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Abstract—Landsat surface temperature (LST) is an important 

physical quantity for global climate change monitoring. Over the 

past decades, several LST products have been produced by satellite 

thermal infrared (TIR) bands or land surface models (LSMs). 

Recent research has increased the spatio-temporal resolution of 

LST products to 2 km, hourly based on Geostationary Operational 

Environmental Satellites (GOES)-R Advanced Baseline Imager 

(ABI) LST data. The spatial resolution of 2 km, however, is 

insufficient for monitoring at the regional scale. This paper 

investigates the feasibility of applying spatio-temporal fusion to 

generate reliable 100 m, hourly LST data based on fusion of the 

newly released 2 km, hourly GOES-16 ABI LST and 100 m 

Landsat LST data. The most accurate fusion method was identified 

through a comparison between several popular methods. 

Furthermore, a comprehensive comparison was performed 

between fusion (with Landsat LST) involving satellite-derived LST 

(i.e., GOES) and model-derived LSMs (i.e., European Centre for 

Medium-range Weather Forecasts (ECMWF) Reanalysis v.5 

(ERA5)-Land). The spatial and temporal adaptive reflectance 

fusion model (STARFM) method was demonstrated to be an 

appropriate method to generate 100 m, hourly data, which 

produced an average root mean square error (RMSE) of 2.640 K, 

mean absolute error (MAE) of 2.159 K and average coefficient of 

determination (R2) of 0.982 referring to the in situ time-series. 

Furthermore, inheriting the advantages of direct observation, and 

the fusion of Landsat and GOES for the generation of 100 m, 

hourly LST produced greater accuracy compared to the fusion of 

Landsat and ERA5-Land LST in the experiments. The generated 

100 m, hourly LST can provide important diurnal data with fine 

spatial resolution for various monitoring applications. 

 

Index Terms—Land surface temperature (LST); Landsat; 

GOES; ERA5; spatio-temporal fusion. 

 

I. INTRODUCTION 

Land surface temperature (LST), as an important parameter in 

the energy exchange between the land surface and atmosphere, 

has been researched extensively in recent years [1]-[3]. LST is 

central to many applications including mapping the urban heat 

island effect [4], [5], forest fire monitoring [6], [7] and drought 
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monitoring [8], [9]. Moreover, it is acknowledged that 

large-scale monitoring of LST, especially global scale 

monitoring, is extremely valuable for climate change research 

[10], [11]. Given the increasing demand for large-scale LST data, 

several spatially continuous LST products have been released in 

recent decades. Generally, these products are divided into two 

categories: one is derived from the thermal infrared (TIR) bands 

of satellite sensors (e.g., band 6 of the Landsat Enhanced 

Thematic Mapper (ETM+) sensor) or passive microwave (PMW) 

measurement, and the other is from land surface models (LSMs) 

(e.g., the Global Land Data Assimilation System (GLDAS) 

model) produced by combining observations from a variety of 

sources [12], [13]. 

For the generation of LST products, a basic requirement is the 

spatial and temporal continuity of the original LST data. For 

LST retrieved from PMW measurement, it is possible to 

preserve the spatial continuity as PMW radiation can penetrate 

clouds. The limitation of these LST products, however, is the 

coarse spatial resolution, coupled with the scanning gap between 

orbits [14]. For example, the data acquired by the Advanced 

Microwave Scanning Radiometer for the Earth Observing 

System (AMSR-E) of the Earth Observing System present 

noticeable gaps over middle and low latitudes and have a coarse 

spatial resolution of 25 km. Thus, considering the 

abovementioned limitations, the TIR bands of the images 

acquired from optical sensors can serve as a common data source 

for deriving LST products. For LST obtained from TIR sensors, 

the main problem lies in the large number of spatial gaps due to 

cloud contamination and sensor deficiencies [15]. 

Up to now, several studies focused on generating spatially 

complete LST products by developing gap filling algorithms and 

integrating complementary multi-source LST data [14]-[17]. 

Furthermore, research was undertaken to increase the spatial and 

temporal resolutions of LST products through fusion-based 

approaches [18]-[20]. This research holds open the possibility of 

spatially continuous daily LST data. LST, however, always 

presents strong spatial and temporal heterogeneity. In the 

temporal dimension, the LST can vary greatly each hour. Thus, 

daily LST products may fail to support applications where 

diurnal LST change information may be important. To meet the 

demand of more frequent (e.g., hourly) monitoring, it is of great 

necessity to develop methods to further increase the temporal 

resolution of LST products. 

Recently, a 2 km, all-sky, hourly LST product was generated 

by Jia et al. [21]. The Geostationary Operational Environmental 

Satellites (GOES)-R, which is operated by the National Oceanic 

and Atmospheric Administration (NOAA), can provide global 

diurnal observations [22]. The LST product retrieved from 

GOES-16 Advanced Baseline Imager (ABI) can provide 10 km, 

hourly LST over North and South America, and 2 km, hourly 
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data covering the contiguous US (CONUS) and Mexico [23]. 

However, due to frequent cloud cover, there always exists a 

large amount of data loss in the ABI LST product. Thus, to 

obtain spatially complete, hourly LST other auxiliary data have 

been applied to fill the gaps in the ABI LST product. Specifically, 

the European Centre for Medium-range Weather Forecasts 

(ECMWF) Reanalysis v.5 (ERA5)-Land product can provide 

~10 km×10 km (0.1 degree) all-sky, hourly observations [24]. 

Ultimately, Jia et al. [21] filled the spatial gaps and produced 2 

km, hourly all-sky LST data based on a spatio-temporal dynamic 

model constructed from ERA5-Land (simplified as ERA5 

hereafter). Although the generated 2 km, hourly LST product 

has great advantages in characterizing high-frequency surface 

thermal dynamics at medium scale, it cannot meet the demands 

of fine spatial resolution monitoring. For example, in forest fires 

monitoring, the boundary of fire may not be captured clearly in 

the 2 km spatial resolution product. 

To obtain LST with the potential for monitoring at both fine 

spatial and temporal resolutions, auxiliary LST products at fine 

spatial resolution are required. As a typical TIR sensor, Landsat 

8 Thermal Infrared Sensor (TIRS) band 10 can detect LST at a 

spatial resolution of 100 m. The Landsat 8 LST product is 

generated from this band by a single channel algorithm. The 

temporal resolution of this product, however, is 16 days, 

restricting greatly applications requiring frequent monitoring. 

To combine the advantages of the 2 km, hourly LST and 100 m, 

16-day Landsat LST products, spatio-temporal fusion methods 

can be adopted [25]-[27]. Spatio-temporal fusion aims at 

generating images with both fine spatial and temporal 

resolutions, by combining temporally sparse, fine spatial 

resolution images and temporally dense, coarse spatial 

resolution images [28]-[30]. So far, several spatial 

weighting-based [31]-[33] (e.g., the spatial and temporal 

adaptive reflectance fusion model (STARFM) [34], the 

enhanced STARFM (ESTARFM) method [31] and the spatial 

weighting-based virtual image pair fusion (VIPSTF-SW) 

approach [32]), spatial unmixing-based [35]-[37] (e.g., the 

unmixing-based data fusion (UBDF) model [35], the spatial 

temporal data fusion approach (STDFA) [38] and the 

blocks-removed spatial unmixing (SU-BR) method [36]), 

learning-based [39], [40] (e.g., the Sparse representation-based 

SpatioTemporal reflectance Fusion Model (SPSTFM) [39]) and 

hybrid methods [41-43] (e.g., Flexible Spatiotemporal DAta 

Fusion (FSDAF) approach [41]) were developed. Although 

spatio-temporal fusion methods were proposed initially for 

fusing the surface reflectance of images from different data 

sources, the feasibility of their application to the fusion of LST 

images was also demonstrated over recent years [44]-[46]. 

This research aims at generating 100 m, hourly LST images, 

by spatio-temporal fusion of 2 km, hourly GOES-16 ABI LST 

and 100 m Landsat LST images acquired at the same time. So far, 

several studies have focused on the generation of fine spatial 

resolution images with hourly or even finer temporal resolution. 

For example, Inamdar et al. [47] acquired 1 km, hourly LST by 

fusing GOES LST, MODIS LST and MODIS normalized 

difference vegetation index (NDVI). Zaksek and Ostir [48] 

further increased the resolution of LST to 1 km, 15 min, by 

merging spinning enhanced visible and infrared imager (SEVIRI) 

and MODIS LST. Wu et al. [49] fused Landsat, MODIS and 

GOES LST to obtain the 100 m, 30 min LST images. Due to 

gaps in the GOES data, however, the model failed to generate 

temporally continuous 24-hour LST data. Furthermore, Quan et 

al. [50] first generated the 100 m daily LST by fusing Landsat 

and MODIS LST, and then increased the spatial resolution to the 

diurnal scale based on a diurnal temperature cycle model. 

Recently, Ma et al. [51] obtained 60 m, 30 min LST data by 

fusing satellite (i.e., Landsat and MODIS) and LSM (community 

land model version 5.0 (CLM 5.0))-based data. However, almost 

all of these studies failed to acquire temporally continuous 

hourly data due to the lack of spatially and temporally seamless 

hourly basic data. That is, most of the research utilized hourly 

LST products retrieved from the original satellite sensor data 

containing different degrees of gaps. Furthermore, several 

studies utilized LSM-based data for generating spatially and 

temporally continuous LST, but then the fusion task may be 

challenging due to the difference between the satellite and 

LSM-based data. 

In this paper, as an alternative solution, the newly released 

spatially and temporally seamless 2 km, hourly GOES-16 ABI 

product was applied, to generate continuous 100 m, hourly LST 

data. Specifically, as the original 2 km, hourly LST product 

employed in this research was measured directly using a satellite 

TIR sensor (i.e., GOES-16 ABI), it is more advantageous for 

revealing the continuous real LST compared to LSMs (e.g., 

GLDAS and ERA5), which depend greatly on the reliability of 

the model. Thus, the generated LST in this paper has the 

potential to produce greater accuracy than most of the related 

research based on LSMs. In this paper, to compare the accuracy 

of 100 m, hourly LST derived from satellite observations and 

LSMs, the Landsat LST images were fused with 2 km GOES-16 

ABI LST images and 10 km ERA5 LST images, respectively. 

Generally, the generated 100 m, hourly LST has great potential 

for applications experiencing great spatial and temporal 

heterogeneity, such as urban heat flux monitoring [51], [52] and 

growth monitoring of smallholder crops. The contribution of this 

paper can be summarized as follows. 

1) The feasibility of applying spatio-temporal fusion to 

produce 100 m, hourly LST data was evaluated, by fusion 

of the newly released 2 km, hourly GOES-16 ABI LST 

and 100 m Landsat LST images. Moreover, the most 

accurate method was identified through comparison 

across several popular spatio-temporal fusion methods. 

2) The advantage of using the satellite-derived data (i.e., 

GOES-16 ABI LST) in generating 100 m, hourly LST was 

validated through a comprehensive comparison between 

fusing Landsat with GOES-16 ABI (satellite-based LST) 

LST data and fusing Landsat with ERA5 (LSM) LST data. 

The remainder of this paper is organized as follows. In 

Section Ⅱ, the study area and data are introduced. In Section Ⅲ, 

the methods applied to generate 100 m, hourly LST are 

presented in detail. In Section Ⅳ, the performances of the 

spatio-temporal fusion methods were compared for generation 

of the 100 m, hourly data, and a comparison was made between 

the use of GOES and ERA5 LST data. Section Ⅴ discusses the 

advantages and potential of this research. Finally, conclusions 

are summarized in Section Ⅵ. 
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II. STUDY AREA AND DATA 

A. Study area 

To examine the effectiveness of the proposed scheme for 

producing 100 m, hourly LST data, five regions located in the 

United States were selected, and one validation site chosen in 

each region. The Landsat 8 data of the five study areas are shown 

in Fig. 1. The five study areas all cover a spatial extent of 100 km 

× 100 km. Specifically, Regions 1 and 2 are located in California 

and Regions 3-5 are located in Colorado, Mississippi and Illinois, 

respectively. For the five ground sites, Desert Rock 

(40°43′13.19″ N, 116°01′10.63″ W), Table Mountain 

(40°07′32.05″ N, 105°14′15.90″ W), Goodwin Creek 

(34°15′16.92″ N, 89°52′22.44″ W) and Bondville (40°03′05.58″ 

N, 88°22′23.70″ W) are from the set of Surface Radiation 

(SURFRAD) stations, while US-Ton (38°25′51.24″ N, 

120°57′57.60″ W) is from the core AmeriFlux network. The 

main land covers of the five stations are woody savannas, arid 

shrubland, grass and shrub, pastureland, and cropland, 

respectively. It is noted that not all the stations for the 

SURFRAD and core AmeriFlux networks were included in the 

assessment. The reason is that for some stations parts of the 

Landsat LST data were contaminated by cloud and for some 

other stations the spatial heterogeneity of the LST data in the 

regions was not representative for validation. 

 

     
(a)                                            (b)                                             (c)                                            (d)                                              (e) 

Fig. 1. The five study areas (red, green and blue bands of Landsat 8 data as RGB). (a)-(e) represents Regions 1-5, respectively. (a) and (b) are located in California and 
(c), (d) and (e) are located in Denver, Mississippi and Illinois, respectively. 

 

Table 1 Acquisition time of Landsat LST for the five regions 

Region 1 Region 2 Region 3 Region 4 Region 5 

2 August 2020 12 May 2021 29 April 2020 13 January 2021 9 February 2019 

3 September 2020 28 May 2021 4 September 2020 19 April 2021 4 August 2019 

5 October 2020 13 June 2021 6 October 2020 22 June 2021 7 October 2019 

 

 

B. Data 

(1) Satellite sensor data. The Landsat 8 surface temperature 

and GOES-16 ABI LST satellite sensor products are included in 

this research. The Landsat 8 surface temperature product was 

acquired from the United States Geological Survey 

(https://earthexplorer.usgs.gov/), which was generated by 

applying the single channel algorithm to Collection 2 Level 1 

Thermal Infrared Sensor (TIRS) band 10 of Landsat 8. The 

specific acquisition time of Landsat LST used in this research is 

listed in Table 1. The GOES-16 ABI LST is a 2 km, hourly 

product providing all-sky observation for the CONUS and 

Mexico regions from July 2017 to June 2021, which can be 

obtained from http://glass.umd.edu/allsky_LST/. Specifically, 

this product was generated by a surface energy balance-based 

method. By constructing a spatio-temporal dynamic model from 

ERA5 data and assimilating the clear-sky GOES LST to the 

model, continuous GOES LST images series were reconstructed. 

Then, the diurnal cloud radiative effect (CRE) was calculated 

from satellite radiation products and the cloudy pixels were 

reconstructed [21]. The GOES-16 ABI LST utilized in this 

research is hourly data acquired on the same dates as the Landsat 

LST. 

(2) LSM data. ERA5 is the fifth generation ECMWF 

atmospheric reanalysis of the global climate available from 1979 

to the present [53], which is available at https://www.ecmwf.int/. 

By optimally combining observations and model data, the 

reanalysis of ERA5 produces continuous data across the world 

for several surface parameters. In addition, the skin temperature 

product of ERA5 reanalysis data was applied, which can provide 

hourly LST at the spatial resolution of ~10 km×10 km (0.1 

degree). 

(3) In situ data. To validate the accuracy of the generated 100 

m, hourly LST images, ground-based in situ data were included 

in this research. Specifically, four sites from the SURFRAD 

stations (https://gml.noaa.gov/grad/surfrad/) and one site from 

the Core AmeriFlux stations (https://ameriflux.lbl.gov/) are 

involved. The SURFRAD networks can provide the upwelling 

and downscaling thermal infrared parameters at a temporal 

resolution of 1 min covering the CONUS. The ground 

measurement data provided by the Core AmeriFlux sites are 

presented at 30 min or 1 hour temporal resolution. In situ data 

from the SURFRAD and the Core AmeriFlux stations can 

provide hourly surface upwelling and atmospheric downwelling 

longwave radiation, which are core parameters in the derivation 

of ground-based LST. Generally, the ground-based LST can be 

calculated with the surface upwelling and atmospheric 

downwelling longwave radiation using the Stefan-Boltzmann 

law: 
1/4

s

(1 )b

b

L L
T





   
   
 

                           (1) 

where Ts is the estimated LST, and L  and L  are surface 

upwelling and atmospheric downwelling longwave radiation, 

https://earthexplorer.usgs.gov/
http://glass.umd.edu/allsky_LST/
https://www.ecmwf.int/
https://gml.noaa.gov/grad/surfrad/
https://ameriflux.lbl.gov/
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respectively.   is the Stefan-Boltzmann’s constant 

(5.67×10
−8

Wm
−2

K
−4

) and 
b  is the broadband emissivity 

calculated based on the MODIS/Aqua land surface 

temperature/3-band emissivity daily L3 global 1 km product 

(MYD21A1) ([54]) 

29 31 320.2122 0.3859 0.4029b                     (2) 

where 
29 , 

31  and 
32  are the narrowband emissivities of 

bands 29, 31 and 32 of the MYD21A1 product. 

III. METHODS 

A. Spatio-temporal fusion for 100 m, hourly LST generation 

In this research, 100 m, hourly LST images were generated by 

spatio-temporal fusion of GOES-16 ABI and Landsat LST 

images. Generally, the 100 m, hourly LST images for a certain 

time were estimated using the corresponding GOES-16 ABI 

LST image at the time, together with a Landsat-GOES LST 

image pair at a temporally close time. The spatio-temporal 

fusion process can be summarized as follows. 

 
0 0

ˆ ( ) ( ) ( ( ) ( ))t th h f h h  L L G G  (3) 

where 
0h  is the acquisition time (known time) of the 

Landsat-GOES LST image pair, and 
th  is the target time for 

prediction (prediction time). L  and G  represent the Landsat 

and GOES-16 ABI LST images, respectively. f is a downscaling 

function characterized by different spatio-temporal fusion 

methods. 

In this paper, three spatio-temporal fusion methods (i.e., 

STARFM [34], VIPSTF-SW [32] and FSDAF [41] methods) 

were evaluated for the generation of 100 m, hourly LST data. 

For STARFM, f is a function to weight the neighboring similar 

pixels by considering comprehensively the spectral difference 

between the coarse and fine image pairs, the temporal difference 

between two coarse images and the spatial difference to the 

center pixel [34]. For the VIPSTF-SW approach, a virtual image 

pair is first generated to simulate data closer to the target 

prediction time, by applying a linear transformation model 

constructed by the two coarse spatial resolution images. Then, 

the fine and coarse virtual image pairs are fused by the same 

spatial weighting strategy in STARFM [32]. Furthermore, the f 

of the FSDAF method incorporates the strategy of spatial 

weighting to the spatial unmixing-based spatio-temporal fusion 

method. Specifically, FSDAF applies spatial unmixing to 

estimate the temporal change of each class, and then performs 

spatial weighting to distribute the residuals [41]. 

B. The framework for 100 m, hourly LST generation 

The procedure for the generation of 100 m, hourly LST is 

shown in Fig. 2. The GOES-16 ABI LST and Landsat LST were 

selected as the main data sources for 100 m, hourly LST 

generation. Specifically, the hourly GOES-16 ABI LST images 

were first resampled and reprojected according to the Landsat 

LST acquired at the same time. Then, to further decrease the 

influence of data inconsistency on fusion, a data correction step 

was conducted according to the correlation between the upscaled 

Landsat LST and GOES-16 ABI LST acquired at the closest 

time. The specific process of data correction will further be 

introduced in Section III-C. By applying spatio-temporal fusion, 

the 100 m, hourly LST is produced. Finally, the accuracy of the 

generated 100 m, hourly LST is validated by in situ LST. 

Moreover, to compare the accuracy of LST generated from 

satellites sensors and LSMs, the ERA5 LST is also fused with 

Landsat LST to generate 100 m, hourly LST. 

 

Resampling/

Reprojection

Data 

correction

Data 

correction

Spatio-temporal 

fusion

Upscaling

Validation

  

00 23

GOES LST

(~ 2 km, hourly)

Landsat LST

(100 m, 16 d)

100 m, hourly LST

  

00 23

  

00 23

ERA5 LST

(~10 km, hourly)

In situ LST

 
Fig. 2. The procedure for generation of 100 m, hourly LST. 

C. Data correction 

The difference between GOES and Landsat LST data has 

been one of the most important issues restricting the accuracy of 

spatio-temporal fusion. Thus, to decrease the influence of data 

inconsistency, a linear correction model was applied. The 

process of data correction between GOES-16 ABI and Landsat 

LST data is shown in Fig. 3. First, the Landsat LST acquired at tk 

(temporally close to the GOES-16 ABI data at the prediction 

time tp) is upscaled to the spatial resolution of GOES-16 ABI 

LST. Then, by applying the least squares regression between the 

upscaled Landsat LST (i.e., 
up_scaleL ) and GOES-16 ABI LST 

(i.e., M ) at tk, the correction coefficients a and b can be obtained, 

as shown in the fitting model below 

up_scale a b L M                                  (4) 

The linear transformation is then applied to the GOES-16 ABI 

LST at the prediction time tp to preserve the consistency with 

Landsat LST. It is noted that for hourly GOES-16 ABI LST, the 

data acquired on the same date will be corrected collaboratively 

with the same correction coefficient according to the temporally 

close Landsat and GOES-16 ABI LST image pair, based on the 

assumption that the relation is consistent throughout the whole 

day. It would also be worthwhile to consider spatially adaptive 

regression models when the spatial extent of the study area is 

large, due to the difference in observation angles between 

Landsat and GOES. 

 

Upscaling

Correction 

coefficients

 a,b 

Least squares

 regression

Corrected GOES at tp

Linear

 transformation

GOES at tpLandsat at tk GOES at tk

 
Fig. 3. Data correction of GOES-16 ABI LST. 
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D. Validation strategy 

In this research, the effectiveness of the 100 m, hourly LST 

was validated in both the spatial and temporal domains (i.e., 

spatial validation and temporal validation). For spatial validation, 

the Landsat and GOES-16 ABI/ERA5 LST images at tk, together 

with GOES-16 ABI/ERA5 LST images at tp were treated as 

known images. By applying spatio-temporal fusion, the 

Landsat-like 100 m LST at tp can be predicted. With the original 

100 m Landsat LST images at tp (known in advance), the 

accuracy of fusion can be evaluated in the spatial domain. 

For temporal validation, the 100 m, hourly LST images will 

be generated for 24 hours within the day. Specifically, the 

Landsat LST and the GOES-16 ABI LST temporally closest to 

the acquisition time of Landsat LST were selected as known 

image pairs. By fusing the known image pairs with each 

GOES-16 ABI LST within the acquisition day, 100 m LST for 

24 hours can be generated. The temporal validation is then 

performed by checking the in situ LST time-series and the value 

of the corresponding pixels in the generated 100 m, hourly LST 

time-series. 

For spatial and temporal validation, three statistical metrics 

were applied for evaluating the accuracy of the generated 100 m 

LST. In this research, the root mean square error (RMSE), the 

mean absolute error (MAE) and the coefficient of determination 

(R
2
) were adopted. The statistical metrics used in the experiment 

are defined as follows: 

( , ) ( , )

1 1

1
( )

m n

i j i j

i j

RMSE
mn  

  P R                   (5) 

( , ) ( , )

1 1

1 m n

i j i j

i j

MAE
mn  

  P R                       (6) 

2

( , ) ( , )

1 12

2 2

( , ) ( , )

1 1 1 1

( )( )

( ) ( )

m n

i j P i j R

i j

m n m n

i j P i j R

i j i j

R

 

 

 

   

 
  

 

  

   
  



 

P R

P R

      (7) 

where P  and R  represent the prediction and reference data 

with the same size of mn, respectively. 
( , )i jP  is the pixel 

located at ( , )i j  in P .
P  and 

R  represent the mean values of 

P  and R , respectively. 

IV. EXPERIMENTS 

The experiments in this research are divided into five parts. 

Section Ⅳ-A presented the LST data utilized in the experiments. 

In Section Ⅳ-B, the performance of different spatio-temporal 

fusion methods was compared both spatially and temporally, to 

find the most suitable method for generation of the 100 m, 

hourly LST images. In Section Ⅳ-C, a comparison was made 

between the generation of 100 m, hourly LST images by fusing 

Landsat LST with GOES LST and fusing Landsat LST with 

ERA5 LST. In Section Ⅳ-D, the advantage of data correction 

was analyzed. Section Ⅳ-E investigated the impact of similar 

pixel selection scheme on spatio-temporal fusion of Landsat and 

GOES LST images. To further investigate the feasibility of 

generating 100 m, hourly LST over a longer period, an 

experiment producing LST for one month was implemented in 

Section Ⅳ-F. 

 
 
 

Region 1 Region 2 Region 3 

 2020/8/2 2020/9/3 2020/10/5 2021/5/12 2021/5/28 2021/6/13 2020/4/29 2020/9/4 2020/10/6 

Landsat 

   

GOES-16 
ABI 

Corrected 

GOES-16 

ABI 

ERA5 

Corrected 

ERA5 
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 Region 4 Region 5 

 2021/1/13 2021/4/19 2021/6/22 2019/2/9 2019/8/4 2019/10/7 

Landsat 

  

GOES-16 

ABI 

Corrected 

GOES-16 
ABI 

ERA5 

Corrected 
ERA5 

 

  
Fig. 4. Landsat, original and corrected GOES-16 ABI, and original and corrected ERA5 LST for the five regions. 

 

 Prediction at t2 Prediction at t3  

Region 1 

  

Region 2 

  

 STARFM VIPSTF-SW FSDAF Reference STARFM VIPSTF-SW FSDAF Reference  

Fig. 5. Spatial validation by applying different spatio-temporal fusion methods. 

 

A. LST data presentation 

The Landsat, GOES-16 ABI and ERA5 LST data covering the 

five regions were used in the experiments in this section. For 

each region, LST images acquired at three separate times were 

used for validation. As GOES-16 ABI and ERA5 are both hourly 

LST products, the LST images acquired temporally closest to the 

Landsat LST (i.e., UTC 18:00, 19:00, 18:00, 17:00, 17:00 for 

Regions 1-5, respectively) are presented, as shown in Fig. 4. It is 

noted that for the five regions, the dates were selected according 

to data integrity and small areas of data loss were filled by 

interpolation methods. Considering that there exist some 

differences in LST between the three data sources, the data 

correction method presented in Section Ⅲ-C was applied to both 

the GOES-16 ABI and ERA5 LST images, with the Landsat 

images as the basis for correction. As seen clearly in Fig. 4, LST 

from the three different data sources tends to be similar after 

correction. In the following parts, for convenience, the three 

dates for each region are referenced as t1, t2 and t3. 

B. Comparison between different spatio-temporal fusion 

methods in the generation of 100 m, hourly LST data 

In this section, a comparison between the different methods 

was performed to identify the most accurate method for the 

generation of 100 m, hourly data. Specifically, the comparison 

was performed in both the spatial and temporal domains. 

1) Spatial validation. The data for Regions 1 and 2 were 

selected for spatial validation. For each region, the LST image 

pair at t1 and t2 was selected as the known image pair, and the 

Landsat LST images at t2 and t3 were predicted, in turn. The 

results of different spatio-temporal fusion methods (i.e., 

STARFM, VIPSTF-SW and FSDAF) are shown in Fig. 5. From 

visual inspection, it is found that for both regions, the predictions 

of STARFM are the closest to the reference. Furthermore, a 

quantitative assessment was also performed, as shown in Table 

2. It is noted that STARFM produced the smallest RMSE and the 
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largest R
2
 in most cases. 

 
Table 2 Accuracy of spatial validation results generated by different 

spatio-temporal fusion methods 

  
Method Prediction at t2 Prediction at t3 

RMSE (K) 

Region 1 

STARFM 1.472 1.774 

VIPSTF-SW 2.798 2.280 

FSDAF 1.628 2.048 

Region 2 

STARFM 1.743 1.813 

VIPSTF-SW 2.931 1.652 

FSDAF 1.767 1.809 

R2 

Region 1 

STARFM 0.919 0.963 

VIPSTF-SW 0.853 0.962 

FSDAF 0.900 0.940 

Region 2 

STARFM 0.954 0.922 

VIPSTF-SW 0.957 0.924 

FSDAF 0.954 0.919 

 

2) Temporal validation. In the temporal validation, the GOES 

LST images and Landsat LST at the closest acquisition time 

were selected as the known image pair, together with the GOES 

LST at the other 23 hour times to predict the 100 m, hourly LST 

for 24 hours. The corresponding accuracy of different 

spatio-temporal fusion methods is listed in Table 3. Considering 

the MAE, the prediction of STARFM is the most accurate. For 

example, for Region 5, STARFM produces the smallest MAE of 

2.179 K, which is 0.603 K and 0.132 K smaller than for 

VIPSTF-SW and FSDAF, respectively. For the R
2
, STARFM 

also provides the largest values for most of the regions. 

Although VIPSTF-SW and FSDAF also produce satisfactory 

performance in several regions, STARFM is the most accurate 

for comprehensive inspection. Considering the performances of 

the three methods for both spatial and temporal validation, 

STARFM can serve as an appropriate solution for generating 

100 m, hourly LST data. 

 
Table 3 Accuracy of temporal validation results generated by different 

spatio-temporal fusion methods 

  Region 1 Region 2 Region 3 Region 4 Region 5 

MAE 

(K) 

STARFM 2.180 1.714 2.976 1.745 2.179 

VIPSTF-SW 2.819 1.501 3.720 2.096 2.782 

FSDAF 2.120 1.723 2.843 5.023 2.311 

R2 

STARFM 0.989 0.988 0.985 0.970 0.980 

VIPSTF-SW 0.992 0.988 0.949 0.986 0.976 

FSDAF 0.992 0.988 0.943 0.972 0.979 

 

C. Comparison between the use of GOES and ERA5 data in 

generation of 100 m, hourly LST data 

In this section, a comparison was made between fusing 

Landsat with GOES LST and fusing Landsat with ERA5 LST. 

The data utilized in this section are the same as those for Section 

Ⅳ-B. The most accurate method identified in Section Ⅳ-B, that 

is, the STARFM approach, was applied to the fusion task in this 

section. The comparison was also conducted in both the spatial 

and temporal domains. 

 Prediction at t2 Prediction at t3  

Region 1 

  
 

Region 2 

  
 

 STF_L_E STF_L_G Reference STF_L_E STF_L_G Reference  

Fig. 6. Results of spatial validation for Regions 1 and 2. 
 

 Prediction at t2 Prediction at t3  

Region 1 

   

Region 2 

   

 STF_L_E STF_L_G STF_L_E STF_L_G  
Fig. 7. Error images of spatial validation results for Regions 1 and 2. 
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Fig. 8. Results of temporal validation for the five regions. 

 

1) Spatial validation. For simplicity, the 100 m results 

predicted by fusion of Landsat and GOES-16 ABI LST is 

abbreviated as STF_L_G, while that predicted by fusing Landsat 

and ERA5 LST is named STF_L_E. The spatial validation 

results are shown in Fig. 6. From visual inspection, we can find 

that the predictions by STF_L_G and STF_L_E are both similar 
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to the reference LST. To depict the difference more clearly, the 

error images are presented in Fig. 7. For Region 1, the color is 

obviously lighter for STF_L_G prediction, indicating a smaller 

error. Specifically, for the STF_L_G prediction, the blue in the 

lower middle of t2 and the right upper of t3, and red in the lower 

middle of t3 are lighter than for the STF_L_E prediction. Thus, 

the STF_L_G prediction is demonstrated to be more accurate in 

terms of spatial validation. 
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Fig. 9. Accuracy of temporal validation results for the five regions. 

 

Quantitative assessment was performed for the STF_L_G and 

STF_L_E predictions, as listed in Table 4. Generally, STF_L_G 

presents greater accuracy for both regions. When predicting the 

100 m LST at t2, STF_L_G always produces greater accuracy 
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than STF_L_E. Specifically, STF_L_G produces RMSEs of 

1.472 K and 1.743 K for Regions 1 and 2, which are 0.193 K and 

0.294 K smaller than for STF_L_E. Also, the R
2
 increases by 

0.018 and 0.062 when applying STF_L_G compared to 

STF_L_E. For the prediction at t3, the R
2
 of STF_L_G are 0.028 

and 0.013 larger than STF_L_E for Regions 1 and 2, 

respectively. From the spatial validation, it is found that the 100 

m LST generated by fusing Landsat and GOES-16 ABI LST 

leads to more satisfactory performance than that produced by 

fusion of Landsat and ERA5 LST images. 

 
Table 4 Accuracy of spatial validation results for Regions 1 and 2 

   
Prediction at t2 Prediction at t3 

RMSE (K) 

Region 1 
STF_L_G 1.472 1.774 

STF_L_E 1.665 1.760 

Region 2 
STF_L_G 1.743 1.813 

STF_L_E 2.037 2.031 

R2 

Region 1 
STF_L_G 0.919 0.963 

STF_L_E 0.901 0.935 

Region 2 
STF_L_G 0.954 0.922 

STF_L_E 0.892 0.909 

 

(2) Temporal validation. In temporal validation, the coarse 

spatial resolution LST image (i.e., ERA5 or GOES) and Landsat 

LST at the closest acquisition time were selected as the known 

image pair, together with the coarse spatial resolution LST at the 

other 23 hour times to predict the 100 m, hourly LST for 24 

hours. For clearer presentation, the predictions at UTC 0:00, 

6:00, 12:00, 18:00 and 23:00 are shown in Fig. 8. In Fig. 8, the 

four rows represent the 10 km ERA5, 2 km GOES, 100 m 

STF_L_E and STF_L_G predictions, from top to bottom. It is 

obvious that the 100 m results contain more details compared to 

the original 10 km and 2 km LST images, such as the clearer 

boundaries between high and low LST areas. Generally, the 

predictions preserve the color of the original coarse spatial 

resolution LST images. For all five regions, the STF_L_G and 

STF_L_E predictions both present diurnal variation in LST. 

To further compare the performance of the STF_L_G and 

STF_L_E predictions, the quantitative assessment for temporal 

validation was performed, as shown in Fig. 9. Due to the absence 

of reference data in the spatial domain, the ground 

measurements (i.e., the in situ data) were applied for temporal 

validation. For all five regions, the STF_L_G prediction tends to 

be closer to the ground measurement compared to the STF_L_E 

prediction. For Regions 1 and 2, the STF_L_G predictions are 

almost coincident with the ground measurements. Although the 

STF_L_E predictions present a similar trend to the ground 

measurements, they produce larger LST values than the ground 

measurements, especially for the predictions far away from the 

known time. For Regions 3-4, although both STF_L_G and 

STF_L_E fail to produce accurate predictions at several time 

points, the predictions of STF_L_G are obviously closer to the 

ground measurements generally. 

The scatterplots between the predicted and measured LST for 

the five regions are shown in Fig. 10. It is noted that the points in 

STF_L_G predictions are closer to the y=x line compared to the 

STF_L_E predictions. More precisely, STF_L_G produces 

MAEs of 2.180 K, 1.714 K, 2.976 K, 1.745 K and 2.179 K for 

Regions 1-5, respectively, which are 5.203 K, 3.338 K, 6.204 K, 

5.458 K and 1.605 K smaller than for STF_L_E correspondingly. 

Similarly, for RMSE, the predictions of STF_L_G are 5.403 K, 

3.912 K, 6.661 K, 6.478 K and 2.094 K smaller than for 

STF_L_E for Regions 1-5, respectively. Furthermore, the R
2
 for 

STF_L_G is 0.098, 0.051, 0.178, 0.143 and 0.064 larger than for 

STF_L_E for Regions 1-5, respectively. Generally, STF_L_G 

has a satisfactory performance in temporal validation, and 

produces greater accuracy than STF_L_E. 
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Fig. 10. Scatterplots of temporal validation results for the five regions. 

 

D. The influence of data correction 

In this paper, a data correction step was applied before 

spatio-temporal fusion. To validate the effectiveness of data 

correction, a comparison was performed between the original 

and corrected GOES/ERA5 LST-derived predictions. From the 

data presented in Fig. 4, it is noted that there exist obvious 

differences between the original GOES/ERA5 LST and Landsat 

LST. Generally, the original GOES/ERA5 LST is lower than the 

Landsat LST, especially in areas with high LST. On the contrary, 

the corrected GOES/ERA5 LST is visually much more 
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consistent with the Landsat LST regarding the spatial 

contribution of LST. To quantitatively evaluate the performance 

of data correction, the RMSEs between the original (or corrected) 

GOES/ERA5 LST and the upscaled Landsat LST were 

calculated, as shown in Fig. 11. It can be seen that the RMSE 

decreases obviously by applying data correction for both GOES 

and ERA5 LST in all five regions. For example, for Region 2, 

the RMSE for GOES LST decreases by 2.971 K, 3.888 K and 

3.849 K for t1, t2 and t3, respectively. For Region 3, the RMSE 

decreases by 3.703 K, 5.006 K and 3.610 K for ERA5 LST. 

It is acknowledged that the difference between two data 

sources tends to be an important factor restricting the accuracy 

of spatio-temporal fusion. To further investigate the influence of 

data correction on fusion, spatio-temporal fusion was applied 

based on the original (i.e., STF_L_originalG) and the corrected 

GOES-16 ABI LST (i.e., STF_L_correctedG), respectively, 

with Region 4 as an example. Fig. 12 shows the absolute bias of 

prediction based on the original and corrected GOES-16 ABI 

LST. Overall, STF_L_correctedG leads to greater accuracy than 

STF_L_originalG in most cases. Specifically, 

STF_L_correctedG produces a RMSE of 2.218 K and MAE of 

1.745 K, which are 2.254 K and 1.864 K smaller than for 

STF_L_originalG, respectively. Moreover, the R
2
 increases by 

0.0358 when applying STF_L_correctedG. Thus, the data 

correction process can decrease the difference between LST 

images from various data sources and, furthermore, increase the 

accuracy of the predicted 100 m, hourly LST. 

 

 
Fig. 11. The RMSEs between the original (or corrected) GOES/ERA5 LST and 
the upscaled Landsat LST. 

 

 

 
Fig. 12. Absolute bias for prediction based on original and corrected GOES-16 ABI LST (Region 4 as an example). 

 

E. Comparison between different similar pixel selection 

schemes for STARFM 

As spatio-temporal fusion methods such as STARFM were 

originally proposed for the fusion of surface reflectance data, 

when applied to the fusion of LST data, the effective scheme of 

similar pixel selection needs to be identified. In spatio-temporal 

fusion of reflectance data, similar pixels were selected by 

considering the properties of neighboring pixels from all 

available multispectral bands. When applied to fuse LST data, 

however, there exists only one band for determination of similar 

pixels. To the best of our knowledge, very few studies have 

discussed the selection scheme in LST fusion. Thus, in this 

section, the performances of two similar pixel selection schemes 

were compared, one using the TIR band, while the other using 

reflectance bands. The experiment was conducted using the LST 

data from the spatial validation, together with the corresponding 

reflectance data. The accuracies achieved by applying different 

versions of STARFM are listed in Table 5. As can be noted, 

there exists no obvious difference between the accuracies based 

on the use of TIR or reflectance bands for similar pixel selection. 

Thus, the similar pixels can be selected using either TIR or 

reflectance data, which does not have an obvious impact on the 

performance of STARFM. 

Table 5 Accuracy of spatial validation results generated by different versions of 

STARFM (in terms of different similar pixel selection schemes; TIR means 

selecting similar pixels according to the TIR band, while REF means selecting 
similar pixels according to the reflectance bands) 

  
Band Prediction at t2 Prediction at t3 

RMSE (K) 

Region 1 
TIR 1.472 1.774 

REF 1.476 1.782 

Region 2 
TIR 1.743 1.813 

REF 1.744 1.814 

R2 

Region 1 
TIR 0.919 0.963 

REF 0.919 0.963 

Region 2 
TIR 0.954 0.922 

REF 0.954 0.922 

F. Generation of 100 m, hourly LST for one month 

In practice, there exists a great need for continuous 

monitoring over months or even years. The approach developed 

here has great potential for generating 100 m, hourly LST for 

long time periods. It is noted that the three dates selected for 

Region 2 last over a month. Thus, the predicted 100 m, hourly 

LST can be applied for reconstructing the missing LST images 

within one month, together with the 2 km GOES-16 ABI LST 

images over the month. Specifically, the LST at a certain time of 

the day was predicted based on the temporally closest two 

known 100 m LST image pairs (e.g., the closest two among 13 

May, 28 May and 12 June) at the corresponding time point 
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within the day and related 2 km LST GOES-16 ABI images. For 

example, when predicting the 100 m LST at UTC 12:00 on 18 

May, the 100 m LST at UTC 12:00 on 13 May and 28 May, and 

the GOES-16 ABI LST images at UTC 12:00 for the three days 

were included for fusion. An accuracy assessment based on the 

ground measurements (i.e., the in situ data) was performed for 

the predicted 100 m, hourly LST for one month, as shown in Fig. 

13. Generally, the curve of the predicted LST can fit well with 

that for the measured LST, except for the several days 

experiencing very large LST fluctuations. The predicted LST 

produces a RMSE, MAE and R
2
 of 4.333 K, 3.017 K and 0.914, 

respectively. For the scatterplot, the points are close to the y=x 

line, indicating satisfactory performance. Checking the error 

distribution in Fig. 13(c), it is noted that the error presents a 

normal distribution, and about 64.9% of the errors fall in the 

range of -3 K to 3 K. 

 

(a) 

 
(b)                                                                      (c) 

  
Fig. 13. Accuracy of generated 100 m, hourly LST for one month (Region 2 as an example). (a) Predicted and measured LST (i.e., the in situ data). (b) Scatterplot. (c) 

Diagram of error distribution. 

 

V. DISCUSSION 

A. Comparison between GOES and ERA5 LST 

In current research, satellite data-derived LST images are 

fused with LSMs to produce LST images with fine spatial and 

temporal resolutions. This practice, however, suffers from 

several limitations. First, as LSMs combine a series of land 

surface states and fluxes, the accuracy depends greatly on the 

algorithms and the modeling structure. It is possible that they 

can provide satisfactory simulation where stations exist, but may 

fail to simulate accurately the LST at locations spatially far away 

from the stations. On the contrary, satellite sensors have 

advantages as they can provide “real” and continuous 

observations of the Earth’s surface. Thus, the LSMs always 

differ from satellite sensor data which results in great 

uncertainty in spatio-temporal fusion involving LSM and 

satellite data. Second, the LST products always have a coarse 

spatial resolution (e.g., ~14 km × 14 km (1/8 degree) for North 

American Land Data Assimilation System (NLDAS) and ~28 

km × 28 km (1/4 degree) for GLDAS), making fusion with fine 

spatial resolution satellite LST images challenging. To cope with 

these problems, two satellite-derived data products, that is, 

Landsat and GOES LST images, were used in this paper. 

 
Table 6 The R2 between GOES/ERA5 and Landsat LST images 

  t1 t2 t3 

Region 1 
GOES 0.940 0.661 0.956 

ERA5 0.723 0.460 0.818 

Region 2 
GOES 0.777 0.716 0.789 

ERA5 0.367 0.119 0.245 

Region 3 
GOES 0.896 0.913 0.924 

ERA5 0.650 0.690 0.734 

Region 4 
GOES 0.460 0.737 0.744 

ERA5 0.099 0.599 0.347 

Region 5 
GOES 0.351 0.164 0.347 

ERA5 0.386 0.042 0.502 

 

To further compare the differences between satellite sensor 

data and LSMs, the R
2
 between Landsat and GOES-16 ABI (or 

ERA5) LST data were calculated, as listed in Table 6. To 

exclude the influence of differences in spatial resolution, both 

the Landsat and GOES-16 ABI LST images were upscaled to the 

spatial resolution of ERA5 images (i.e., 10 km) before 

calculating the R
2
. In Table 6, it is noted that the R

2
 between 

Landsat and GOES-16 ABI is obviously larger than that between 
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Landsat and ERA5 in most cases. For example, in Region 1, the 

R
2
 for GOES is 0.940, 0.661 and 0.956 for the three times, which 

are 0.217, 0.201 and 0.138 larger than for ERA5. Thus, the 

GOES-16 ABI LST images are demonstrated to be more similar 

to the Landsat LST images, bringing great advantages for 

spatio-temporal fusion of LST data. 

In this paper, the GOES-16 ABI LST and ERA5 LST images 

employed in fusion were at different spatial resolutions. To 

avoid the influence of spatial resolution, the input 2 km 

GOES-16 ABI LST data were upscaled to the same spatial 

resolution as that of the ERA5 LST data (10 km). The accuracy 

of the 100 m LST generated by fusing the Landsat LST with the 

upscaled GOES-16 ABI LST (STF_L_upscaledG) is shown in 

Table 7. It is noted that STF_L_upscaledG still produces much 

greater accuracy than STF_L_E. Thus, the advantage of using 

GOES-16 ABI LST for spatio-temporal fusion lies mainly in its 

origin, that is, it is satellite-based, rather than LSM-based. 

 
Table 7 Accuracy of the 100 m LST generated by fusion of upscaled GOES-16 

ABI (10 km)/ERA5 and Landsat LST images 

  Region 1 Region 2 Region 3 Region 4 Region 5 

R2 
STF_L_upscaledG 0.988 0.987 0.971 0.981 0.980 

STF_L_E 0.891 0.937 0.807 0.827 0.916 

MAE 
STF_L_upscaledG 2.237 2.181 1.864 4.087 2.129 

STF_L_E 7.383 5.052 9.180 7.203 3.784 

B. Selection of spatio-temporal fusion methods for generating 

100 m, hourly LST 

In this paper, three popular methods were investigated to 

generate 100 m, hourly LST data, and the performances were 

compared. The reason for choosing these methods is that they 

are typical single image pair-based spatio-temporal fusion 

methods. That is, they require only one LST image pair at the 

known time, together with one coarse spatial resolution LST 

image at the prediction time. Although a number of 

spatio-temporal fusion methods (such as ESTARFM and 

learning-based spatio-temporal fusion methods) were proposed 

and demonstrated to have great accuracy, they usually require 

more than one image pair as input. For LST data, however, the 

temporal heterogeneity is always strong, and it is necessary to 

acquire the temporally closest image pair. The use of multiple 

image pairs will increase the uncertainty in the spatio-temporal 

fusion process, as the LST changes between the multiple image 

pairs can be very large. 

C. Application of the generated 100 m, hourly LST 

This paper increased the spatial resolution of the 2 km, hourly 

GOES-16 ABI products to 100 m, providing LST images at a 

finer spatial resolution, with the potential to support more 

applications compared to the original product. Fig. 14 presents a 

case of vegetation monitoring to demonstrate the advantages of 

the generated 100 m, hourly data, by comparing the diurnal 

variation of the single pixel in the original 2 km GOES LST 

image and the corresponding 400 pixels in the generated 100 m 

LST. Fig. 14(d) shows that the grey lines (LST of the 400 pixels 

in the generated 100 m LST) cover a larger range than the red 

line (the single pixel in the 2 km GOES-16 ABI LST), indicating 

diverse diurnal LST change of the pixels at the spatial resolution 

of 100 m. Thus, the generated 100 m, hourly LST data can 

undoubtedly provide more valuable information for applications 

requiring real-time LST data. 

 
(a)                                  (b)                                  (c) 

   
(d) 

 
Fig. 14. The diurnal variation of the LST of pixels (with Region 1 as an example). 

(a) Sub area (red, green and blue bands of Landsat 8 data as RGB). (b) 2 km 
GOES observation. (c) Generated 100 m LST. (d) The diurnal LST variation of 

the pixels marked in black frame in (b) and (c). (The red line represents the single 

pixel in the 2 km GOES-16 ABI LST, while the grey lines are the LST of the 400 
pixels in the generated 100 m LST). 

 

For urban heat island (UHI) studies, the 100 m, hourly LST 

data can also serve as an important data source. For example, 

when LST images with short revisit times, but coarse spatial 

resolution (e.g., 2 km) are applied to UHI monitoring, 

considering the great heterogeneity of urban areas, they may fail 

to represent the complicated texture of urban LST. On the 

contrary, when LST images with fine spatial resolution, but long 

revisit times (e.g., 1 day or longer) are applied to UHI 

monitoring, the diurnal LST change cannot be represented. As 

urban LST normally varies greatly within a day, the diurnal LST 

variation tends to be an important part of UHI monitoring. Thus, 

considering the great spatial and temporal heterogeneity of 

urban areas, the 100 m, hourly LST product generated in this 

research can provide valuable data support for UHI monitoring 

[2], [55], [56]. Many other applications require 100 m, hourly 

LST (or LST with finer spatial and temporal resolutions), such 

as the monitoring of fire spread, crop growth and flood 

inundation, all of which may change greatly during a single day. 

The generated 100 m, hourly data make fine spatial resolution, 

diurnal variation monitoring possible, and increases the spatial 

and temporal accuracy for related monitoring. 

D. The uncertainty in reconstruction of 100 m, hourly LST 

time-series 

The results in Section Ⅳ-F validated the effectiveness of the 

spatio-temporal fusion scheme in producing 100 m, hourly LST 

for a long period of one month. The strategy, however, has 

several limitations in the case involving a long period. First, the 

error in the original GOES-16 ABI LST images can impact the 

accuracy of the 100 m, hourly LST time-series generation. It is 

noticed in Fig. 13(a) that there always exist larger errors near the 

extreme points. This phenomenon can be connected to the 

accuracy for the predicted hourly data of the separate three days 

for Region 2 in Fig. 9. To investigate this issue, the accuracy of 
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the GOES-16 ABI LST images was also evaluated based on the 

corresponding ground measurements, as shown in Fig. 15. 

Generally, when the GOES-16 ABI LST images have great 

consistency with the ground measurements, the performance of 

the STF_L_G prediction is also satisfying. Conversely, when 

there is a large error in the GOES-16 ABI LST images (e.g., near 

the extreme points), the accuracy of the STF_L_G prediction 

also decreases. Second, acquisition of timely Landsat LST data 

tends to be a challenging issue. It is acknowledged that the 

performance of spatio-temporal fusion tends to be compromised 

when the time interval between the known and prediction time is 

large. Due to the long revisit time (i.e., 16 days) and frequent 

cloud cover for Landsat LST images it can be difficult to acquire 

temporally close Landsat LST images (e.g., the time of known 

Landsat LST in Region 5 ranges for months), making 

spatio-temporal fusion challenging in this case. 

For the uncertainty caused by data, it would be important to 

further enhance the data correction scheme for GOES-16 ABI 

LST data (e.g., construct a fitting model for better description of 

the relationship between Landsat and GOES LST, coupled with 

LST data from other satellites with greater temporal resolution). 

Furthermore, for the data acquisition issue, it will be of great 

value to take full advantage of the effective information in the 

observed Landsat LST time-series and include other data to 

decrease the uncertainty in prediction. For example, in current 

schemes, the Landsat data with spatial gaps (e.g., by cloud 

contamination) are usually abandoned, although they contain 

part of the valuable information temporally closer to the 

prediction time. It would be interesting to fill the gaps in the 

observed Landsat LST first by spatial reconstruction methods. 

Then, the 100 m, hourly LST for the given days can be obtained 

by fusing with the corresponding GOES-16 ABI LST images. It 

should be noted that the uncertainty caused by spatial 

reconstruction should also be considered in the generation of 

100 m, hourly LST time-series. 

Furthermore, the spatio-temporal fusion models also contain 

uncertainty. It is acknowledged that a number of spatio-temporal 

fusion models (e.g., STARFM) are performed based on the 

assumption that the temporal changes in the fine and coarse 

spatial resolution images are consistent. Due to the difference in 

the scale, however, they are also different. It is essentially an 

ill-posed problem to recover the fine spatial resolution temporal 

changes from the coarse spatial resolution temporal changes, 

especially in regions with great heterogeneity. This issue, 

however, is common in spatio-temporal fusion, which needs to 

be tackled in future. 

 

 
Fig. 15. Comparison between the accuracy of the GOES-16 ABI LST images and 

the STF_L_G prediction (Region 2 as an example). 

VI. CONCLUSION 

This paper evaluates the feasibility of applying 

spatio-temporal fusion for generating 100 m, hourly LST images, 

by fusion of the newly released 2 km, hourly GOES-16 ABI LST 

and 100 m, 16-day Landsat LST. The STARFM method was 

identified as the most accurate spatio-temporal fusion method in 

the fusion task in this paper. Furthermore, we compared the 

performance of the satellite sensor TIR bands-derived LST (i.e., 

GOES-16 ABI LST) and the LSM (i.e., ERA5 LST) in the fusion 

with the Landsat LST data. Compared to LSMs that have been 

applied widely for fine spatial and temporal LST generation, the 

LST data derived from satellite sensors (i.e., Landsat and GOES) 

have the unique advantage of observing LST variation directly 

and accurately. Generally, the 100 m, hourly LST images 

generated by spatio-temporal fusion can provide fine spatial 

resolution, diurnal LST monitoring, and have great potential to 

provide valuable data sources for applications requiring fine 

spatial and temporal resolutions to deal with fine spatial and 

temporal heterogeneity (e.g., UHI variation, crop growth, fire 

spread and flood inundation). The conclusions of this paper are 

summarized as follows. 

1) 100 m, hourly LST can be generated by applying 

spatio-temporal fusion to blend 100 m Landsat and 2 km, 

hourly GOES-16 ABI LST images. 

2) STARFM was demonstrated to be a more suitable method 

to generate 100 m, hourly LST compared to VIPSTF-SW 

and FSDAF methods. 

3) Compared to the fusion of Landsat and ERA5 LST data, 

the fusion of Landsat and GOES-16 ABI LST data can 

produce 100 m, hourly LST with greater accuracy. 

4) Data correction can decrease the difference between 

images from two data sources, and increase the accuracy 

of 100 m, hourly LST generation effectively. 
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