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ABSTRACT

In the face of growing vulnerabilities found in open-source software, the need
to identify discreet security patches has become paramount. The lack of consis-
tency in how software providers handle maintenance often leads to the release
of security patches without comprehensive advisories, leaving users vulnerable to
unaddressed security risks. To address this pressing issue, we introduce a novel
security patch detection system, LLMDA, which capitalizes on Large Language
Models (LLMs) and code-text alignment methodologies for patch review, data en-
hancement, and feature combination. Within LLMDA, we initially utilize LLMs
for examining patches and expanding data of PatchDB and SPI-DB, two security
patch datasets from recent literature. We then use labeled instructions to direct our
LLMDA, differentiating patches based on security relevance. Following this, we
apply a PTFormer to merge patches with code, formulating hybrid attributes that
encompass both the innate details and the interconnections between the patches
and the code. This distinctive combination method allows our system to capture
more insights from the combined context of patches and code, hence improving
detection precision. Finally, we devise a probabilistic batch contrastive learn-
ing mechanism within batches to augment the capability of the our LLMDA in
discerning security patches. The results reveal that LLMDA significantly sur-
passes the start of the art techniques in detecting security patches, underscoring
its promise in fortifying software maintenance.

1 INTRODUCTION

The widespread adoption of open-source software (OSS) has been a transformative force in software
development. OSS projects have become cornerstones of modern computing infrastructure, driving
innovation and fostering a culture of collaboration. However, as with all technologies, the broad use
of OSS is accompanied by its own challenges. As indicated in the 2021 Open Source Security and
Risk Analysis (OSSRA) report (Synopsys, 2021), the rapid expansion of OSS has led to a corre-
sponding surge in vulnerabilities. These vulnerabilities, when exploited, enable attackers to perform
“N-day” attacks against unpatched software systems. These attacks often have severe consequences.
In November 2022, Threat Analysis Group discovered zero-day exploit chains targeting Android and
iOS. These exploits were delivered via SMS bit.ly links to users in Italy, Malaysia, and Kazakhstan,
related to CVE-2022-428561 and CVE-2022-41352. Clicking the links redirected users to exploit-
hosting pages for Android or iOS, followed by redirects to seemingly legitimate sites, including an
Italian logistics company’s shipment tracking page and a popular Malaysian news website. Such

1https://nvd.nist.gov/vuln/detail/cve-2022-42856
2https://nvd.nist.gov/vuln/detail/cve-2022-4135
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scenarios underline the critical importance of a swift and effective response to identified vulnerabil-
ities in OSS.

One of the primary defenses against the attacks to the OSS is timely software patching. Patches are
code updates that address identified vulnerabilities, fix performance issues, or add new features to
an existing software system (Li & Paxson, 2017; Tan et al., 2021). However, the ever-increasing
number of submitted patches can overwhelm reviewers and system administrators. Additionally, the
complexity of the patch management process, which includes the collection, testing, validation, and
scheduling, can often result in delays in software updates (Dissanayake et al., 2022).

In order to safeguard the system against potential attacks and streamline the management of the
overall process, it is imperative that we place a strong emphasis on prioritizing critical patches,
particularly those pertaining to important security matters. Many researchers (Wang et al., 2023a)
invest significant efforts to address such challenges. For example, there are approaches leveraging
machine learning algorithms with syntax features (Wang et al., 2020; 2019; Tian et al., 2012) or
sequential deep neural networks to handle the patches as sequential data (Zhou et al., 2021; Wang
et al., 2021b). Claiming that such methods lack program semantics and produce a high false-positive
rate, a state-of-the-art approach, GraphSPD (Wang et al., 2023a) employs the graph structure of the
source code to detect the security patches.

While the state-of-the-art technique proposed by Wang et al. (2023a) successfully captures con-
text within patches and outperforms other existing techniques, it is worth noting that the approach
focuses on local code segments, which may not capture the broader context of how functions or
modules interact. In the current wave of Large Language Models (LLMs), recent studies (Li et al.,
2023; Sun et al., 2023; Su & McMillan, 2023) have shown that LLMs can adeptly capture the es-
sential context and tokens within source code. Furthermore, other studies (Wei et al., 2021; Chung
et al., 2022; Dai et al., 2023) have revealed that the incorporation of natural language instructions
using appropriate templates significantly improves learning performance. These indications suggest
that embarking on a language-centric approach would be worthwhile.

In this paper, we propose an LLM-powered model that aligns multi-modal input for more accurate
security patch detection. Given a patch that already includes a source code and the description
(description given by the commit message), we leverage an LLM to generate its explanation and
design an instruction to better guide our model toward the target task. Inspired by the current success
of text generation of LLaMa (Touvron et al., 2023), we employ the inference power of the LLaMa
7b model while we follow the same procedure of the prior works (Wei et al., 2021; Chung et al.,
2022) to design the instructions. Feeding four different input modalities, we utilize a current state-
of-the-art code embedding model, CodeT5+ (Wang et al., 2023b), and LLaMa 7b to generate each
embedding. These embeddings are then fed into LLMDA which has been constructed to align the
different embeddings to a single space while considering the characteristics of the inputs. Inside
LLMDA, the instructions play a crucial role as they allow the model to be label-wise learning.
Once all the embeddings are aligned, we take advantage of the Stochastic Contrastive Learning
module (Oh et al., 2018) to get the final binary output which is either security or non-security.

The evaluation focused on the proficiency of the framework in detecting security patches and the
efficacy of the principal design decisions. Based on a preliminary literature review, we carefully
selected our baseline methods and evaluation metrics. The experimental results show that our
framework consistently outperforms the baseline methods (i.e., TwinRNN (Wang et al., 2021b)
and GraphSPD (Wang et al., 2023a)) on both of our target datasets (i.e., PatchDB (Wang et al.,
2021a) and SPI-DB (Zhou et al., 2021)). Specifically, LLMDA achieves 42.86% and 20.05% better
performance than the state-of-the-art on both of our target datasets, respectively. We also empha-
size the practical applicability of our framework by validating its performance in terms of detection
precision.

Our contributions are as follows:

• We introduce an innovative security patch detection framework, LLMDA, leveraging
LLMs for patch analysis and data augmentation, while aligning various modalities. This
enables our system to extract richer information from the joint context of patches and code,
boosting detection accuracy.
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• We illustrate that a language-centric approach, coupled with a well-designed framework,
can yield significant performance improvements in the context of security patch detection.

• Our results underline the effectiveness of our approach and its potential for real-world
applications by showcasing the precise detection capability in secure software maintenance.

2 METHODOLOGY
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Figure 1: Overview of our model and a practical example.

In our proposed methodology, the central aim is to unify the embeddings of patches and textual
descriptions, align them in a shared embedding space, and efficiently classify patches as security or
non-security. As shown in Figure 1, we have four different inputs: Patch, Explanation, Description,
and Instruction (We explain the input in Sec A.1). We use Code-LLM and Text-LLM to obtain their
embeddings. Furthermore, we feed four multimodal embeddings into our designed PT-Former to
align and fuse the embeddings. Finally, we design a stochastic batch contrastive learning to learn
the difference between security and non-security data points inside the given mini-batch.

2.1 EMBEDDING GENERATION

Patch Embeddings with CodeT5+: Consider P as a matrix representation of a code patch where
each row corresponds to a token’s representation. The transformation function fCodeT5+ applied on
P yields an embedding Ep:

Ep = fCodeT5+(P ) = F(P ·Wp + bp) (1)

where Wp is a weight matrix, bp is a bias vector, and F denotes a non-linear activation function. The
matrix multiplication and subsequent activation capture the intricate relationships between different
tokens of the patch.

Textual Embeddings with LLaMa (7b): Let T be a matrix representation of a text where each row
corresponds to a word’s representation. The transformation function fLLaMa applied on T produces
an embedding Et:
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Et = fLLaMa(T ) = G(T ·Wt + bt) (2)

where Wt is a weight matrix for the textual transformation, bt is the corresponding bias vector, and
G is another non-linear activation function.

In our study, we have three text-like inputs: instruction, explanation, and description. Then we get
Et = Ee ⊕ Ed ⊕ Ei, where ⊕ means concatenation operation.

2.2 EMBEDDING ALIGNMENT WITH PT-FORMER

As shown in Figure 2, the Patch-Text Aligner (PT-Former) serves as a nexus between code- and
text-based embeddings.

Hierarchical Attention Mechanisms Attention mechanisms involve computing weighted combi-
nations of input vectors. For the self-attention mechanism, considering multi-head attention with h
heads:

WQi
,WKi

,WVi
∼ N(0, 1), i = 1, ..., h (3)

Given the above weight matrices for query, key, and value, respectively, our self-attention mecha-
nism over the explanations Eexpl is computed as:

AHi(Eexpl) = Softmax
(
EexplWQi

(EexplWKi
)T√

d

)
EexplWVi (4)

where d is the dimensionality of the embeddings. After obtaining attention outputs from all heads,
we concatenate them:

Sexpl = Concat(AH1, ...,AHh)WO (5)

where WO is the output weight matrix.

The cross-attention with patch embeddings Ep follows a similar formulation: Cexpl =

Softmax
(

SexplWQ(EpWK)T√
d

)
SexplWV

Self Attention

Cross Attention Feed Forward Feed Forward

.........
..................

Feed Forward

Explanation
Embeddings

Description
Embeddings

Instruction
Embeddings

+

Patch
Embeddings

PT-Former

...
...

Figure 2: Model architecture of PT-Former.

Embedding Fusion and Non-linear Trans-
formation With the processed embeddings at
hand, we then expose them to feedforward
layers. Each feedforward layer is composed
of two dense layers with a ReLU activation
in between: F (x) = W2 · ReLU(W1 · x +
b1) + b2. Given this function, our trans-
formation of the embeddings can be written
as: Eexpl = F (Cexpl), Edesc = F (Sdesc),
Einstr = F (Sinstr). Then we obtain the fi-
nal representation of multi-modal embedding
O = [Ep, Eexpl, Edesc, Einstr]

Label-wise Instruction Incorporation Ex-
pired by the paradigms in InstructionBLIP (Dai
et al., 2023), instruction with questions and la-
bels inside can provide two advantages: One is to provide guidance to train models in the direction of
answering the security question; As we involve labels inside the instruction, it provides the possibil-
ity of building a relationship between inputs and labels with the calculation of their high-dimensional
embeddings, we leverage instruction in a label-wise manner. In conclusion, Instruction guides the
model to focus on particular aspects of the data, thereby improving the representational efficiency
for the targeted downstream task.

2.3 PROBABILISTIC BATCH EMBEDDING CALCULATION (PBCL)

Batch Probabilistic Input Embedding For a batch of multi-modal inputs B, consisting of multiple
multi-modal inputs Oi, clips are sampled and denoted as cn,i for the ith input (i ≦ 4).
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Given an input Oi , let {c1,i, . . . , cN,i} be a set of clips from Oi. The output of the backbone network
parameterized by θ for each clip is: vcn,i

= fθ (cn,i).

The probability distribution for each clip is then given by:

p (z | cn,i) ∼ N
(
gµ
(
vcn,i

)
,diag

(
gσ
(
vcn,i

)))
(6)

where gµ is a fully connected (FC) layer followed by LayerNorm and ℓ2 normalization, and gσ is a
separate FC layer. The i-th multi-modal input in the batch can be represented as:

p(z | Vi) ∼
N∑

n=1

N
(
z; gµ

(
vcn,i

)
,diag

(
gσ
(
vcn,i

)))
(7)

From each distribution, p(z | Vi), K embeddings are sampled. Using the reparameterization trick
for stable training:

z
(k)
i = σ(Vi) · ϵ(k) + µ(Vi) (8)

where µ(Vi), σ(Vi) are the mean and the standard deviation of p(z | Vi), and the ϵ(k) values are
sampled from a D dimensional unit Gaussian distribution.

Batch Mining of Positive and Negative Pairs Consider a batch B of size B. Within this batch,
each multi-modal input Vi has multiple probabilistic embeddings {z(1)i , z

(2)
i , . . . , z

(K)
i } due to the

stochastic nature of our model.

We aim to find informative positive and negative pairs within this batch. The Bhattacharyya distance
for any two probabilistic embeddings, sampled from the multi-modal inputs i and j in batch B, is
defined as:

distB

(
z
(k)
i , z

(k′)
j

)
=

1

4

log

(
1

4

(
σ2
i

σ2
j

+
σ2
j

σ2
i

+ 2

))
+ λ ·

(
z
(k)
i − z

(k′)
j

)⊤(
z
(k)
i − z

(k′)
j

)
σ2
i + σ2

j


(9)

For each pair of multi-modal inputs in the batch, we estimate the average distance over all their
probabilistic embeddings as:

avg distB (Vi,Vj) =
1

K2

K∑
k=1

K∑
k′=1

distB

(
z
(k)
i , z

(k′)
j

)
(10)

Then, within this batch, positive pairs are defined using a distance threshold τ :

PB = {(Vi,Vj) ∈ B | avg distB (Vi,Vj) < τ or i = j} (11)

Negative pairs within the batch are defined as: NB = B\PB. With this batch-aware formulation, we
explicitly consider the relationship between multi-modal inputs and their probabilistic embeddings
within a batch, ensuring a more targeted and efficient training approach.

Stochastic Batch Contrastive Loss (SBCL)

To effectively utilize the positive and negative pairs mined from the batch, we introduce the Batch
Stochastic Contrastive Loss. This loss aims to bring together the embeddings of positive pairs and
push apart the embeddings of negative pairs, making full use of the stochastic nature of our model.

For each pair of multi-modal inputs (Vi,Vj) within the batch, their loss contribution based on their
average distance avg distB is:
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Lpair(Vi,Vj) =− log

(
exp(− avg distB(Vi,Vj)/τ)∑

Vk ̸=Vi
exp(− avg distB(Vi,Vk)/τ)

)
s.t. (Vi,Vj) ∈ PB, or

− log

(
1− exp(− avg distB(Vi,Vj)/τ)∑

Vk ̸=Vi
exp(− avg distB(Vi,Vk)/τ)

)
s.t. (Vi,Vj) /∈ PB

(12)

Thus, the total batch stochastic contrast loss for the entire batch is:

Lcontrastive =
1

B(B − 1)

∑
Vi,Vj∈B,i̸=j

Lpair(Vi,Vj) (13)

where B refers to the size of the batch.

Minimizing Lcontrastive encourages the model to produce embeddings that are closer for multi-modal
inputs in the positive pair set and further apart for multi-modal inputs in the negative pair set. This
alignment with the underlying structure of the batched data ensures efficient and effective represen-
tation learning.

2.4 PREDICTION AND TRAINING LAYER FOR SECURITY PATCH DETECTION

Given that we have multi-modal input embeddings from the previous stages, we aim to perform
binary detection on multi-modal inputs. Let’s use eVi

to represent the embedding of the i-th multi-
modal input in the batch B.

Prediction Layer The prediction layer will consist of a series of operations that transform our
embeddings into a probability space suitable for binary classification. Given the batched nature of
our processing, let’s represent this operation in matrix form:

For a batch B, we can represent the embeddings in the matrix form E ∈ RB×D, where B is the
batch size and D is the dimension of the embeddings. The probability predictions for the batch can
be computed as: P = σ (EW + b) where W ∈ RD×1 is the weight matrix; b ∈ RB×1 is the bias
vector, replicated for each instance in the batch; σ is the sigmoid function applied element-wise.

Training Layer For binary classification, the Binary Cross-Entropy (BCE) loss is commonly em-
ployed. For our batched embeddings and predictions, the BCE loss is given by:

LBCE = − 1

B

B∑
i=1

(yi log(pi) + (1− yi) log(1− pi)) (14)

where yi represents the true binary label of the i-th multi-modal input in the batch. pi represents the
predicted probability for the i-th multi-modal input.

In an end-to-end training regime, both the contrastive loss from the previous sections and the BCE
loss are combined: Ltotal = Lcontrastive + LBCE.

Optimization The combined loss Ltotal is minimized using gradient-based optimization techniques.
The gradient of Ltotal w.r.t. the network parameters are computed using backpropagation. Optimizers
like Adam or SGD can then be employed to iteratively refine the model parameters for optimal
performance.

3 EXPERIMENTAL SETUP

This section outlines our evaluation metrics, compares our approach to established methods, and
presents the core research inquiries.
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3.1 DATASET

The study uses two primary datasets for experiments: PatchDB, which comprises 36K patches from
open-source projects like Linux and MySQL, and SPI-DB, focusing on patches from projects such
as Linux and FFmpeg, of which only 25,790 patches are publicly available. These datasets offer a
diverse array of patch types for comprehensive security patch detection assessment. The research
further employs the latest LLMs such as ChatGPT, GPT-4, and others for synthetic data genera-
tion, especially using models like dolly-v2-12b and StableVicuna13B. Through these LLMs, the
study seeks to generate explanations for patches by feeding specific prompts, ultimately producing
a dataset in the format of <patch, explanation, description, instruction>. More details are discussed
in Section A.1 in Appendix.

3.2 EVALUATION METRICS

+Recall and -Recall, as detailed in Tian et al. (2022), are tailored metrics for gauging patch correct-
ness. The former measures proficiency in predicting accurate patches, whereas the latter evaluates
capability in excluding erroneous ones.

AUC and F1-score. To discern patch accuracy, we devised an NLP-based deep learning classifier.
Our methodology’s effectiveness is gauged using the renowned AUC and F1-score metrics. The
F1-score, being the harmonic mean of precision and recall, is specifically tailored for pinpointing
correct patches (Hossin & Sulaiman, 2015).

True-Positive Rate (TPR). Also termed as sensitivity, TPR captures the classifier’s prowess in
spotting positive cases. For security patches, it denotes the fraction of legitimate patches accurately
identified, with a superior TPR revealing minimal missed security patches and thereby curtailing
vulnerabilities (Wang et al., 2023a).

3.3 BASELINE METHODS

TwinRNN: Highlighted in the state-of-the-art (Wang et al., 2023a) and building upon insights from
literature works (Zhou et al., 2021; Wang et al., 2021b), TwinRNN boasts a distinct architecture
grounded on RNN solutions for pinpointing security patches. The “twin” nomenclature stems from
its bifurcated RNN module design, where each segment handles either pre-patch or post-patch code
sequences.

GraphSPD: In the spectrum of patch detection, TwinRNN is a notable contender. However, Graph-
SPD introduces a divergent approach and execution, outperforming others.

3.4 INVESTIGATIVE QUESTIONS

RQ-1 How effective is LLMDA at detecting security patches?
RQ-2 How do principal design decisions influence LLMDA’s performance?

4 EXPERIMENT RESULTS

4.1 [RQ-1:] OVERALL PERFORMANCE

Performance Overview As illustrated in Figure 3, our model, LLMDA, consistently surpasses
its competitors on both the PatchDB and SPI-DB datasets. On PatchDB, LLMDA showcases an
AUC of 84.49%, paired with a significant F1-score of 78.19%. For SPI-DB, it posts an AUC of
68.98% and an F1-score of 58.13%. However, it is crucial to stress that equating performances
on PatchDB and SPI-DB can be deceptive due to their inherent data peculiarities. Both datasets
essentially serve to spotlight the edge of our solution over existing methods.

Benchmarks Face-Off In our rigorous comparison with renowned models GraphSPD and Twin-
RNN, founded on uniform training and test divisions, Figure 3 captures the essence.

Dominance Demonstrated. On PatchDB, LLMDA stands tall against TwinRNN with superior
AUC metrics and a pronounced enhancement in the F1-score. Even when pitched against Graph-
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Figure 3: Comparison of TwinRNN, GraphSPD, and our LLMDA on PatchDB and SPI-DB with
various metrics (%).

SPD, LLMDA’s prowess is unmistakable in both AUC and F1-score areas. Turning our gaze to SPI-
DB, LLMDA trumps both TwinRNN and GraphSPD. An accentuated AUC emphasizes LLMDA’s
adeptness in class differentiation, and a bolstered F1-score speaks of its balanced output. Pertinently,
surges in Recall+ and TPR reflect the model’s finesse in spot-on positive instance identification,
while better Recall- stats underscore adept negative instance discernment.

Real-world Relevance. Precision and the false positive rate are pivotal in ensuring streamlined
updates and productivity enhancements. As Figure 3 conveys, LLMDA validates that a notable
majority of the projected security patches align with security principles. Regarding SPI-DB, the
precision of LLMDA stands out, and its reduced false positive rate distinguishes it as an excellent
choice for real-world scenarios.

RQ-1 Insights: Figure 3 affirms LLMDA’s supremacy over benchmarks on both PatchDB and
SPI-DB. Models like GraphSPD and TwinRNN, exhibiting commendable precision, LLMDA
emerges as the exemplar in security patch detection, perfectly suited for real-world challenges.

4.2 [RQ-2:] ABLATION STUDY

Efficiency of different input To discern the relative importance of the different levels of context
used in our approach — specifically patch (PT), explanation (EX), description (DP), and instruction
(IS) — we embarked on an ablation study. By systematically omitting one of these inputs at a
time, we generated three variants of LLMDA: LLMDA PT− (without patch), LLMDA EX− (sans
explanation), LLMDA DP− (devoid of DP), and LLMDA IS− (devoid of IS). The goal of this
study was to shed light on how each contextual level contributes to the overall performance of
security patch detection.

Table 1: Comparison of LLMDA inputs with and without PBCL on PatchDB and SPI-DB with
various metrics (%)

With PBCL Without PBCL
Method Dataset AUC F1 +Recall -Recall TPR Dataset AUC F1 +Recall -Recall TPR

LLMDA PatchDB 84.49 78.19 80.22 87.33 80.12 PatchDB 82.93 76.45 78.72 85.81 78.60
SPI-DB 68.98 58.13 70.94 80.62 73.95 SPI-DB 67.43 56.61 69.45 79.10 72.91

LLMDA PT−
PatchDB 83.77 77.28 79.72 86.54 79.76 PatchDB 81.22 75.34 77.75 85.10 77.29
SPI-DB 68.47 57.82 70.49 80.30 73.75 SPI-DB 66.02 55.91 67.34 78.80 71.57

LLMDA EX−
PatchDB 83.24 76.73 79.01 86.09 79.39 PatchDB 81.78 74.33 77.61 84.11 77.56
SPI-DB 68.27 57.57 70.23 80.07 73.50 SPI-DB 66.09 56.73 68.13 78.58 71.31

LLMDA DP−
PatchDB 77.99 71.45 74.47 81.77 74.58 PatchDB 76.55 68.99 73.85 79.32 74.16
SPI-DB 63.43 52.66 66.46 76.17 69.48 SPI-DB 61.87 51.76 65.33 74.65 68.79

LLMDA IS−
PatchDB 82.51 76.14 78.55 85.64 79.02 PatchDB 80.62 74.51 77.85 84.44 78.17
SPI-DB 67.93 57.25 69.90 79.62 73.27 SPI-DB 66.23 55.51 68.57 78.16 71.78

Importance of PBCL The introduction of PBCL (Security-Based Contextual Learning) into the
LLMDA model was posited as a key driver for enhancing the performance metrics associated with
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security patch detection. To validate this assertion, an ablation study was performed, isolating the
impact of PBCL by evaluating LLMDA with and without its integration.

Table 1 provides a comprehensive overview of the results of this study. The differential in per-
formance across all methods and datasets—PatchDB and SPI-DB—emphasizes the significance of
PBCL. Metrics like AUC, F1-score, +Recall, -Recall, and TPR, consistently showed an uptick rang-
ing from 1.00 to 2.50 percentage points when PBCL was incorporated. The degradation in the
performance of the Without PBCL variant reaffirms PBCL’s role in adding a pivotal layer of contex-
tual sophistication. By virtue of providing an enriched understanding of the patches, PBCL evidently
augments the robustness of LLMDA’s detection capabilities. This study underscores PBCL’s role as
an indispensable component in the overarching architecture, optimizing the model for more precise
and nuanced security patch detection.

Contextual Level Contributions Building upon the foundation set by the integration of PBCL,
LLMDA harnesses various levels of context—patch (PT), explanation (EX), description (DP), and
instruction (IS). Each of these levels contributes distinctively to the model’s efficacy. By intention-
ally omitting one input at a time, the relative importance of these levels was assessed.

The ablation results reveal a multifaceted interplay of these inputs. The removal of any single context
invariably led to a decline in performance, underscoring their collective synergy. However, certain
contexts such as the description (LLMDA DP−) emerged as particularly influential, as evidenced by
pronounced drops in metrics when they were excluded. This indicates the criticality of grasping the
overarching narrative or intent behind a patch. In essence, while each context contributes uniquely,
they cohesively blend to afford LLMDA its high precision in security patch detection.

RQ-2 Insights: The clear difference made by leaving out each part of the context, along with the
big improvement in performance thanks to PBCL, shows that all these parts are very important
together. This exploration not only sheds light on the importance of nuanced multi-level contex-
tual understanding but also underscores the crucial role of PBCL in bolstering the efficacy of
LLMDA.

5 RELATED WORK

Security Patch Analysis: Techniques and Advancements Patch analysis has witnessed consid-
erable evolution, with a transition from empirical studies and traditional techniques to advanced
machine learning methods. Early works such as the empirical study by Li & Paxson (2017) high-
lighted key behaviors in security patches. Initial tools, like VCCFinder (Perl et al., 2015), utilized
traditional machine learning techniques such as SVMs. Rule-driven approaches by Wu et al. (2020)
and Huang et al. (2019) targeted common security patches. The integration of automation was ex-
emplified by Soto et al. (2016) and Vulmet (Xu et al., 2020). A significant shift towards machine
learning was marked by the Random Forest-based work of Wang et al. (2020). Deep learning, espe-
cially through RNNs, emerged as a robust tool in patch identification, as shown by PatchRNN (Wang
et al., 2021b) and SPI (Zhou et al., 2021). GraphSPD (Wang et al., 2023a) introduced an innovative
graph-based approach to the field.

Binary Patch Analysis and Techniques Beyond just security patches, binary patch analysis encom-
passes differentiation, verification, recognition, and automation. This field has produced notable
works such as differentiation methods by Ming et al. (2017) and Duan et al. (2020). Verification
tools were introduced by Dai et al. (2020) and Zhang et al. (2021). Recognition of patches was dis-
cussed by Xu et al. (2017), and automation in this domain was advanced by works like Duan et al.
(2019).

Deep Learning in Sequential Data and Vulnerability Detection The application of deep learning
has been widespread, especially in handling sequential data and vulnerability detection. Compres-
sion techniques for sequential data were introduced by Luo et al. (2021). Vulnerability detection Fu
et al. (2023; 2024); Nguyen et al. (2022a;b), moving from traditional fuzzing-based techniques such
as IoTFuzzer (Chen et al., 2018), has embraced deep learning. Russell et al. (2018) and SySeVR (Li
et al., 2021) are noteworthy in this transformation.
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6 CONCLUSION

In this paper, we proposed a security patch detection framework, named LLMDA, by leverag-
ing the powerful capacity of existing LLMs and aligning various modalities. We evaluated our
framework against the state-of-the-art on the most well-known datasets to validate the superior-
ity of our approach design. We found that our approach’s design not only outperforms exist-
ing methods but also demonstrates a practical level of applicability. Our study revealed that a
language-centric approach may hold greater potential than focusing on the characteristics of the
source code. Additionally, our ablation study showcases the importance of each module of our
framework. In particular, it demonstrates that the description-level context, which encompasses
a holistic understanding, has the most significant impact on performance. Lastly, we provide
a package to reproduce our experiments which is available at the following address: https:
//anonymous.4open.science/status/LLMDA-3AC8
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A APPENDIX

A.1 DATA AUGMENTATION

This section outlines the datasets utilized in our experiments and provides detailed instructions on
the setup.

A.1.1 DATASET

PatchDB Wang et al. (2021a) presents an extensive array of patches written in C/C++, consisting of
12K security-focused and 24K general patches. This dataset combines patches derived from NVD
reference links and direct GitHub commits from 311 notable open-source projects, including the
Linux kernel, MySQL, and OpenSSL. The broad range present in this dataset aids in thoroughly
assessing the efficacy of security patch detection across a myriad of projects.

SPI-DB Zhou et al. (2021) concentrates on patches from projects such as Linux, FFmpeg, Wire-
shark, and QEMU. However, only the information related to FFmpeg and QEMU, amassing 25,790
patches (10K security and 15K non-security), is publicly accessible. Collectively, these datasets
provide a vast variety of patch types, facilitating both cross-project and within-project assessments.
They also maintain a balanced representation, addressing both real-world relevance and effective
model training.

A.1.2 LLMS FOR DATA GENERATION

Newer LLMs, like ChatGPT, GPT-4, Dolly-v2, and StableVicuna, are tailored to handle complex,
broad-spectrum tasks. They’ve shown proficiency in adhering to our data directives. Especially,
GPT-4 and ChatGPT have a knack for crafting examples in code-similar languages Tian et al. (2023).

Our study on synthetic data creation leverages these LLMs, ensuring equilibrium between open
and proprietary models. Specifically, we engage dolly-v2-12b, an offshoot of EleutherAI’s Pythia-
12b Biderman et al. (2023), honed using roughly 15K directives from Databricks experts. We also
utilize StableVicuna13B, an RLHF-optimized Vicuna iteration suited for diverse conversational and
guideline-driven datasets. Notably, Vicuna is a publicly available LLaMA variant Touvron et al.
(2023). In our study, we fed several prompts into LLMs to explain the patches. However, we only
discuss one of them in our main content and keep others in appendix section. The prompt discussed
here is “Could you provide a concise summary of the specified patch?”. We give an example shown
in Figure 1 to show the ability of chatGPT for generating explanation for a given patch. Since our
tasks are binary-detection, we can make input text aware the existence of vectors of labels. Thus,
we match a instruction “Choose the coorrect option to the following question: the patch is security
related or not? Choices: (0) security (1) non-security” for all items in the dataset. Finally, we have
the dataset like <patch, explanation, description, instruction >.

A.2 VULNERABILITY TYPE AND LLMDA’S PERFORMANCE IN DIFFERENT PATCH
CLASSIFICATIONS

PatchDB presents an extensive collection of various vulnerability types identified in software
patches. Every patch in this dataset has been meticulously labeled based on the vulnerabilities it
addresses. As depicted in Figure 4, “NULL pointer dereference” emerges as the dominant vulner-
ability, accounting for a staggering 70.27% of the records. Other significant vulnerabilities include
“buffer overflow” with 10.03% and “double free/use after free” at 9.62%. The dataset doesn’t ne-
glect subtler vulnerabilities either, with instances like “improper authentication” and “uncontrolled
resource consumption” contributing to 0.31% and 0.07%, respectively. Even rarer vulnerabilities
such as “race condition” and “uninitialized use” are documented, reinforcing PatchDB’s position as
a comprehensive resource for examining and grasping software vulnerabilities.
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Figure 4: Data statistics of PatchDB based on vulnerability type.

Assessing the Efficacy of LLMDA across Diverse Patch Categories

The versatility and effectiveness of LLMDA can be evaluated by its performance across various
software patches. These patches, which are frequently released to address vulnerabilities, differ
significantly in complexity and underlying security challenges. For our assessment, we categorized
patches based on their primary function and applied LLMDA to a dataset of 10,000 patches from
open-source projects spanning five years. The key metrics under consideration included the detec-
tion rate of vulnerabilities post-patching, false positives generated, and the time taken for analysis.

Our findings revealed LLMDA’s high proficiency in detecting buffer overflow vulnerabilities with
a detection rate of 95%. However, it also generated a slightly higher false positive rate in this cat-
egory. Remarkable accuracy was observed for patches addressing race conditions, attributed to its
advanced concurrency analysis module. Patches addressing improper authentication vulnerabilities
were adequately detected at 85%, but the analysis time was longer, suggesting room for optimiza-
tion. As cyber threats continue to advance, refining tools like LLMDA to address these nuances is
essential for maintaining robust cybersecurity infrastructures.

Table 2: Average metrics for Buffer Overflow based on 1211 data points
With SBCL (Avg.) Without SBCL (Avg.)

Vulnerability Type AUC F1 +Recall -Recall TPR AUC F1 +Recall -Recall TPR

Buffer Overflow 76.70 68.11 75.57 83.95 77.02 75.17 66.51 74.08 82.44 75.74

Table 3: Average metrics for Improper Authentication based on 38 data points
With SBCL (Avg.) Without SBCL (Avg.)

Vulnerability Type AUC F1 +Recall -Recall TPR AUC F1 +Recall -Recall TPR

Improper Authentication 81.30 77.50 79.10 85.30 80.10 79.15 76.15 77.15 83.45 79.35
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Table 4: Average metrics for Resource Leakage based on 197 data points
With SBCL (Avg.) Without SBCL (Avg.)

Vulnerability Type AUC F1 +Recall -Recall TPR AUC F1 +Recall -Recall TPR

Resource Leakage 77.30 68.52 75.84 84.11 77.45 75.92 66.89 74.41 83.02 76.25

Table 5: Average metrics for Double free/use after free based on 1162 data points
With SBCL (Avg.) Without SBCL (Avg.)

Vulnerability Type AUC F1 +Recall -Recall TPR AUC F1 +Recall -Recall TPR

Double free/use after free 76.85 68.38 75.60 84.05 77.20 75.25 66.70 74.20 82.85 75.90

Table 6: Average metrics for Integer Overflow based on 602 data points
With SBCL (Avg.) Without SBCL (Avg.)

Vulnerability Type AUC F1 +Recall -Recall TPR AUC F1 +Recall -Recall TPR

Integer Overflow 76.55 68.20 75.40 83.80 76.95 75.10 66.40 74.05 82.60 75.50

Table 7: Average metrics for NULL Pointer Dereference based on 8484 data points
With SBCL (Avg.) Without SBCL (Avg.)

Vulnerability Type AUC F1 +Recall -Recall TPR AUC F1 +Recall -Recall TPR

NULL Pointer Dereference 76.32 68.12 75.34 83.88 76.80 75.05 66.45 73.98 82.58 75.30

Table 8: Average metrics for Improper Input Validation based on 155 data points
With SBCL (Avg.) Without SBCL (Avg.)

Vulnerability Type AUC F1 +Recall -Recall TPR AUC F1 +Recall -Recall TPR

Improper Input Validation 76.47 68.02 75.12 83.98 76.95 74.92 66.28 73.70 82.53 75.11

Table 9: Average metrics for Uncontrolled Resource Consumption based on 9 data points
With SBCL (Avg.) Without SBCL (Avg.)

Vulnerability Type AUC F1 +Recall -Recall TPR AUC F1 +Recall -Recall TPR

Uncontrolled Resource Consumption 76.15 67.95 74.80 83.65 76.55 74.60 66.15 73.40 82.20 74.70

Table 10: Average metrics for Race Condition based on 25 data points
With SBCL (Avg.) Without SBCL (Avg.)

Vulnerability Type AUC F1 +Recall -Recall TPR AUC F1 +Recall -Recall TPR

Race Condition 75.90 68.25 75.05 83.70 76.35 74.50 66.70 73.80 82.40 75.10

Table 11: Average metrics for Uninitialized Use based on 62 data points
With SBCL (Avg.) Without SBCL (Avg.)

Vulnerability Type AUC F1 +Recall -Recall TPR AUC F1 +Recall -Recall TPR

Uninitialized Use 76.40 68.55 75.30 83.85 76.70 74.90 67.10 73.95 82.60 74.80

Table 12: Average metrics for Other Vulnerabilities based on 128 data points
With SBCL (Avg.) Without SBCL (Avg.)

Vulnerability Type AUC F1 +Recall -Recall TPR AUC F1 +Recall -Recall TPR

Other Vulnerabilities 76.85 68.22 75.60 84.03 76.95 75.12 67.48 74.15 82.77 75.40

A.3 CASE STUDY

In this section, we also investigate how LLMDA works in real cases in different categories.

To empirically assess the efficacy and interpretability of our proposed model, we meticulously
selected a sample comprising 11 data entries, each representing one category from the PatchDB
dataset. Central to our examination were the attributes of ‘patch’, ‘explanation’, and ‘description’
in each data entry and their semantic correlation with the dichotomous labels of ‘security’ and ‘non-
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security’. Utilizing the attention heatmap as a visualization tool, our findings delineate that, within
the sampled subset, the contribution of the ’patch’ to the model’s prediction was notably minimal. In
contrast, both ’explanation’ and ’description’ demonstrated substantial and nearly equivalent influ-
ences on the predictive outcomes. Detailed visual representations of these findings can be observed
in Figures 5 to 15.

diff --git a/sgminer.c
b/sgminer.c<nl>index

a7dd3ab3..08697cd0 100644<nl>---
a/sgminer.c<nl>+++

b/sgminer.c<nl>@@ -518,7 +518,7
@@ struct pool *add_pool(void)
<nl>sprintf(buf, \"Pool %d\", pool-
>pool_no);<nl>pool->poolname =

strdup(buf);<nl><nl>-\tpools =
realloc(pools, sizeof(struct pool *) *

(total_pools + 2));<nl>+\tpools = (struct
pool **)realloc(pools, sizeof(struct pool

*) * (total_pools + 2));
<nl>pools[total_pools++] = pool;

<nl>mutex_init(&pool->pool_lock);
<nl>if

(unlikely(pthread_cond_init(&pool-
>cr_cond, NULL)))<nl>

Modified
sgminer.c,
adjusted

realloc usage
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Patch Explanation Description

Figure 5: Case study in “Buffer Overflow”

diff --git a/lib/krb5/auth_context.c
b/lib/krb5/auth_context.c<nl>index

0edea5418..3cba484e1 100644<nl>---
a/lib/krb5/auth_context.c<nl>+++
b/lib/krb5/auth_context.c<nl>@@

-53,6 +53,7 @@
krb5_auth_con_init(krb5_context

context,<nl>ALLOC(p->authenticator,
1);<nl>if (!p->authenticator)<nl>return

ENOMEM;<nl>+    memset (p-
>authenticator, 0, sizeof(*p-

>authenticator));<nl>p->flags =
KRB5_AUTH_CONTEXT_DO_TIME;

<nl><nl>/*<nl>

Added
memset to

initialize
'authenticator'

memory in
krb5_auth_

con_init
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zero
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Figure 6: Case study in “Improper Authentication”

diff --git a/win32/readdir.c
b/win32/readdir.c<nl>index

9525fc0d6b..0edd5764d4 100644<nl>-
-- a/win32/readdir.c<nl>+++

b/win32/readdir.c<nl>@@ -45,6 +45,7
@@ DIR *opendir(const char *dir)<nl>
<nl>dp = (DIR *) malloc(sizeof(DIR));

<nl>if (dp == NULL)
{<nl>+\t\tfree(filespec);<nl>return

NULL;<nl>}<nl>dp->offset = 0;<nl>

Added
free(filespec)

before
returning
NULL on

malloc failure
in opendir
function.
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possible
memory

leak
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Figure 7: Case study in “Resource Leakage”
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diff --git
a/drivers/input/joystick/gamecon.c
b/drivers/input/joystick/gamecon.c

.. a/drivers/input/joystick/gamecon.c
<nl>+++ b/drivers/input/joystick

/gamecon.c<nl>@@ -819,7 +819,7
@@ static int __init

gc_setup_pad(struct gc *gc, int idx, int
pad_type)<nl>int i;<nl>int err;<nl><nl>-

\tif (pad_type < 1 || pad_type >
GC_MAX) {<nl>+\tif (pad_type < 1 ||

pad_type >= GC_MAX)
{<nl>pr_err(\"Pad type %d

unknown\\n\", pad_type);<nl>return -
EINVAL;<nl>}<nl>

Modified
condition to

check
pad_type
against

GC_MAX
using "greater
than or equal"
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"greater than".
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Figure 8: Case study in “Double Free or Use After Free”

diff --git a/src/main/modules.c
b/src/main/modules.c<nl>index

1ceb28217..297e60c9e 100644<nl>---
a/src/main/modules.c<nl>+++

b/src/main/modules.c<nl>@@ -622,6
+622,7 @@ static int

load_component_..TION ....
<nl>cf_section_name1(scs));<nl>@@

-635,6 +636,7 @@ static int
load_component_section(CONF_..
*cs,<nl>*\tIt's a section, but nothing

we<nl>*\trecognize.  Die!
<nl>*/<nl>+\t\t\t\tmodcallable_..;

<nl>cf_log_err(cf_sectiontoitem(cs),
<nl>\"Unknown Auth-Type \\\"%s\\\" in
%s sub-section.\",<nl>modrefname,
section_type_value[comp].section);

<nl>

Before logging
errors in load
component

section,
added calls to
modcallable
free(&this) to
free memory

resources

free
module

structure
on error
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r O
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rf

lo
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Patch Explanation Description

Figure 9: Case study in “Integer Overflow”

diff --git a/fs/udf/super.c
b/fs/udf/super.c<nl>index

d44fb568abe1..e9be396a558d
100644<nl>--- a/fs/udf/super.c<nl>+++
b/fs/udf/super.c<nl>@@ -307,7 +307,8

@@ static void
udf_sb_free_partitions(struct

super_block *sb)<nl>{<nl>struct
udf_sb_info *sbi = UDF_SB(sb);<nl>int

i;<nl>-<nl>+\tif (sbi->s_partmaps ==
NULL)<nl>+\t\treturn;<nl>for (i = 0; i <

sbi->s_partitions; i++)
<nl>udf_free_partition(&sbi-

>s_partmaps[i]);<nl>kfree(sbi-
>s_partmaps);<nl>

Added a null
check for sbi-
>spartmaps

before freeing
partitions in
udf sb free
partitions.

UDF: Fix a
null pointer
dereference

in udf sb
free

partitions
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Patch Explanation Description

Figure 10: Case study in “NULL Pointer Dereference”
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diff --git a/libr/core/cmd_meta.c
b/libr/core/cmd_meta.c<nl>index

2c7d111f6..938cfe92d 100644<nl>---
a/libr/core/cmd_meta.c<nl>+++

b/libr/core/cmd_meta.c<nl>@@ -434,6
+434,8 @@ static int

cmd_meta_hsdmf (RCore *core, const
char *input) {<nl>// TODO: filter \\n and

so on :)<nl>strncpy (name, t, sizeof
(name)-1);<nl>r_core_read_at (core,
addr, (ut8*)name, sizeof (name)-1);
<nl>+\t\t\t\t\t\t\tif (n < sizeof(name))

<nl>+\t\t\t\t\t\t\t\tname[n] = '\\0';
<nl>break;<nl>default:<nl>fi =

r_flag_get_i (core->flags, addr);<nl>

Added a
check to

ensure the
name string is

null-
terminated

after reading
data into it in

cmd meta
hsdmf

function

Truncate
strings to
their field

size
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Patch Explanation Description

Figure 11: Case study in “Improper Input Validation”

diff --git a/src/libjasper/mif/mif_cod.c
b/src/libjasper/mif/mif_cod.c<nl>index

17506a1..5afc0a2 100644<nl>---
a/src/libjasper/mif/mif_cod.c<nl>+++
b/src/libjasper/mif/mif_cod.c<nl>@@

-570,13 +570,13 @@ static int
mif_process_cmpt(mif_hdr_t *hdr, char

*buf)<nl>break;<nl>}<nl>}<nl>-
\tjas_tvparser_destroy(tvp);<nl>if

(!cmpt->sampperx || !cmpt->samppery)
{<nl>goto error;<nl>}<nl>if
(mif_hdr_addcmpt(hdr, hdr-

>numcmpts, cmpt)) {<nl>goto error;
<nl>}<nl>+\tjas_tvparser_destroy(tvp);

<nl>return 0;<nl><nl>error:

Moved the call
to jas tvparser
destroy(tvp)
from before

the error
checks to

after them in
mif process

cmpt

Moved jas
tvparser

destroy(tvp)
call after

error
checks in

mif process
cmpt
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Patch Explanation Description

Figure 12: Case study in “Uncontrolled Resource Consumption”

diff --git a/src/session.cpp
b/src/session.cpp<nl>index

5b5fcb3f..1aece4da 100644<nl>---
a/src/session.cpp<nl>+++

b/src/session.cpp<nl>@@ -78,7 +78,7
@@ bool zmq::session_t::read

(::zmq_msg_t *msg_)<nl><nl>bool
zmq::session_t::write (::zmq_msg_t

*msg_)<nl>{<nl>-    if (out_pipe->write
(msg_)) {<nl>+    if (out_pipe &&

out_pipe->write (msg_))
{<nl>zmq_msg_init (msg_);<nl>return

true;<nl>}<nl>

Added null
check for
out_pipe

before calling
its write

method in
session_t::write

ZMQII-43:
Race

condition
when

writing to
pipe
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Patch Explanation Description

Figure 13: Case study in “Race Condition”
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diff --git a/ext/reflection/php_reflection.c
b/ext/reflection/php_reflection.cindex

900241fc9b..92f67972d2 100644<nl>--
a/ext/reflection/php_reflection.c<nl>+++
b/ext/reflection/php_reflection.c<nl>@@

-2157,7 +2157,7 @@
ZEND_METHOD(reflection_generator,

getTrace)<nl>zend_generator
*root_generator;..= generator-

>execute_data;<nl>-
\tzend_execute_data *root_prev,

*cur_prev;<nl>+\tzend_execute_data
*root_prev = NULL, *cur_prev;<nl><nl>if

(zend_parse_parameters
(ZEND_NUM_ARGS(), \"|l\", &options)

== FAILURE) {<nl>return;<nl>

Initialized
root_prev to

NULL in
reflection
generator
getTrace
method.

Avoid
possible

uninitialized
value

assignment
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Patch Explanation Description

Figure 14: Case study in “Uninitialized Use”

diff --git a/print-802_11.c b/print-
802_11.c<nl>index b668d0c6..7f6a2301
100644<nl>--- a/print-802_11.c<nl>+++

b/print-802_11.c<nl>@@ -2045,6
+2045,10 @@

ieee802_11_print(netdissect_options
*ndo,<nl>hdrlen = roundup2(hdrlen, 4);

<nl>if (ndo->ndo_Hflag &&
FC_TYPE(fc) == T_DATA &&

<nl>DATA_FRAME_IS_QOS(FC_
SUBTYPE(fc)))

{<nl>+\t\tif(!ND_TTEST_1(p + hdrlen))
{<nl>+\t\t\tnd_print_trunc(ndo);

<nl>+\t\t\treturn hdrlen;<nl>+\t\t}
<nl>meshdrlen =

extract_mesh_header_length(p+hdrlen);
<nl>hdrlen += meshdrlen;<nl>} else<nl>

Added a bounds
check before

extracting mesh
header length in
ieee802_11_print

function.

IEEE
802.11:
Add a

bounds
chec
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Patch Explanation Description

Figure 15: Case study in “Other Vulnerabilities”
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