal sensitivities 
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to the hydroclimate, and that there can be different time lags in hydrologic responses at various sites (Stagge 
et al., 2018; Stahle et al., 2020; Wise, 2021). A third approach uses intra-annual measurements of stable oxygen 
isotope ratios (δ 18O) in tree ring cellulose to reconstruct intra-annual precipitation (Xu et al., 2016, 2021). This 
approach is promising, but the current methods are time-consuming and expensive. Recently, we (Nguyen 
et al., 2021) proposed a novel modeling framework, called mass balance regression (MBR), that concurrently 
addressed two challenges previously considered in isolation: to combine proxies optimally for different targets 
(months or seasons), and to preserve the annual mass balance, ensuring that the subannual flows sum up closely 
to the annual flow. This framework produced a skillful seasonal reconstruction (wet and dry seasons) for the 
Ping River, a tributary of the Chao Phraya, Thailand. Importantly, MBR reduced mass imbalances by 45% while 
maintaining or improving skills compared to ordinary linear regression.

This contribution presents a follow-up and extension of that work. Using MBR, we produce monthly streamflow 
reconstructions for all four main tributaries of the Chao Phraya, a significant improvement in both temporal reso-
lution and spatial coverage. These are the first monthly streamflow reconstructions outside North America, and 
the first ones that combine ring width and δ 18O. This record reveals the spatiotemporal variability of streamflow, 
especially monsoonal peak flow timing, over 254 years (1750–2003) across the Chao Phraya River Basin, the 
most important economic region in Thailand. Importantly, this added knowledge is crucial for water management 
in the Chao Phraya, where freshwater availability is a limiting factor for many socioeconomic sectors.

2. Materials and Methods
2.1. Study Site and Streamflow Data

The Chao Phraya Basin (Figure 1) is Thailand's most important economic region, serving the country's agricul-
tural and electricity needs with 1.45 million hectares of irrigated land (Divakar et al., 2011) and 3.8 GW of elec-
tricity generation capacity (Chowdhury et al., 2021). The basin has a dominant monsoon climate with two distinct 
seasons: the wet season generally spans from May to October, and the dry season from November to April.

The Chao Phraya has four main tributaries, for each of which we obtained streamflow data from the station with 
the longest record (Figure 1). For P.1 we used the naturalized streamflow of Nguyen et al. (2021). Data for other 
stations were obtained from the Royal Irrigation Department. With these four stations we aim to capture the 
spatial variability of streamflow across the basin.

Our proxy data consist of 20 chronologies of ring widths and four chronologies of δ 18O from the Southeast Asia 
Dendrochronology Network (Figure 1). The sampled species show distinct annual rings, although some have 
challenging false or locally absent rings. All these chronologies have been published in earlier works (Buckley, 
Duangsathaporn et al., 2007; Buckley, Palakit et al., 2007; Buckley et al., 1995, 2010, 2017, 2019; D'Arrigo 
et al., 1997, 2011; Sano et al., 2008; Hansen et al., 2017) and were also used by Nguyen et al. (2021). In that 
work, we found that ring widths were generally more sensitive to the dry season flow than they were to the 
wet season flow, while the δ 18O chronologies were more sensitive to the wet season flow than they were to the 
dry season flow (Nguyen et al., 2021, Figure 2). This is a basis for combining them to obtain subannual recon-
structions. Interestingly, the δ 18O chronologies were also the dominant predictors for dry season flow (Nguyen 
et  al.,  2021, Figure 6), because correlations between dry season flow and δ 18O, while smaller in magnitude 
than those between wet season flow and δ 18O, were still higher than correlations between dry season flow and 
ring width in many cases. Those findings corroborate earlier reports that δ 18O in Thailand and northern Viet-
nam exhibits a strong amount effect, that is, it has strong negative correlations with precipitation amount (Sano 
et al., 2012; Xu et al., 2015, 2019). Banking on earlier results, here we use the same proxy network but striving 
for a higher temporal resolution and a larger spatial coverage.

2.2. Reconstruction Model

We used the Mass Balance Regression framework (MBR; Nguyen et al., 2021), which was tested for a seasonal 
resolution earlier, and used here for the first time to achieve a monthly resolution. The two key ideas are: (a) 
preserve the annual mass balance, that is, ensuring that the sum of the monthly flows matches the annual flow 
closely, and (b) find the optimal combination of proxies that achieves (a). The essences of the method are as 
follows. Supposed we have the predictors X1 for January streamflow y1, X2 for February streamflow y2, and so 
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on. We also have predictors Xa for the annual flow Ya. Altogether there are 13 reconstruction models, which can 
be merged into one by letting
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and then forming the regression equation

𝐲𝐲 = 𝐗𝐗𝜷𝜷 + 𝜺𝜺 (2)

where 𝐴𝐴 𝜷𝜷 =

[
𝜷𝜷𝟏𝟏,… , 𝜷𝜷𝟏𝟏𝟏𝟏, 𝜷𝜷𝒂𝒂

]′ are the regression coefficients for the 13 reconstructions, and ɛ is white nose. Equa-
tion 2 is solved by least squares:

min
𝜷𝜷

(𝐲𝐲 − 𝐗𝐗𝜷𝜷)
′
(𝐲𝐲 − 𝐗𝐗𝜷𝜷), (3)

which simultaneously yields 13 reconstruction models. These models are independent of each other, thus there is 
no guarantee that the sum of the monthly flows would match the annual flow. To achieve that, we calculate the 
mass difference

𝜹𝜹 =

12∑

𝑖𝑖=1

𝐗𝐗𝐢𝐢𝜷𝜷𝒊𝒊 − 𝐗𝐗𝐚𝐚𝜷𝜷𝒂𝒂, (4)

and formulate the following penalized least squares problem

min
𝛽𝛽

𝐽𝐽 = (𝐘𝐘 − 𝐗𝐗𝜷𝜷)
′
(𝐘𝐘 − 𝐗𝐗𝜷𝜷) + 𝜆𝜆𝜹𝜹′𝜹𝜹. (5)

Figure 1. (a) Map of the Chao Phraya River Basin, showing the main tributaries, the largest reservoirs (Bhumibol and 
Sirikit), the streamflow gauges selected for reconstruction, and the topography (mountainous areas in darker shades). (b) 
Locations of our tree ring sites in Southeast Asia. Sites having both ring width and δ 18O chronologies are shown with both 
circle and triangle symbols. The Chao Phraya Basin is shown in gray.
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Just as we minimize the squared differences between prediction and observation, we also minimize the squared 
mass differences δ′δ. In Equation 5, we introduce the weight λ, which represents the importance of the penalty 
term: the higher λ is, the more important mass balance becomes. Equation 5 has an analytical solution:

𝜷𝜷 =

(
𝐗𝐗′
X + 𝜆𝜆𝐀𝐀′

A

)−1
𝐗𝐗′
𝑦𝑦 (6)

where 𝐴𝐴 𝐀𝐀 = [𝐗𝐗𝟏𝟏 … 𝐗𝐗𝟏𝟏𝟏𝟏 − 𝐗𝐗𝐚𝐚] .

As Nguyen et  al.  (2021) discussed in great detail, the choice of λ is somewhat subjective, depending on the 
analyst's own priority between model skills and mass balance. As such, we compared the cross-validated recon-
struction skills and mass balance with incremental λ values, and chose an appropriate one for each station.

Equation 5 also provides a basis for proxy selection. Each subset p of all chronologies yields one penalized least 
squares value J(p). Hence, we can find the optimal subset of p over all subsets. This can be done with any suitable 
combinatorial optimization method. Here we used Genetic Algorithms (Holland, 1975; Whitley, 1994). For full 
details of MBR, including mathematical derivations and proofs, please refer to Nguyen et al. (2021). MBR code 
is publicly available in the R package mbr (Nguyen, 2021).

2.3. Model Evaluation

We assessed the reconstructions using the contiguous leave-k-out cross-validation scheme. In each cross-validation 
run, a random, contiguous block of k data points was left out, and the model is calibrated on the remaining data. 
Here k was set as 25% of the data length. The procedure is repeated 50 times. For monthly reconstructions, it is 
important that entire years are withheld, that is, the same k data points are withheld from all 13 reconstruction 
models (January to December, plus annual). Otherwise, the reconstruction may inadvertently benefit from data 
leakage, when some months of the year are available in calibration, giving the model partial information about 
the other months.

The reconstruction was evaluated with the following metrics: coefficient of determination (R 2), reduction of error 
(RE), and Nash-Sutcliffe coefficient of efficiency (CE) (Fritts et al., 1971; Nash & Sutcliffe, 1970), all of which 
are commonly used in dendroclimatology. These metrics are calculated on the full monthly flow time series, the 
time series of each month's flow, and the annual flow time series. The formulas for RE and CE are:

𝑅𝑅𝑅𝑅 = 1 −

∑
𝑖𝑖∈

(
𝑄𝑄𝑖𝑖 − �̂�𝑄𝑖𝑖

)2

∑
𝑖𝑖∈

(
𝑄𝑄𝑖𝑖 −𝑄𝑄𝑐𝑐

)2
, (7)

𝐶𝐶𝐶𝐶 = 1 −

∑
𝑖𝑖∈

(
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)2

∑
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(
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)2
. (8)

Here, 𝐴𝐴  is the validation set, Qi the observed flow at time i, 𝐴𝐴 �̂�𝑄𝑖𝑖 the reconstructed flow at time i, 𝐴𝐴 𝑄𝑄𝑐𝑐 the mean 
streamflow over the calibration set, and 𝐴𝐴 𝑄𝑄𝑣𝑣 the mean streamflow over the validation set. Essentially, these metrics 
normalize the model's sum of squared errors against that of a benchmark model, one that uses the mean over the 
calibration period in the case of RE, and mean over the validation period in the case of CE.

2.4. Droughts, Pluvials, and Monsoon Flow Timing

From the monthly reconstructions, we calculated the Standardized Streamflow Index (SSI; Shukla & Wood, 2008), 
which has the same formulation as the Standardized Precipitation Index (SPI; McKee et al., 1993) and the Stand-
ardized Precipitation-Evapotranspiration Index (SPEI; Vicente-Serrano et al., 2010), except that streamflow is 
the input. Similarly to the other two indices, SSI can be calculated at multiple time scales, such as 1-month 
(SSI1), 6-month (SSI6), and 12-month (SSI12); these calculations are only possible with monthly reconstruc-
tions. SSI is calculated as follows. First, streamflow is converted to rolling averages at the desired window (e.g., 
6-month). Then, a log-logistic distribution is fitted to the new time series to obtain a non-exceedance probability 
for each value. Finally, a standardized index is obtained by applying the inverse standard normal cumulative 
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density function to the probabilities. These calculations were done using the R package SPEI (Beguería & 
Vicente-Serrano, 2017).

Converting streamflow to a standardized index allows us to make comparisons across four rivers, thereby provid-
ing a basis for assessing drought and pluvial severity. Droughts and pluvials are defined as follows. A drought 
starts with two consecutive months of negative SSI, and ends with two consecutive months of positive SSI (the 
last two positive months do not count toward its duration). The SSI sign is reverse for pluvials. Thus a sequence 
of alternating positive and negative SSI (e.g., −1 +1 −1 +1) can be a part of a drought, a pluvial, or neither.

Finally, we explored how the timing of the monsoon flow season changed over time, using the season delineation 
method of B. I. Cook and Buckley (2009). A curve of cumulative flow over time was derived for each year. Onsets 
and withdrawals were then determined based on change points in the curve's slope: a change from mild to steep 
slope marks the onset of the monsoon flow season, and a change from steep to mild slope marks the withdrawal. 
These change points were detected using two-phase linear regression (Lund & Reeves, 2002), which is usually 
used with daily time series, but is adapted here for monthly time series.

3. Results and Discussion
3.1. Reconstruction Performance

We first compare the reconstructed monthly time series against instrumental data (Figure 2a). All reconstructions 
match well with observations. R 2, RE, and CE values range between 0.74 and 0.91. Compared to the Ping and 
Nan, the Wang and Yom gauges have slightly higher skills, but this might be affected by their shorter data lengths. 
The seasonal patterns are well reproduced at all gauges. Overall, streamflow variability and seasonality are very 
well reconstructed. However, the reconstructions are not perfect, and closer examinations reveal three limitations 
that provide interesting and important insights for future development in high-resolution dendrohydrology.

First, peak flows in the wettest years were under estimated, for example, Nan River's flow in 1940 and 1941, and 
Ping River's flow in 1971 and 1973 (Figure 2a). Peak flow underestimation is commonly observed in tree-ring-
based reconstructions (see e.g., Robeson et  al.,  2020). There are two possible reasons. First, the relationship 
between tree ring proxies and streamflow may become nonlinear at the extremes (Torbenson & Stagge, 2021). 
Second, a main flood generation mechanism in Thailand is heavy rain on saturated soil (Lim & Boochabun, 2012; 
Stein et al., 2020), but streamflow generated by saturation excess overland flow cannot be captured by tree rings 
(Meko & Graybill, 1995). While δ 18O is not limited by soil saturation, there are only four δ 18O chronologies in 
our record, limiting the amount of information that can be recovered for peak flows.

Second, in some years, the annual hydrograph has a bimodal shape instead of a single peak, for example, Ping 
River in 1923 and Nan River in 2000 (Figure 2b). In these cases, the first streamflow peak resulted from heavy 
rains due to tropical cyclones in early summer, and the second peak was generated from monsoon rains. This 
bimodal shape was not reproduced well in the reconstruction. Trees take time to convert moisture into growth of 
wood cells, and in that process both ring width and δ 18O lose some high frequency signals.

The RE and CE values in Figure 2a are higher than typically reported in dendroclimatology. This is because 
we work with monthly time series with distinct seasonal patterns, while the benchmark of RE and CE is the 
overall mean, which contains no seasonality information. Therefore, we conducted a more stringent assessment 
where those metrics were calculated for each month, against the corresponding monthly means (Figure 2c). In 
some cases we still observed R 2 and RE values about 0.8, but most values are (expectedly) lower, in the range of 
0.3–0.7. Highest CE values were about 0.6, while most are in the range of 0.2–0.4. Notably, negative CE occurred 
for February (Ping River) and March (Yom River). This reveals the third limitation of the reconstructions. In 
these driest months the trees are mostly dormant, with none or little growth. Information about flow for these 
months are likely recovered more from autocorrelations with other months than from tree rings, leading to the 
low out-of-sample predictive skills in these months.

These limitations occurred only in special cases. Overall, the reconstructions have acceptable to very good skills. 
There are several interesting research directions that can help overcome the limitations that we pointed out. First is 
the use of nonlinear reconstruction methods (e.g., Nguyen & Galelli, 2018; Torbenson & Stagge, 2021). Second, 
development of more δ 18O chronologies would be beneficial, as δ 18O have been shown to capture well hydrologi-
cal extremes (An et al., 2022; Xu et al., 2019). Particularly, intra-annual δ 18O chronologies similar to those devel-
oped recently in China (Xu et al., 2016, 2021) would be valuable for high-resolution reconstructions in Southeast 
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Asia. Third is the development of more tree ring chronologies in general to enhance the signals contained in the 
tree ring network. The number of tree ring chronologies in the tropics is much lower than that in temperate regions.

3.2. Droughts and Pluvials

We calculated 1-month, 6-month, and 12-month SSI from the reconstruction for each river. Here, we discuss the 
results related to SSI6 (Figure 3), and results for other indices, together with the raw monthly streamflow time 
series, are shown in Figures S1–S4 in Supporting Information S1. SSI6 represents the seasonal time scale of 
droughts and pluvials.

In the Ping and Wang Rivers (the two western tributaries), we note a common prolonged dry period between 
1982 and 1995 that stands out across the full record. This period has two consecutive droughts. In the Ping 
River, the droughts lasted from January 1982 to May 1985 (77 months) and from September 1988 to April 1994 
(68 months); these are the two longest droughts in the Ping reconstruction. In the Wang, the droughts lasted from 

Figure 2. (a) Comparison of the reconstructed and instrumental monthly flows, and the overall skill scores. (b) Examples 
of years with double-peak hydrographs which were not captured well by tree rings. (c) Individual skill scores of 13 
reconstruction models (January to December, and annual) for each station.
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November 1982 to February 1987 (52 months) and January 1990 to April 1995 (64 months); these droughts rank 
third and first among all droughts at this station in terms of duration. The two eastern tributaries (Yom and Nan) 
also experienced a dry period during these times, but droughts are less prominent. Almost immediately before the 
1982–1995 droughts were another that was shorter but more severe. Peak SSI6 values of −2.81 in December 1979 
at P.1, −2.46 in March 1981 at W.4, and −3.05 in October 1977 at N.1 were the lowest SSI6 in the whole record at 
each station, respectively. Another notable drought occurred around 1780–1786 that affected all four tributaries, 
but streamflow reduction was less severe in the Nan compared to the other three rivers.

In the reconstructions we also found the footprints of the post-1750 megadroughts that E. R. Cook et al. (2010) 
reported, namely the Strange Parallels Drought (1756–1768), East India Drought (1790–1796), and Victorian 
Great Drought (1876–1878). Each megadrought was expressed differently in each tributary. The Strange Parallels 
was most severe in the Nan River. The East India Drought led to moderately dry conditions in the Ping and Wang, 
and a mix of wet and dry periods in the Yom, but curiously it was not felt in the Nan at all.

There are notable pluvials as well, particularly between 1807 and 1823 at W.4A, when a series of pluvials occurred, 
including the wettest one on record. Each pluvial lasted between 10 and 45 months, interspersed with 2-to-3-
months bursts of mildly dry conditions. This wet period is also seen in the Ping and Yom, but not in the Nan. In 
contrast, the Nan went through a prominent pluvial between April 1937 and April 1944. Lasting 85 months with 
a peak SSI6 of 2.82, this is the wettest and second longest among all pluvials. Interestingly, in all four rivers we 
observe clusters of pluvials, but the frequencies of these clusters appearing are different among the tributaries. 
Episodic floodplain stripping has been documented on the Ping River by a geomorphic and morphostratigraphic 
analysis by Wasson et al. (2021). These events were caused by extreme floods, or clusters of extreme floods, the 
last being a single flood in 1831, which was recorded in the Thai Royal Palace texts and caused a 60% crop loss 
in the country. This flood was captured by our reconstructions: September 1831 was the seventh highest monthly 
flow among 3,048 months of record (Figure S2 in Supporting Information S1).

Overall, the reconstructions show both similarities and differences in the drought and pluvial histories of the four 
rivers. There is a degree of coherence: droughts and pluvials often occur in more than one tributary. But there is 

Figure 3. Monthly time series of 6-month standardized streamflow index (SSI6) for each river, colored in brown and teal. 
The black lines show 3-year low-pass filtered time series. Highlighted in yellow are the megadroughts reported by E. R. Cook 
et al. (2010). Other droughts and pluvials discussed in the text are highlighted in violet.
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also spatial heterogeneity: there are differences in magnitude and timing of events across the tributaries, and few 
events affect all four.

3.3. Wet Season Onset

We used the method of B. I. Cook and Buckley (2009) to determine the onset and withdrawal timing of the wet 
season in each year (Section 2.4). We also calculated the z-score of the total annual flow to determine whether 
each year was dry (z < 0; low total flow) or wet (z > 0; high total flow). The procedure was applied to each trib-
utary separately. We found that the withdrawal month was always the same: October, but the onset months varied 
between May and September (Figure 4a). For the Ping, 137 years (54%) have onset in July, 76 years (30%) in May 
or June, and 41 years (16%) in September. Onsets tend to be later in the Wang and Yom Rivers compared to the 
Ping, with 55%–60% occurred in August, while the months between May and July each shares about 8%–15% 
of the distribution. Another 8% of the Yom's wet season started in September. In stark contrasts to these three 
tributaries, the Nan's wet season almost exclusively begin in July; in only 4 years (2%) was onset occurred in June.

For the Ping, years with onset between May and July are slightly more likely to be wet (55% of the time) while years 
with late onset (August) are more likely to be dry (73%). Similarly, wet seasons that start in May to July in the Wang 
are more likely to produce high annual flows (65%–70% of the time) while those starting in August tend to produce 
low flow (63% of the time). These patterns make intuitive sense. Counter-intuitive is the Yom River: early onsets 
(May to July) are less likely to produce high total flow (z > 0 in only 24%–43%) than those in August (64%), yet 
onsets in September always produced dry years. To seek an explanation for this curious case, we explore the annual 
hydrographs and the cumulative flow curves of this river (Figure 4b). The hydrographs of the Yom River at Y.17 
have prominent peaks in June, more so than the other tributaries. This is because Y.17 is located in the lowlands and 
is not shielded from early summer tropical typhoons like the other three stations that are surrounded by mountains. 
Consequently, this area receives more typhoon rain, leading to higher June flows. Interestingly, years with the high-
est June flows are associated with lower peak flows, causing a slope change in May for the cumulative flow curve 
(Figure 4b, first column). This effect is also observed with slope changes in June and July (Figure 4b, second and 
third columns). More research is needed to determine the mechanism behind this behavior. If the association between 
higher summer flow and lower peak flow can be further verified, it would equip irrigation planners with a better fore-
casting tool, as a more robust estimation of peak flow distribution could then be obtained based on the summer flow.

The unique distribution of wet season timing at N.1 could also be explained with the same mechanism concerning 
typhoon rain. N.1 is located further most inland, surrounded by mountains (Figure 1), thus shielded from early 
summer typhoons. Consequently, the hydrograph of N.1 is much more homogeneous from year to year. Stream-
flow in the Chao Phraya is generated from both typhoons and monsoon rains. Each subcatchment is exposed 
differently to these sources due to its location and topography. Site-specific hydrological processes (e.g., more 
immediate runoff at the more upstream, mountainous sites, and more baseflow at the downstream sites) may also 
play a role. The interaction between moisture sources and catchment characteristics lead to the spatiotemporal 
variability of wet season timing. Further research using process-based hydrological models may help identify the 
mechanisms underlying the observed heterogeneity among the subcatchments.

4. Conclusions
Using a network of 20 ring width and four δ 18O chronologies, we produce 254-year, monthly resolved reconstruc-
tions of streamflow for four major tributaries of the Chao Phraya, Thailand. The reconstructions have very good 
skills in capturing streamflow variability, except for the driest months (February and March), the wettest years, 
and some years with two hydrograph peaks. Our reconstructions provide a detailed record of streamflow variabil-
ity, showing both coherence and heterogeneity of droughts and pluvials across the Chao Phraya Basin. Owing to 
the monthly resolution, our reconstructions also reveal how wet season timing has varied. Rainfall supply to wet 
season flow comes from tropical typhoons and monsoon rains, the interactions between which create the spatial 
and temporal variability of wet season timing.

These results are particularly important when seen through the lens of water management. The Chao Phraya is 
water-stressed: freshwater availability per capita is about 2,230 m 3/year (Divakar et al., 2011; World Bank, 2011), 
less than the national average (3,244 m 3/year) and only 39% of the world's average (5,732 m 3/year) (FAO, 2017). 
Worse still, water availability is not constant throughout the year, as the monsoon brings stark contrasts to the 
annual hydrograph. Our monthly reconstruction could be used to operate the Chao Phraya water system better. 
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For example, it could help coordinate the operations of Thailand's two largest reservoirs—Bhumibol and Sirikit—
both of which are in the Chao Phraya, to mitigate concurrent floods or droughts while meeting irrigation and 
hydropower demands, which vary greatly from month to month (Divakar et al., 2011). Our monthly-resolved 
reconstructions have partly bridged the gap between what tree rings offer and what water management needs.

Data Availability Statement
Streamflow data were originally downloaded from the Thai Royal Irrigation Department (https://www.hydro-1.
net). All data and code to reproduce this paper are archived at the following Zenodo repository: Nguyen (2022). 
This repository can also be cloned from GitHub at https://github.com/ntthung/chao-phraya-monthly. All analyses 
were conducted using the open source R statistical computing environment. An HTML document, rendered from 

Figure 4. (a) Histograms of wet season onset timing (month). Each bar contains a number of stacked dots which is the number of years having the same onset month. 
Each dot is colored by the z-score of the total annual flow. Thus the color distribution in each bar tells whether years having onset in that month would be more likely 
to be wet (more blue dots) or dry (more red dots). (b) Annual hydrographs (first row) and cumulative flow curves (second row) of station Y.17 on Yom River. The gray 
lines show all 254 years in the reconstruction. The red lines highlight the years with early wet season onset but low total annual flow; each column highlights the years 
with onsets in the corresponding month.

https://www.hydro-1.net
https://www.hydro-1.net
https://github.com/ntthung/chao-phraya-monthly
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R Markdown, that details the step-by-step workflow with code, discussion, as well as all intermediate and final 
results, is included in the Supporting Information S1 (Code S1) and may also be viewed directly at https://rpubs.
com/ntthung/chao-phraya-monthly.
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