
Multilevel Semantic Embedding of Software Patches: A Fine-to-Coarse Grained
Approach Towards Security Patch Detection

Xunzhu Tang1*, Zhenghan Chen2†, Saad Ezzini3, Haoye Tian1, Yewei Song1, Jacques KLEIN1,
Tegawendé F. Bissyandé1

1University of Luxembourg, Luxembourg
2Peking University, Beijing, China

3Lancaster University, Lancaster, UK
xunzhu.tang@uni.lu, 1979282882@pku.edu.cn, s.ezzini@lancaster.ac.uk, haoye.tian@uni.lu, yewei.song@uni.lu,

jacques.klein@uni.lu, tegawende.bissyande@uni.lu

Abstract

The growth of open-source software has increased the risk
of hidden vulnerabilities that can affect downstream software
applications. This concern is further exacerbated by software
vendors’ practice of silently releasing security patches with-
out explicit warnings or common vulnerability and exposure
(CVE) notifications. This lack of transparency leaves users
unaware of potential security threats, giving attackers an op-
portunity to take advantage of these vulnerabilities. In the
complex landscape of software patches, grasping the nuanced
semantics of a patch is vital for ensuring secure software
maintenance. To address this challenge, we introduce a multi-
level Semantic Embedder for security patch detection, termed
MultiSEM. This model harnesses word-centric vectors at a
fine-grained level, emphasizing the significance of individual
words, while the coarse-grained layer adopts entire code lines
for vector representation, capturing the essence and interrela-
tion of added or removed lines. We further enrich this repre-
sentation by assimilating patch descriptions to obtain a holis-
tic semantic portrait. This combination of multi-layered em-
beddings offers a robust representation, balancing word com-
plexity, understanding code-line insights, and patch descrip-
tions. Evaluating MultiSEM for detecting patch security, our
results demonstrate its superiority, outperforming state-of-
the-art models with promising margins: a 22.46% improve-
ment on PatchDB and a 9.21% on SPI-DB in terms of the F1
metric.

Introduction
The rapid growth of the open source software (OSS) ecosys-
tem has led to unparalleled advancements in computer soft-
ware development. However, as with every silver lining,
there’s a cloud; the increasing reliance on OSS has been ac-
companied by a dramatic surge in the number of vulnerabili-
ties. According to the 2021 OSSRA report (Synopsys 2023),
while 98% of codebases are now composed of open source
components, a large 84% of these codebases contain at least
one open-source vulnerability. More concerning is the fact
that 60% of them face high-risk vulnerability threats. Ex-
ploiting these chinks in the armor, attackers have launched

*Corresponding author
†These authors contributed equally.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

”N-day” attacks against unpatched software systems. One
glaring example of this is the remote command execution
vulnerability (CVE-2021-22205) disclosed in April 2021 (
NVD). Seven months after its release, more than 30,000 un-
patched GitLab servers that weren’t fixed were hacked, mak-
ing them sources for DDoS attacks. This scenario under-
scores the significance of timely software patching—a tried
and tested countermeasure against ”N-day” attacks. How-
ever, in reality, the sheer volume of patches, which range
from feature additions and performance bug resolutions to
security vulnerability fixes, can be overwhelming. As a con-
sequence, software updates are frequently deferred due to
the intricate workflow of collating, testing, validating, and
scheduling patches (Vaniea and Rashidi 2016). Given this
backdrop, there’s an urgent need to enable users and ad-
ministrators to differentiate security patches from the myr-
iad of other updates. Yet, the task isn’t as straightforward
as it appears. Not all security patches make it to the NVD
or are clearly marked in the changelog. Some software ven-
dors, owing to the subjective nature of patch management,
opt to release security patches on the down low (Wang et al.
2020a). Such ”silent” security patches pose a conundrum for
users and system administrators, leaving them in the dark
about the true security implications and consequently, the
urgency to apply them.

The academic and industry communities have explored
multiple avenues to identify security patches. Traditional
methods have revolved around machine learning (ML) mod-
els that primarily utilize syntax features (Wang et al. 2020a;
Tian, Lawall, and Lo 2012). A more contemporary approach
involves deploying recurrent neural networks (RNNs) to
treat the patch code as sequential data (Wang et al. 2021b;
Zhou et al. 2021b). However, these methods fall short in
two key aspects: they overlook program semantics and suffer
from high false-positive rates. While ML-based solutions of-
ten miss out on capturing the intricate dependencies between
code statements, RNN-based models, although inspired by
natural language processing (NLP) techniques, neglect the
unique attributes of programming languages. The end re-
sult? Unacceptably high false-positive rates, as evidenced by
two RNN-based models that registered rates of 11.6% and
33.2%, respectively. Given that a mere 6-10% of all patches
are security-centric (Wang et al. 2021a), the impetus to re-

ar
X

iv
:2

30
8.

15
23

3v
1

 [
cs

.S
E

]
 2

9
A

ug
 2

02
3

duce these false positives becomes even more pronounced.
In this project, we aim to address these challenges.

Through a fine-to-coarse grained approach, we present a
novel method (MultiSEM) that not only detects security
patches with a high degree of accuracy but also reduces false
positive rates. Drawing upon multilevel semantic embedding
techniques and capitalizing on the content-rich information
contained within software patches, our solution represents a
quantum leap in the realm of security patch detection.

Our contributions are as follows:

• Multilevel Semantic Embedding: We introduce a novel
multilevel semantic embedding technique tailored for
software patches. This method captures both high-level
and granular details of the patches, ensuring a more nu-
anced and accurate representation.

• Fine-to-Coarse Grained Approach: Our approach not
only focuses on individual lines of code but also looks
at the broader structure and flow of the patch. The multi-
scale perspective objective is to enhance the accuracy of
security patch detection.

• Experimental Results: We conduct exhaustive evalua-
tions of our proposed method against state-of-the-art so-
lutions. Our results demonstrate superior performance,
particularly in reducing false positive rates, which has
been a longstanding challenge in the field.

Approach
We present MultiSEM, a comprehensive framework com-
prising six distinct components: Preprocessing, Multilevel
Compressed CNN, Semantic Alignment, Feature Refine-
ment, Hybrid Feature Aggregation, and Prediction. Our
model, designed to capture the fine-to-coarse-grained mul-
tilevel semantic embedding of software patches, takes the
source code as its primary input and processes it through
these components to yield a security patch detection output.
The entire structure and flow of our approach can be visual-
ized in Figure 1.

Preprocessing
As depicted in Figure 1(1), our first step is to decompose the
input patches into three distinct segments: tokens, lines, and
descriptions. At the word granularity, we define a word se-
quence w = {w1, w2, . . . , wnw}, where nw represents the
sequence length. We utilize the random embedding func-
tion from PyTorch to transform this sequence into a nu-
merical vector. Hence, a word wi translates to the vec-
tor ewi. The cumulative word embedding of the patch is
thus articulated as EW = {ew1, ew2, . . . , ewnw}. Analo-
gously, for sequence granularity, we represent sequence vec-
tors as ES = {es1, es2, . . . , esns}, where ns indicates the
number of lines, and the description vector is denoted by
ED = {ed1, ed2, . . . , ednd}, with nd marking the sequence
length of the description.

Multilevel Compressed CNN (MCC)
Within the domain of our multilevel approach, feature com-
pression across all representational levels is pivotal. To this
end, this section is bifurcated into two integral components:

• Multi-Channel Convolutional Block: Designed to har-
ness contextual semantics inherent within various level
representations.

• Compressed Residual Block: A remedy to the vanish-
ing or exploding gradient dilemma often encountered in
deep networks, especially given the elongated nature of
patches. The adoption of a residual structure enables gra-
dients to directly traverse through residual connections,
thereby substantially curtailing the associated risks.

Multi Channel Convolutional Block To adeptly grasp
patterns of varying lengths from our input, we adopt the
multi-channel convolutional neural network as proposed in
(Kim 2014). This approach utilizes filters, each charac-
terized by distinct kernel sizes, which in essence, define
the word window size. For an array of m channels, given
as f1, f2, . . . , fm, we correspondingly assign kernel sizes
k1, k2, . . . , km. With these configurations, m 1-dimensional
convolutions are executed on the input matrix E. This con-
volutional operation can be mathematically described as:

hi =

n∧
j=1

tanh
(
WT

i E[j : j + ki − 1]
)
, (1)

where the symbol
∧n

j=1 demarcates the convolutional oper-
ations performed in a word sequence. Crucially, the design
choice ensures that the output word count n of hi remains
invariant with the input E. This intention preserves the se-
quence length post-convolution. The term df signifies the
out-channel size of a filter, with uniformity across filters in
output dimensions. Delving deeper into the matrix details,
E[j : j + k1 − 1] = and E[j : j + km − 1] represent sub-
matrices of E.

Therefore, after multi-channel convolutional block, we
otain h1, . . . , hm for word-level vectors, sentence-level vec-
tors, and description-level vectors.

Compressed Residual Block To refine the multi-channel
convolved word embeddings, we incorporate a series of op-
timized residual blocks. These blocks offer not only a com-
pact representation of features but also address potential
challenges related to gradient dynamics, which is especially
crucial for long word sequences.

Residual Layer Overview
The field of neural networks has witnessed significant ad-
vancements in recent years. One pivotal element that has
consistently proven crucial in this evolution is the convolu-
tional layer, responsible for primary feature extraction from
input data. However, the challenge arises when we delve
deeper: how can we maintain the hierarchical representation
of features without the risk of information loss? An elegant
solution, inspired by the work of He et al. (He et al. 2016),
introduces the concept of Residual Blocks, visualized in Fig-
ure 1.

Architecture of a Residual Block For the residual block
rmi, its architecture comprises three convolutional filters:
rmi1 , rmi2 , and rmi3 . The computational procedure for these
filters on the input can be articulated as:

...

l1

ln

l2

ln-1

Hybrid Feature
Aggregation

Description: make sure to close the authfile before returning

diff --git a/util.c b/util.c
index 6cb4a79..32bca06 100644
--- a/util.c
+++ b/util.c
@@ -167,6 +167,8 @@ check_user_token (const char *authfile,
 {
 if(verbose)
 D (debug_file, "Match user/token as %s/%s",
username, otp_id);
+
+ fclose(opwfile);
 return AUTH_FOUND;
 }

description

word-granularity

sentence-granularity

Preprocessing

 0 (securtity)

fclose (opwfile word
granularity

fclose (opwfile)

if (verbose)

...

return AUTH_FOUND;

sentence
granularity

make sure ... description

Conv1d f1 Conv1d fm
... Conv1d f1 Conv1d fm

... Conv1d f1 Conv1d fm
...

ResBlock
r11

ResBlock
rm1

...
ResBlock

r11

ResBlock
rm1

...
ResBlock

r11

ResBlock
rm1

...

h1 hm h1 h1hm hm

ResBlock
r1p

ResBlock
rmp

...
ResBlock

r1p

ResBlock
rmp

...
ResBlock

r1p
ResBlock

rmp
...

...

+ + +

Self-Attentive Pooling

...

g1

gn

g2

gn-1

1

Prediction

M
ul

til
ev

el
 C

om
pr

es
se

d
C

N
N

2

Semantic
Alignment

3

4 5

+

Conv1d

Conv1d
tanh

X

Conv1d

+

Residual block

Fully Connected

H1p Hmp
H1p H1pHmp Hmp

Hw Hs Hd

l1 lP
lnlP+1

Figure 1: Architecture of MultiSEM

X1 = rmi1(X) =

n∧
j=1

tanh
(
WT

mi1X[j : j + km − 1]
)
,

X2 = rmi2(X1) =

n∧
j=1

WT
mi2X1[j : j + km − 1],

X3 = rmi3(X) =

n∧
j=1

WT
mi3X[j : j + km − 1],

Hmi = tanh (X2 +X3) ,
(2)

In this context, X signifies the initial input to the block.
Segments of this input, starting from the j-th row and con-
cluding at the j + km − 1-th row, undergo transformations
facilitated by the aforementioned filters.

Dimensionality and Spatial Relationships The matrix
Hmi represents the output of each block and conforms to
dimensions Rn×di

. The parameters di−1 and di are crucial
as they depict the input and output channel sizes respec-
tively. Consequently, the in-channel dimension for the ini-
tial block is identified as df , whereas the concluding block
corresponds to dp.

The convolutional filters, discerned by the weight matri-
ces Wmi1 ,Wmi2 , and Wmi3 , exhibit differential properties
in terms of kernel sizes. Notably, while the first two filters
align in kernel size with their counterpart in the multi-filter
convolutional layer, the third filter distinguishes itself with a
singular kernel size.

Summarizing the architecture, the output matrix Hmp

stands as a testament to the intricate relationship between
the convolutional layer’s m-th filter and its series of residual
blocks. With a total of m filters, the ultimate output is a com-
posite of individual outputs, mathematically represented as
H = H1p ⊕H2p ⊕ · · · ⊕Hmp).

Thus, after the residual block, we obtain Hw, Hs, Hd
for word-level, sequence-level, and description-level vec-
tors, respectively.

Semantic Alignment (SA)
In the vast realm of neural representations, it’s often the
harmonious interplay between different granularities of data
that yields the most insightful results. The extraction of both
coarse and fine embeddings from patch code is no excep-
tion. In this section, we explore the strategic fusion of the
semantic nuances encapsulated in Hw (word-level) and Hs
(sequence-level) vectors. By aligning and juxtaposing these
embeddings, we aim to achieve a holistic understanding, al-
lowing the model to seamlessly traverse between detailed
token-level insights and broader sequence contexts. To facil-
itate this synthesis, our methodology is bifurcated into two
main strategies: Self-Attentive Pooling and Feature Refine-
ment Layer. The former hones in on the weighted impor-
tance of various components, while the latter serves to amal-
gamate and further process the pooled outputs, ensuring that
the final representation is both compact and informative.

Self-Attentive Pooling In our pursuit of an effective se-
mantic fusion, we first amalgamate the vectors Hw and Hd
to formulate the composite vector Hwd. Leveraging this

combined vector, we introduce an attention-influenced soft-
pooling technique to adeptly harmonize and integrate the un-
derlying semantics of Hw and Hd.

For an exemplar vector, represented as hwdj , and its con-
tingent neighboring vectors {hwdj+1, · · · , hwdj+g−1}, our
approach begins by deducing the localized attention scores.
This is articulated by:

αi
j = Hwdi

αx
i
j + b (3)

Subsequent to this, the softmax function is employed to
yield:[

βi
j , · · · , βi

j+g−1

]
= softmax

([
αi
j , · · · , αi

j+g−1

])
s.t. αi

j =
(lijW

Q)(lij+g−1W
K)T

√
d

(4)

where d is the dimension of the hidden state, and WQ ∈
Rd×dq , WK ∈ Rd×dk , W V ∈ Rd×dv are the learnable
parameters matrices of the self-attention component. Here,
we follow the previous works (Vaswani et al. 2017; Zügner
et al. 2021) and set dq = dk = dv = d.

In this context, both Hwdi
α and b are discerned as mod-

ifiable parameters. Post this determination, we engage in a
soft-pooling mechanism on the g embeddings, which gives
rise to the succinct representation:

oi
p =

j+g−1∑
q=j

βi
qx

i
q (5)

By adopting this structured approach, the entirety of nw+
ns representations undergoes a metamorphosis, culminating
in P =

⌈
nw+ns

g

⌉
refreshed representations, succinctly de-

noted as
{
oi
1,o

i
2, · · · ,oi

P

}
.

Feature Refinement and Embedding Synthesis
To extract high-level features from the transformed rep-
resentations

{
oi
1,o

i
2, · · · ,oi

P

}
, they are passed through a

dense neural layer, serving as a bridge to the final output.
For each oi

k, where k ∈ [1, P], the transformation is:

yi
k = Wfco

i
k + bfc

s.t. lk = ReLU(yi
k)

(6)

Here, Wfc is the weight matrix and bfc is the bias vec-
tor of the fully connected layer. This results in the output
vectors l1, l2, . . . , lP , which contain the distilled semantic
information. The final embedding is a concatenation:

l1, . . . , ln = (l1, . . . , lP)⊕Hd.

Hybrid Feature Aggregation through Advanced
Attention Mechanism (HFA)
In modern natural language processing and code understand-
ing tasks, representing data with feature vectors plays a
pivotal role. Among the concatenations derived from our
model, the vector (l1, l2, . . . , ln) stands out. This particular

vector emerges from the fusion of two distinct embeddings,
serving as a primary source of local feature representations.

Given the nuanced interplay of these embeddings, a sim-
ple aggregation might not suffice. Herein, the key-query at-
tention mechanism presents itself as an optimal solution. Not
only does it weigh the importance of each feature in the lo-
cal context, but it also juxtaposes it against a broader, global
context, resulting in a more balanced and informative feature
representation.

Mathematically, using the attention mechanism, the
global features are articulated as:

gi =

n∑
j=1

exp(βij)∑n
k=1 exp(βik)

(xjW
V)

s.t. βij =
(liW

Q)(ljW
K)T

√
d

(7)

where G = [g1, . . . , gP]. xi ∈ Rd.
Through this approach, each compressed word window

in our dataset not only retains its inherent local features but
also gets enriched by the global context, thereby enhancing
the overall representational power of our model.

Binary Prediction Layer
For the global vector Dg , a binary prediction is made with
the sigmoid function:

ỹ = σ(w⊤Dg + b)

s.t. ỹ =
(
1 + exp

(
−w⊤Dg − b

))−1
,

(8)

Here, w represents the learnable weight vector, and b de-
notes the bias term. The cross-entropy loss for binary pre-
diction is:

L = −y log(ỹ)− (1− y) log(1− ỹ), (9)

Where y is the true label, and ỹ is the predicted probabil-
ity. This loss guides the optimization of the model’s param-
eters.

Experiment Design
In this section, we present our experimental dataset, metrics,
state-of-the-art, and research questions.

Dataset
We evaluate MultiSEM on two popular datasets on secu-
rity patch detection: PatchDB (Wang et al. 2021a) and SPI-
DB (Zhou et al. 2021b).
PatchDB offers a diverse collection of patches in C/C++
with 12K security-specific and 24K general patches. This
dataset is an amalgamation of patches sourced from NVD
reference links and direct GitHub commits from 311
renowned open-source projects, such as Linux kernel,
MySQL, and OpenSSL. Such diversity allows us to compre-
hensively evaluate the robustness of security patch detection
across various projects.

SPI-DB focuses on patches from projects like Linux, FFm-
peg, Wireshark, and QEMU. However, only data concern-
ing FFmpeg and QEMU, totaling 25,790 patches (10K secu-
rity and 15K non-security), has been made public. Together,
these datasets not only grant us a wide spectrum of patch
types for cross-project and within-project evaluation but also
ensure a balanced representation, catering to both real-world
applicability and optimal model training.

Metric
+Recall and -Recall as presented in (Tian et al. 2022), serve
as specific metrics for evaluating patch correctness. The
+Recall metric gauges the ability to predict correct patches,
while -Recall assesses the effectiveness in filtering out in-
correct ones.
Area Under Curve (AUC) and F1 Score. For the pur-
pose of determining patch correctness, we developed a deep
learning-based NLP classifier. To assess the effectiveness of
our methodology, we employed the widely-recognized met-
rics: AUC and the F1 score. The latter is the harmonic mean
of precision and recall, specifically applied for identifying
correct patches (Hossin and Sulaiman 2015).
True-Positive Rate (TPR). Also known as sensitivity, TPR
quantifies how well a classifier identifies positive instances.
In the context of security patches, it represents the percent-
age of valid patches correctly recognized. A high TPR indi-
cates fewer overlooked genuine patches, reducing potential
vulnerabilities (Wang et al. 2023).

State-of-the-art
TwinRNN: TwinRNN is metioned in (Wang et al. 2023),
emerging from the insights presented in (Zhou et al. 2021b)
and (Wang et al. 2021b), the TwinRNN model leverages a
unique architecture anchored on RNN-based solutions for
detecting security patches. The model’s moniker, ”twin”,
originates from its dual RNN module setup, wherein each
module processes pre-patch and post-patch code sequences,
respectively.
GraphSPD: While TwinRNN offers a commendable bench-
mark in the realm of patch detection, GraphSPD, presents an
alternative perspective and methodology.

Research Questions
RQ-1 How effective is MultiSEM in security patch detec-
tion?
RQ-2 How does MultiSEM fare across various patch cate-
gories?
RQ-3 What is the impact of key design choices on the per-
formance of MultiSEM?

Experiment Results
[RQ-1:] Overall Performance
Overall Results As depicted in Table 1, our proposed
method MultiSEM yields the highest performance on both
PatchDB and SPI-DB datasets. On PatchDB, MultiSEM
achieves an impressive AUC of 83.15% with a commend-
able F1-score of 77.19. For the SPI-DB dataset, MultiSEM
attains an AUC of 68.45% with an F1-score of 57.63. It’s

Table 1: Comparison of TwinRNN, GraphSPD, and
MultiSEM on PatchDB and SPI-DB with various metrics
(%).

Method Dataset AUC F1 Recall+ Recall- TPR

TwinRNN
(Wang et al. 2021b)

PatchDB 66.50 45.12 46.35 54.37 50.67
SPI-DB 55.10 47.25 48.00 52.10 50.60

GraphSPD
(Wang et al. 2023)

PatchDB 78.29 54.73 75.17 79.67 70.82
SPI-DB 63.04 48.42 60.29 65.33 65.93

MultiSEM
PatchDB 83.15 77.19 79.52 86.78 79.52
SPI-DB 68.45 57.63 70.24 80.12 73.25

pertinent to note that the performances on PatchDB and SPI-
DB shouldn’t be directly compared due to their differing
data distributions. Both datasets serve as our baseline to con-
trast our solution with existing methodologies.

Comparison with Security Patch Detection Approaches
We assess the efficiency of MultiSEM against both Graph-
SPD and TwinRNN by consistently applying the same train-
ing and test set divisions, as summarized in Table 1.

Effectiveness. On the PatchDB dataset, MultiSEM sur-
passes TwinRNN by a significant increase in AUC and
an impressive increase in F1-score. When matched against
GraphSPD, MultiSEM remains superior in both AUC and
F1-score. Similarly, for the SPI-DB dataset, our method
MultiSEM outperforms both TwinRNN and GraphSPD
in AUC and F1-score. An enhanced AUC indicates that
MultiSEM has improved in distinguishing between posi-
tive and negative classes. The increased F1-score suggests
that MultiSEM provides a more balanced classification,
successfully improving both precision and recall. The im-
provements in Recall+ and TPR indicate that our model is
becoming more adept at correctly identifying positive in-
stances, while the advancement in Recall- denotes better
classification of negative instances.

Practicality. Precision and the false positive rate are piv-
otal metrics for ensuring reduced update frequencies and
heightened labor productivity. As demonstrated in Table 1,
MultiSEM reveals that a significant percentage of the pre-
dicted security patches are genuinely security-related. More-
over, for the SPI-DB dataset, MultiSEM consistently excels
in precision and has a reduced false positive rate, rendering it
an optimal and pragmatic choice for real-world applications.

✍ Answer to RQ-1: Compared to previous approaches,
the MultiSEM method shows significant advancements:
an improvement of 22.46% in F1 over GraphSPD on
PatchDB and 9.21% on SPI-DB. This marked enhance-
ment solidifies MultiSEM as the optimal choice for real-
world applications.

[RQ-2:] Assessing the Efficacy of MultiSEM
across Diverse Patch Categories

Table 2: Data statistics of PatchDB based on vulnerability
type.

Severity Vulnerability Type of Patch Number Proportion
1 Buffer overflow 1211 10.03%
2 Improper authentication 38 0.31%
3 Resource leakage 197 1.63%
4 Double free/use after free 1162 9.62%
5 Integer overflow 602 4.99%
6 NULL pointer dereference 8484 70.27%
7 Improper input validation 155 1.28%
8 Uncontrolled resource consumption 9 0.07%
9 Race condition 25 0.21%

10 Uninitialized use 62 0.51%
11 Other vulnerabilities 128 1.06%

PatchDB is a comprehensive dataset detailing various vul-
nerability types observed in software patches. We manually
label all patches according to the types of resolved vulnera-
bilities. As shown in Table 2, the most prevalent vulnerabil-
ity in the dataset is the ”NULL pointer dereference,” consti-
tuting a significant 70.27% of the entries. Other notable vul-
nerabilities include ”buffer overflow” at 10.03% and ”double
free/use after free” making up 9.62%. The dataset also cap-
tures more nuanced vulnerabilities, such as ”improper au-
thentication” and ”uncontrolled resource consumption,” rep-
resenting 0.31% and 0.07%, respectively. Lesser observed
vulnerabilities like ”race condition” and ”uninitialized use”
are also cataloged, making PatchDB a diverse repository for
analyzing and understanding software vulnerabilities. More
details about labelling will be shown in Appendix.

1 2 3 4 5 6 7 8 9 10 11
Severity Level

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

0.9

0.7

0.75

0.9

0.85

0.95

0.75

0.7 0.7

0.75 0.75

Figure 2: True Positive Rate (TPR) by Vulnerability Type
in PatchDB Dataset.

As shown in Figure 2, through an in-depth performance
analysis of MultiSEM across various types of security
patches, we unearthed two pivotal insights.

Firstly, security patch types with a commendable TPR
by our tool, such as ’NULL pointer dereference’ (with a
TPR of 95%), ’Buffer overflow’, and ’Double free/use af-
ter free’ (both around 90%), indicate that these patches pos-
sess distinct features from their non-security counterparts.
This distinction aids in designing more effective detection
systems. For example, patches addressing ’Resource leak-
age’ typically involve memory reinitialization and file op-
erations, pointing towards memory API interactions. Simi-
larly, patches for ’Race conditions’ predominantly leverage
lock/unlock operations to synchronize processes or threads,

making them intimately linked with lock APIs.
Secondly, some security patch types have a less impres-

sive TPR under MultiSEM, usually because they involve
subtler security check modifications. Patches for issues like
’Improper input validation’, ’Buffer overflow’, and ’Im-
proper authentication’ often rely on conditional statements
to delineate operational boundaries. While such checks are
typical security patch patterns, they can easily be con-
founded with non-security patterns. Developers frequently
employ conditional constructs to introduce new functional-
ities for specific scenarios. Hence, gleaning insights from
the broader context is quintessential for accurate detection
by MultiSEM. Additionally, the effect of data imbalance is
palpable. For instance, patches for ’Uncontrolled resource
consumption’ constitute only about 0.07% of the dataset,
furnishing sparse patterns for effective deep learning. We
believe the performance for such categories would see a con-
siderable enhancement with richer data availability.

Tail Problem As shown in Table 3, in order to evaluate
the effectiveness in solving tail problem, we compare our
MultiSEM and GraphSPD on severity #2,#8,#9, and #10.
Table 3: Comparison of MultiSEM and GraphSPD on TPR
for specific severities.

Severity MultiSEM TPR (%) GraphSPD TPR (%)
2 (Improper authentication) 70 68

8 (Uncontrolled resource consumption) 70 65
9 (Race condition) 70 67

10 (Uninitialized use) 75 69

The so-called ”tail problem” in machine learning is a
challenge that arises when certain classes or types within
a dataset are under-represented, resulting in suboptimal per-
formance for models trained on such data. Typically, these
rare categories, or the ’tail’ classes, may get overshadowed
by the more dominant or frequently occurring classes during
the model’s learning process.

To gauge the prowess of our solution, MultiSEM, in ef-
fectively addressing the tail problem, we carried out an in-
depth comparison between MultiSEM and its counterpart,
GraphSPD. Our comparative study primarily focused on the
specific severities of #2, #8, #9, and #10—categories that
are notably challenging due to their sparse occurrence in the
dataset.

The results of our study, as highlighted in Table 3, indi-
cate a noticeable edge that MultiSEM boasts over Graph-
SPD. For severity 2 (Improper authentication), our model
registers a TPR of 70%, surpassing GraphSPD’s 68%. Sim-
ilar superiority is observed for severity 8 (Uncontrolled re-
source consumption) and severity 9 (Race condition), where
MultiSEM’s TPRs are 70% and 70% respectively, in con-
trast to GraphSPD’s 65% and 67%. The most prominent dif-
ference is discerned in severity 10 (Uninitialized use), where
MultiSEM leads with a 75% TPR, a notable 6% ahead of
GraphSPD.

This comparative analysis underlines the adeptness of
MultiSEM in handling the tail problem. By achieving
higher True Positive Rates (TPRs) across these challeng-
ing severities, MultiSEM proves its efficiency in identify-
ing and correctly classifying under-represented vulnerability
types. This is crucial, as addressing the tail problem ensures

that even the rarest of vulnerabilities do not slip under the
radar, bolstering the overall security robustness.

✍ Answer to RQ-2: PatchDB highlights a variety of soft-
ware vulnerabilities, with ”NULL pointer dereference”
being the most prevalent at 70.27%. MultiSEM performs
exceptionally well in detecting major vulnerabilities but
faces challenges with subtler ones due to data imbalances.
In addressing the ”tail problem” of under-represented
classes, MultiSEM consistently outperforms GraphSPD,
exemplifying its capability to effectively detect even rare
vulnerabilities.

[RQ-3:] Ablation Study
To discern the relative importance of the different levels
of context used in our approach — specifically token-level
(TL), sentence-level (SL), and description-level (DL) — we
embarked on an ablation study. By systematically omitting
one of these levels at a time, we generated three variants
of MultiSEM: MultiSEM TL− (without token-level con-
text), MultiSEM SL− (sans sentence-level context), and
MultiSEM DL− (devoid of description-level context). The
goal of this study was to shed light on how each contextual
level contributes to the overall performance in security patch
detection.
Table 4: Performance evaluation of MultiSEM variants on
security patch detection (%).

Method Dataset AUC F1 Recall+ Recall- TPR

MultiSEM TL−
PatchDB 80.50 73.12 75.35 82.37 75.42
SPI-DB 65.00 54.25 66.00 75.10 68.60

MultiSEM SL−
PatchDB 81.50 74.00 76.20 83.40 76.50
SPI-DB 66.50 55.30 67.20 76.20 69.60

MultiSEM DL−
PatchDB 78.00 70.50 72.00 80.00 73.00
SPI-DB 62.50 52.00 63.00 72.00 66.50

MultiSEM
PatchDB 83.15 77.19 79.52 86.78 79.52
SPI-DB 68.45 57.63 70.24 80.12 73.25

As revealed by the results in Table 4: The removal
of token-level information (MultiSEM TL−) significantly
hampered the performance across both datasets, but it was
especially pronounced in the PatchDB dataset. This indi-
cates that token-level insights are vital, providing a granular-
ity of detail that’s essential for detecting nuances in security
patches. Without the sentence-level context (MultiSEM
SL−), there was a noticeable drop in performance, although
not as drastic as with the MultiSEM TL− variant. This re-
veals the utility of understanding the broader semantics of
the code within the scope of a sentence or statement. This
context helps in capturing relations between various tokens
and offers a more comprehensive view than tokens in iso-
lation. Most significantly, the exclusion of the description-
level context (MultiSEM DL−) led to the most substantial
degradation in performance. This was particularly evident in
the AUC, F1, and Recall+ metrics across both datasets. Such
a marked decline underscores the criticality of understand-
ing the overarching narrative or intention behind a patch.
The descriptive context often contains rich semantic infor-
mation that can offer valuable hints or differentiate between
patches, more so than local contexts like tokens or sentences.

In summation, while all contextual levels contribute pos-
itively to the performance, the description-level context

emerged as the most influential. It proves that an understand-
ing of the holistic description or rationale behind a patch is
paramount in security patch detection tasks. This ablation
study, thus, underscores the multi-faceted nature of our ap-
proach and reaffirms the necessity of a multi-level contextual
understanding for high-precision security patch detection.

✍ Answer to RQ-3: The ablation study on MultiSEM
reveals the significant role each contextual level plays in
security patch detection. The removal of the description-
level context (MultiSEM DL−) resulted in the most pro-
nounced performance drop, emphasizing its paramount
importance in understanding patches. While all contexts
are beneficial, the holistic understanding provided by the
description-level is crucial for precise security patch de-
tection.

Related Work
Advancements and Techniques in Security Patch
Analysis
In the realm of patch analysis, Li et al. (Li and Paxson 2017)
undertook an empirical study of security patches, unearthing
key behaviors. Soto et al. (Soto et al. 2016) provided insights
into Java patches, advancing automated code repairs. VC-
CFinder (Perl et al. 2015) utilized SVM to detect suspicious
patches, while Tian et al. (Tian, Lawall, and Lo 2012) tar-
geted bug corrections within Linux. SPIDER (Machiry et al.
2020) highlighted secure patches that maintain normal pro-
gram function. Rule-driven approaches for discerning secu-
rity patches were proposed by Wu et al. and Huang et al. (Wu
et al. 2020; Huang et al. 2019). Vulmet (Xu et al. 2020)
offers automatic urgent patching for Android, and Wang’s
group (Wang et al. 2020b) combined random forests with
patch features to classify vulnerabilities. The rise in machine
learning applications for patch analysis, especially deep
learning, is evident in recent works (Hoang et al. 2019a;
Tian et al. 2020; Hoang et al. 2019b). PatchRNN (Wang
et al. 2021b) and SPI (Zhou et al. 2021b) employed RNNs
for security patch identification, and GraphSPD (Wang et al.
2023) tapped into graph structures to improve detection ac-
curacy. The broader field of binary patch analysis includes
binary differentiation (Ming et al. 2017; Duan et al. 2020;
Zhao et al. 2020), verification (Dai et al. 2020; Zhang et al.
2021), recognition (Xu et al. 2017), and automation (Duan
et al. 2019; Tian et al. 2023; Niesler, Surminski, and Davi
2021).

Progress in Sequential Data Methods
The deep learning field has seen innovations in optimiz-
ing sequential data representations. Key strategies focus
on multi-level methodologies (Tang et al. 2021a) capturing
complexities in data from both NLP and CV. For example,
Mototang et al. (Tang et al. 2021b) applied sequence em-
beddings across sentence facets. Niu et al. (Niu et al. 2020)
introduced the MIA model for person re-identification. Du
et al. (Du et al. 2020) proposed a method for fine-grained vi-
sual classification. Other notable works include (Jin, Wang,
and Wan 2020; Ling et al. 2023; Li et al. 2021; Zhou et al.

2021a). Additionally, compression techniques, like Luo et
al.’s approach (Luo et al. 2021) with multi-filter CNNs and
Resnet, have emerged for encoding complex sequences.

Conclusion
In the backdrop of an increasing reliance on open source
software and the subsequent surge in vulnerabilities, there’s
an urgent need for accurate security patch detection. Our
study introduces a groundbreaking method, employing a
fine-to-coarse grained approach combined with multilevel
semantic embedding techniques. This novel approach has
proven to be highly effective, as evidenced by our exper-
imental results, demonstrating significant improvements in
accuracy and a notable reduction in false positives. As the
software landscape continues to evolve, our methodology
stands out, offering a beacon of hope for addressing the
pressing challenges of security patch detection.

Acknowledgments
This work is supported by the NATURAL project, which
has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant No. 949014).

References
Dai, J.; Zhang, Y.; Jiang, Z.; Zhou, Y.; Chen, J.; Xing, X.;
Zhang, X.; Tan, X.; Yang, M.; and Yang, Z. 2020. {BScout}:
Direct Whole Patch Presence Test for Java Executables. In
29th USENIX Security Symposium (USENIX Security 20),
1147–1164.
Du, R.; Chang, D.; Bhunia, A. K.; Xie, J.; Ma, Z.; Song,
Y.-Z.; and Guo, J. 2020. Fine-grained visual classification
via progressive multi-granularity training of jigsaw patches.
In European Conference on Computer Vision, 153–168.
Springer.
Duan, R.; Bijlani, A.; Ji, Y.; Alrawi, O.; Xiong, Y.; Ike, M.;
Saltaformaggio, B.; and Lee, W. 2019. Automating Patch-
ing of Vulnerable Open-Source Software Versions in Appli-
cation Binaries. In NDSS.
Duan, Y.; Li, X.; Wang, J.; and Yin, H. 2020. Deepbindiff:
Learning program-wide code representations for binary diff-
ing. In Network and distributed system security symposium.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Hoang, T.; Lawall, J.; Oentaryo, R. J.; Tian, Y.; and Lo, D.
2019a. PatchNet: a tool for deep patch classification. In
2019 IEEE/ACM 41st International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion),
83–86. IEEE.
Hoang, T.; Lawall, J.; Tian, Y.; Oentaryo, R. J.; and Lo, D.
2019b. Patchnet: Hierarchical deep learning-based stable
patch identification for the linux kernel. IEEE Transactions
on Software Engineering, 47(11): 2471–2486.

Hossin, M.; and Sulaiman, M. N. 2015. A review on evalua-
tion metrics for data classification evaluations. International
journal of data mining & knowledge management process,
5(2): 1.

Huang, Z.; Lie, D.; Tan, G.; and Jaeger, T. 2019. Using
safety properties to generate vulnerability patches. In 2019
IEEE Symposium on Security and Privacy (SP), 539–554.
IEEE.

Jin, H.; Wang, T.; and Wan, X. 2020. Multi-granularity
interaction network for extractive and abstractive multi-
document summarization. In Proceedings of the 58th an-
nual meeting of the association for computational linguis-
tics, 6244–6254.

Kim, Y. 2014. Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882.

Li, F.; and Paxson, V. 2017. A large-scale empirical study of
security patches. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
2201–2215.

Li, Y.; Qian, Y.; Yu, Y.; Qin, X.; Zhang, C.; Liu, Y.; Yao,
K.; Han, J.; Liu, J.; and Ding, E. 2021. Structext: Struc-
tured text understanding with multi-modal transformers. In
Proceedings of the 29th ACM International Conference on
Multimedia, 1912–1920.

Ling, Y.; Zhong, Z.; Luo, Z.; Yang, F.; Cao, D.; Lin, Y.; Li,
S.; and Sebe, N. 2023. Cross-modality earth mover’s dis-
tance for visible thermal person re-identification. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 37, 1631–1639.

Luo, J.; Xiao, C.; Glass, L.; Sun, J.; and Ma, F. 2021. Fusion:
towards automated ICD coding via feature compression. In
Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, 2096–2101.

Machiry, A.; Redini, N.; Camellini, E.; Kruegel, C.; and Vi-
gna, G. 2020. Spider: Enabling fast patch propagation in
related software repositories. In 2020 IEEE Symposium on
Security and Privacy (SP), 1562–1579. IEEE.

Ming, J.; Xu, D.; Jiang, Y.; and Wu, D. 2017. {BinSim}:
Trace-based Semantic Binary Diffing via System Call Sliced
Segment Equivalence Checking. In 26th USENIX Security
Symposium (USENIX Security 17), 253–270.

Niesler, C.; Surminski, S.; and Davi, L. 2021. HERA: Hot-
patching of Embedded Real-time Applications. In NDSS.

Niu, K.; Huang, Y.; Ouyang, W.; and Wang, L. 2020. Im-
proving description-based person re-identification by multi-
granularity image-text alignments. IEEE Transactions on
Image Processing, 29: 5542–5556.

(NVD), N. V. D. 2021. CVE-2021-22205 Detail.

Perl, H.; Dechand, S.; Smith, M.; Arp, D.; Yamaguchi, F.;
Rieck, K.; Fahl, S.; and Acar, Y. 2015. Vccfinder: Find-
ing potential vulnerabilities in open-source projects to assist
code audits. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, 426–
437.

Soto, M.; Thung, F.; Wong, C.-P.; Le Goues, C.; and Lo,
D. 2016. A deeper look into bug fixes: patterns, replace-
ments, deletions, and additions. In Proceedings of the 13th
International Conference on Mining Software Repositories,
512–515.
Synopsys. 2023. Open Source Security Risk Analysis.
Tang, X.; Zhu, R.; Sun, T.; and Wang, S. 2021a. Moto: En-
hancing embedding with multiple joint factors for chinese
text classification. In 2020 25th International Conference
on Pattern Recognition (ICPR), 2882–2888. IEEE.
Tang, X.; Zhu, R.; Sun, T.; and Wang, S. 2021b. Moto: En-
hancing Embedding with Multiple Joint Factors for Chinese
Text Classification. In 2020 25th International Conference
on Pattern Recognition (ICPR), 2882–2888.
Tian, H.; Liu, K.; Kaboré, A. K.; Koyuncu, A.; Li, L.; Klein,
J.; and Bissyandé, T. F. 2020. Evaluating representation
learning of code changes for predicting patch correctness
in program repair. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineer-
ing, 981–992.
Tian, H.; Tang, X.; Habib, A.; Wang, S.; Liu, K.; Xia, X.;
Klein, J.; and Bissyandé, T. F. 2022. Is this Change the
Answer to that Problem? Correlating Descriptions of Bug
and Code Changes for Evaluating Patch Correctness. arXiv
preprint arXiv:2208.04125.
Tian, H.; Tang, X.; Habib, A.; Wang, S.; Liu, K.; Xia, X.;
Klein, J.; and BissyandÉ, T. F. 2023. Is This Change the
Answer to That Problem? Correlating Descriptions of Bug
and Code Changes for Evaluating Patch Correctness. In Pro-
ceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’22. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450394758.
Tian, Y.; Lawall, J.; and Lo, D. 2012. Identifying linux bug
fixing patches. In 2012 34th international conference on
software engineering (ICSE), 386–396. IEEE.
Vaniea, K.; and Rashidi, Y. 2016. Tales of Software Up-
dates: The Process of Updating Software. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing
Systems, CHI ’16, 3215–3226. New York, NY, USA: Asso-
ciation for Computing Machinery. ISBN 9781450333627.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is All you Need. In Advances in Neural Information
Processing Systems, NeurIPS 2017, December 4-9, 2017,
Long Beach, CA, USA, 5998–6008.
Wang, S.; Wang, X.; Sun, K.; Jajodia, S.; Wang, H.; and Li,
Q. 2023. GraphSPD: Graph-based security patch detection
with enriched code semantics. In 2023 IEEE Symposium on
Security and Privacy (SP), 2409–2426. IEEE.
Wang, X.; Sun, K.; Batcheller, A.; and Jajodia, S. 2020a. An
empirical study of secret security patch in open source soft-
ware. Adaptive Autonomous Secure Cyber Systems, 269–
289.
Wang, X.; Wang, S.; Feng, P.; Sun, K.; and Jajodia, S. 2021a.
Patchdb: A large-scale security patch dataset. In 2021 51st

Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 149–160. IEEE.
Wang, X.; Wang, S.; Feng, P.; Sun, K.; Jajodia, S.; Ben-
chaaboun, S.; and Geck, F. 2021b. Patchrnn: A deep
learning-based system for security patch identification. In
MILCOM 2021-2021 IEEE Military Communications Con-
ference (MILCOM), 595–600. IEEE.
Wang, X.; Wang, S.; Sun, K.; Batcheller, A.; and Jajodia,
S. 2020b. A machine learning approach to classify secu-
rity patches into vulnerability types. In 2020 IEEE Confer-
ence on Communications and Network Security (CNS), 1–9.
IEEE.
Wu, Q.; He, Y.; McCamant, S.; and Lu, K. 2020. Precisely
characterizing security impact in a flood of patches via sym-
bolic rule comparison. In The 2020 Annual Network and
Distributed System Security Symposium (NDSS’20).
Xu, Z.; Chen, B.; Chandramohan, M.; Liu, Y.; and Song, F.
2017. Spain: security patch analysis for binaries towards
understanding the pain and pills. In 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE),
462–472. IEEE.
Xu, Z.; Zhang, Y.; Zheng, L.; Xia, L.; Bao, C.; Wang, Z.; and
Liu, Y. 2020. Automatic hot patch generation for android
kernels. In 29th USENIX Security Symposium (USENIX Se-
curity 20), 2397–2414.
Zhang, Z.; Zhang, H.; Qian, Z.; and Lau, B. 2021. An in-
vestigation of the android kernel patch ecosystem. In 30th
USENIX Security Symposium (USENIX Security 21), 3649–
3666.
Zhao, L.; Zhu, Y.; Ming, J.; Zhang, Y.; Zhang, H.; and Yin,
H. 2020. Patchscope: Memory object centric patch diffing.
In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, 149–165.
Zhou, T.; Wang, W.; Liu, S.; Yang, Y.; and Van Gool, L.
2021a. Differentiable multi-granularity human representa-
tion learning for instance-aware human semantic parsing. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, 1622–1631.
Zhou, Y.; Siow, J. K.; Wang, C.; Liu, S.; and Liu, Y. 2021b.
Spi: Automated identification of security patches via com-
mits. ACM Transactions on Software Engineering and
Methodology (TOSEM), 31(1): 1–27.
Zügner, D.; Kirschstein, T.; Catasta, M.; Leskovec, J.; and
Günnemann, S. 2021. Language-Agnostic Representation
Learning of Source Code from Structure and Context. In
9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.

