Common fixed points for two pairs of selfmaps satisfying certain contraction condition in b-metric spaces

Kodeboina Bhanu Chander *, Dasari Ratna Babu ${ }^{\dagger}$ T. V. Pradeep Kumar ${ }^{\ddagger}$

Abstract

This study introduces generalized contraction for two pairs of selfmaps in complete b-metric spaces, and it then establishes the existence of common fixed points under the presumptions that these two pairs of maps are weakly compatible and satisfy the condition for generalized contraction. A sequence of selfmaps is added as an extension of the same. Additionally, we demonstrate the same using various hypotheses on two pairs of selfmaps that satisfy the b-(E.A)-property. Some of the conclusions in the literature are extended /generalized to two pairs of self maps by our theorems.

Keywords: common fixed points; b-metric space; weakly compatible; b-(E.A)-property. 2020 AMS subject classifications: 47H10, $54 \mathrm{H} 25 .{ }^{1}$

[^0]K. Bhanu Chander, D. R. Babu, T. V. Pradeep Kumar

1 Introduction

Czerwik (10) introduced the notion of b-metric space which is a generalization of metric space. Following that, numerous authors looked into fixed point theorems for single-valued and multi-valued mappings in b-metric spaces, we refer $(3 ; 8 ; 9 ; 11 ; 15 ; 16 ; 17 ; 22 ; 23 ; 24)$.

The concept of property (E.A) was introduced by Aamari and Moutawakil (1). Several authors then used this idea to demonstrate the presence of common fixed points, we refer ($2 ; 4 ; 5 ; 6 ; 19 ; 20 ; 21$).

Definition 1.1. (10) Let X_{b} be a non-empty set and $s \geq 1$ be a given real number. A function $d_{b}: X_{b} \times X_{b} \rightarrow[0, \infty)$ is said to be a b-metric if the following conditions are satisfied: for any $x_{b}, y_{b}, z_{b} \in X_{b}$
(i) $0 \leq d_{b}\left(x_{b}, y_{b}\right)$ and $d_{b}\left(x_{b}, y_{b}\right)=0$ iff $x_{b}=y_{b}$,
(ii) $d_{b}\left(x_{b}, y_{b}\right)=d_{b}\left(y_{b}, x_{b}\right)$,
(iii) $d_{b}\left(x_{b}, z_{b}\right) \leq s\left[d_{b}\left(x_{b}, y_{b}\right)+d_{b}\left(y_{b}, z_{b}\right)\right]$.

The pair $\left(X_{b}, d_{b}\right)$ is called a b-metric space with coefficient s.
Every metric space is a b-metric space with $s=1$, but converse is need not be true.

Definition 1.2. (9) Let $\left(X_{b}, d_{b}\right)$ be a b-metric space. Then a sequence $\left\{x_{b_{n}}\right\}$ in X_{b} is said to be
(i) b-convergent if there exists $x_{b} \in X_{b}$ such that $d_{b}\left(x_{b_{n}}, x_{b}\right) \rightarrow 0$ as $n \rightarrow \infty$.

In this case, we write $\lim _{n \rightarrow \infty} x_{b_{n}}=x_{b}$.
(ii) b-Cauchy if $d_{b}\left(x_{b_{n}}, x_{b_{m}}\right) \rightarrow 0$ as $n, m \rightarrow \infty$.

In general, a b-metric is not necessarily continuous (12).
Definition 1.3. (13) Let A and B be selfmaps of a metric space (X, d). The pair (A, B) is said to be a compatible pair on X, if $\lim _{n \rightarrow \infty} d\left(A B x_{n}, B A x_{n}\right)=0$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} B x_{n}=t$, for some $t \in X$.

Definition 1.4. (14) Let X be a nonempty set. Let $A: X \rightarrow X$ and $B: X \rightarrow X$ be two selfmaps. If $A x=B x$ implies that $A B x=B A x$ for x in X, then we say that the pair (A, B) is weakly compatible.

Definition 1.5. (19) Two selfmappings A_{b} and B_{b} of a b-metric space (X_{b}, d_{b}) are said to satisfy b-(E.A)-property if there exists a sequence $\left\{x_{b_{n}}\right\}$ in $X_{b} \ni$ $\lim _{n \rightarrow \infty} A_{b} x_{b_{n}}=\lim _{n \rightarrow \infty} B_{b} x_{b_{n}}=z_{b}$ for some $z_{b} \in X_{b}$.

Lemma 1.1. (2) Let $\left(X_{b}, d_{b}\right)$ be a b-metric space with coefficient $s \geq 1$. Suppose that $\left\{x_{b_{n}}\right\}$ and $\left\{y_{b_{n}}\right\}$ are b-convergent to x_{b} and y_{b} respectively, then we have

$$
\frac{1}{s^{2}} d_{b}\left(x_{b}, y_{b}\right) \leq \liminf _{n \rightarrow \infty} d_{b}\left(x_{b_{n}}, y_{b_{n}}\right) \leq \limsup _{n \rightarrow \infty} d_{b}\left(x_{b_{n}}, y_{b_{n}}\right) \leq s^{2} d_{b}\left(x_{b}, y_{b}\right)
$$

In particular, if $x_{b}=y_{b}$, then we have $\lim _{n \rightarrow \infty} d_{b}\left(x_{b_{n}}, y_{b_{n}}\right)=0$. Moreover for each $z_{b} \in X_{b}$ we have

$$
\frac{1}{s} d_{b}\left(x_{b}, z_{b}\right) \leq \liminf _{n \rightarrow \infty} d_{b}\left(x_{b_{n}}, z_{b}\right) \leq \limsup _{n \rightarrow \infty} d_{b}\left(x_{b_{n}}, z_{b}\right) \leq s d_{b}\left(x_{b}, z_{b}\right) .
$$

Lemma 1.2. (7) Let $\left(X_{b}, d_{b}\right)$ be a b-metric space with coefficient $s \geq 1$ and $T_{b}: X_{b} \rightarrow X_{b}$ be a self map. Suppose that $\left\{x_{b_{n}}\right\}$ is a sequence in X_{b} induced by $x_{b_{n+1}}=T_{b} x_{b_{n}}$ such that $d_{b}\left(x_{b_{n}}, x_{b_{n+1}}\right) \leq \lambda d_{b}\left(x_{b_{n-1}}, x_{b_{n}}\right)$ foralln $\in N$,where $\lambda \in(0,1)$ is a constant.Then $x_{b_{n}}$ is a b-cauchy sequence in X_{b}.

Recently, Nagaraju, Raju and Thirupathi (18) proved a theorem in metric spaces as follows:

Theorem 1.1. (18) Let E, F, G and H be self-mappings of a metric space (X, d) satisfying the following conditions:
(i) $E(X) \subseteq H(X)$ and $F(X) \subseteq G(X)$,
(ii) (E, G) and (F, H) are weakly compatible and
(iii) $[d(E y, F z)]^{2} \leq \alpha \max \left\{[d(G y, E y)]^{2},[d(H z, F z)]^{2},[G y, H z]^{2}\right\}$ $\left.\left.\left.+\beta \max \left\{d_{(} G y, E y\right) d_{(} G y, F z\right), d_{(} E y, H z\right) d(F z, H z)\right\}$ $+\delta d(G y, F z) d(H z, E y)$
for all $y, z \in X$, where $\alpha, \beta, \delta \geq 0, \alpha+2 \beta<1$ and $\alpha+\delta<1$.
(iv) Further, if the pair (E, G) satisfies (CLR_G)-property or the pair (F, H) satisfies (CLR_H)-property, then the self-maps E, F, G and H have a unique common fixed point.

We introduce generalized contraction for two pairs of selfmaps in b-metric spaces and prove the existence of common fixed points under the assumptions that these two pairs of maps are weakly compatible and satisfying a generalized

K. Bhanu Chander, D. R. Babu, T. V. Pradeep Kumar

contraction condition in complete b-metric spaces. Our work is inspired by works of Nagaraju, Raju and Thirupathi (18). A series of selfmaps is added as an extension of the same. Additionally, we demonstrate the same using various hypotheses on two pairs of selfmaps that satisfy the b-(E.A)-property. Some of the conclusions in the literature are extended or generalized to two pairs of self maps by our theorems. We present examples to corroborate our findings and draw some conclusions from them.

2 Main Results

We introduce generalized contraction maps in b-metric spaces as follows.
Definition 2.1. Let $\left(X_{b}, d_{b}\right)$ be a b-metric space with coefficient $s \geq 1$ and $A_{b}, B_{b}, S_{b}, T_{b}$: $X_{b} \rightarrow X_{b}$ be selfmaps. If there exist $\lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$ with $\lambda_{1}+s \lambda_{2}+s^{2} \lambda_{3} \leq 1$ such that

$$
\begin{align*}
s^{4}\left[d_{b}\left(A_{b} x_{b}, B_{b} y_{b}\right)\right]^{2} \leq & \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} x_{b}, T_{b} y_{b}\right)\right]^{2},\left[d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right)\right]^{2},\left[d_{b}\left(T_{b} y_{b}, B_{b} y_{b}\right)\right]^{2}\right\} \\
& +\lambda_{2} \max \left\{\frac{d_{b}\left(S_{b} x_{b} A_{b} A_{b}\right)_{b} d_{b}\left(S_{b} x_{b}, B_{b} y_{b}\right)}{2}, \frac{d_{b}\left(T_{b} y_{b}, B_{b} y_{b}\right) d_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right)}{2}\right\} \\
& +\lambda_{3} \frac{d_{b}\left(S_{b} x_{b}, B_{b} y_{b}\right) d_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right)}{2} . \tag{1}
\end{align*}
$$

Then we call A_{b}, B_{b}, S_{b} and T_{b} are generalized contraction maps.
Example 2.1. Let $X_{b}=[0,1]$ and let $d_{b}: X_{b} \times X_{b} \rightarrow[0, \infty)$ defined by

$$
d_{b}\left(x_{b}, y_{b}\right)=\left\{\begin{array}{cl}
0 & \text { if } x_{b}=y_{b} \\
\left(x_{b}+y_{b}\right)^{2} & \text { if } x_{b} \neq y_{b}
\end{array}\right.
$$

Then clearly $\left(X_{b}, d_{b}\right)$ is a complete b-metric space with $s=2$.
We define $A_{b}, B_{b}, S_{b}, T_{b}: X_{b} \rightarrow X_{b}$ by $A_{b}\left(x_{b}\right)=\frac{1-x_{b}}{5}, B_{b}\left(x_{b}\right)=\frac{\log _{10}\left(1+x_{b}\right)}{5}$,
$S_{b}\left(x_{b}\right)=x_{b}^{2}, T_{b}\left(x_{b}\right)=x_{b}$ for all $x_{b} \in X_{b}$.
Take $\lambda_{1}=\frac{1}{7}, \lambda_{2}=\frac{1}{8}, \lambda_{3}=\frac{1}{10}$.
Clearly, $\lambda_{1}+s \lambda_{2}+s^{2} \lambda_{3} \leq 1$.
Then we have

$$
\begin{aligned}
& s^{4}\left[d_{b}\left(A_{b} x_{b}, B_{b} y_{b}\right)\right]^{2}=16\left(\frac{1-e^{x_{b}}}{5}+\frac{\log _{10}\left(1+y_{b}\right)}{5}\right)^{4} \\
& \leq \frac{1}{7} \max \left\{\left(x_{b}^{2}+y_{b}\right)^{4},\left(x_{b}^{2}+\frac{1-e^{x_{b}}}{5}\right)^{4},\left(y_{b}+\frac{\log _{10}\left(1+y_{b}\right)}{5}\right)^{4}\right\} \\
&+\frac{1}{8} \max \left\{\frac{\left.\left(x_{b}^{2}+\frac{1-e^{2}}{5}\right)^{2}\right)^{2}\left(x_{b}^{2}+\frac{\log _{10}\left(1+y_{b}\right)}{2}\right)^{2}}{2}, \frac{\left(y_{b}+\frac{\log _{10}\left(1+y_{b}\right)}{5}\right)^{2}\left(y_{b}+\frac{1-e^{x_{b}}}{5}\right)^{2}}{2}\right\} \\
&+\frac{1}{10}\left(x_{b}^{2}+\frac{+\log _{10}\left(1+y_{b}\right)}{5}\right)^{2}\left(y_{b}+\frac{1-e^{x} b_{b}}{5}\right)^{2} \\
& \leq \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} x_{b}, T_{b} y_{b}\right)\right]^{2},\left[d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right)\right]^{2},\left[d_{b}\left(T_{b} y_{b}, B_{b} y_{b}\right)\right]^{2}\right\} \\
&+\lambda_{2} \max \left\{\frac{d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right)_{b}\left(S_{b} x_{b}, B_{b} y_{b}\right)}{}, \frac{d_{b}\left(T_{b} y_{b}, B_{b} y_{b}\right)_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right)}{2}\right\} \\
&+\lambda_{3} \frac{d_{b}\left(S_{b} x_{b}, B_{b} y_{b}\right) d_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right)}{2} .
\end{aligned}
$$

Therefore A_{b}, B_{b}, S_{b} and T_{b} are generalized contraction maps.

Let A_{b}, B_{b}, S_{b} and T_{b} be mappings from a b-metric space (X_{b}, d_{b}) into itself and satisfying

$$
\begin{equation*}
A_{b}\left(X_{b}\right) \subseteq T_{b}\left(X_{b}\right) \text { and } B_{b}\left(X_{b}\right) \subseteq S_{b}\left(X_{b}\right) \tag{2}
\end{equation*}
$$

Now, by (2), for any $x_{b_{0}} \in X_{b}$, there exists $x_{b_{1}} \in X_{b}$ such that $y_{b_{0}}=A_{b} x_{b_{0}}=T_{b} x_{b_{1}}$.
In the same way for this $x_{b_{1}}$, we can choose a point $x_{b_{2}} \in X_{b}$ such that $y_{b_{1}}=B_{b} x_{b_{1}}=S_{b} x_{b_{2}}$ and so on.
In general, we can define a sequence $\left\{y_{b_{n}}\right\} \in X_{b}$ such that

$$
\begin{equation*}
y_{b_{2 n}}=A_{b} x_{b_{2 n}}=T_{b} x_{b_{2 n+1}} \text { and } y_{b_{2 n+1}}=B_{b} x_{b_{2 n+1}}=S_{b} x_{b_{2 n+2}} \text { for } n=0,1,2, \ldots \tag{3}
\end{equation*}
$$

Proposition 2.1. Let $\left(X_{b}, d_{b}\right)$ be a b-metric space with coefficient $s \geq 1$. Suppose that A_{b}, B_{b}, S_{b} and T_{b} are generalized contraction maps. Then we have the following:
(i) If $A_{b}\left(X_{b}\right) \subseteq T_{b}\left(X_{b}\right)$ and the pair $\left(B_{b}, T_{b}\right)$ is weakly compatible, and if x_{b} is a common fixed point of A_{b} and S_{b} then x_{b} is a common fixed point of A_{b}, B_{b}, S_{b} and T_{b} and it is unique.
(ii) If $B_{b}\left(X_{b}\right) \subseteq S_{b}\left(X_{b}\right)$ and the pair $\left(A_{b}, S_{b}\right)$ is weakly compatible, and if x_{b} is a common fixed point of B_{b} and T_{b} then x_{b} is a common fixed point of A_{b}, B_{b}, S_{b} and T_{b} and it is unique.

Proof. First, we assume that (i) holds. Let x_{b} be a common fixed point of A_{b} and S_{b}.
Then $A_{b} x_{b}=S_{b} x_{b}=x_{b}$.
Since $A_{b}\left(X_{b}\right) \subseteq T_{b}\left(X_{b}\right)$, there exists $y \in X_{b}$ such that $T_{b} y_{b}=x_{b}$.
Therefore $A_{b} x_{b}=S_{b} x_{b}=T_{b} y_{b}=x_{b}$. If $A_{b} x_{b} \neq B_{b} y_{b}$, then
$s^{4}\left[d_{b}\left(A_{b} x_{b}, B_{b} y_{b}\right)\right]^{2} \leq \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} x_{b}, T_{b} y_{b}\right)\right]^{2},\left[d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right)\right]^{2},\left[d_{b}\left(T_{b} y_{b}, B_{b} y_{b}\right)\right]^{2}\right\}$

$$
\begin{aligned}
&+\lambda_{2} \max \left\{d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right) d_{b}\left(S_{b} x_{b}, B_{b} y_{b}\right)\right. \\
&\left.+\lambda_{3} \frac{d_{b}\left(T_{b} y_{b}, B_{b} y_{b}\right) d_{b}\left(T_{b} x_{b} y_{b}, B_{b}, A_{b} x_{b}\right)}{2}\right\} \\
&=\lambda_{1}\left[d_{b}\left(A_{b} x_{b}, B_{b} y_{b} y_{b}\right)\right]^{2}
\end{aligned}
$$

which implies that $\left(s^{4}-\lambda_{1}\right)\left[d_{b}\left(A_{b} x_{b}, B_{b} y_{b}\right)\right]^{2} \leq 0$.
Since $\left(s^{4}-\lambda_{1}\right) \geq 0$, we have $d_{b}\left(A_{b} x_{b}, B_{b} y_{b}\right) \leq 0$ which implies that $A_{b} x_{b}=B_{b} y_{b}$.
Therefore $A_{b} x_{b}=B_{b} y_{b}=S_{b} x_{b}=T_{b} y_{b}=x_{b}$.
As $\left(B_{b}, T_{b}\right)$ is weakly compatible and $T_{b} y_{b}=B_{b} y_{b}$, we have
$B_{b} T_{b} y_{b}=T_{b} B_{b} y_{b}$. i.e., $B_{b} x_{b}=T_{b} x_{b}$.
Now, we prove that $B_{b} x_{b}=x_{b}$. If $B_{b} x_{b} \neq x_{b}$, then

$$
\begin{aligned}
s^{4}\left[d_{b}\left(x_{b}, B_{b} x_{b}\right)\right]^{2}= & s^{4}\left[d_{b}\left(A_{b} x_{b}, B_{b} x_{b}\right)\right]^{2} \\
\leq & \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} x_{b}, T_{b} x_{b}\right)\right]^{2},\left[d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right)\right]^{2},\left[d_{b}\left(T_{b} x_{b}, B_{b} x_{b}\right)\right]^{2}\right\} \\
& +\lambda_{2} \max \left\{d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right) d_{b}\left(S_{b} x_{b}, B_{b} x_{b}\right)\right. \\
& \left.+\lambda_{3} \frac{\left.d_{b}\left(S_{b} x_{b} x_{b}, B_{b} x_{b}, x_{b}\right) d_{b}\left(B_{b} x_{b}\right) d_{b} d_{b}, A_{b} x_{b} x_{b} x_{b}, A_{b} x_{b}\right)}{2}\right\} \\
= & \lambda_{1}\left[d_{b}\left(x_{b}, B_{b} x_{b}\right)\right]^{2}+\lambda_{3} \frac{\left[d_{b}\left(x_{b}, B_{b} x_{b}\right)\right]^{2}}{2}
\end{aligned}
$$

K. Bhanu Chander, D. R. Babu, T. V. Pradeep Kumar

$$
=\left(\lambda_{1}+\frac{\lambda_{3}}{2}\right)\left[d_{b}\left(x_{b}, B_{b} x_{b}\right)\right]^{2}
$$

which implies that $\left[s^{4}-\left(\lambda_{1}+\frac{\lambda_{3}}{2}\right)\right]\left[d_{b}\left(x_{b}, B_{b} x_{b}\right)\right]^{2} \leq 0$.
Since $\left[s^{4}-\left(\lambda_{1}+\frac{\lambda_{3}}{2}\right)\right] \geq 0$, we have $d_{b}\left(x_{b}, B_{b} x_{b}\right) \leq 0$.
Hence, $B_{b} x_{b}=x_{b}$.
Therefore $A_{b} x_{b}=B_{b} x_{b}=S_{b} x_{b}=T_{b} x_{b}=x_{b}$.
Therefore, x_{b} is a common fixed point of A_{b}, B_{b}, S_{b} and T_{b}.
If x_{b}^{\prime} is also a common fixed point of A_{b}, B_{b}, S_{b} and T_{b} with $x_{b} \neq x_{b}^{\prime}$, then

$$
\begin{aligned}
s^{4}\left[d_{b}\left(x_{b}, x_{b}^{\prime}\right)\right]^{2}= & s^{4}\left[d_{b}\left(A_{b} x_{b}, B_{b} x_{b}^{\prime}\right)\right]^{2} \\
\leq & \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} x_{b}, T_{b} x_{b}^{\prime}\right)\right]^{2},\left[d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right)\right]^{2},\left[d_{b}\left(T_{b} x_{b}^{\prime}, B_{b} x_{b}^{\prime}\right)\right]^{2}\right\} \\
& \left.+\lambda_{2} \max \max _{b}\left(S_{b} x_{b}, A_{b} x_{b}\right) d_{b}\left(S_{b} x_{b}, B_{b} x_{b}^{\prime}\right), \frac{d_{b}\left(T_{b} x_{b}^{\prime}, B_{b} x_{b}^{\prime}\right) d_{b}\left(T_{b} x_{b}^{\prime}, A_{b} x_{b}\right)}{2}\right\} \\
& +\lambda_{3} d_{b}\left(S_{b} x_{b}, B_{b} x_{b}^{\prime}\right) d_{b}\left(T_{b} x_{b}^{\prime}, A_{b} x_{b}\right) \\
= & \lambda_{1}\left[d_{b}\left(x_{b}, x_{b}^{\prime}\right)\right]^{2}+\lambda_{3} \frac{\left[d_{b}\left(x_{b}, x_{b}^{\prime}\right)\right]^{2}}{2} \\
= & \left(\lambda_{1}+\frac{\lambda_{3}}{2}\right)\left[d_{b}\left(x_{b}, x_{b}^{\prime}\right)\right]^{2}
\end{aligned}
$$

which implies that $\left[s^{4}-\left(\lambda_{1}+\frac{\lambda_{3}}{2}\right)\right]\left[d_{b}\left(x_{b}, x_{b}^{\prime}\right)\right]^{2} \leq 0$.
Since $\left[s^{4}-\left(\lambda_{1}+\frac{\lambda_{3}}{2}\right)\right] \geq 0$, we have $d_{b}\left(x_{b}, x_{b}^{\prime}\right) \leq 0$.
Hence, $x_{b}^{\prime}=x_{b}$.
Therefore x_{b} is the unique common fixed point of A_{b}, B_{b}, S_{b} and T_{b}.
The proof of $(i i)$ is similar to (i) and hence is omitted.
Lemma 2.1. Let A_{b}, B_{b}, S_{b} and T_{b} be selfmaps of a b-metric space (X_{b}, d_{b}) and satisfy (2) and are generalized contraction maps. Then for any $x_{b_{0}} \in X_{b}$, the sequence $\left\{y_{b_{n}}\right\}$ defined by (3) is b-Cauchy in X_{b}.

Proof. Let $x_{b_{0}} \in X_{b}$ and let $\left\{y_{b_{n}}\right\}$ be a sequence defined by (3).
Assume that $y_{b_{n}}=y_{b_{n+1}}$ for some n.
Case (i): n even.
We write $n=2 m, m \in \mathbb{N}$.
Now, we consider

$$
\begin{aligned}
& s^{4}\left[d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right)\right]^{2}=s^{4}\left[d_{b}\left(y_{b_{2 m+1}}, y_{b_{2 m+2}}\right)\right]^{2} \\
& =s^{4}\left[d_{b}\left(y_{b_{2 m+2}}, y_{b_{2 m+1}}\right)\right]^{2} \\
& =s^{4}\left[d_{b}\left(A_{b} x_{b_{2 m+2}}, B_{b} x_{b_{2 m+1}}\right)\right]^{2} \\
& \leq \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} x_{b_{2 m+2}}, T_{b} x_{b_{2 m+1}}\right)\right]^{2},\left[d_{b}\left(S_{b} x_{b_{2 m+2}}, A_{b} x_{b_{2 m+2}}\right)\right]^{2},\right. \\
& \left.\left[d_{b}\left(T_{b} x_{b_{2 m+1}}, B_{b} x_{b_{2 m+1}}\right)\right]^{2}\right\} \\
& +\lambda_{2} \max \left\{\frac{d_{b}\left(S_{b} x_{b_{2 m+}}, A_{b} x_{b_{2 m+2}}\right) d_{b}\left(S_{b} x_{b_{2 m+}}, B_{b} x_{b_{2 m+1}}\right)}{2},\right. \\
& \left.\frac{d_{b}\left(T_{b} x_{b_{2 m+1}}, B_{b} x_{b_{2 m+1}}\right) d_{b}\left(T_{b} x_{b_{2 m+1}}, A_{b} x_{b_{2 m+2}}\right)}{2}\right\} \\
& +\lambda_{3} \frac{d_{b}\left(S_{b} x_{b_{2 m+2}}, B_{b} x_{b_{2 m+1}}\right) d_{b}\left(T_{b} x_{b_{2 m+1}}, A_{b} x_{b_{2 m+2}}\right)}{2} \\
& =\lambda_{1} \max \left\{\left[d_{b}\left(y_{b_{2 m+1}}, y_{b_{2_{m}}}\right)\right]^{2},\left[d_{b}\left(y_{b_{2 m+1}}, y_{b_{2 m+2}}\right)\right]^{2},\left[d_{b}\left(y_{b_{2 m}}, y_{b_{2 m+1}}\right)\right]^{2}\right\} \\
& +\lambda_{2} \max \left\{\frac{d_{b}\left(y_{b_{2 m+}}, y_{b_{2 m+}}\right) d_{b}\left(y_{b_{2 m+}}, y_{b_{2 m+1}}\right)}{2}, \frac{d_{b}\left(y_{b_{2 m}}, y_{b_{2 m+1}}\right) d_{b}\left(y_{b_{2 m}}, y_{b_{2 m+2}}\right)}{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\lambda_{3} \frac{d_{b}\left(y_{b_{2 m+1}}, y_{b_{2 m+1}}\right) d_{b}\left(y_{b_{2 m}}, y_{b_{2 m+2}}\right)}{2} \\
= & \lambda_{1} \max \left\{\left[d_{b}\left(y_{b_{n+1}}, y_{b_{n}}\right)\right]^{2},\left[d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right)\right]^{2},\left[d_{b}\left(y_{b_{n}}, y_{b_{n+1}}\right)\right]^{2}\right\} \\
& \quad+\lambda_{2} \max \left\{\frac{d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right) d_{b}\left(y_{b_{n+1}}, y_{b_{n+1}}\right)}{2}, \frac{d_{b}\left(y_{b_{n}}, y_{b_{n+1}}\right) d_{b}\left(y_{b_{n}}, y_{b_{n+2}}\right)}{2}\right\} \\
& \quad+\lambda_{3} \frac{d_{b}\left(y_{b_{n+1}}, y_{b_{n+1}}\right) d_{b}\left(y_{b_{n}}, y_{b_{n+2}}\right)}{2} \\
= & \lambda_{1}\left[d_{b}\left(y_{b_{n}}, y_{b_{n+1}}\right)\right]^{2}
\end{aligned}
$$

which implies that $\left(s^{4}-\lambda_{1}\right)\left[d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right)\right]^{2} \leq 0$.
Since $\left(s^{4}-\lambda_{1}\right) \geq 0$, we have $d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right) \leq 0$
which implies that $y_{b_{n+2}}=y_{b_{n+1}}=y_{b_{n}}$.
In general, we have $y_{b_{n+k}}=y_{b_{n}}$ for $k=0,1,2, \ldots$.
Case (ii): n odd.
We write $n=2 m+1$ for some $m \in \mathbb{N}$.
Now we consider

$$
\begin{aligned}
& s^{4}\left[d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right)\right]^{2}=s^{4}\left[d_{b}\left(y_{b_{2 m+2}}, y_{b_{2 m+3}}\right)\right]^{2} \\
& =s^{4}\left[d_{b}\left(A_{b} x_{b_{2 m+2}}, B_{b} x_{b_{2 m+3}}\right)\right]^{2} \\
& \leq \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} x_{b_{2 m+2}}, T_{b} x_{b_{2 m+3}}\right)\right]^{2},\left[d_{b}\left(S_{b} x_{b_{2 m+2}}, A_{b} x_{b_{2 m+2}}\right)\right]^{2},\right. \\
& \left.\left[d_{b}\left(T_{b} x_{b_{2 m+3}}, B_{b} x_{b_{2 m+3}}\right)\right]^{2}\right\} \\
& +\lambda_{2} \max \left\{\frac{d_{b}\left(S_{b} x_{b_{2 m+2}}, A_{b} x_{b_{2 m+2}}\right) d_{b}\left(S_{b} x_{b_{2 m+2}}, B_{b} x_{b_{2 m+3}}\right)}{2},\right. \\
& \left.\frac{d_{b}\left(T_{b} x_{b_{2 m+3}}, B_{b} x_{b_{2 m+3}}\right) d_{b}\left(T_{b} x_{b_{2 m+3}}, A_{b} x_{b_{2 m+2}}\right)}{2}\right\} \\
& +\lambda_{3} \frac{d_{b}\left(S_{b} x_{b_{2 m+2}}, B_{b} x_{b_{2 m+3}}\right) d_{b}\left(T_{b} x_{b_{2 m+3}}, A_{b} x_{b_{2 m+2}}\right)}{2} \\
& =\lambda_{1} \max \left\{\left[d_{b}\left(y_{b_{2 m+1}}, y_{b_{2 m+2}}\right)\right]^{2},\left[d_{b}\left(y_{b_{2 m+1}}, y_{b_{2 m+2}}\right)\right]^{2},\left[d_{b}\left(y_{b_{2 m+2}}, y_{b_{2 m+3}}\right)\right]^{2}\right\} \\
& +\lambda_{2} \max \left\{\frac{d_{b}\left(y_{b_{2 m+1}}, y_{b_{2 m+2}}\right) d_{b}\left(y_{b_{2 m+1}}, y_{b_{2 m+3}}\right)}{2},\right. \\
& \left.\frac{d_{b}\left(y_{b_{2 m+2}}, y_{b_{2 m+3}}\right) d_{b}\left(y_{b_{2 m+2}}, y_{b_{2 m+2}}\right)}{2}\right\}+\lambda_{3} \frac{d_{b}\left(y_{b_{2 m+1}}, y_{b_{2 m+3}}\right) d_{b}\left(y_{b_{2 m+2}}, y_{b_{2 m+2}}\right)}{2} \\
& =\lambda_{1} \max \left\{\left[d_{b}\left(y_{b_{n}}, y_{b_{n+1}}\right)\right]^{2},\left[d_{b}\left(y_{b_{n}}, y_{b_{n+1}}\right)\right]^{2},\left[d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right)\right]^{2}\right\} \\
& +\lambda_{2} \max \left\{\frac{d_{b}\left(y_{b_{n}}, y_{b_{n+1}}\right) d_{b}\left(y_{b_{n}}, y_{b_{n+2}}\right)}{2}, \frac{d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right) d_{b}\left(y_{b_{n+1}}, y_{b_{n+1}}\right)}{2}\right\} \\
& +\lambda_{3} \frac{d_{b}\left(y_{b_{n}}, y_{b_{n+2}}\right) d_{b}\left(y_{b_{n+1}}, y_{b_{n+1}}\right)}{2} \\
& =\lambda_{1}\left[d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right)\right]^{2}
\end{aligned}
$$

which implies that $\left(s^{4}-\lambda_{1}\right)\left[d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right)\right]^{2} \leq 0$.
Since $\left(s^{4}-\lambda_{1}\right) \geq 0$, we have $d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right) \leq 0$
which implies that $y_{b_{n+2}}=y_{b_{n+1}}=y_{b_{n}}$.
In general, we have $y_{b_{n+k}}=y_{b_{n}}$ for $k=1,2,3, \ldots$.
From Case (i) and Case (ii), we have $y_{b_{n+k}}=y_{b_{n}}$ for $k=0,1,2, \ldots$.
Therefore, $\left\{y_{b_{n+k}}\right\}$ is a constant sequence and hence $\left\{y_{b_{n}}\right\}$ is b - Cauchy.
Now we assume that $y_{b_{n}} \neq y_{b_{n+1}}$ for all $n \in \mathbb{N}$.
If n is odd then $n=2 m+1$ for some $m \in \mathbb{N}$.

K. Bhanu Chander, D. R. Babu, T. V. Pradeep Kumar

We now consider

$$
\begin{align*}
& s^{4}\left[d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right)\right]^{2}=s^{4}\left[d_{b}\left(y_{b_{2 m+2}}, y_{b_{2 m+3}}\right)\right]^{2} \\
& =s^{4}\left[d_{b}\left(A_{b} x_{b_{2 m+2}}, B_{b} x_{b_{2 m+3}}\right)\right]^{2} \\
& \leq \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} x_{b_{2 m+2}}, T_{b} x_{b_{2 m+3}}\right)\right]^{2},\left[d_{b}\left(S_{b} x_{b_{2 m+2}}, A_{b} x_{b_{2 m+2}}\right)\right]^{2},\right. \\
& \left.\left[d_{b}\left(T_{b} x_{b_{2 m+3}}, B_{b} x_{b_{2 m+3}}\right)\right]^{2}\right\} \\
& +\lambda_{2} \max \left\{\frac{d_{b}\left(S_{b} x_{b_{2 m+2}}, A_{b} x_{b_{2 m+2}}\right) d_{b}\left(S_{b} x_{b_{2 m+2}}, B_{b} x_{b_{2 m+3}}\right)}{2},\right. \\
& \left.\frac{d_{b}\left(T_{b} x_{b_{2 m+3}}, B_{b} x_{b_{2 m+3}}\right) d_{b}\left(T_{b} x_{b_{2 m+3}}, A_{b} x_{b_{2 m+2}}\right)}{2}\right\} \\
& +\lambda_{3} \frac{d_{b}\left(S_{b} x_{b_{2 m+2}}, B_{b} x_{b_{2 m+3}}\right) d_{b}\left(T_{b} x_{b_{2 m+3}}, A_{b} x_{b_{2 m+2}}\right)}{2} \\
& =\lambda_{1} \max \left\{\left[d_{b}\left(y_{b_{2 m+1}}, y_{b_{2 m+2}}\right)\right]^{2},\left[d_{b}\left(y_{b_{2 m+1}}, y_{b_{2 m+2}}\right)\right]^{2},\left[d_{b}\left(y_{b_{2 m+2}}, y_{b_{2 m+3}}\right)\right]^{2}\right\} \\
& +\lambda_{2} \max \left\{\frac{d_{b}\left(y_{b_{2 m+1}}, y_{b_{2 m+2}}\right) d_{b}\left(y_{b_{2 m+1}}, y_{b_{2 m+3}}\right)}{2}, \frac{d_{b}\left(y_{b_{2 m+2}}, y_{b_{2 m+3}}\right) d_{b}\left(y_{b_{2 m+2}}, y_{b_{2 m+2}}\right)}{2}\right\} \\
& +\lambda_{3} \frac{d_{b}\left(y_{b_{2 m+1}}, y_{b_{2 m+3}}\right) d_{b}\left(y_{b_{2 m+2}}, y_{b_{2 m+2}}\right)}{2} \\
& =\lambda_{1} \max \left\{\left[d_{b}\left(y_{b_{n}}, y_{b_{n+1}}\right)\right]^{2},\left[d_{b}\left(y_{b_{n}}, y_{b_{n+1}}\right)\right]^{2},\left[d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right)\right]^{2}\right\} \\
& +\lambda_{2} \max \left\{\frac{d_{b}\left(y_{b_{n}}, y_{b_{n+1}}\right) d_{b}\left(y_{b_{n}}, y_{b_{n+2}}\right)}{2}, \frac{d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right) d_{b}\left(y_{b_{n+1}}, y_{b_{n+1}}\right)}{2}\right\} \\
& +\lambda_{3} \frac{d_{b}\left(y_{b_{n}}, y_{b_{n+2}}\right) d_{b}\left(y_{b_{n+1}}, y_{b_{n+1}}\right)}{2} \tag{4}
\end{align*}
$$

If $\left[d_{b}\left(y_{b_{n}}, y_{b_{n+1}}\right)\right]^{2}<\left[d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right)\right]^{2}$ then from (4), we have
$s^{4}\left[d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right)\right]^{2} \leq \lambda_{1}\left[d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right)\right]^{2}+s \lambda_{2}\left[d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right)\right]^{2}$
which implies that $\left(s^{4}-\lambda_{1}-s \lambda_{2}\right)\left[d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right)\right]^{2} \leq 0$.
Since $\left(s^{4}-\lambda_{1}-s \lambda_{2}\right) \geq 0$, we have $\left[d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right)\right]^{2} \leq 0$
which implies that $y_{b_{n+1}}=y_{b_{n+2}}$,
which is a contradiction.
Therefore $\left[d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right)\right]^{2} \leq\left[d_{b}\left(y_{b_{n}}, y_{b_{n+1}}\right)\right]^{2}$.
From the inequality (4), we have $s^{4}\left[\left[d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right)\right]^{2}\right] \leq\left(\lambda_{1}+s \lambda_{2}\right)\left[d_{b}\left(y_{b_{n}}, y_{b_{n+1}}\right)\right]^{2}$
which implies that $d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right) \leq k d_{b}\left(y_{b_{n}}, y_{b_{n+1}}\right)$, where $k=\frac{\sqrt{\left(\lambda_{1}+s \lambda_{2}\right)}}{s^{2}}<1$. Similarly, we can prove that $d_{b}\left(y_{b_{n+1}}, y_{b_{n+2}}\right) \leq k d_{b}\left(y_{b_{n}}, y_{b_{n+1}}\right)$ whenever n is even. By Lemma 1.2, we have $\left\{y_{b_{n}}\right\}$ is a b-Cauchy sequence in X_{b}.

The following is the main result of this paper.
Theorem 2.1. Let A_{b}, B_{b}, S_{b} and T_{b} be selfmaps on a complete b-metric space $\left(X_{b}, d_{b}\right)$ and satisfy (2) and the maps are generalized contraction maps. If the pairs $\left(A_{b}, S_{b}\right)$ and $\left(B_{b}, T_{b}\right)$ are weakly compatible and one of the range sets $S_{b}\left(X_{b}\right), T_{b}\left(X_{b}\right), A_{b}\left(X_{b}\right)$ and $B_{b}\left(X_{b}\right)$ is closed, then for any $x_{b_{0}} \in X_{b}$, the sequence $\left\{y_{b_{n}}\right\}$ defined by (3) is Cauchy in X_{b} and $\lim _{n \rightarrow \infty} y_{b_{n}}=z_{b}($ say $), z_{b} \in$ X_{b} and z_{b} is the unique common fixed point of A_{b}, B_{b}, S_{b} and T_{b}.

Proof. By Lemma 2.1, the sequence $\left\{y_{b_{n}}\right\}$ is b-Cauchy in X_{b}.
Since X_{b} is b-complete, $\exists z_{b} \in X_{b} \ni \lim _{n \rightarrow \infty} y_{b_{n}}=z_{b}$.

Then

$$
\left\{\begin{array}{l}
\lim _{n \rightarrow \infty} y_{b_{2 n}}=\lim _{n \rightarrow \infty} A_{b} x_{b_{2 n}}=\lim _{n \rightarrow \infty} T_{b} x_{b_{2 n+1}}=z_{b} \text { and } \tag{5}\\
\lim _{n \rightarrow \infty} y_{b_{2 n+1}}=\lim _{n \rightarrow \infty} B_{b} x_{b_{2 n+1}}=\lim _{n \rightarrow \infty} S_{b} x_{b_{2 n+2}}=z_{b} .
\end{array}\right.
$$

We consider the below cases.
Case (i). $S_{b}\left(X_{b}\right)$ is closed.
In this case $z_{b} \in S_{b}\left(X_{b}\right)$ and there exists $t_{b} \in X_{b}$ such that $z_{b}=S_{b} t_{b}$.
If $A_{b} t_{b} \neq z_{b}$, then

$$
\begin{align*}
& s^{4}\left[d_{b}\left(A_{b} t_{b}, B_{b} x_{b_{2 n+1}}\right)\right]^{2} \leq \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} t_{b}, T_{b} x_{b_{2 n+1}}\right)\right]^{2},\left[d_{b}\left(S_{b} t_{b}, A_{b} t_{b}\right)\right]^{2},\right. \\
& \left.\left[d_{b}\left(T_{b} x_{b_{2 n+1}}, B_{b} x_{b_{2 n+1}}\right)\right]^{2}\right\} \\
& +\lambda_{2} \max \left\{\frac{d_{b}\left(S_{b} t_{b}, A_{b} t_{b}\right) d_{b}\left(S_{b} t_{b}, B_{b} x_{b_{2 n+1}}\right)}{d_{b}\left(T_{b} x_{b} x_{2}\right.},\right. \tag{6}\\
& \left.\frac{d_{b}\left(T_{b} x_{b_{2 n+1}}, B_{b} x_{b_{2 n+1}}\right) d_{b}\left(T_{b} x_{b_{2 n+1}}, A_{b} t_{b}\right)}{d_{b}\left(S_{b} t_{b}, B_{b} x_{b_{2 n+1}}\right) d_{b}\left(T_{b} x_{b_{2 n+1}}, A_{b} t_{b}\right)}\right\} \\
& +\lambda_{3} \frac{d_{b}\left(S_{b} t_{b}, B_{b} x_{b_{2 n+1}}\right) d_{b}\left(\stackrel{2}{T_{b}} x_{b_{2 n+1}}, A_{b} t_{b}\right)}{2}
\end{align*}
$$

On letting limit superior as $n \rightarrow \infty$ in the inequality (6), using Lemma 1.1 and (5), we get
$\frac{1}{s^{2}}\left(s^{4}\left[d_{b}\left(A_{b} t_{b}, z_{b}\right)\right]^{2}\right) \leq \lambda_{1}\left[d_{b}\left(A_{b} t_{b}, z_{b}\right)\right]^{2}$
which implies that $\left(s^{2}-\lambda_{1}\right)\left[d_{b}\left(A_{b} t_{b}, z_{b}\right)\right]^{2} \leq 0$.
Since $\left(s^{2}-\lambda_{1}\right) \geq 0$, we have $A_{b} t_{b}=z_{b}$.
Therefore, $A_{b} t_{b}=z_{b}=S_{b} t_{b}$.
Since $\left(A_{b}, S_{b}\right)$ is weakly compatible and $A_{b} t_{b}=S_{b} t_{b}$, we have
$A_{b} S_{b} t_{b}=S_{b} A_{b} t_{b}$. i.e., $A_{b} z_{b}=S_{b} z_{b}$.
Suppose $A_{b} z_{b} \neq z_{b}$. We now consider

$$
\begin{align*}
& s^{4}\left[d_{b}\left(A_{b} z_{b}, B_{b} x_{b_{2 n+1}}\right)\right]^{2} \\
& \leq \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} z_{b}, T_{b} x_{b_{2 n+}}\right)\right]^{2},\left[d_{b}\left(S_{b} z_{b}, A_{b} z_{b}\right)\right]^{2},\left[d_{b}\left(T_{b} x_{b_{2 n+1}}, B_{b} x_{b_{2 n+1}}\right)\right]^{2}\right\} \\
& \quad+\lambda_{2} \max \left\{\frac{d_{b}\left(S_{b} z_{b}, A_{b} z_{b}\right) d_{b}\left(S_{b} z_{b}, B_{b} x_{b_{2 n+1}}\right)}{2}, \frac{d_{b}\left(T_{b} x_{b_{2 n+1}}, B_{b} x_{b_{2 n+1}}\right) d_{b}\left(T_{b} x_{b_{2 n+1}}, A_{b} z_{b}\right)}{2}\right\} \\
& \quad+\lambda_{3} \frac{d_{b}\left(S_{b} z_{b}, B_{b} x_{b_{2 n+1}}\right) d_{b}\left(T_{b} x_{b_{2 n+1}}, A_{b} z_{b}\right)}{2} \tag{7}
\end{align*}
$$

On letting limit superior as $n \rightarrow \infty$ in the inequality (7) , using Lemma 1.1 and (5), we get
$\frac{1}{s^{2}}\left(s^{4}\left[d_{b}\left(A_{b} z_{b}, z_{b}\right)\right]^{2}\right) \leq\left(\lambda_{1}+\frac{s^{2} \lambda_{3}}{2}\right)\left[d_{b}\left(A_{b} z_{b}, z_{b}\right)\right]^{2}$
which implies that $\left(s^{2}-\lambda_{1}-\frac{s^{2} \lambda_{3}}{2}\right)\left[d_{b}\left(A_{b} z_{b}, z_{b}\right)\right]^{2} \leq 0$.
Since $\left(s^{2}-\lambda_{1}-\frac{s^{2} \lambda_{3}}{2}\right) \geq 0$, we have $A_{b} z_{b}=z_{b}$.
Therefore $A_{b} z_{b}=S_{b} z_{b}=z_{b}$.
Hence, z_{b} is a common fixed point of A_{b} and S_{b}.
By Proposition 2.1, we get that z_{b} is a unique common fixed point of A_{b}, B_{b}, S_{b} and T_{b}. Case (ii). $T_{b}\left(X_{b}\right)$ is closed.
In this case $z_{b} \in T_{b}\left(X_{b}\right)$ and there exists $u_{b} \in X_{b} \ni z_{b}=T_{b} u_{b}$.

K. Bhanu Chander, D. R. Babu, T. V. Pradeep Kumar

If $B_{b} u_{b} \neq z_{b}$, then

$$
\begin{align*}
& s^{4}\left[d_{b}\left(A_{b} x_{b_{2 n+2}}, B_{b} u_{b}\right)\right]^{2} \\
& \leq \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} x_{b} x_{2_{n+2}}, T_{b} u_{b}\right)\right]^{2},\left[d_{b}\left(S_{b} x_{b_{2 n+2}}, A_{b} x_{\left.b_{2 n+2}\right)}\right)\right]^{2},\left[d_{b}\left(T_{b} u_{b}, B_{b} u_{b}\right)\right]^{2}\right\} \\
& \quad+\lambda_{2} \max \left\{\frac{d_{b}\left(S_{b} x_{b_{2 n+}}, A_{b} x_{b_{2 n+}}\right) d_{b}\left(S_{b} x_{b_{2 n+2}}, B_{b} u_{b}\right)}{2} \frac{d_{b}\left(T_{b} u_{b}, B_{b} u_{b}\right) d_{b}\left(T_{b} u_{b}, A_{b} x_{\left.b_{2 n+2}\right)}\right)}{2}\right\} \\
& \quad+\lambda_{3} \frac{d_{b}\left(S_{b} x_{b_{2 n+2},}, B_{b} u_{b}\right) d_{b}\left(T_{b} u_{b}, A_{b} x_{\left.b_{2 n+2}\right)}^{2}\right.}{2} \tag{8}
\end{align*}
$$

On letting limit superior as $n \rightarrow \infty$ in (8), using Lemma 1.1 and (5), we get $\frac{1}{s^{2}}\left(s^{4}\left[d_{b}\left(B_{b} u_{b}, z_{b}\right)\right]^{2}\right) \leq \lambda_{1}\left[d_{b}\left(B_{b} u_{b}, z_{b}\right)\right]^{2}$ which implies that $\left(s^{2}-\lambda_{1}\right)\left[d_{b}\left(B_{b} u_{b}, z_{b}\right)\right]^{2} \leq 0$.
Since $\left(s^{2}-\lambda_{1}\right) \geq 0$, we have $B_{b} u_{b}=z_{b}$.
Therefore, $B_{b} u_{b}=z_{b}=T_{b} u_{b}$.
Since the pair $\left(B_{b}, T_{b}\right)$ is weakly compatible and $B_{b} u_{b}=T_{b} u_{b}$, we have
$B_{b} T_{b} u_{b}=T_{b} B_{b} u_{b}$. i.e., $B_{b} z_{b}=T_{b} z_{b}$.
We now prove that $B_{b} z_{b}=z_{b}$. Suppose that $B_{b} z_{b} \neq z_{b}$. We now consider

$$
\begin{align*}
& s^{4}\left[d_{b}\left(A_{b} x_{b_{2 n+}}, B_{b} z_{b}\right)\right]^{2} \\
& \left.\leq \lambda_{1} \max \left\{d_{b}\left(S_{b} x_{b} b_{2 n+2}, T_{b} z_{b}\right)\right]^{2},\left[d_{b}\left(S_{b} x_{b_{2 n+2}}, A_{b} x_{b_{2 n+}}\right)\right]^{2},\left[d_{b}\left(T_{b} z_{b}, B_{b} z_{b}\right)\right]^{2}\right\} \\
& \quad+\lambda_{2} \max \left\{\frac{d_{b}\left(S_{b} x_{b 2 n+2}, A_{b} x_{b_{2 n+2}} d_{b}\left(d_{b} x_{b} x_{b_{2 n+}+2}, B_{b} z_{b}\right)\right.}{2}, \frac{d_{b}\left(T_{b} z_{b}, B_{b} z_{b}\right) d_{b}\left(T_{b} z_{b}, A_{b} x_{\left.b_{2 n+2}\right)}\right)}{2}\right\} \tag{9}\\
& \quad+\lambda_{3} \frac{d_{b}\left(S_{b} x_{b_{2 n+2}}, B_{b} z_{b}\right) d_{b}\left(T_{b} z_{b}, A_{b} x_{\left.b_{2 n+2}\right)}\right)}{2}
\end{align*}
$$

On letting limit superior as $n \rightarrow \infty$ in (9), using Lemma 1.1 and (5), we get $\frac{1}{s^{2}}\left(s^{4}\left[d_{b}\left(B_{b} z_{b}, z_{b}\right)\right]^{2}\right) \leq\left(\lambda_{1}+\frac{s^{2} \lambda_{3}}{2}\right)\left[d_{b}\left(B_{b} z_{b}, z_{b}\right)\right]^{2}$ which implies that $\left(s^{2}-\lambda_{1}-\frac{s^{2} \lambda_{3}}{2}\right)\left[d_{b}\left(B_{b} z_{b}, z_{b}\right)\right]^{2} \leq 0$.
Since $\left(s^{2}-\lambda_{1}-\frac{s^{2} \lambda_{3}}{2}\right) \geq 0$, we have $B_{b} z_{b}=z_{b}$.
Therefore $B_{b} z_{b}=T_{b} z_{b}=z_{b}$.
Therefore, z_{b} is a common fixed point of B and T.
By Proposition 2.1, we get that z_{b} is the unique common fixed point of A_{b}, B_{b}, S_{b} and T_{b}.
Case (iii). $A_{b}\left(X_{b}\right)$ is closed.
From the inequality (2) and Case (ii), the conclusion follows.
Case (iv). $B_{b}\left(X_{b}\right)$ is closed.
From the inequality (2) and Case (i), the Proof follows.
Theorem 2.2. Let $\left(X_{b}, d_{b}\right)$ be a b-metric space with coefficient $s \geq 1$. Assume that $A_{b}, B_{b}, S_{b}, T_{b}: X_{b} \rightarrow X_{b}$ are generalized contraction maps and satisfy (2). Suppose that one of the pairs $\left(A_{b}, S_{b}\right)$ and $\left(B_{b}, T_{b}\right)$ satisfies the $b-(E . A)$-property and that one of the subspace $A_{b}\left(X_{b}\right), B_{b}\left(X_{b}\right), S_{b}\left(X_{b}\right)$ and $T_{b}\left(X_{b}\right)$ is b-closed in X_{b}. Then the pairs $\left(A_{b}, S_{b}\right)$ and $\left(B_{b}, T_{b}\right)$ have a point of coincidence in X_{b}. Moreover, if the pairs $\left(A_{b}, S_{b}\right)$ and $\left(B_{b}, T_{b}\right)$ are weakly compatible, then A_{b}, B_{b}, S_{b} and T_{b} have a unique common fixed point in X_{b}.

Proof. We first assume that the pair $\left(A_{b}, S_{b}\right)$ satisfies the b-(E.A)-property. So there exists a sequence $\left\{x_{b_{n}}\right\}$ in X_{b} such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} A_{b} x_{b_{n}}=\lim _{n \rightarrow \infty} S_{b} x_{b_{n}}=q_{b} \text { for some } q_{b} \in X_{b} \tag{10}
\end{equation*}
$$

Since $A_{b}\left(X_{b}\right) \subseteq T_{b}\left(X_{b}\right)$, there exists a sequence $\left\{y_{b_{n}}\right\}$ in X_{b} such that $A_{b} x_{b_{n}}=T_{b} y_{b_{n}}$, and hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T_{b} y_{b_{n}}=q_{b} . \tag{11}
\end{equation*}
$$

We now show that $\lim _{n \rightarrow \infty} B_{b} y_{b_{n}}=q_{b}$. Suppose that $\lim _{n \rightarrow \infty} B_{b} y_{b_{n}} \neq q_{b}$.
From (1), we have

$$
\begin{align*}
s^{4}\left[d_{b}\left(A_{b} x_{b_{n}}, B_{b} y_{b_{n}}\right)\right]^{2} \leq & \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} x_{b_{n}}, T_{b} y_{b_{n}}\right)\right]^{2},\left[d_{b}\left(S_{b} x_{b_{n}}, A_{b} x_{b_{n}}\right)\right]^{2},\right. \\
& {\left.\left[d_{b}\left(T_{b} y_{b_{n}}, B_{b} y_{b_{n}}\right)\right]^{2}\right\} } \\
& +\lambda_{2} \max \left\{\frac{d_{b}\left(S_{b} x_{b_{n}}, A_{b} x_{\left.b_{n}\right)}\right) d_{b}\left(S_{b} x_{b_{n}}, B_{b} y_{b_{n}}\right)}{},\right. \\
& \left.+\lambda_{3} \frac{d_{b}\left(S_{b} x_{b} x_{b_{n}}, y_{b}, y_{b}, y_{b}\right) d_{b} y_{b}\left(T_{b} y_{b} y_{b}, A_{b}, A_{b} x_{b_{n}}\right)}{2}, y_{b_{n}}, A_{b} x_{b_{n}}\right) \tag{12}
\end{align*}
$$

By taking limit superior as $n \rightarrow \infty$ in (12), and using (10) and (11), we obtain $\frac{1}{s^{2}} s^{4} \liminf _{n \rightarrow \infty}\left[d_{b}\left(q_{b}, B_{b} y_{b_{n}}\right)\right]^{2} \leq s^{4} \limsup _{n \rightarrow \infty}\left[d_{b}\left(A_{b} x_{b_{n}}, B_{b} y_{b_{n}}\right)\right]^{2}$

$$
\begin{aligned}
& \leq \limsup _{n \rightarrow \infty}\left(\lambda _ { 1 } \operatorname { m a x } \left\{\left[d_{b}\left(S_{b} x_{b_{n}}, T_{b} y_{b_{n}}\right)\right]^{2},\left[d_{b}\left(S_{b} x_{b_{n}}, A_{b} x_{b_{n}}\right)\right]^{2},\right.\right. \\
& \quad\left[\begin{array}{ll}
\left.\left[d_{b}\left(T_{b} y_{b_{n}}, B_{b} y_{b_{n}}\right)\right]^{2}\right\}
\end{array}\right. \\
& \left.\quad+\lambda_{2} \max ^{\operatorname{mox}\left(d_{b} S_{b} b_{n}, A_{b} x_{b_{n}}\right) d_{b}\left(S_{b} x_{b_{n}}, B_{b} y_{b_{n}}\right)}, \frac{d_{b}\left(T_{b} y_{b_{n}}, B_{b} y_{b_{n}}\right) d_{b}\left(T_{b} y_{b_{n}}, A_{b} x_{b_{n}}\right)}{2}\right\} \\
& \left.\quad+\lambda_{3} \frac{d_{b}\left(S_{b} x_{b_{n}}, B_{b} y_{b_{n}}\right) d_{b}\left(T_{b} y_{b_{n}}, A_{b} x_{b_{n}}\right)}{2}\right) \\
& \leq s^{2} \lambda_{1} \limsup _{n \rightarrow \infty}\left[d_{b}\left(q_{b}, B_{b} y_{b_{n}}\right)\right]^{2} .
\end{aligned}
$$

Since $\left(1-\lambda_{1}\right)>0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} B_{b} y_{b_{n}}=q_{b} . \tag{13}
\end{equation*}
$$

Case (i). Assume $T_{b}\left(X_{b}\right)$ is a b-closed subset of X_{b}.
In this case $q_{b} \in T_{b}\left(X_{b}\right)$, we can choose $r_{b} \in X_{b} \ni T_{b} r_{b}=q_{b}$.
Now, our claim is $B_{b} r_{b}=q_{b}$. Suppose $d_{b}\left(B_{b} r_{b}, q_{b}\right)>0$. From (1), we have

$$
\begin{align*}
& s^{4}\left[d_{b}\left(A_{b} x_{b_{2 n+}}, B_{b} r_{b}\right)\right]^{2} \\
& \leq \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} x_{b} b_{2 n+2}, T_{b} r_{b}\right)\right]^{2},\left[d_{b}\left(S_{b} x_{b_{2 n+2}}, A_{b} x_{\left.b_{2 n+2}\right)}\right)\right]^{2},\left[d_{b}\left(T_{b} r_{b}, B_{b} r_{b}\right)\right]^{2}\right\} \\
& \quad+\lambda_{2} \max \left\{\frac{d_{b}\left(S_{b} x_{b 2 n+2}, A_{b} x_{\left.b_{2 n+2}\right)} d_{b}\left(S_{b} x_{x_{2 n+}}, B_{b} r_{b}\right)\right.}{2} \frac{d_{b}\left(T_{b} r_{b}, B_{b} r_{b}\right) d_{b}\left(T_{b} r_{b}, A_{b} x_{\left.b_{2 n+2}\right)}\right)}{2}\right\} \tag{14}
\end{align*}
$$

On letting limit superior as $n \rightarrow \infty$ in (14), using (10), (11), (12) and Lemma 1.1, we have $\frac{1}{s^{2}} s^{4} d_{b}\left(q_{b}, B_{b} r_{b}\right) \leq \lambda_{1}\left[d_{b}\left(q_{b}, B_{b} r_{b}\right)\right]^{2}$ which implies that
$\left(s^{2}-\lambda_{1}\right)\left[d_{b}\left(q_{b}, B_{b} r_{b}\right)\right]^{2} \leq 0$.
Since $\left(s^{2}-\lambda_{1}\right) \geq 0$, we have $B_{b} r_{b}=q_{b}$.
Hence $B_{b} r_{b}=T_{b} r_{b}=q_{b}$, so that q_{b} is a coincidence point of B_{b} and T_{b}.
Since $B_{b}\left(X_{b}\right) \subseteq S_{b}\left(X_{b}\right)$, we have $q_{b} \in S_{b}\left(X_{b}\right)$, there exists $z_{b} \in X_{b}$ such that $S_{b} z_{b}=q_{b}=B_{b} r_{b}$.
Now we show that $A_{b} z_{b}=q_{b}$. Suppose $A_{b} z_{b} \neq q_{b}$. From the inequality (1), we have

$$
\begin{aligned}
& s^{4}\left[d_{b}\left(A_{b} z_{b}, q_{b}\right)\right]^{2}=s^{4}\left[d_{b}\left(A_{b} z_{b}, B_{b} r_{b}\right)\right]^{2} \\
& \leq \\
& \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} z_{b}, T_{b} r_{b}\right)\right]^{2},\left[d_{b}\left(S_{b} z_{b}, A_{b} z_{b}\right)\right]^{2},\left[d_{b}\left(T_{b} r_{b}, B_{b} r_{b}\right)\right]^{2}\right\} \\
& \quad+\lambda_{2} \max ^{2}\left\{\frac{d_{b}\left(S_{b} z_{b}, A_{b} z_{b}\right) d_{b}\left(S_{b} z_{b}, B_{b} r_{b}\right)}{}, \frac{d_{b}\left(T_{b} r_{b}, B_{b} r_{b} d_{b}\left(T_{b} r_{b}, A_{b} z_{b}\right)\right.}{2}\right\} \\
& \quad+\lambda_{3} \frac{d_{b}\left(S_{b} z_{b}, B_{b} r_{b} d_{b}\left(T_{b} r_{b}, A_{b} z_{b}\right)\right.}{2}
\end{aligned}
$$

which implies that $\left(s^{4}-\lambda_{1}\right)\left[d_{b}\left(q_{b}, A_{b} z_{b}\right)\right]^{2} \leq 0$.
Since $\left(s^{4}-\lambda_{1}\right) \geq 0$, we have $A_{b} z_{b}=q_{b}$.
Therefore $A_{b} z_{b}=S_{b} z_{b}=q_{b}$ so that z_{b} is a coincidence point of A_{b} and S_{b}.
Since the pairs $\left(A_{b}, S_{b}\right)$ and $\left(B_{b}, T_{b}\right)$ are weakly compatible, we have $A_{b} q_{b}=S_{b} q_{b}$ and $B_{b} q_{b}=T_{b} q_{b}$.
Therefore q_{b} is also a coincidence point of the pairs $\left(A_{b}, S_{b}\right)$ and $\left(B_{b}, T_{b}\right)$.
We now show that q_{b} is a common fixed point of A_{b}, B_{b}, S_{b} and T_{b}.
Suppose $A_{b} q_{b} \neq q_{b}$.
From the inequality (1), we have

$$
\begin{aligned}
& s^{4}\left[d_{b}\left(A_{b} q_{b}, q_{b}\right)\right]^{2}=s^{4}\left[d_{b}\left(A_{b} q_{b}, B_{b} r_{b}\right)\right]^{2} \\
& \leq \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} q_{b}, T_{b} r_{b}\right)\right]^{2},\left[d_{b}\left(S_{b} q_{b}, A_{b} q_{b}\right)\right]^{2},\left[d_{b}\left(T_{b} r_{b}, B_{b} r_{b}\right)\right]^{2}\right\} \\
& +\lambda_{2} \max \left\{\frac{d_{b}\left(S_{b} q_{b}, A_{b} q_{b}\right)_{b}\left(S_{b} q_{b}, B_{b} r_{b}\right)}{2}, \frac{d_{b}\left(T_{b} r_{b}, B_{b} r_{b}\right) d_{b}\left(T_{b} r_{b}, A_{b} q_{b}\right)}{2}\right\} \\
& +\lambda_{3} \frac{d_{b}\left(S_{b} q_{b}, B_{b} r_{b}\right) d_{b}\left(T_{b} r_{b}, A_{b} q_{b}\right)}{2}
\end{aligned}
$$

which implies that $\left[s^{4}-\left(\lambda_{1}+\frac{\lambda_{3}}{2}\right)\right]\left[d_{b}\left(q_{b}, A_{b} q_{b}\right)\right]^{2} \leq 0$.
Since $\left(s^{4}-\left(\lambda_{1}+\frac{\lambda_{3}}{2}\right)\right) \geq 0$, we have $A_{b} q_{b}=q_{b}$.
Therefore $A_{b} q_{b}=S_{b} q_{b}=q_{b}$ so that q_{b} is a common fixed point of A_{b} and S_{b}.
By Proposition 2.1, q_{b} is a unique common fixed point of A_{b}, B_{b}, S_{b} and T_{b}.
Case (ii). Suppose $A_{b}\left(X_{b}\right)$ is b-closed.
In this case, we have $q_{b} \in A_{b}\left(X_{b}\right)$ and $A_{b}\left(X_{b}\right) \subseteq T_{b}\left(X_{b}\right)$,
we choose $r_{b} \in X_{b} \ni q_{b}=T_{b} r_{b}$.
Rest of the proof follows as in Case (i).
Case (iii). Suppose $S_{b}\left(X_{b}\right)$ is b-closed.
We follow the argument similar as Case (i) and we get conclusion.
Case (iv). Suppose $B_{b}\left(X_{b}\right)$ is b-closed. As in Case (ii), we get the conclusion.
For the case of $\left(B_{b}, T_{b}\right)$ satisfies the b-(E.A)-property, we follow the argument similar to the case $\left(A_{b}, S_{b}\right)$ satisfies the b-(E.A)-property.

3 Corollaries and Examples

The following is an example in support of Theorem 2.1.
Example 3.1. Let $X_{b}=[0, \infty)$ and let $d_{b}: X_{b} \times X_{b} \rightarrow \mathbb{R}^{+}$defined by

$$
d_{b}\left(x_{b}, y_{b}\right)=\left\{\begin{array}{cl}
0 & \text { if } x_{b}=y_{b} \\
4 & \text { if } x_{b}, y_{b} \in(0,1) \\
\frac{9}{2}+\frac{1}{x_{b}+y_{b}} & \text { if } x_{b}, y_{b} \in[1, \infty) \\
\frac{12}{5} & \text { otherwise }
\end{array}\right.
$$

Then clearly $\left(X_{b}, d_{b}\right)$ is a complete b-metric space with coefficient $s=\frac{25}{24}$.
We define $A_{b}, B_{b}, S_{b}, T_{b}: X_{b} \rightarrow X_{b}$ by
$A_{b}\left(x_{b}\right)=1$ if $x_{b} \in[0, \infty), B_{b}\left(x_{b}\right)=\left\{\begin{array}{cl}x_{b} & \text { if } x_{b} \in[0,1) \\ \frac{1}{x_{b}} & \text { if } \\ x_{b} \in[1, \infty),\end{array}\right.$
$S_{b}\left(x_{b}\right)=\left\{\begin{array}{cl}x_{b} & \text { if } x_{b} \in[0,1) \\ \frac{1+x_{b}}{2} & \text { if } x_{b} \in[1, \infty),\end{array}\right.$ and $T_{b}\left(x_{b}\right)=\left\{\begin{array}{cl}2 & \text { if } x_{b} \in[0,1) \\ 2 x_{b}^{2}-1 & \text { if } x_{b} \in[1, \infty) .\end{array}\right.$
Clearly $A_{b}\left(X_{b}\right) \subseteq T_{b}\left(X_{b}\right), B_{b}\left(X_{b}\right) \subseteq S_{b}\left(X_{b}\right)$ and $A_{b}\left(X_{b}\right)$ is closed.
Clearly the pairs $\left(A_{b}, S_{b}\right)$ and $\left(B_{b}, T_{b}\right)$ are weakly compatible.
We take $\lambda_{1}=\frac{10}{51}, \lambda_{2}=\frac{1}{4}, \lambda_{3}=\frac{1}{2}$.
Then clearly $\lambda_{1}+s \lambda_{2}+s^{2} \lambda_{3} \leq 1$.
With out loss generality, we assume that $x \geq y$.
Case (i). $x_{b}, y_{b} \in[0,1)$.
$d_{b}\left(A_{b} x_{b}, B_{b} y_{b}\right)=\frac{12}{5}, d_{b}\left(S_{b} x_{b}, T_{b} y_{b}\right)=\frac{12}{5}, d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right)=\frac{12}{5}$,
$d_{b}\left(T_{b} y_{b}, B_{b} y_{b}\right)=\frac{12}{5}, d_{b}\left(S_{b} x_{b}, B_{b} y_{b}\right)=4, d_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right)=\frac{9}{2}+\frac{1}{x_{b}+y_{b}}$.
We now consider

$$
\begin{aligned}
& s^{4}\left[d_{b}\left(A_{b} x_{b}, B_{b} y_{b}\right)\right]^{2}=\left(\frac{25}{24}\right)^{4}\left(\frac{12}{5}\right)^{2} \\
& \leq \frac{10}{51}\left(\frac{12}{5}\right)^{2}+\frac{1}{8}\left(\left(\frac{12}{5}\right)\left(\frac{9}{2}+\frac{1}{x_{b}+y_{b}}\right)\right)+\frac{1}{4}\left((4)\left(\frac{9}{2}+\frac{1}{x_{b}+y_{b}}\right)\right) \\
& \leq \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} x_{b}, T_{b} y_{b}\right)\right]^{2},\left[d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right)\right]^{2},\left[d_{b}\left(T_{b} y_{b}, B_{b} y_{b}\right)\right]^{2}\right\} \\
&+\lambda_{2} \max \left\{\frac{d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right) d_{b}\left(S_{b} x_{b}, B_{b} y_{b}\right)}{2}, \frac{d_{b}\left(T_{b} y_{b}, B_{b} y_{b}\right) d_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right)}{2}\right\} \\
&+\lambda_{3} \frac{d_{b}\left(S_{b} x_{b}, B_{b} y_{b}\right) d_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right)}{2} .
\end{aligned}
$$

Case (ii). $x_{b}, y_{b} \in(1, \infty)$.
$d_{b}\left(A_{b} x_{b}, B_{b} y_{b}\right)=\frac{12}{5}, d_{b}\left(S_{b} x_{b}, T_{b} y_{b}\right)=\frac{9}{2}+\frac{1}{x_{b}+y_{b}}, d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right)=\frac{9}{2}+\frac{1}{x_{b}+y_{b}}$,
$d_{b}\left(T_{b} y_{b}, B_{b} y_{b}\right)=\frac{12}{5}, d_{b}\left(S_{b} x_{b}, B_{b} y_{b}\right)=\frac{12}{5}, d_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right)=\frac{9}{2}+\frac{1}{x_{b}+y_{b}}$.
We now consider

$$
\begin{aligned}
& s^{4}\left[d_{b}\left(A_{b} x_{b}, B_{b} y_{b}\right)\right]^{2}=\left(\frac{25}{24}\right)^{4}\left(\frac{12}{5}\right)^{2} \\
& \leq \frac{10}{51}\left(\frac{9}{2}+\frac{1}{x_{b}+y_{b}}\right)^{2}+\frac{1}{8}\left(\left(\frac{9}{2}+\frac{1}{x_{b}+y_{b}}\right)\left(\frac{12}{5}\right)\right)+\frac{1}{4}\left(\left(\frac{12}{5}\right)\left(\frac{9}{2}+\frac{1}{x_{b}+y_{b}}\right)\right) \\
& \leq \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} x_{b}, T_{b} y_{b}\right)\right]^{2},\left[d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right)\right]^{2},\left[d_{b}\left(T_{b} y_{b}, B_{b} y_{b}\right)\right]^{2}\right\} \\
&+\lambda_{2} \max ^{2}\left\{\frac{d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right) d_{b}\left(S_{b} x_{b}, B_{b} y_{b}\right)}{}, \frac{d_{b}\left(T_{b} y_{b} B_{b} y_{b}\right) d_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right)}{2}\right\} \\
&+\lambda_{3} d_{b}\left(S_{b} x_{b}, B_{b} y_{b}\right) d_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right) .
\end{aligned}
$$

Case (iii). $x_{b} \in(1, \infty), y_{b} \in(0,1)$.
$d_{b}\left(A_{b} x_{b}, B_{b} y_{b}\right)=\frac{12}{5}, d_{b}\left(S_{b} x_{b}, T_{b} y_{b}\right)=\frac{9}{2}+\frac{1}{x_{b}+y_{b}}, d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right)=\frac{9}{2}+\frac{1}{x_{b}+y_{b}}$,

K. Bhanu Chander, D. R. Babu, T. V. Pradeep Kumar

$d_{b}\left(T_{b} y_{b}, B_{b} y_{b}\right)=\frac{12}{5}, d_{b}\left(S_{b} x_{b}, B_{b} y_{b}\right)=\frac{12}{5}, d_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right)=\frac{9}{2}+\frac{1}{x_{b}+y_{b}}$,
We now consider

$$
\begin{aligned}
& s^{4}\left[d_{b}\left(A_{b} x_{b}, B_{b} y_{b}\right)\right]^{2}=\left(\frac{25}{24}\right)^{4}\left(\frac{12}{5}\right)^{2} \\
& \leq \frac{10}{51}\left(\frac{9}{2}+\frac{1}{x_{b}+y_{b}}\right)^{2}+\frac{1}{8}\left(\left(\frac{12}{5}\right)\left(\frac{9}{2}+\frac{1}{x_{b}+y_{b}}\right)\right)+\frac{1}{4}\left(\left(\frac{12}{5}\right)\left(\frac{9}{2}+\frac{1}{x_{b}+y_{b}}\right)\right) \\
& \leq \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} x_{b}, T_{b} y_{b}\right)\right]^{2},\left(d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right)\right]^{2},\left[d_{b}\left(d_{b} y_{b}, B_{b} y_{b}\right)\right]^{2}\right\} \\
&+\lambda_{2} \max \left\{\frac{\left.d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right)\right)_{b}\left(S_{b} x_{b} B_{b} B_{b}\right)}{2}, \frac{d_{b}\left(T_{b} y_{b}, B_{b} y_{b} d_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right.\right.}{2}\right\} \\
& \quad+\lambda_{3} \frac{d_{b}\left(S_{b} x_{b}, B_{b} y_{b} b d_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right)\right.}{2} .
\end{aligned}
$$

Therefore A_{b}, B_{b}, S_{b} and T_{b} satisfy all the hypotheses of Theorem 2.1 and 1 is the unique common fixed point in X_{b}.

The following is an example in support of Theorem 2.2.
Example 3.2. Let $X_{b}=[0,1]$ and let $d_{b}: X_{b} \times X_{b} \rightarrow \mathbb{R}^{+}$defined by

$$
d_{b}\left(x_{b}, y_{b}\right)=\left\{\begin{array}{cl}
0 & \text { if } x_{b}=y_{b}, \\
\frac{11}{15} & \text { if } x_{b}, y_{b} \in\left[0, \frac{2}{3}\right), \\
\frac{99}{100}+\frac{x_{b}+y_{b}}{200} & \text { if } x_{b}, y_{b} \in\left[\frac{2}{3}, 1\right], \\
\frac{12}{25} & \text { otherwise. }
\end{array}\right.
$$

Then clearly $\left(X_{b}, d_{b}\right)$ is a complete b-metric space with coefficient $s=\frac{25}{24}$.
We define $A_{b}, B_{b}, S_{b}, T_{b}: X_{b} \rightarrow X_{b}$ by
$A_{b}\left(x_{b}\right)=\frac{2}{3}$ if $x_{b} \in[0,1], B_{b}\left(x_{b}\right)= \begin{cases}\frac{1}{2} & \text { if } x_{b} \in\left[0, \frac{2}{3}\right) \\ \frac{2}{3} & \text { if } x_{b} \in\left[\frac{2}{3}, 1\right],\end{cases}$
$S_{b}\left(x_{b}\right)=\left\{\begin{array}{cl}\frac{1}{2} & \text { if } x_{b} \in\left[0, \frac{2}{3}\right) \\ \frac{2+5 x_{b}}{8} & \text { if } x_{b} \in\left[\frac{2}{3}, 1\right],\end{array}\right.$ and $T_{b}\left(x_{b}\right)=\left\{\begin{array}{cl}1 & \text { if } x_{b} \in\left[0, \frac{2}{3}\right) \\ \frac{4+x_{b}}{7} & \text { if } x_{b} \in\left[\frac{2}{3}, 1\right] .\end{array}\right.$
Clearly $A_{b}\left(X_{b}\right) \subseteq T_{b}\left(X_{b}\right)$ and $B_{b}\left(X_{b}\right) \subseteq S_{b}\left(X_{b}\right) . A_{b}\left(X_{b}\right)=\left\{\frac{2}{3}\right\}$ is b-closed.
We choose a sequence $\left\{x_{b_{n}}\right\}$ with $\left\{x_{b_{n}}\right\}=\frac{2}{3}+\frac{1}{n}, n \geq 4$ with $\lim _{n \rightarrow \infty} A_{b} x_{b_{n}}=\lim _{n \rightarrow \infty} S_{b} x_{b_{n}}=\frac{2}{3}$, hence the pair $\left(A_{b}, S_{b}\right)$ satisfies the b-(E.A)-property.
Clearly the pairs $\left(A_{b}, S_{b}\right)$ and $\left(B_{b}, T_{b}\right)$ are weakly compatible.
We take $\lambda_{1}=\frac{10}{51}, \lambda_{2}=\frac{1}{4}, \lambda_{3}=\frac{1}{2}$. Then clearly $\lambda_{1}+s \lambda_{2}+s^{2} \lambda_{3} \leq 1$.
With out loss generality, we assume that $x \geq y$.
Case (i). $x_{b}, y_{b} \in\left(0, \frac{2}{3}\right)$.
$d_{b}\left(A_{b} x_{b}, B_{b} y_{b}\right)=\frac{12}{25}, d_{b}\left(S_{b} x_{b}, T_{b} y_{b}\right)=\frac{12}{25}, d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right)=\frac{12}{25}$,
$d_{b}\left(T_{b} y_{b}, B_{b} y_{b}\right)=\frac{12}{25}, d_{b}\left(S_{b} x_{b}, B_{b} y_{b}\right)=\frac{11}{15}, d_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right)=\frac{99}{100}+\frac{x_{b}+y_{b}}{200}$,
We now consider

$$
\begin{aligned}
& s^{4}\left[d_{b}\left(A_{b} x_{b}, B_{b} y_{b}\right)\right]^{2}=\left(\frac{25}{24}\right)^{4}\left(\frac{12}{25}\right)^{2} \\
& \leq \frac{10}{51}\left(\frac{12}{25}\right)^{2}+\frac{1}{8}\left(\left(\frac{12}{25}\right)\left(\frac{99}{100}+\frac{x_{b}+y_{b}}{200}\right)\right)+\frac{1}{4}\left(\left(\frac{11}{15}\right)\left(\frac{99}{100}+\frac{x_{b}+y_{b}}{200}\right)\right) \\
& \leq \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} x_{b}, T_{b} y_{b}\right)\right]^{2},\left(d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right)\right]^{\prime},\left[d_{b}\left(T_{b} T_{b}, B_{b} y_{b}\right)\right]^{2}\right\} \\
&+\lambda_{2} \max \left\{\frac{d_{b}\left(S_{b} x_{b} x_{b}, A_{b} x_{b}\right) d_{b}\left(S_{b} x_{b}, B_{b} y_{b}\right)}{2}, \frac{d_{b}\left(T_{b} y_{b}, B_{b} y_{b}\right) d_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right)}{2}\right\} \\
&+\lambda_{3} \frac{d_{b}\left(S_{b} x_{b}, B_{b} y_{b} d_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right)\right.}{2} .
\end{aligned}
$$

Case (ii). $x_{b}, y_{b} \in\left(\frac{2}{3}, 1\right]$.
$d_{b}\left(A_{b} x_{b}, B_{b} y_{b}\right)=0$. In this case the inequality (1) trivially holds.

Case (iii). $x_{b} \in\left(\frac{2}{3}, 1\right], y_{b} \in\left(0, \frac{2}{3}\right)$.
$d_{b}\left(A_{b} x_{b}, B_{b} y_{b}\right)=\frac{12}{25}, d_{b}\left(S_{b} x_{b}, T_{b} y_{b}\right)=\frac{99}{1100}+\frac{x_{b}+y_{b}}{200}, d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right)=\frac{99+x_{b}}{100}$,
$d_{b}\left(T_{b} y_{b}, B_{b} y_{b}\right)=\frac{12}{25}, d_{b}\left(S_{b} x_{b}, B_{b} y_{b}\right)=\frac{12}{25}, d_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right)=\frac{99}{100}+\frac{x_{b}+y_{b}}{200}$,
We now consider

$$
\begin{aligned}
& s^{4}\left[d_{b}\left(A_{b} x_{b}, B_{b} y_{b}\right)\right]^{2}=\left(\frac{25}{24}\right)^{4}\left(\frac{12}{25}\right)^{2} \\
& \leq\left.\frac{10}{51}\left(\frac{99+x_{b}}{100}\right)^{2}+\frac{1}{8}\left(\left(\frac{99+x_{b}}{100}\right)\left(\frac{12}{25}\right)\right)+\frac{1}{4}\left(\frac{12}{25}\right)\right)\left(\left(\frac{99}{100}+\frac{x_{b}+y_{b}}{200}\right)\right. \\
& \leq \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} x_{b}, T_{b} y_{b}\right)\right]^{2},\left[d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right)\right]^{2},\left[d_{b}\left(T_{b} y_{b}, B_{b} y_{b}\right)\right]^{2}\right\} \\
&+\lambda_{2} \max \left\{\frac{d_{b}\left(S_{b} x_{b}, A_{b} x_{b}\right) d_{b}\left(S_{b} x_{b}, B_{b} y_{b}\right)}{2}, \frac{d_{b}\left(T_{b} y_{b}, B_{b} y_{b}\right) d_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right)}{2}\right\} \\
&+\lambda_{3} \frac{d_{b}\left(S_{b} x_{b}, B_{b} y_{b}\right) d_{b}\left(T_{b} y_{b}, A_{b} x_{b}\right)}{2} .
\end{aligned}
$$

Therefore A_{b}, B_{b}, S_{b} and T_{b} satisfy all the hypotheses of Theorem 2.2 and $\frac{2}{3}$ is the unique common fixed point in X_{b}.

Corolary 3.1. Let $\left\{A_{n}\right\}_{n=1}^{\infty}, S_{b}$ and T_{b} be selfmaps on a complete b-metric space (X_{b}, d_{b}) satisfying $A_{1} \subseteq S_{b}\left(X_{b}\right)$ and $A_{1} \subseteq T_{b}\left(X_{b}\right)$. Assume that there exist positive reals $\lambda_{1}, \lambda_{2}, \lambda_{3}$ with $\lambda_{1}+s \lambda_{2}+s^{2} \lambda_{3} \leq 1$ such that

$$
\begin{align*}
& s^{4}\left[d_{b}\left(A_{1} x_{b}, A_{j} y_{b}\right)\right]^{2} \leq \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} x_{b}, T_{b} y_{b}\right)\right]^{2},\left[d_{b}\left(S_{b} x_{b}, A_{1} x_{b}\right)\right]^{2},\left[d_{b}\left(T_{b} y_{b}, A_{j} y_{b}\right)\right]^{2}\right\} \\
& +\lambda_{2} \max \left\{\frac{d_{b}\left(S_{b} x_{b}, A_{1} x\right) d_{b}\left(S_{b} x_{b}, A_{j} y_{b}\right)}{2}, \frac{d_{b}\left(T_{b} y_{b}, A_{j} y\right) d_{b}\left(T_{b} y_{b}, A_{1} x_{b}\right)}{2}\right\} \\
& +\lambda_{3} \frac{d_{b}\left(S_{b} x_{b}, A_{j} y_{b}\right) d_{b}\left(T_{b} y_{b}, A_{1} x_{b}\right)}{2} . \tag{15}
\end{align*}
$$

for all $x_{b}, y_{b} \in X_{b}$ and $j=1,2,3, \ldots$.. If the pairs $\left(A_{1}, S_{b}\right)$ and $\left(A_{1}, T_{b}\right)$ are weakly compatible and one of the range sets $A_{1}\left(X_{b}\right), S_{b}\left(X_{b}\right)$ and $T_{b}\left(X_{b}\right)$ is closed, then $\left\{A_{n}\right\}_{n=1}^{\infty}, S_{b}$ and T_{b} have a unique common fixed point in X_{b}.

Proof. Under the assumptions on A_{1}, S_{b} and T_{b}, the existence of common fixed point z_{b} of A_{1}, S_{b} and T_{b} follows by choosing $A_{b}=B_{b}=A_{1}$ in Theorem 2.1.
Therefore $A_{1} z_{b}=S_{b} z_{b}=T_{b} z_{b}=z_{b}$.
Now, let $j \in \mathbb{N}$ with $j \neq 1$.
We now consider

$$
\begin{align*}
s^{4}\left[d_{b}\left(z_{b}, A_{j} z_{b}\right)\right]^{2}= & s^{4}\left[d_{b}\left(A_{1} z_{b}, A_{j} z_{b}\right)\right]^{2} \\
\leq & \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} z_{b}, T_{b} z_{b}\right)\right)^{2},\left[d_{b}\left(S_{b} z_{b}, A_{1} z_{b}\right)\right]^{2},\left[d_{b}\left(T_{b} z_{b}, A_{j} z_{b}\right)\right]^{2}\right\} \\
& +\lambda_{2} \max ^{2}\left\{\frac{d_{b}\left(S_{b} z_{b} A_{1} A_{1} z_{b}\right) d_{b}\left(S_{b} z_{b}, A_{j} z_{b}\right)}{}, \frac{d_{b}\left(T_{b} z_{b}, A_{j} z_{b}\right) d_{b}\left(T_{b} z_{b}, A_{1} z_{b}\right)}{2}\right\} \\
& +\lambda_{3} \frac{d_{b}\left(S_{b} z_{b}, A_{j} z_{b}\right) d_{b}\left(T_{b} z_{b}, A_{1} z_{b}\right)}{2} . \tag{16}
\end{align*}
$$

From the inequality (16), we have
$s^{4}\left[d_{b}\left(z_{b}, A_{j} z_{b}\right)\right]^{2} \leq \lambda_{1}\left[d_{b}\left(z_{b}, A_{j} z_{b}\right)\right]^{2}$
which implies that $\left(s^{4}-\lambda_{1}\right)\left[d_{b}\left(z_{b}, A_{j} z_{b}\right)\right]^{2} \leq 0$.
Since $\left(s^{4}-\lambda_{1}\right) \geq 0$, we have $A_{j} z_{b}=z_{b}$ for $j=1,2,3, \ldots$ and uniqueness of common fixed point follows from the inequality (15).

Therefore $\left\{A_{n}\right\}_{n=1}^{\infty}, S_{b}$ and T_{b} have a unique common fixed point in X_{b}.

K. Bhanu Chander, D. R. Babu, T. V. Pradeep Kumar

Corolary 3.2. Let $\left\{A_{n}\right\}_{n=1}^{\infty}, S_{b}$ and T_{b} be selfmaps on a b-metric space (X_{b}, d_{b}) satisfy the conditions $A_{1} \subseteq S_{b}\left(X_{b}\right), A_{1} \subseteq T_{b}\left(X_{b}\right)$ and (15). If one of the pairs $\left(A_{1}, S_{b}\right)$ and $\left(A_{1}, T_{b}\right)$ satisfies the b-(E.A)-property and that one of the subspace $A_{1}(X), S_{b}\left(X_{b}\right)$ or $T_{b}\left(X_{b}\right)$ is b-closed in X_{b}. Then the pairs $\left(A_{1}, S_{b}\right)$ and $\left(A_{1}, T_{b}\right)$ have a point of coincidence in X_{b}. Moreover, if the pairs $\left(A_{1}, S_{b}\right)$ and $\left(A_{1}, T_{b}\right)$ are weakly compatible, then $\left\{A_{n}\right\}_{n=1}^{\infty}, S_{b}$ and T_{b} have a unique common fixed point in X_{b}.

Proof. Under the assumptions on A_{1}, S_{b} and T_{b}, the existence of common fixed point z_{b} of A_{1}, S_{b} and T_{b} follows by choosing $A_{b}=B_{b}=A_{1}$ in Theorem 2.2.
Therefore $A_{1} z_{b}=S_{b} z_{b}=T_{b} z_{b}=z_{b}$.
Now, let $j \in \mathbb{N}$ with $j \neq 1$.
We now consider

$$
\begin{align*}
& s^{4}\left[d_{b}\left(z_{b}, A_{j} z_{b}\right)\right]^{2}= \\
& \leq s^{4}\left[d_{b}\left(A_{1} z_{b}, A_{j} z_{b}\right)\right]^{2} \\
& \leq \lambda_{1} \max \left\{\left[d_{b}\left(S_{b} z_{b}, T_{b} z_{b}\right)\right]^{2},\left[d_{b}\left(S_{b} z_{b}, A_{1} z_{b}\right)\right]^{2},\left[d_{b}\left(T_{b} z_{b}, A_{j} z_{b}\right)\right]^{2}\right\} \\
& \quad+\lambda_{2} \max \left\{\frac{d_{b}\left(S_{b} z_{b}, A_{1} z_{b}\right) d_{b}\left(S_{b} z_{b}, A_{j} z_{b}\right)}{2}, \frac{d_{b}\left(T_{b} z_{b}, A_{j} z_{b}\right) d_{b}\left(T_{b} z_{b}, A_{1} z_{b}\right)}{2}\right\} \tag{17}\\
& \\
& \quad+\lambda_{3} \frac{d_{b}\left(S_{b} z_{b}, A_{j} z_{b}\right) d_{b}\left(T_{b} z_{b}, A_{1} z_{b}\right)}{2}
\end{align*}
$$

From the inequality (17), we have
$s^{4}\left[d_{b}\left(z_{b}, A_{j} z_{b}\right)\right]^{2} \leq \lambda_{1}\left[d_{b}\left(z_{b}, A_{j} z_{b}\right)\right]^{2}$ which implies that $\left(s^{4}-\lambda_{1}\right)\left[d_{b}\left(z_{b}, A_{j} z_{b}\right)\right]^{2} \leq 0$.
Since $\left(s^{4}-\lambda_{1}\right) \geq 0$, we have $A_{j} z_{b}=z_{b}$ for $j=1,2,3, \ldots$ and uniqueness of common fixed point follows from the inequality (15).

Therefore $\left\{A_{n}\right\}_{n=1}^{\infty}, S_{b}$ and T_{b} have a unique common fixed point in X_{b}.

4 Conclusion

In this paper, we introduced generalized contraction for two pairs of selfmaps in complete b-metric spaces and proved the existence and of common fixed points. Our results extend/generalize the known results that are available in the literature. A sequence of selfmaps is added as an extension of the same. We provided examples in support of our results and some corollaries to our results are presented.
Acknowledgment. The authors are sincerely thankful to the anonymous referee for his/her valuable suggestions which helped us to improve the quality of paper.

References

[1] M. Aamri and D. El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270(2002), 181-
188.
[2] A. Aghajani, M. Abbas and J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 64(4)(2014), 941-960.
[3] H. Aydi, M. F. Bota, E. Karapinar and S. Mitrović, A fixed point theorem for set-valued quasi contractions in b-metric spaces, Fixed Point Theory Appl., 88(2012), 8 pages.
[4] G. V. R. Babu and G. N. Alemayehu, A common fixed point theorem for weakly contractive mappings satisfying property (E.A), Applied Mathematics E-Notes, 24(6)(2012), 975-981.
[5] G. V. R. Babu and T. M. Dula, Common fixed points of two pairs of selfmaps satisfying (E.A)-property in b-metric spaces using a new control function, Inter. J. Math. Appl., 5(1-B)(2017), 145-153.
[6] G. V. R. Babu and D. R. Babu, Common fixed points of Fisher type weakly contractive maps in b-metric spaces, J. Fixed Point Theory, 14(2019), 27 pages.
[7] G. V. R. Babu and D. R. Babu, Fixed points of almost Geraghty contraction type maps/generalized contraction maps with rational expressions in b-metric spaces, Commun. Nonlinear Anal. 6(1) (2019), 40-59.
[8] M. Boriceanu, Strict fixed point theorems for multivalued operators in b metric spaces, Int. J. Mod. Math., 4(3)(2009), 285-301.
[9] M. Boriceanu, M. Bota and A. Petrusel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8(2)(2010), 367-377.
[10] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1(1993), 5-11.
[11] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti del Seminario Matematico e Fisico (DellUniv. di Modena), 46(1998), 263-276.
[12] N. Hussain, V. Paraneh, J. R. Roshan and Z. Kadelburg, Fixed points of cycle weakly (ψ, φ, L, A, B)-contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl., 2013(2013), 256, 18 pages.
[13] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. and Math. Sci., 9(1986), 771-779.

K. Bhanu Chander, D. R. Babu, T. V. Pradeep Kumar

[14] G. Jungck and B. E. Rhoades, Fixed points of set-valuaed functions without continuity, Indian J. Pure and Appl. Math., 29(3)(1998), 227-238.
[15] H. Huang, L. Paunović and S. Radenović, On some fixed point results for rational Geraghty contractive mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl., 8(2015), 800-807.
[16] N. Hussain, J. R. Roshan, V. Parvaneh and M. Abbas, Common fixed point results for weak contractive mappings in ordered b-dislocated metric spaces with applications, J. Inequal. Appl., 2013(2013), 486, 21 pages.
[17] P. Kumam and W. Sintunavarat, The existence of fixed point theorems for partial q-set valued quasi-contractions in b-metric spaces and related results, Fixed Point Theory Appl., 2014(2014): 226, 20 pages.
[18] V. Nagaraju, B. Raju and P. Thirupathi, Common fixed point theorem for four self maps satisfying common limit range property, J. Math. Comput. Sci., 10(4)(2020), 1228-1238.
[19] V. Ozturk and D. Turkoglu, Common fixed point theorems for mappings satisfying (E.A)-property in b-metric spaces, J. Nonlinear Sci. Appl., 8(2015), 1127-1133.
[20] V. Ozturk and S. Radenović, Some remarks on b-(E.A)-property in b-metric spaces, Springer Plus, 5(2016), 544, 10 pages.
[21] V. Ozturk and A. H. Ansari, Common fixed point theorems for mapping satisfying (E.A)-property via C-class functions in b-metric spaces, Appl. Gen. Topol., 18(1)(2017), 45-52.
[22] R. J. Shahkoohi and A. Razani, Some fixed point theorems for rational Geraghty contractive mappings in ordered b-metric spaces, J. Inequal. Appl.,2014(1)(373), 23 pages.
[23] W. Shatanawi, Fixed and common fixed point for mappings satisfying some nonlinear contractions in b-metric spaces, J. Math. Anal., 7(4)(2016), 1-12.
[24] F. Zabihi and A. Razani, Fixed point theorems for hybrid rational Geraghty contractive mappings in ordered b-metric spaces, J. Appl. Math., Article ID 929821, 2014, 9 pages.

[^0]: *Department of Mathematics, PSCMRCET, Vijayawada-520 001, India ; bhanu.kodeboina@gmail.com
 ${ }^{\dagger}$ Corresponding author; Department of Mathematics, PSCMRCET, Vijayawada-520 001, India ; ratnababud@gmail.com
 ** Department of Mathematics, Acharya Nagarjuna University, Guntur - 522 510, India; pradeeptv5@gmail.com
 ${ }^{1}$ Received on August 5, 2023. Accepted on January 1, 2024. Published on January 30, 2024. DOI: $10.23755 / \mathrm{rm} . v 51 \mathrm{i} 0.1328$. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

