Kapil Jain* Jatinderdeep Kaur[†] Satvinder Singh Bhatia[‡]

Abstract

The main goal of this work is to present $G_{\mathcal{F}}$ -metric space, a new generalization of G-metric space. A comparison between the classes of G-metric spaces, GP-metric spaces, G_b -metric spaces, generalized G_b -metric spaces, and G^* -metric spaces and the class of $G_{\mathcal{F}}$ -metric spaces is also presented. We examine a few fundamental aspects of this newly defined abstract space. Proving the Banach contraction principle and the fixed point result for (ψ, ϕ) -contractive mapping in the context of $G_{\mathcal{F}}$ -metric spaces is the paper's secondary goal.

Keywords: Fixed point, G-metric space, G_b -metric space, \mathcal{F} -metric space, Contractive mapping.

2020 AMS subject classifications: 47H10; 54H25.¹

^{*}Department of Mathematics, RKSD College, Kaithal, Haryana, India; kjain_phdp16@thapar.edu.

[†]School of Mathematics, Thapar Institute of Engineering and Technology, Patiala, Punjab, India; jkaur@thapar.edu.

[‡]School of Mathematics, Thapar Institute of Engineering and Technology, Patiala, Punjab, India; ssbhatia@thapar.edu.

¹Received on November 2, 2023. Accepted on January 15, 2024. Published on January 31, 2024. DOI:10.23755/rm.v51i0.1455. ISSN: 1592-7415. eISSN: 2282-8214. ©Kapil Jain et al. This paper is published under the CC-BY licence agreement.

1 Introduction

Gahler [1] proposed the idea of 2-metric space, which is an extension of the famous concept of metric space (X,d). Various writers have demonstrated that there is no relation between the two functions. For example, Ha *et al.* [2] demonstrate that the 2-metric does not necessarily need to be continuous. Dhage [3] introduced the concept of *D*-metric space, a new class of generalized metric space, in 1992. Most of the assertions about the basic topological structure of *D*-metric space were later proved inappropriate by Mustafa and Sims [4], Naidu *et al.* [5, 6]. Therefore, Mustafa and Sims [7] created a more suitable concept, known as *G*metric space.

Definition 1.1. [7] Let \mathcal{A} be a non-empty set and $G : \mathcal{A} \times \mathcal{A} \times \mathcal{A} \rightarrow [0, \infty)$ be a *function satisfying:*

(G1) $G(\zeta, \eta, \vartheta) = 0$ if $\zeta = \eta = \vartheta$; (G2) $0 < G(\zeta, \zeta, \eta)$, for all $\zeta, \eta \in \mathcal{A}$ with $\zeta \neq \eta$; (G3) $G(\zeta, \zeta, \eta) \leq G(\zeta, \eta, \vartheta)$, for all $\zeta, \eta, \vartheta \in \mathcal{A}$ with $\vartheta \neq \eta$; (G4) $G(\zeta, \eta, \vartheta) = G(\zeta, \vartheta, \eta) = G(\eta, \vartheta, \zeta) = \cdots$ (symmetric in its variables); (G5) $G(\zeta, \eta, \vartheta) \leq G(\zeta, a, a) + G(a, \eta, \vartheta)$, for all $\zeta, \eta, \vartheta, a \in \mathcal{A}$. The pair (\mathcal{A}, G) is a G-metric space, and the function G is referred to as a generalized metric or a G-metric on \mathcal{A} .

Example 1.1. Assume that the set of real numbers is A, define $G : A \times A \times A \rightarrow [0, \infty)$ as

$$G(\zeta, \eta, \vartheta) = |\zeta - \eta| + |\eta - \vartheta| + |\vartheta - \zeta|, \text{ for all } \zeta, \eta, \vartheta \in \mathcal{A}.$$

G is therefore a *G*-metric on A.

[8, 9, 10, 11, 12, 13, 15, 14, 16] has more results and more information in G-metric spaces. As a generalisation of partial metric space [17] and G-metric space, Zand and Nezhad [18] presented GP-metric space in 2011.

Definition 1.2. [18] Let \mathcal{A} be a non-empty set. Let $G : \mathcal{A} \times \mathcal{A} \times \mathcal{A} \to [0, \infty)$ be a function such that the following conditions hold:

 $\begin{array}{l} (G_p1) \ \zeta = \eta = \vartheta \ if \ G(\zeta, \eta, \vartheta) = G(\zeta, \zeta, \zeta) = G(\eta, \eta, \eta) = G(\vartheta, \vartheta, \vartheta); \\ (G_p2) \ G(\zeta, \zeta, \zeta) \leq G(\zeta, \zeta, \eta) \leq G(\zeta, \eta, \vartheta), \ for \ all \ \zeta, \eta, \vartheta \in \mathcal{A}; \\ (G_p3) \ G(\zeta, \eta, \vartheta) = G(\zeta, \vartheta, \eta) = G(\eta, \vartheta, \zeta) = \cdots (symmetric \ in \ its \ variables); \\ (G_p4) \ G(\zeta, \eta, \vartheta) \leq G(\zeta, a, a) + G(a, \eta, \vartheta) - G(a, a, a), \ for \ all \ \zeta, \eta, \vartheta, a \in \mathcal{A}. \\ Then, \ the \ function \ G \ is \ called \ a \ GP-metric \ on \ \mathcal{A}, \ and \ the \ pair \ (\mathcal{A}, G) \ is \ a \ GP-metric \ space. \end{array}$

Later, in 2013, Parvaneh *et al.* [19] discovered that $(G_p 2)$ makes *GP*-metric spaces symmetric. Because those *G*-metric spaces are nonsymmetric, *GP*-metric

spaces do not generalize them (see Example 1, [7]). Parvaneh *et al.* [19] redefined GP-metric space in light of this by modifying the inequality $(G_p 2)$ to read as follows:

 $(G_p 2')$ $G(\zeta, \zeta, \zeta) \leq G(\zeta, \zeta, \eta) \leq G(\zeta, \eta, \vartheta)$, for all $\zeta, \eta, \vartheta \in \mathcal{A}$ with $\eta \neq \vartheta$.

Example 1.2. [18] Let $\mathcal{A} = [0, \infty)$ and define a map $G : \mathcal{A} \times \mathcal{A} \times \mathcal{A} \rightarrow [0, \infty)$ by setting

 $G(\zeta, \eta, \vartheta) = max\{\zeta, \eta, \vartheta\}, \text{ for all } \zeta, \eta, \vartheta \in \mathcal{A}.$

Consequently, (\mathcal{A}, G) is a GP-metric space but not a G-metric space since $G(1, 1, 1) = 1 \neq 0$, i.e., (G1) does not hold.

Further details about GP-metric spaces are provided in papers [20, 21, 22, 23, 24, 25, 26, 27, 28]. By merging the ideas of G-metric spaces and b-metric spaces[30], Aghajani *et al.* introduced the notion of G_b -metric spaces in [29] as follows:

Definition 1.3. [29] Let $s \ge 1$ be a real number and let \mathcal{A} be a non-empty set. Let $G : \mathcal{A} \times \mathcal{A} \times \mathcal{A} \to [0, \infty)$ be a function such that: $(G_b1) \quad G(\zeta, \eta, \vartheta) = 0 \text{ if } \zeta = \eta = \vartheta;$ $(G_b2) \quad 0 < G(\zeta, \zeta, \eta), \text{ for all } \zeta, \eta \in \mathcal{A} \text{ with } \zeta \neq \eta;$ $(G_b3) \quad G(\zeta, \zeta, \eta) \le G(\zeta, \eta, \vartheta), \text{ for all } \zeta, \eta, \vartheta \in \mathcal{A} \text{ with } \vartheta \neq \eta;$ $(G_b4) \quad G(\zeta, \eta, \vartheta) = G(\zeta, \vartheta, \eta) = G(\eta, \vartheta, \zeta) = \cdots (symmetric \text{ in its variables});$ $(G_b5) \quad G(\zeta, \eta, \vartheta) \le s[G(\zeta, a, a) + G(a, \eta, \vartheta)], \text{ for all } \zeta, \eta, \vartheta, a \in \mathcal{A}.$ Then, on \mathcal{A} , the function G is referred to as a G_b -metric or a generalized b-metric,

and the pair (\mathcal{A}, G) is a G_b -metric space or a generalized b-metric space. A G-metric space is a G_b -metric space with s = 1, but the opposite is not true in general.

Example 1.3. [29] Let $\mathcal{A} = \mathbb{R}$ represent the set of real numbers. Define $G : \mathcal{A} \times \mathcal{A} \times \mathcal{A} \to [0, \infty)$ as follows:

$$G(\zeta,\eta,\vartheta) = \frac{1}{9}(|\zeta-\eta| + |\eta-\vartheta| + |\vartheta-\zeta|)^2, \quad \text{for all } \zeta,\eta,\vartheta \in \mathcal{A}.$$

Hence, on \mathcal{A} , G is a G_b -metric but not a G-metric.

Numerous researchers demonstrated different findings in G_b -metric spaces; refer to [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. In [29], the authors proposed the idea of G_b -metric space. The term G_b -metric space was also used by Jain and Kaur in [43], although it referred to a different abstract space. Jain *et al.* [44] renamed this abstract space as 'generalized G_b -metric space', and its definition is as follows: **Definition 1.4.** [44] Let \mathcal{A} be a non-empty set and $s \ge 1$ be a real number. Let $G : \mathcal{A} \times \mathcal{A} \times \mathcal{A} \to [0, \infty)$ be a function satisfying:

 (gG_b1) $G(\zeta, \eta, \vartheta) = 0$ if $\zeta = \eta = \vartheta;$

 $(gG_b2) \ 0 < G(\zeta, \zeta, \eta), \text{ for all } \zeta, \eta \in \mathcal{A} \text{ with } \zeta \neq \eta;$

 (gG_b3) $G(\zeta, \zeta, \eta) \leq s G(\zeta, \eta, \vartheta)$, for all $\zeta, \eta, \vartheta \in \mathcal{A}$ with $\vartheta \neq \eta$;

 (gG_b4) $G(\zeta, \eta, \vartheta) = G(\zeta, \vartheta, \eta) = G(\eta, \vartheta, \zeta) = \cdots$ (symmetric in its variables);

 (gG_b5) $G(\zeta, \eta, \vartheta) \leq s[G(\zeta, a, a) + G(a, \eta, \vartheta)], \text{ for all } \zeta, \eta, \vartheta, a \in \mathcal{A}.$

The pair (\mathcal{A}, G) is a generalized G_b -metric space, and the function G is referred to as a generalized G_b -metric on \mathcal{A} . The following example shows that while it is evident that every G_b -metric space is a generalized G_b -metric space, the converse is not true:

Example 1.4. [44] For every $\zeta, \eta, \vartheta \in \mathbb{R}$, define a mapping $G : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ as follows:

$$G(\zeta, \eta, \vartheta) = |\zeta - \eta|^2 + |\eta - \vartheta|^2 + |\vartheta - \zeta|^2.$$

In that case, (\mathbb{R}, G) is not a G_b -metric space, but it is a generalized G_b -metric space with s = 2. To calculate $G(\zeta, \eta, \vartheta) = |1 - 3|^2 + |3 - 2|^2 + |2 - 1|^2 = 6$ and $G(\zeta, \eta, \eta) = 2|1 - 3|^2 = 8$, let $\zeta = 1$, $\eta = 3$, and $\vartheta = 2$. Consequently, $G(\zeta, \eta, \eta) \notin G(\zeta, \eta, \vartheta)$, that is, (G_b3) , is not true.

After that, Jain *et al.* [44] introduced G^* -metric space to generalize GP-metric space and generalized G_b -metric space.

Definition 1.5. [44] Let $G : \mathcal{A} \times \mathcal{A} \times \mathcal{A} \to [0, \infty]$ be a mapping, where \mathcal{A} is a non-empty set. If there is an $\alpha > 0$ such that for every $\zeta, \eta, \vartheta \in \mathcal{A}$, the following conditions hold, then we say that G is a G^* -metric on \mathcal{A} :

(Gg1) $G(\zeta, \eta, \vartheta) = 0$ implies $\zeta = \eta = \vartheta;$

(Gg2) $G(\zeta, \eta, \vartheta) = G(\zeta, \vartheta, \eta) = G(\eta, \vartheta, \zeta) = \cdots$ (symmetric in its variables); (Gg3) if $\{\zeta_n\} \in C_{\mathcal{A}}(G, \zeta)$, then

$$G(\zeta,\eta,\vartheta) \leq \alpha \left(\limsup_{n \to \infty} G(\zeta_n,\eta,\vartheta) + G(\zeta,\zeta,\zeta)\right),$$

where $C_{\mathcal{A}}(G,\zeta) = \left\{ \{\zeta_n\} \subset \mathcal{A} \mid \lim_{n,m \to \infty} G(\zeta_n,\zeta_m,\zeta) = G(\zeta,\zeta,\zeta) < \infty \right\}.$

The pair (\mathcal{A}, G) in this instance is referred to as a G^* -metric space with constant α .

Example 1.5. [44] Assume that $\mathcal{A} = \mathcal{B} \cup \{0\}$, where $\mathcal{B} = \{\frac{1}{n} \mid n \in \mathbb{N}\}$. Let $G : \mathcal{A} \times \mathcal{A} \times \mathcal{A} \to [0, \infty]$ be a mapping defined so that G satisfies (Gg2) and

$$G(\zeta, \eta, \vartheta) = \begin{cases} \zeta + \eta + \vartheta, & \text{if at least one of } \zeta, \eta, \vartheta \text{ is } 0; \text{ or} \\ & \text{if } \zeta = \frac{1}{n}, \eta = \frac{1}{n+m}, \vartheta = \frac{1}{n+l}, \text{ where } n, m, l \ge 5; \\ 5, & \text{otherwise.} \end{cases}$$

Then (\mathcal{A}, G) is a G^{*}-metric space with constant α . However, G(0.5, 0.5, 0.5) = 5 $\neq 0, (\mathcal{A}, G)$ is not a generalized G_b -metric space. Also, (\mathcal{A}, G) is not a GP*metric space as for* $\zeta = \frac{1}{10}$ *and* $\eta = \frac{1}{5}$, $G(\zeta, \zeta, \zeta) = 5 \nleq \frac{2}{5} = G(\zeta, \zeta, \eta)$, *that is,* $(G_p 2')$ is not true.

Meanwhile, in 2018, Jleli and Samet [45] established an exciting generalization of metric space as follows.

Let \mathcal{F} be the set of functions $f:(0,\infty) \to \mathbb{R}$ satisfying the following conditions: $(\mathcal{F}1)$ f is non-decreasing, i.e., 0 < s < t implies $f(s) \leq f(t)$.

 $(\mathcal{F}2)$ For every sequence $\{t_n\}$ in $(0,\infty)$, we have $\lim_{n\to\infty} t_n = 0$ if and only if $\lim_{n\to\infty} f(t_n) = -\infty$.

Definition 1.6. [45] Let \mathcal{A} be a non-empty set and let $D : \mathcal{A} \times \mathcal{A} \rightarrow [0, \infty)$ be a given mapping. Suppose that there exists $(f, \alpha) \in \mathcal{F} \times [0, \infty)$ such that

(D1) $(\zeta, \eta) \in \mathcal{A} \times \mathcal{A}, \ D(\zeta, \eta) = 0$ if and only if $\zeta = \eta$.

(D2) $D(\zeta, \eta) = D(\eta, \zeta)$, for all $(\zeta, \eta) \in \mathcal{A} \times \mathcal{A}$.

(D3) For every $(\zeta, \eta) \in \mathcal{A} \times \mathcal{A}$, for every $n \in \mathbb{N}$, $n \ge 2$, and for every

$$\{u_1, u_2, \cdots, u_n\} \subset \mathcal{A} \text{ with } (u_1, u_n) = (\zeta, \eta), \text{ we have}$$
$$D(\zeta, \eta) > 0 \text{ implies } f(D(\zeta, \eta)) \leq f\left(\sum_{i=1}^{n-1} D(u_i, u_{i+1})\right) + \alpha$$

Then, the function D is said to be an \mathcal{F} -metric on \mathcal{A} , and the pair (\mathcal{A}, D) is said to be an *F*-metric space.

We refer to [46, 48, 49, 47, 50] for more details on F-metric spaces. Now, motivated to the work done in [45], we define a new generalization of G-metric space as in the following section.

$G_{\mathcal{F}}$ -Metric Space 2

Definition 2.1. Let \mathcal{A} be a non-empty set. Let $G : \mathcal{A} \times \mathcal{A} \times \mathcal{A} \to [0, \infty)$ be a mapping. Let there exists $(f, \alpha) \in \mathcal{F} \times [0, \infty)$ such that $(G_{\mathcal{F}}1) G(\zeta, \eta, \vartheta) = 0$ if and only if $\zeta = \eta = \vartheta$. $(G_{\mathcal{F}}2) f(G(\zeta,\zeta,\eta)) \leq f(G(\zeta,\eta,\vartheta)) + \alpha, \text{ for all } \zeta,\eta,\vartheta \in \mathcal{A} \text{ with } \vartheta \neq \eta,$ $\zeta \neq \eta$. $(G_{\mathcal{F}}3) G(\zeta, \eta, \vartheta) = G(\zeta, \vartheta, \eta) = G(\eta, \vartheta, \zeta) = \cdots$ (symmetric in its variables). $(G_{\mathcal{F}}4)$ For every $(\zeta, \eta, \vartheta) \in \mathcal{A} \times \mathcal{A} \times \mathcal{A}$, for every $n \in \mathbb{N}$, $n \geq 3$, and every $\{a_1, a_2, \cdots, a_{n-1}\} \subset \mathcal{A} \text{ with } a_1 = \zeta, \ G(\zeta, \eta, \vartheta) > 0 \text{ implies}$ $f(G(\zeta,\eta,\vartheta)) \le f\left(\sum_{i=1}^{n-2} G(a_i,a_{i+1},a_{i+1}) + G(a_{n-1},\eta,\vartheta)\right) + \alpha.$ Then, the function G is called a G_F -metric on \mathcal{A} , and the pair (\mathcal{A}, G) is said to

be a $G_{\mathcal{F}}$ -metric space.

2.1 Examples

Example 2.1. Every *G*-metric space is a $G_{\mathcal{F}}$ -metric space. Let (\mathcal{A}, G) be a *G*-metric space. Then, *G* is a $G_{\mathcal{F}}$ metric on \mathcal{A} , as $(G_{\mathcal{F}}1)$ and $(G_{\mathcal{F}}3)$ can be obtained from (G1), (G2), (G3) and (G4). Also, with $\alpha = 0$ and $f(t) = \frac{-1}{t^2}$, $(G_{\mathcal{F}}2)$ and $(G_{\mathcal{F}}4)$ are satisfied using (G3) and (G5).

Now, we construct an example of a $G_{\mathcal{F}}$ -metric space which is a G_b -metric space as well, but not a G-metric space.

Example 2.2. Let $\mathcal{A} = \{a, b, c\}$ and define $G : \mathcal{A} \times \mathcal{A} \times \mathcal{A} \to [0, \infty)$ as follows: $G(a, a, a) = G(b, b, b) = G(c, c, c) = 0, G(a, a, b) = G(a, b, b) = 1, G(a, a, c) = G(a, c, c) = 1.2, G(b, b, c) = G(b, c, c) = 1.3, G(a, b, c) = 3.3, and assume that <math>(G_{\mathcal{F}}3)$ holds. Then G is a $G_{\mathcal{F}}$ -metric on \mathcal{A} with $f(t) = \ln(t), t > 0$, and $\alpha = \ln(1.5)$. Also, G is a G_b -metric on \mathcal{A} with s = 1.5, but G is not a G-metric on \mathcal{A} as $G(a, b, c) = 3.3 \nleq 2.3 = G(a, b, b) + G(b, b, c)$.

See another example of a $G_{\mathcal{F}}$ -metric space which is a generalized G_b -metric space as well, but not a G_b -metric space.

Example 2.3. Let $\mathcal{A} = \{1, 2, 3, \dots, l-2\} \cup \{l - \frac{1}{n} \mid n \in \mathbb{N}\}$, where l be a fixed natural number such that $l \geq 5$ and $\mathcal{B} = \{1, 2, 3\}$. Consider a mapping $G : \mathcal{A} \times \mathcal{A} \times \mathcal{A} \rightarrow [0, \infty)$ defined by

$$G(\zeta,\eta,\vartheta) = \begin{cases} |\zeta-\eta|^2 + |\eta-\vartheta|^2 + |\vartheta-\zeta|^2, & \text{if } (\zeta,\eta,\vartheta) \in \mathcal{B} \times \mathcal{B} \times \mathcal{B}, \\ |\zeta-\eta| + |\eta-\vartheta| + |\vartheta-\zeta|, & \text{otherwise.} \end{cases}$$

Then, $(G_{\mathcal{F}}1)$ and $(G_{\mathcal{F}}3)$ are satisfied for mapping G. Let $(\zeta, \eta, \vartheta) \in \mathcal{A} \times \mathcal{A} \times \mathcal{A}$ such that $G(\zeta, \eta, \vartheta) > 0$ and for $n \geq 3$, $\{a_1, a_2, \cdots, a_{n-1}\} \subset \mathcal{A}$ with $a_1 = \zeta$. Let $P = \{i = 1, 2, 3, \cdots, n-2 \mid a_i, a_{i+1} \in \mathcal{B}\}$ and $Q = \{1, 2, 3, \cdots, n-2\} - P$. <u>Case 1</u>: If $(\zeta, \eta, \vartheta) \in \mathcal{B} \times \mathcal{B} \times \mathcal{B}$ and $a_{n-1} \in \mathcal{B}$, we have

$$\begin{aligned} &G(\zeta,\eta,\vartheta) \\ &= |\zeta - \eta|^2 + |\eta - \vartheta|^2 + |\vartheta - \zeta|^2 \\ &\leq 2|\zeta - \eta| + |\eta - \vartheta|^2 + |\vartheta - \zeta|^2 \\ &\leq 2\left(\sum_{i \in P} |a_i - a_{i+1}| + \sum_{i \in Q} |a_i - a_{i+1}|\right) + 2|a_{n-1} - \eta| + |\eta - \vartheta|^2 + |\vartheta - \zeta|^2 \\ &\leq 2\left(\sum_{i \in P} |a_i - a_{i+1}|^2 + \sum_{i \in Q} |a_i - a_{i+1}|\right) + 2|a_{n-1} - \eta|^2 + |\eta - \vartheta|^2 \\ &+ 2|\vartheta - a_{n-1}|^2 + 2|a_{n-1} - \zeta|^2 \end{aligned}$$

$$\leq 2\left(2\sum_{i\in P} |a_i - a_{i+1}|^2 + 2\sum_{i\in Q} |a_i - a_{i+1}|\right) + 2|a_{n-1} - \eta|^2$$

+ $2|\eta - \vartheta|^2 + 2|\vartheta - a_{n-1}|^2 + 2|a_{n-1} - \zeta|^2$
$$\leq 10\left(\left(2\sum_{i\in P} |a_i - a_{i+1}|^2 + 2\sum_{i\in Q} |a_i - a_{i+1}|\right) + |a_{n-1} - \eta|^2$$

+ $|\eta - \vartheta|^2 + |\vartheta - a_{n-1}|^2\right)$
= $10\left(\sum_{i=1}^{n-2} G(a_i, a_{i+1}, a_{i+1}) + G(a_{n-1}, \eta, \vartheta)\right).$

<u>*Case 2*</u>: If $(\zeta, \eta, \vartheta) \in \mathcal{B} \times \mathcal{B} \times \mathcal{B}$ and $a_{n-1} \notin \mathcal{B}$, we have

$$\begin{split} &G(\zeta,\eta,\vartheta) \\ &= |\zeta - \eta|^2 + |\eta - \vartheta|^2 + |\vartheta - \zeta|^2 \\ &\leq 2|\zeta - \eta| + 2|\eta - \vartheta| + 2|\vartheta - \zeta| \\ &\leq 2\left(\sum_{i\in P} |a_i - a_{i+1}| + \sum_{i\in Q} |a_i - a_{i+1}|\right) + 2|a_{n-1} - \eta| + 2|\eta - \vartheta| \\ &+ 2|\vartheta - a_{n-1}| + 2|a_{n-1} - \zeta| \\ &\leq 2\left(2\sum_{i\in P} |a_i - a_{i+1}|^2 + 2\sum_{i\in Q} |a_i - a_{i+1}|\right) + 2|a_{n-1} - \eta| + 2|\eta - \vartheta| \\ &+ 2|\vartheta - a_{n-1}| + 2|a_{n-1} - \zeta| \\ &\leq 2l\left(\left(2\sum_{i\in P} |a_i - a_{i+1}|^2 + 2\sum_{i\in Q} |a_i - a_{i+1}|\right) + |a_{n-1} - \eta| + |\eta - \vartheta| \\ &+ |\vartheta - a_{n-1}|\right) \\ &= 2l\left(\sum_{i=1}^{n-2} G(a_i, a_{i+1}, a_{i+1}) + G(a_{n-1}, \eta, \vartheta)\right). \end{split}$$

<u>*Case 3*</u>: If $(\zeta, \eta, \vartheta) \notin \mathcal{B} \times \mathcal{B} \times \mathcal{B}$, then using Case 1 and Case 2, we have

$$G(\zeta, \eta, \vartheta) = |\zeta - \eta| + |\eta - \vartheta| + |\vartheta - \zeta|$$

$$\leq l\left(\sum_{i=1}^{n-2} G(a_i, a_{i+1}, a_{i+1}) + G(a_{n-1}, \eta, \vartheta)\right).$$

Thus, combining all cases, we have

 $G(\zeta, \eta, \vartheta) > 0 \text{ implies } G(\zeta, \eta, \vartheta) \leq 2l \left(\sum_{i=1}^{n-2} G(a_i, a_{i+1}, a_{i+1}) + G(a_{n-1}, \eta, \vartheta) \right).$ Therefore, by taking $f(t) = \ln(t), t > 0$, and $\alpha = \ln(2l), (G_{\mathcal{F}}4)$ and $(G_{\mathcal{F}}2)$ are obtained. Hence, G is a $G_{\mathcal{F}}$ -metric on \mathcal{A} . Also, G is a generalized G_b -metric on \mathcal{A} with s = 2l. But G is not a G_b -metric on \mathcal{A} as $G(1, 1, 3) = 8 \nleq 6 = G(1, 2, 3),$ *i.e.*, $(G_b 3)$ does not hold.

In the following example, we see the existence of a $G_{\mathcal{F}}$ -metric and G^* -metric space, which is not a generalized G_b -metric space.

Example 2.4. Let $\mathcal{A} = \mathbb{R}$ and $\mathfrak{B} = [0, 1] \times [0, 1] \times [0, 1] - \{(\zeta, \zeta, \zeta) \mid \zeta \in [0, 1]\}$ and $G : \mathcal{A} \times \mathcal{A} \times \mathcal{A} \to [0, \infty)$ be a mapping defined by

$$G(\zeta,\eta,\vartheta) = \begin{cases} 0, & \text{if } \zeta = \eta = \vartheta, \\\\ \frac{1}{3}(|\zeta - \eta| + |\eta - \vartheta| + |\vartheta - \zeta|), & \text{if } (\zeta,\eta,\vartheta) \in \mathfrak{B}, \\\\ 2^{(|\zeta - \eta| + |\eta - \vartheta| + |\vartheta - \zeta|)}, & \text{otherwise.} \end{cases}$$

Then, G satisfies $(G_{\mathcal{F}}1)$ and $(G_{\mathcal{F}}3)$ directly from the definition of G. Let $f(t) = \frac{-1}{\sqrt{t}}$, t > 0, and $\alpha = 1$. Then, for any $(\zeta, \eta, \vartheta) \in \mathcal{A} \times \mathcal{A} \times \mathcal{A}$ such that $G(\zeta, \eta, \vartheta) > 0$ and for $n \ge 3$, $\{a_1, a_2, \cdots, a_{n-1}\} \subset \mathcal{A}$ with $a_1 = \zeta$, we consider the following cases:

<u>*Case 1*</u>: If $(\zeta, \eta, \vartheta) \in \mathfrak{B}$, then

$$G(\zeta, \eta, \vartheta) = \frac{1}{3}(|\zeta - \eta| + |\eta - \vartheta| + |\vartheta - \zeta|)$$

$$\leq \sum_{i=1}^{n-2} G(a_i, a_{i+1}, a_{i+1}) + G(a_{n-1}, \eta, \vartheta)$$

which implies that

$$f(G(\zeta,\eta,\vartheta)) \leq f\left(\sum_{i=1}^{n-2} G(a_i,a_{i+1},a_{i+1}) + G(a_{n-1},\eta,\vartheta)\right)$$
$$\leq f\left(\sum_{i=1}^{n-2} G(a_i,a_{i+1},a_{i+1}) + G(a_{n-1},\eta,\vartheta)\right) + \alpha$$

<u>*Case*</u> 2 : If $(\zeta, \eta, \vartheta) \notin \mathfrak{B}$, then

$$\begin{split} f\left(G(\zeta,\eta,\vartheta)\right) &- f\left(\sum_{i=1}^{n-2} G(a_i,a_{i+1},a_{i+1}) + G(a_{n-1},\eta,\vartheta)\right) - \alpha \\ &= \frac{-1}{\sqrt{2^{(|\zeta-\eta|+|\eta-\vartheta|+|\vartheta-\zeta|)}}} + \frac{1}{\sqrt{\sum_{i=1}^{n-2} G(a_i,a_{i+1},a_{i+1}) + G(a_{n-1},\eta,\vartheta)}} - 1 \\ &\leq \frac{-1}{\sqrt{2^{(|\zeta-\eta|+|\eta-\vartheta|+|\vartheta-\zeta|)}}} + 1 - 1 \leq 0. \end{split}$$

Thus, $(G_{\mathcal{F}}4)$ holds.

Also, for $\zeta, \eta, \vartheta \in \mathcal{A}$ with $\zeta \neq \eta, \eta \neq \vartheta$, we consider the following two cases: <u>*Case 1*</u>: If $(\zeta, \zeta, \eta) \in \mathfrak{B}$, then

$$G(\zeta, \zeta, \eta) = \frac{1}{3}(2|\zeta - \eta|) \le G(\zeta, \eta, \vartheta),$$

which implies that

$$f(G(\zeta, \zeta, \eta)) \le f(G(\zeta, \eta, \vartheta)) \le f(G(\zeta, \eta, \vartheta)) + \alpha.$$

<u>*Case 2</u>: If* $(\zeta, \zeta, \eta) \notin \mathfrak{B}$, then</u>

$$f\left(G(\zeta,\zeta,\eta)\right) = \frac{-1}{\sqrt{2^{(2|\zeta-\eta|)}}} \le \frac{-1}{\sqrt{2^{(|\zeta-\eta|+|\eta-\vartheta|+|\vartheta-\zeta|)}}} \le f\left(G(\zeta,\eta,\vartheta)\right) + \alpha.$$

Thus, $(G_{\mathcal{F}}2)$ holds; hence, G is a $G_{\mathcal{F}}$ -metric on \mathcal{A} . But G is not a generalized G_b -metric on \mathcal{A} as for any $s \ge 1$, and for $n \in \mathbb{N}$,

$$2^{4n} = G(2n+1,1,1)$$

$$\leq s (G(2n+1,n+1,n+1) + G(n+1,1,1))$$

$$= s(2^{2n} + 2^{2n}),$$

which gives $2^{2n-1} \leq s$, therefore, by taking $n \to \infty$, we have a contradiction.

The next example assures the existence of a $G_{\mathcal{F}}$ -metric space which is not a G^* -metric space.

Example 2.5. Let $\mathcal{B} = \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}$ and $\mathcal{A} = \mathcal{B} \cup \mathbb{N} \cup \{0\}$. Let $G : \mathcal{A} \times \mathcal{A} \times \mathcal{A} \rightarrow [0, \infty)$ be a mapping defined by

$$G(\zeta, \eta, \vartheta) = \begin{cases} 0, & \text{if } \zeta = \eta = \vartheta; \\ |\zeta - \eta| + |\eta - \vartheta| + |\vartheta - \zeta|, & \text{if } \zeta, \eta, \vartheta \in \mathcal{B}; \text{ or} \\ & \text{if at least one of } \zeta, \eta, \vartheta \text{ is } 0; \\ 1, & \text{otherwise.} \end{cases}$$

First, we prove that G is not a G^{*}-metric. Suppose that G is a G^{*}-metric with constant $\beta > 0$.

Let $\zeta = 0$ and $\zeta_n = \frac{1}{n}$, then $\{\zeta_n\} \in C_{\mathcal{A}}(G, \zeta)$. Therefore, for $\eta, \vartheta \in \mathbb{N}$, using (Gg3), we get

$$G(\zeta, \eta, \vartheta) \leq \beta \left(\limsup_{n \to \infty} G(\zeta_n, \eta, \vartheta) + G(\zeta, \zeta, \zeta) \right),$$

that is,

$$|\eta| + |\eta - \vartheta| + |\vartheta| \le \beta(1+0) = \beta.$$

Taking limit $\eta, \vartheta \to \infty$, we have a contradiction. Thus, (\mathcal{A}, G) is not a G^* -metric space.

We now prove that (\mathcal{A}, G) is a $G_{\mathcal{F}}$ -metric space with $(f, \alpha) \in \mathcal{F} \times [0, \infty)$, where $f(t) = \frac{-1}{t}$ and $\alpha = 1$. $(G_{\mathcal{F}}1)$ and $(G_{\mathcal{F}}3)$ hold obviously. Now, for $(G_{\mathcal{F}}2)$, let $\zeta, \eta, \vartheta \in \mathcal{A}$ with $\zeta \neq \eta, \eta \neq \vartheta$. Then consider the following two cases: <u>Case 1</u>: If $\zeta, \eta, \vartheta \in \mathcal{B} \cup \{0\}$, then $G(\zeta, \zeta, \eta) \leq G(\zeta, \eta, \vartheta)$. Therefore,

$$f(G(\zeta, \zeta, \eta)) \le f(G(\zeta, \eta, \vartheta)) \le f(G(\zeta, \eta, \vartheta)) + \alpha.$$

<u>*Case 2*</u> : If at least one of $\zeta, \eta, \vartheta \in \mathbb{N}$, then $G(\zeta, \eta, \vartheta) \ge 1$. Thus,

$$\begin{split} f(G(\zeta,\zeta,\eta)) &- f(G(\zeta,\eta,\vartheta)) - \alpha \\ &= \frac{-1}{G(\zeta,\zeta,\eta)} + \frac{1}{G(\zeta,\eta,\vartheta)} - 1 \\ &\leq \frac{-1}{G(\zeta,\zeta,\eta)} + 1 - 1 < 0. \end{split}$$

Thus, $(G_{\mathcal{F}}2)$ holds.

Now, for $(G_{\mathcal{F}}4,)$ let $\zeta, \eta, \vartheta \in \mathcal{A}$ such that $G(\zeta, \eta, \vartheta) > 0$ and for $n \geq 3$, $\{a_1, a_2, \dots, a_{n-1}\} \subset \mathcal{A}$ with $a_1 = \zeta$. Consider the following two cases: <u>Case 1</u>: If If $\zeta, \eta, \vartheta \in \mathcal{B} \cup \{0\}$, then

$$G(\zeta, \eta, \vartheta) \le \sum_{i=1}^{n-2} G(a_i, a_{i+1}, a_{i+1}) + G(a_{n-1}, \eta, \vartheta),$$

therefore,

$$f(G(\zeta,\eta,\vartheta)) \leq f\left(\sum_{i=1}^{n-2} G(a_i,a_{i+1},a_{i+1}) + G(a_{n-1},\eta,\vartheta)\right)$$
$$\leq f\left(\sum_{i=1}^{n-2} G(a_i,a_{i+1},a_{i+1}) + G(a_{n-1},\eta,\vartheta)\right) + \alpha$$

<u>Case 2</u>: If at least one of $\zeta, \eta, \vartheta \in \mathbb{N}$, then $\sum_{i=1}^{n-2} G(a_i, a_{i+1}, a_{i+1}) + G(a_{n-1}, \eta, \vartheta) \ge 1$. Thus,

$$f(G(\zeta, \eta, \vartheta)) - f\left(\sum_{i=1}^{n-2} G(a_i, a_{i+1}, a_{i+1}) + G(a_{n-1}, \eta, \vartheta)\right) - \alpha$$

= $\frac{-1}{G(\zeta, \eta, \vartheta)} + \frac{1}{\sum_{i=1}^{n-2} G(a_i, a_{i+1}, a_{i+1}) + G(a_{n-1}, \eta, \vartheta)} - 1$
 $\leq \frac{-1}{G(\zeta, \eta, \vartheta)} + 1 - 1 < 0.$

Thus, $(G_{\mathcal{F}}4)$ holds. Hence, (\mathcal{A}, G) is $G_{\mathcal{F}}$ -metric space.

Remark 2.1. Abstract spaces in Example 1.2, Example 1.3, Example 1.4, and Example 1.5 are not $G_{\mathcal{F}}$ -metric spaces. A relation among the classes of abstract spaces discussed so far is described in the following diagram (Figure 1):

Figure 1: A comparison among various classes of abstract space.

2.2 Some Basic Concepts

This section defines a few fundamental ideas and examines their characteristics within the context of $G_{\mathcal{F}}$ -metric space.

Definition 2.2. Let A be a subset of $G_{\mathcal{F}}$ -metric space (\mathcal{A}, G) . Then A is said to be a $G_{\mathcal{F}}$ -open set if for every $\zeta \in A$, there exists r > 0 such that $B(\zeta, r) \subseteq A$, where

$$B(\zeta, r) = \{ \eta \in \mathcal{A} \mid G(\zeta, \eta, \eta) < r \}.$$

Let $\tau_{G_{\mathcal{F}}}$ be the collection of all such open sets, then $\tau_{G_{\mathcal{F}}}$ is a topology on \mathcal{A} .

Definition 2.3. Let $\{\zeta_n\}$ be a sequence of points in $G_{\mathcal{F}}$ -metric space (\mathcal{A}, G) . Then sequence $\{\zeta_n\}$ is said to be $G_{\mathcal{F}}$ -convergent to $\zeta_0 \in \mathcal{A}$ if, for each $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $G(\zeta_n, \zeta_m, \zeta_0) < \epsilon$, for all $n, m \ge n_0$.

Proposition 2.1. Let (\mathcal{A}, G) be a $G_{\mathcal{F}}$ -metric space with $(f, \alpha) \in \mathcal{F} \times [0, \infty)$, then

$$f(G(\zeta,\eta,\eta)) \leq f(2G(\zeta,\zeta,\eta)) + \alpha$$
, for all $\zeta,\eta \in \mathcal{A}$ with $\zeta \neq \eta$.

Proof. For $\zeta, \eta \in \mathcal{A}$ with $\zeta \neq \eta$, using $(G_{\mathcal{F}}1)$, $(G_{\mathcal{F}}4)$ and $(G_{\mathcal{F}}3)$, we have,

$$f(G(\zeta,\eta,\eta)) \le f(G(\eta,\zeta,\zeta) + G(\zeta,\zeta,\eta)) + \alpha = f(2G(\zeta,\zeta,\eta)) + \alpha.$$

Proposition 2.2. Let (\mathcal{A}, G) be a $G_{\mathcal{F}}$ -metric space with $(f, \alpha) \in \mathcal{F} \times [0, \infty)$. Then, the following statements are equivalent.

 $(I) G(\zeta_n, \zeta_n, \zeta_0) \to 0 \ as \ n \to \infty.$ $(II) G(\zeta_n, \zeta_0, \zeta_0) \to 0 \ as \ n \to \infty.$

(III) $G(\zeta_n, \zeta_m, \zeta_0) \to 0 \text{ as } n, m \to \infty.$

Proof. First, we prove (I) implies (II); for this, let $G(\zeta_n, \zeta_n, \zeta_0) \to 0$ as $n \to \infty$. If for infinitely many $n, \zeta_n \neq \zeta_0$, then for those n, using Proposition 2.1, we have

$$f(G(\zeta_n, \zeta_0, \zeta_0)) \le f(2G(\zeta_n, \zeta_n, \zeta_0)) + \alpha.$$

Taking $n \to \infty$ on right-hand side and using ($\mathcal{F}2$), we arrive at $G(\zeta_n, \zeta_0, \zeta_0) \to 0$. and for rest of n, $G(\zeta_n, \zeta_0, \zeta_0) = 0$, thus in overall $G(\zeta_n, \zeta_0, \zeta_0) \to 0$. Now we prove (*II*) implies (*III*); for this, let $G(\zeta_n, \zeta_0, \zeta_0) \to 0$ as $n \to \infty$. If for infinitely many m and n, $G(\zeta_n, \zeta_m, \zeta_0) \neq 0$, then for those (m, n), using $(G_{\mathcal{F}}4)$, we have

$$f\left(G(\zeta_n, \zeta_m, \zeta_0)\right) \le f\left(G(\zeta_n, \zeta_0, \zeta_0) + G(\zeta_0, \zeta_0, \zeta_m)\right) + \alpha.$$

Taking $n, m \to \infty$ on right-hand side and using $(\mathcal{F}2)$, we arrive at $G(\zeta_n, \zeta_m, \zeta_0) \to$ 0, and for rest of $n, m, G(\zeta_n, \zeta_m, \zeta_0) = 0$, thus in overall $G(\zeta_n, \zeta_m, \zeta_0) \to 0$ as $n, m \to \infty$.

Also, (III) implies (I) obviously.

Proposition 2.3. Let (\mathcal{A}, G) be a $G_{\mathcal{F}}$ -metric space with $(f, \alpha) \in \mathcal{F} \times [0, \infty)$. Then a sequence $\{\zeta_n\}$ in \mathcal{A} which is $G_{\mathcal{F}}$ -convergent, converges to a unique element in \mathcal{A} .

Proof. Let, if possible that sequence $\{\zeta_n\}$ converges to ζ and η in \mathcal{A} with $\zeta \neq \eta$, then, by $(G_{\mathcal{F}}4)$

$$f(G(\zeta,\eta,\eta)) \le f(G(\zeta,\zeta_n,\zeta_n) + G(\zeta_n,\eta,\eta)) + \alpha,$$

taking $n \to \infty$ on right-hand side and using (\mathcal{F}_2), we arrive at a contradiction.

Definition 2.4. Let (\mathcal{A}, G) be a $G_{\mathcal{F}}$ -metric space. Then a sequence $\{\zeta_n\}$ in \mathcal{A} is said to be $G_{\mathcal{F}}$ -Cauchy sequence if, for each $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $G(\zeta_n, \zeta_m, \zeta_l) < \epsilon$, for all $n, m, l \ge n_0$.

Proposition 2.4. Let (\mathcal{A}, G) be a $G_{\mathcal{F}}$ -metric space with $(f, \alpha) \in \mathcal{F} \times [0, \infty)$. Then, the following statements are equivalent. (I) Sequence $\{\zeta_n\}$ in \mathcal{A} is $G_{\mathcal{F}}$ -Cauchy sequence. (II) $G(\zeta_n, \zeta_m, \zeta_l) \to 0 \text{ as } n, m, l \to \infty.$ (III) $G(\zeta_n, \zeta_m, \zeta_m) \to 0 \text{ as } n, m \to \infty.$

Proof. (I) and (II) are equivalent using Definition 2.4. Now (II) implies (III) obviously, so we prove (III) implies (II). If for infinitely many n, m and l, $G(\zeta_n, \zeta_m, \zeta_l) \neq 0$, then for those (n, m, l), using $(G_{\mathcal{F}}4)$, we have

$$f(G(\zeta_n, \zeta_m, \zeta_l)) \le f(G(\zeta_n, \zeta_m, \zeta_m) + G(\zeta_m, \zeta_m, \zeta_l)) + \alpha$$

Taking $n, m, l \to \infty$ on the right-hand side and using $(\mathcal{F}2)$, we arrive at $G(\zeta_n, \zeta_m, \zeta_l) \rightarrow 0$, and for rest of $n, m, l, G(\zeta_n, \zeta_m, \zeta_l) = 0$, thus in overall $G(\zeta_n, \zeta_m, \zeta_l) \to 0$ as $n, m, l \to \infty$.

Proposition 2.5. Every $G_{\mathcal{F}}$ -convergent sequence is a $G_{\mathcal{F}}$ -Cauchy sequence.

Remark 2.2. In Example 2.3, sequence $\{l - \frac{1}{n}\}$ is $G_{\mathcal{F}}$ -Cauchy sequence but not a $G_{\mathcal{F}}$ -convergent sequence.

Definition 2.5. A $G_{\mathcal{F}}$ -metric space is said to be $G_{\mathcal{F}}$ -complete if every $G_{\mathcal{F}}$ -Cauchy sequence is a $G_{\mathcal{F}}$ -convergent sequence.

Remark 2.3. In Example 2.4, (\mathcal{A}, G) is a $G_{\mathcal{F}}$ -complete metric space as every $G_{\mathcal{F}}$ -Cauchy sequence is a $G_{\mathcal{F}}$ -convergent sequence.

Definition 2.6. Let (\mathcal{A}, G) be a $G_{\mathcal{F}}$ -metric space and $\mathcal{B} \subseteq \mathcal{A}$. Then closure of \mathcal{B} is denoted by $\overline{\mathcal{B}}$ and defined by

$$\mathcal{B} = \{ \zeta \in \mathcal{A} \mid \zeta \in \mathcal{B} \text{ or } B(\zeta, r) \cap \mathcal{B} \text{ is infinite set for every } r > 0 \}.$$

The following propositions are needed in the main results of this paper.

Proposition 2.6. Let (\mathcal{A}, G) be a $G_{\mathcal{F}}$ -metric space with $(f, \alpha) \in \mathcal{F} \times [0, \infty)$ and f is a continuous function. If $\{\zeta_n\}$ is $G_{\mathcal{F}}$ -convergent to ζ with $\zeta \neq b$ or $\zeta \neq c$, where b and c are real constants, then

$$f(G(\zeta, b, c)) - \alpha \leq \liminf_{n \to \infty} f(G(\zeta_n, b, c)) \leq \limsup_{n \to \infty} f(G(\zeta_n, b, c))$$
$$\leq f(G(\zeta, b, c)) + \alpha.$$

Proof. Without loss of generality, consider $\zeta \neq b$, so except first finitely many n, $\zeta_n \neq b$. Now using $(G_F 4)$, we have

$$f(G(\zeta, b, c)) - \alpha \leq \liminf_{n \to \infty} f(G(\zeta, \zeta_n, \zeta_n) + G(\zeta_n, b, c))$$

$$= \liminf_{n \to \infty} f(G(\zeta_n, b, c))$$

$$\leq \limsup_{n \to \infty} f(G(\zeta_n, b, c))$$

$$\leq \limsup_{n \to \infty} f(G(\zeta_n, \zeta, \zeta) + G(\zeta, b, c)) + \alpha$$

$$= \limsup_{n \to \infty} f(G(\zeta, b, c)) + \alpha$$

Proposition 2.7. Let (\mathcal{A}, G) be a $G_{\mathcal{F}}$ -metric space with $(f, \alpha) \in \mathcal{F} \times [0, \infty)$, and f is a continuous function. If $\{\zeta_n\}$ and $\{\eta_n\}$ are $G_{\mathcal{F}}$ -convergent to ζ and η , respectively, and c is a real constant such that $c \neq \zeta$ or $c \neq \eta$, then

$$f(G(\zeta, \eta, c)) - 2\alpha \leq \liminf_{n \to \infty} f(G(\zeta_n, \eta_n, c)) \leq \limsup_{n \to \infty} f(G(\zeta_n, \eta_n, c))$$
$$\leq f(G(\zeta, \eta, c)) + 2\alpha.$$

Proof. Without loss of generality, assume that $c \neq \zeta$; therefore, except first finitely many $n, c \neq \zeta_n$. Now using $(G_{\mathcal{F}}4)$, we have

$$f(G(\zeta, \eta, c)) - 2\alpha \leq \liminf_{n \to \infty} f(G(\zeta, \zeta_n, \zeta_n) + G(\zeta_n, \eta, c)) - \alpha$$

$$= \liminf_{n \to \infty} f(G(\zeta_n, \eta, c)) - \alpha$$

$$\leq \liminf_{n \to \infty} f(G(\eta, \eta_n, \eta_n) + G(\eta_n, \zeta_n, c))$$

$$= \liminf_{n \to \infty} f(G(\zeta_n, \eta_n, c))$$

$$\leq \limsup_{n \to \infty} f(G(\zeta_n, \zeta, \zeta) + G(\zeta, \eta_n, c)) + \alpha$$

$$= \limsup_{n \to \infty} f(G(\zeta, \eta_n, c)) + \alpha$$

$$\leq \limsup_{n \to \infty} f(G(\eta_n, \eta, \eta) + G(\eta, \zeta, c)) + 2\alpha$$

$$= \limsup_{n \to \infty} f(G(\eta, \zeta, c)) + 2\alpha.$$

3 Fixed Point Results in $G_{\mathcal{F}}$ -Metric Space

This section deals with some fixed point results in the context of $G_{\mathcal{F}}$ -metric space. Our first result is the following theorem.

Theorem 3.1. Let (\mathcal{A}, G) be a $G_{\mathcal{F}}$ -complete metric space with $(f, \alpha) \in \mathcal{F} \times [0, \infty)$ and $T : \mathcal{A} \to \mathcal{A}$ be a mapping such that there exists a non-empty subset \mathcal{B} of \mathcal{A} with $T(\mathcal{B}) \subseteq \mathcal{B}$ and

$$G(T\zeta, T\eta, T\vartheta) \leq \lambda G(\zeta, \eta, \vartheta), \quad for \ all \quad \zeta, \eta, \vartheta \in \overline{\mathcal{B}},$$

where $\lambda \in [0, 1)$. Then, T has a fixed point in A. Moreover, if the fixed point belongs to \mathcal{B} , then T has a unique fixed point in \mathcal{B} .

Proof. Let $\zeta_0 \in \mathcal{B}$ be arbitrary. Define a sequence $\{\zeta_n\}$ in \mathcal{A} by $\zeta_n = T\zeta_{n-1}$, for all $n \in \mathbb{N}$. If $\zeta_n = \zeta_{n+1}$ for some $n \in \mathbb{N}$, then ζ_n is a fixed point of T. So let $\zeta_n \neq \zeta_{n+1}$, for every $n \in \mathbb{N}$. Now for each $n \in \mathbb{N}$, we have

$$G(\zeta_n, \zeta_{n+1}, \zeta_{n+1}) \le \lambda G(\zeta_{n-1}, \zeta_n, \zeta_n).$$

Now, an easy induction gives that

$$G(\zeta_n, \zeta_{n+1}, \zeta_{n+1}) \le \lambda^n G(\zeta_0, \zeta_1, \zeta_1).$$

Let $n, m \in \mathbb{N}$ with m > n; then, we have

$$\sum_{i=n}^{m-1} G(\zeta_i, \zeta_{i+1}, \zeta_{i+1}) \le \frac{\lambda^n}{1-\lambda} G(\zeta_0, \zeta_1, \zeta_1).$$

If for infinitely many pairs (m, n) with m > n, $G(\zeta_n, \zeta_m, \zeta_m) \neq 0$, then for these m, n using $(G_{\mathcal{F}}4)$, we have

$$f(G(\zeta_n, \zeta_m, \zeta_m)) \leq f\left(\sum_{i=n}^{m-1} G(\zeta_i, \zeta_{i+1}, \zeta_{i+1})\right) + \alpha$$

$$\leq f\left(\frac{\lambda^n}{1-\lambda} G(\zeta_0, \zeta_1, \zeta_1)\right) + \alpha,$$

taking $n, m \to \infty$ and using ($\mathcal{F}2$), we get $G(\zeta_n, \zeta_m, \zeta_m) \to 0$. Also, for rest of m, n with m > n, $G(\zeta_n, \zeta_m, \zeta_m) = 0$. Thus in overall,

$$G(\zeta_n, \zeta_m, \zeta_m) \to 0 \ as \ n, m \to \infty.$$

Thus, $\{\zeta_n\}$ is a $G_{\mathcal{F}}$ -Cauchy sequence in \mathcal{A} , but (\mathcal{A}, G) is a $G_{\mathcal{F}}$ -complete metric space, therefore $\{\zeta_n\}$ is $G_{\mathcal{F}}$ -convergent to some $\zeta' \in \mathcal{A}$. Suppose, if possible $G(T\zeta', \zeta', \zeta') > 0$, then using $(G_{\mathcal{F}}4)$, we have

$$f(G(T\zeta',\zeta',\zeta')) \leq f(G(T\zeta',T\zeta_n,T\zeta_n)+G(T\zeta_n,\zeta',\zeta'))+\alpha$$

$$\leq f(\lambda G(\zeta',\zeta_n,\zeta_n)+G(\zeta_{n+1},\zeta',\zeta'))+\alpha.$$

Taking $n \to \infty$ on the right-hand side and using $(\mathcal{F}2)$, we arrive at a contradiction. Thus, $G(T\zeta', \zeta', \zeta') = 0$ and which implies that $T\zeta' = \zeta'$. Now, if $\zeta' \in \mathcal{B}$ and $\eta \in \mathcal{B}$ be another fixed point of T, then

$$G(\zeta', \eta, \eta) = G(T\zeta', T\eta, T\eta) \le \lambda G(\zeta', \eta, \eta)$$

which implies that $G(\zeta', \eta, \eta) = 0$ as $\lambda \in [0, 1)$. Therefore, $\zeta' = \eta$, that is, ζ' is a unique fixed point of T in \mathcal{B} .

Example 3.1. Consider $G_{\mathcal{F}}$ -metric space (\mathcal{A}, G) as in Example 2.4, which is a $G_{\mathcal{F}}$ -complete metric space. Define a mapping $T : \mathcal{A} \to \mathcal{A}$ as

$$T\zeta = \frac{\zeta(\zeta+1)}{4}, \text{ for all } \zeta \in \mathcal{A}.$$

Now, for $\mathcal{B} = [0, 1]$ *, we see that* $T(\mathcal{B}) \subseteq \mathcal{B}$ *, and for* $\zeta, \eta, \vartheta \in \overline{\mathcal{B}}$ *, we have*

$$\begin{aligned} G(T\zeta, T\eta, T\vartheta) \\ &= \frac{1}{3} \Biggl(\left| \frac{\zeta(\zeta+1)}{4} - \frac{\eta(\eta+1)}{4} \right| + \left| \frac{\eta(\eta+1)}{4} - \frac{\vartheta(\vartheta+1)}{4} \right| \\ &+ \left| \frac{\vartheta(\vartheta+1)}{4} - \frac{\zeta(\zeta+1)}{4} \right| \Biggr) \\ &\leq \frac{1}{3} \times \frac{3}{4} (|\zeta-\eta| + |\eta-\vartheta| + |\vartheta-\zeta|) \\ &= \frac{3}{4} G(\zeta, \eta, \vartheta). \end{aligned}$$

Thus, the hypothesis of Theorem 3.1 is satisfied. And we notice that T has two fixed points, 0 and 3. Also, 0 is the only fixed point of T in \mathcal{B} .

Example 3.2. Consider $G_{\mathcal{F}}$ -metric space (\mathcal{A}, G) as in Example 2.4, which is a $G_{\mathcal{F}}$ -complete metric space. Define a mapping $T : \mathcal{A} \to \mathcal{A}$ as $T\zeta = \frac{\zeta}{2}$, for all $\zeta \in \mathcal{A}$.

Then for $\mathcal{B} = [0, 1]$, we can easily see that hypothesis of Theorem 3.1 is satisfied. Also, we notice that T has a unique fixed point in \mathcal{A} .

Corollary 3.1. Let (\mathcal{A}, G) be a $G_{\mathcal{F}}$ -complete metric space with $(f, \alpha) \in \mathcal{F} \times [0, \infty)$ and $T : \mathcal{A} \to \mathcal{A}$ be a mapping such that

$$G(T\zeta, T\eta, T\vartheta) \leq \lambda G(\zeta, \eta, \vartheta), \text{ for all } \zeta, \eta, \vartheta \in \mathcal{A},$$

where $\lambda \in [0, 1)$. Then, T has a unique fixed point in A.

Proof. Take $\mathcal{B} = \mathcal{A}$ in Theorem 3.1.

In the following result, we find the unique fixed point for (ψ, ϕ) -contractive mapping (see detail of (ψ, ϕ) -contractive mapping in [51, 52, 14, 53, 29, 32, 54]) in the setting of $G_{\mathcal{F}}$ -complete metric space.

 \Box

Theorem 3.2. Let (\mathcal{A}, G) be a $G_{\mathcal{F}}$ -complete metric space with $(f, \alpha) \in \mathcal{F} \times [0, \infty)$ such that f is a continuous function. Let $T : \mathcal{A} \to \mathcal{A}$ be a mapping such that

$$\psi\left(f(M(\zeta,\eta,\vartheta)) + 4\alpha\right) \le \psi\left(f(G(T\zeta,T\eta,T\vartheta))\right) - \phi\left(M(\zeta,\eta,\vartheta)\right), \quad (1)$$

for all $(\zeta, \eta, \vartheta) \in \mathcal{A} \times \mathcal{A} \times \mathcal{A} - \{(\zeta, \eta, \vartheta) \in \mathcal{A} \times \mathcal{A} \times \mathcal{A} \mid T\zeta = T\eta = T\vartheta\}$, where $\psi : \mathbb{R} \to \mathbb{R}$ is a continuous non-decreasing function and $\phi : [0, \infty) \to [0, \infty)$ is a lower semi-continuous function with $\phi^{-1}(0) = \{0\}$ and

$$M(\zeta, \eta, \vartheta) = \max\{G(\zeta, \eta, \vartheta), G(\zeta, T\zeta, T\eta), G(\eta, T\eta, T\vartheta), G(\vartheta, T\vartheta, T\zeta)\}.$$

Then, T has a unique fixed point.

Proof. Let $\zeta_0 \in \mathcal{A}$ be arbitrary. Define a sequence $\{\zeta_n\}$ in \mathcal{A} by $\zeta_{n+1} = T\zeta_n$, $n = 0, 1, 2, \cdots$. If $\zeta_n = \zeta_{n+1}$, then ζ_n is a fixed point of T. Now, assume that $\zeta_n \neq \zeta_{n+1}$, for all n. Let $\theta_n = f(G(\zeta_n, \zeta_{n+1}, \zeta_{n+2})), n = 1, 2, 3 \cdots$. Now,

$$\psi(f(M(\zeta_{n}, \zeta_{n+1}, \zeta_{n+2}))) \leq \psi(f(M(\zeta_{n}, \zeta_{n+1}, \zeta_{n+2})) + 4\alpha)$$

$$\leq \psi(f(G(T\zeta_{n}, T\zeta_{n+1}, T\zeta_{n+2}))) - \phi(M(\zeta_{n}, \zeta_{n+1}, \zeta_{n+2}))$$

$$\leq \psi(\theta_{n+1}) - \phi(M(\zeta_{n}, \zeta_{n+1}, \zeta_{n+2})),$$

where

$$M(\zeta_{n}, \zeta_{n+1}, \zeta_{n+2}) = max\{G(\zeta_{n}, \zeta_{n+1}, \zeta_{n+2}), G(\zeta_{n}, T\zeta_{n}, T\zeta_{n+1}), G(\zeta_{n+1}, T\zeta_{n+1}, T\zeta_{n+2}), G(\zeta_{n+2}, T\zeta_{n+2}, T\zeta_{n})\} = max\{G(\zeta_{n}, \zeta_{n+1}, \zeta_{n+2}), G(\zeta_{n}, \zeta_{n+1}, \zeta_{n+2}), G(\zeta_{n+1}, \zeta_{n+2}, \zeta_{n+3}), G(\zeta_{n+2}, \zeta_{n+3}, \zeta_{n+1})\}$$

and, therefore,

$$f(M(\zeta_n, \zeta_{n+1}, \zeta_{n+2})) = \max\{f(G(\zeta_n, \zeta_{n+1}, \zeta_{n+2})), f(G(\zeta_{n+1}, \zeta_{n+2}, \zeta_{n+3}))\} \\ = \max\{\theta_n, \theta_{n+1}\}.$$

If $\theta_n < \theta_{n+1}$ for some n, then we have $\psi(\theta_{n+1}) \le \psi(\theta_{n+1}) - \phi(M(\zeta_n, \zeta_{n+1}, \zeta_{n+2}))$, which gives that $M(\zeta_n, \zeta_{n+1}, \zeta_{n+2}) = 0$, a contradiction, therefore $\theta_{n+1} \le \theta_n$ for all n. Thus, $\{\theta_n\}$ is a non-increasing sequence. Suppose that $\{\theta_n\}$ is bounded below; then there exists a real θ such that $\lim_{n \to \infty} \theta_n = \theta$. Now,

$$\psi(\theta_n) \leq \psi(\theta_{n+1}) - \phi(M(\zeta_n, \zeta_{n+1}, \zeta_{n+2}))$$

taking limit supremum on both sides, we have

$$\limsup_{n \to \infty} \psi(\theta_n) \leq \limsup_{n \to \infty} \psi(\theta_{n+1}) - \liminf_{n \to \infty} \phi\left(M(\zeta_n, \zeta_{n+1}, \zeta_{n+2})\right)$$

i.e., $\psi(\theta) \leq \psi(\theta) - \phi\left(\liminf_{n \to \infty} M(\zeta_n, \zeta_{n+1}, \zeta_{n+2})\right)$

which gives that $\liminf_{n\to\infty} M(\zeta_n, \zeta_{n+1}, \zeta_{n+2}) = 0$, therefore, by (F2) $\liminf_{n\to\infty} f(M(\zeta_n, \zeta_{n+1}, \zeta_{n+2})) = -\infty$, i.e., $\lim_{n\to\infty} \theta_n = -\infty$. Hence by (F2),

$$\lim_{n \to \infty} G(\zeta_n, \zeta_{n+1}, \zeta_{n+2}) = 0.$$
⁽²⁾

Since $\zeta_n \neq \zeta_{n+1}$ for every *n*, therefore, by $(G_{\mathcal{F}}2)$,

$$f(G(\zeta_n, \zeta_n, \zeta_{n+1})) \le f(G(\zeta_n, \zeta_{n+1}, \zeta_{n+2})) + \alpha.$$

So, by using (2) and $(\mathcal{F}2)$, we have

$$\lim_{n \to \infty} G(\zeta_n, \zeta_n, \zeta_{n+1}) = 0.$$
(3)

Also, using Proposition 2.1, we have

$$\lim_{n \to \infty} G(\zeta_n, \zeta_{n+1}, \zeta_{n+1}) = 0.$$
(4)

Next, we prove that $\{\zeta_n\}$ is a $G_{\mathcal{F}}$ -Cauchy sequence. Suppose not, then there exists $\epsilon > 0$ such that we can find subsequences $\{\zeta_{m_k}\}$ and $\{\zeta_{n_k}\}$ of $\{\zeta_n\}$ such that m_k is the smallest index for which $m_k > n_k > k$ and

$$G(\zeta_{n_k}, \zeta_{m_k}, \zeta_{m_k}) \ge \epsilon \tag{5}$$

this means that

$$G(\zeta_{n_k}, \zeta_{m_k-1}, \zeta_{m_k-1}) < \epsilon.$$
(6)

Now further, consider only those k for which left-hand side of (6) is greater than 0, and clearly, such k exists infinitely many. Now,

$$\psi \left(f(M(\zeta_{n_k}, \zeta_{m_k-2}, \zeta_{m_k-1})) + 4\alpha \right) \\
= \psi \left(f(G(T\zeta_{n_k}, T\zeta_{m_k-2}, T\zeta_{m_k-1})) \right) - \phi \left(M(\zeta_{n_k}, \zeta_{m_k-2}, \zeta_{m_k-1}) \right) \\
\leq \psi \left(f(G(\zeta_{n_k+1}, \zeta_{m_k-1}, \zeta_{m_k})) \right) - \phi \left(M(\zeta_{n_k}, \zeta_{m_k-2}, \zeta_{m_k-1}) \right),$$
(7)

where

$$M(\zeta_{n_{k}}, \zeta_{m_{k}-2}, \zeta_{m_{k}-1}) = max\{G(\zeta_{n_{k}}, \zeta_{m_{k}-2}, \zeta_{m_{k}-1}), G(\zeta_{n_{k}}, T\zeta_{n_{k}}, T\zeta_{m_{k}-2}), G(\zeta_{m_{k}-2}, T\zeta_{m_{k}-2}, T\zeta_{m_{k}-1}), G(\zeta_{m_{k}-1}, T\zeta_{m_{k}-1}, T\zeta_{n_{k}})\} = max\{G(\zeta_{n_{k}}, \zeta_{m_{k}-2}, \zeta_{m_{k}-1}), G(\zeta_{n_{k}}, \zeta_{n_{k}+1}, \zeta_{m_{k}-1}), G(\zeta_{m_{k}-2}, \zeta_{m_{k}-1}, \zeta_{m_{k}}), G(\zeta_{m_{k}-1}, \zeta_{m_{k}}, \zeta_{n_{k}+1})\}.$$
(8)

Also, using $(G_{\mathcal{F}}4)$, (3), and (6), we have

$$\limsup_{k \to \infty} f\left(G(\zeta_{m_k-1}, \zeta_{m_k}, \zeta_{n_k+1})\right) \\
\leq \limsup_{k \to \infty} f\left(G(\zeta_{n_k+1}, \zeta_{n_k}, \zeta_{n_k}) + G(\zeta_{n_k}, \zeta_{m_k-1}, \zeta_{m_k-1}) + G(\zeta_{m_k-1}, \zeta_{m_k-1}, \zeta_{m_k})\right) + \alpha \\
\leq \limsup_{k \to \infty} f\left(G(\zeta_{n_k}, \zeta_{m_k-1}, \zeta_{m_k-1})\right) + \alpha \\
\leq f(\epsilon) + \alpha.$$
(9)

Now, using (5), $(G_{\mathcal{F}}4)$, and $(G_{\mathcal{F}}2)$, we have

$$f(\epsilon) \leq \limsup_{k \to \infty} f\left(G(\zeta_{n_k}, \zeta_{m_k}, \zeta_{m_k})\right)$$

$$\leq \limsup_{k \to \infty} f\left(G(\zeta_{n_k}, \zeta_{n_{k+1}}, \zeta_{n_{k+1}}) + G(\zeta_{n_{k+1}}, \zeta_{m_k}, \zeta_{m_k})\right) + \alpha$$

$$= \limsup_{k \to \infty} f\left(G(\zeta_{n_k+1}, \zeta_{m_k}, \zeta_{m_k})\right) + \alpha$$

$$\leq \limsup_{k \to \infty} f\left(G(\zeta_{n_k+1}, \zeta_{m_k}, \zeta_{m_k-1})\right) + 2\alpha.$$
(10)

Now, using (10), (7), and (9), we have

$$\psi(f(\epsilon) + 2\alpha) \leq \psi\left(\limsup_{k \to \infty} f(G(\zeta_{n_k+1}, \zeta_{m_k-1}, \zeta_{m_k})) + 2\alpha + 2\alpha\right)$$

$$\leq \psi\left(\limsup_{k \to \infty} f(M(\zeta_{n_k}, \zeta_{m_k-2}, \zeta_{m_k-1})) + 4\alpha\right)$$

$$\leq \psi\left(\limsup_{k \to \infty} f(G(\zeta_{n_k+1}, \zeta_{m_k-1}, \zeta_{m_k}))\right)$$

$$-\liminf_{k \to \infty} \phi\left(M(\zeta_{n_k}, \zeta_{m_k-2}, \zeta_{m_k-1})\right)$$

$$\leq \psi(f(\epsilon) + \alpha) - \phi\left(\liminf_{k \to \infty} M(\zeta_{n_k}, \zeta_{m_k-2}, \zeta_{m_k-1})\right)$$

$$\leq \psi(f(\epsilon) + 2\alpha) - \phi\left(\liminf_{k \to \infty} M(\zeta_{n_k}, \zeta_{m_k-2}, \zeta_{m_k-1})\right)$$

This gives

$$\liminf_{k \to \infty} M(\zeta_{n_k}, \zeta_{m_k-2}, \zeta_{m_k-1}) = 0,$$

therefore, we have

$$\liminf_{k \to \infty} f(M(\zeta_{n_k}, \zeta_{m_k-2}, \zeta_{m_k-1})) = -\infty,$$

which gives a contradiction in view of (8) and (10). Thus $\{\zeta_n\}$ is a $G_{\mathcal{F}}$ -Cauchy sequence in (\mathcal{A}, G) , but (\mathcal{A}, G) is $G_{\mathcal{F}}$ -complete. Therefore, there exists $b \in \mathcal{A}$ such that $\lim_{n\to\infty} \zeta_n = b$.

Next, we prove that b is a fixed point of T. Suppose that $Tb \neq b$, then

$$\psi \left(f(M(b, \zeta_{n+1}, \zeta_{n+2})) + 4\alpha \right) \\
\leq \psi \left(f(G(Tb, T\zeta_{n+1}, T\zeta_{n+2})) \right) - \phi \left(M(b, \zeta_{n+1}, \zeta_{n+2}) \right) \\
= \psi \left(f(G(Tb, \zeta_{n+2}, \zeta_{n+3})) \right) - \phi \left(M(b, \zeta_{n+1}, \zeta_{n+2}) \right),$$
(11)

where

$$M(b, \zeta_{n+1}, \zeta_{n+2}) = max\{G(b, \zeta_{n+1}, \zeta_{n+2}), G(b, Tb, T\zeta_{n+1}), G(\zeta_{n+1}, T\zeta_{n+1}, T\zeta_{n+2}), G(\zeta_{n+2}, T\zeta_{n+2}, Tb)\}$$

= max{G(b, ζ_{n+1}, ζ_{n+2}), G(b, Tb, ζ_{n+2}),
G($\zeta_{n+1}, \zeta_{n+2}, \zeta_{n+3}$), G($\zeta_{n+2}, \zeta_{n+3}, Tb$)}.

Thus, by Proposition 2.6 and Proposition 2.7, we have

$$f(G(Tb, b, b)) - 2\alpha \leq \liminf_{n \to \infty} f(M(b, \zeta_{n+1}, \zeta_{n+2}))$$

$$\leq \limsup_{n \to \infty} f(M(b, \zeta_{n+1}, \zeta_{n+2}))$$

$$\leq f(G(Tb, b, b)) + 2\alpha.$$
(12)

Now, using (11) and (12), we have

$$\begin{split} &\psi(f(G(Tb,b,b))+2\alpha) \\ &\leq \psi\left(\limsup_{n\to\infty} f(M(b,\zeta_{n+1},\zeta_{n+2}))+4\alpha\right) \\ &\leq \psi\left(\limsup_{n\to\infty} f(G(Tb,\zeta_{n+2},\zeta_{n+3}))\right) - \liminf_{n\to\infty} \phi\left(M(b,\zeta_{n+1},\zeta_{n+2})\right) \\ &\leq \psi(f(G(Tb,b,b))+2\alpha) - \phi\left(\liminf_{n\to\infty} M(b,\zeta_{n+1},\zeta_{n+2})\right). \end{split}$$

It gives that

$$\liminf_{n \to \infty} M(b, \zeta_{n+1}, \zeta_{n+2}) = 0,$$

therefore, we have

$$\liminf_{n \to \infty} f(M(b, \zeta_{n+1}, \zeta_{n+2})) = -\infty,$$

which gives a contradiction in (12); therefore, Tb = b. Next we prove that the fixed point of T is unique. For this, let c be another fixed point of T such that $c \neq b$. Then

$$M(b,b,c) = max\{G(b,b,c), G(b,Tb,Tb), G(b,Tb,Tc), G(c,Tc,Tb)\}\$$

= max{G(b,b,c), G(b,b,b), G(b,b,c), G(c,c,b)}
= max{G(b,b,c), G(c,c,b)}
= M(c,c,b). (13)

Therefore,

$$\psi(f(G(b, b, c))) \leq \psi(f(M(b, b, c)) + 4\alpha)$$

$$\leq \psi(f(G(Tb, Tb, Tc))) - \phi(M(b, b, c))$$

$$= \psi(f(G(b, b, c))) - \phi(M(b, b, c)).$$
(14)

It gives that M(b, b, c) = 0, and hence G(b, b, c) = G(c, c, b) = 0. Thus b = c. \Box

4 Conclusion

With the aid of \mathcal{F} -metric space, we have introduced a new generalization of G-metric space, which we call $G_{\mathcal{F}}$ -metric space. We have also shown a comparison between $G_{\mathcal{F}}$ -metric space and several abstract spaces found in literature. This newly defined abstract space is also studied in terms of some fundamental concepts. In the framework of $G_{\mathcal{F}}$ -metric space, we have demonstrated the Banach Contraction Principle and the fixed point result for (ψ, ϕ) -contractive mapping. In this newly defined abstract space, fixed point results for different mappings existing in the literature and for some new mappings can be studied.

Author Contributions: All the authors have equally contributed in the planning, execution, and analysis of the study.

Acknowledgements: Authors are very thankful to the reviewers for their valuable comments and suggestions.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Gähler, S.; (1963), 2 Metrische Räme und Ihr Topological Struktur, *Mathematische Nachrichten*, 26, 115-148.
- [2] Ha, K.S.; Cho, Y.J; and White, A; Strictly convex strictly 2-convex 2-normed spaces, *Bulletin of the Calcutta Mathematical Society*, **84**, (1992), 329-336.
- [3] Dhage, B.C.; (1992), Generalized metric spaces and mappings with fixed point, *Bulletin of the Calcutta Mathematical Society*, **84**, 329-336.
- [4] Mustafa, Z.; and Sims, B.; (2003), Some remarks concerning *D*-metric spaces, *Proceedings of the International Conference on Fixed Point Theory and Applications, Valencia (Spain)*,189-198.
- [5] Naidu, S.V.R; Rao, K.P.R; and Rao, N.S; (2005), On the concepts of Balls in a *D*-metric space, *International Journal of Mathematics and Mathematical Sciences*, 1, 133-141.

- [6] Naidu, S.V.R; Rao, K.P.R; and Rao, N.S; (2005), On convergent sequences and fixed point theorems in *D*-metric spaces, *International Journal of Mathematics and Mathematical Sciences*, 1969-1988.
- [7] Mustafa, Z.; and Sims, B.; (2006), A new approach to generalized metric spaces, *Journal of Nonlinear and Convex Analysis*, **7**, 289-297.
- [8] Mustafa, Z.; (2005), A new structure for generalized metric spaces with applications to fixed point theory, Ph.D. Thesis, The University of Newcastle, Callaghan, Australia.
- [9] Mustafa, Z.; Obiedat, H.; and Awawdeh, F.; (2008), Some fixed point theorem for mapping on complete *G*-metric spaces, *Fixed Point Theory and Applications*, article ID 189870, doi: 10.1155/2008/189870.
- [10] Mustafa, Z.; Shatanawi, W.; and Bataineh, M.; (2009), Existence of fixed point results in *G*-metric spaces, *International Journal of Mathematics and Mathematical Sciences*, article ID 283028, 10 pages, doi: 10.1155/2009/283028.
- [11] Mustafa, Z.; and Sims, B.; (2009), Fixed point theorems for contractive mappings in complete *G*-metric spaces, *Fixed Point Theory and Applications*, article ID 917175, doi: 10.1155/2009/917175.
- [12] Mustafa, Z.; Awawdeh, F.; and Shatanawi, W.; (2010), Fixed point theorem for expansive mappings in *G*-metric spaces, *International Journal of Contemporary Mathematical Sciences*, 5, 2463-2472.
- [13] Jleli, M.; and Samet, B.; (2012), Remarks on *G*-metric spaces and fixed point theorems, *Fixed Point Theory and Applications*, **2012:210**.
- [14] Asadi, M.; Karapinar, E.; and Salimi, P.; (2013), A new approach to *G*-metric and related fixed point theorems, *Journal of Inequalities and Applications*, **2013:454**.
- [15] Karapinar, E.; and Aggarwal, R.P.; (2013), Further fixed point results on *G*-metric spaces, *Fixed Point Theory and Applications*, **2013:154**.
- [16] Mustafa, Z.; Arshad, M.; Khan, S.U.; Ahmad, J.; and Jaradat, M.M.M.; (2017), Common fixed points for multivalued mappings in *G*-metric spaces with applications, *Journal of Nonlinear Sciences and Applications*, doi: 10.22436/jnsa.010.05.23.
- [17] Matthews, G.S.; (1992), Partial metric topology, Research Report 212, Deptt. of Computer Science, University of Warwick.

- [18] Zand, M.R.A.; and Nezhad, A.D.; (2011), A generalization of partial metric spaces, *Journal of Contemporary Applied Mathematics*, 24, 86-93.
- [19] Parvaneh, V.; Roshan, J.R.; and Kadelburg, Z.; (2013), On generalized weakly G_p -contractive mappings in ordered G_p -metric spaces, *Gulf Journal of Mathematics*, **1**, 78-97.
- [20] Aydi, H.; Karapinar, E.; and Salimi, P.; (2012), Some fixed point results in G_p -metric spaces, *Journal of Applied Mathematics*, **2012**, 16 pages, article ID 891713.
- [21] Bilgili, N.; Karapinar, E.; and Salimi, P.; (2013), Fixed point theorems for generalized contractions on G_p-metric spaces, *Fixed Point Theory and Applications*, 2013:317.
- [22] Ciric, Lj.; Alsulami, S.M.; Parvaneh, V.; and Roshan, J.R.; (2013), Some fixed point results in ordered G_p-metric spaces, *Fixed Point Theory and Applications*, 2013:317.
- [23] Barakat, M.A.; and Zidan, A.M.; (2015), A common fixed point theorem for weak contractive maps in G_p-metric spaces, Journal of Egptian Mathematical Society, 23, 309-314.
- [24] Popa, V.; and Patriciu, A.M.; (2015), Two general fixed point theorems for a sequence of mappings satisfying implicit relation in G_p -metric spaces, *Applied General Topology*, **16(2)**, 225-231.
- [25] Ansari, A.H.; Vetro, P.; and Radenovic, S.; (2017), Existence of fixed point for $GP_{(\Lambda,\Theta)}$ -contractive mappings in G_p -metric spaces, *Filomat*, **31(8)**, 2211-2218. doi: 10.2298/FIL1708211A.
- [26] Gajic, L.; Kadelburg, Z.; and Radenovic, S.; (2017), G_p-metric spaces-symmetric and asymmetric, University of Novi Paza Series A Applied Mathematics Informatics and Mechanics, 9(1), 37-46.
- [27] Yazdi, H.G.; Zand, M.R.A.; and Radenovic, S.; (2018), Coupled fixed point on G_p-metric spaces-symmetric and asymmetric, Advances and Applications of Mathematical Sciences, 17(10), 681-692.
- [28] Popa, V.; (2020), A general fixed point theorem for two pairs of absorbing mappings in G_p -metric spaces, Annales Mathematicae Silesianae, doi: 10.2478/amsil-2020-0004.

- [29] Aghajani, A.; Abbas, M.; and Roshan, J.R.; (2014), Common fixed point of generalized weak contractive mappings in partially ordered G_b -metric spaces, *Filomat*, **28:6**, 1087-1101, doi: 10.2298/Fil1406087A.
- [30] Czerwik, S.; (1998), Nonlinear set-valued contraction mapping in b-metric spaces, Atti del Seminaro Matematico e Fisico dell'Universita di Modena e Reeggio Emilia, 46, 263-276.
- [31] Mustafa, Z.; Roshan, J.R.; and Parvaneh, V.; (2013), Coupled coincidence point results for (ψ, ϕ) -weakly contractive mappings in partially ordered *Gb*-metric spaces, *Fixed Point Theory and Applications*, **2013**, 206.
- [32] Roshan, J.R.; Shobkolaei, N.; Sedghi, S.; Parvaneh V. and Radenovic, S.; (2014), Common fixed point theorems for three maps in discontinuous G_bmetric spaces, Acta Mathematica Scientia, **34B(5)**, 1643-1654.
- [33] Sedghi, S.; Shobkolaei, N.; Roshan J.R.; and Shatanawi, W.; (2014), Coupled fixed point theorems in G_b -metric spaces, *Matematicki Vesnik*, **66(2)**:190-201.
- [34] Shahkoohi, R.J.; Kazemipour, S.A.; and Eyvali, A.R.; (2014), Tripled coincidence point under φ-contractions in ordered G_b-metric spaces, Journal of Linear and Topological Algebra, 03(03), 131-147.
- [35] Khomdram, B.; Rohen, Y.; and Singh, T.C.; (2016), Coupled fixed point theorems in G_b -metric space satisfying some rational contractive conditions, *SpringerPlus*, **5**, 1261.
- [36] Kumar, J.; and Vashistha, S.; (2016), Coupled fixed point theorems in complex-valued G_b -metric spaces, Advances in Fixed Point Theory, **6**:341-351.
- [37] Jaradat, M.M.M.; Mustafa, Z.; Khan, S.U.; Arshad, M.; and Ahmad, J.; (2017) Some fixed point results on *G*-metric and *G_b*-metric spaces, *Demon-stratio Mathematica*, **207**: 190-207.
- [38] Mustafa, Z.; Jaradat, M.M.M.; Aydi, H.; and Alrhayyel, A.; (2018), Some common fixed points of six mappings on G_b -metric spaces using (E.A) property, *European Journal of Pure and Applied Mathematics*, **11**:90-109.
- [39] Aydi, H.; Rakic, D.; Aghajani, A.; Dosenovic, T.; Noorani, M.S.M.; and Qawaqneh, H.; (2019), On fixed point results in G_b-metric spaces, *Mathematics*, 7(7):617.

- [40] Ege, O.; Park, C.; and Ansari, A.H.; (2020), A different approach to complex valued G_b-metric spaces, Advances in Difference Equations, 2020:152.
- [41] Gupta, V.; Ege, O.; Saini, R.; and Sen, M.D.L.; (2021), Various fixed point results in complete G_b-metric spaces, Dynamic Systems and Applications, 30(2), 277-293.
- [42] Wangwe, L.; (2022), Coincidence fixed point theorems for *p*-hybrid contraction mappings in G_b-metric space with application, Abstract and Applied Analysis, Article ID 7688168, 13 pages.
- [43] Jain, K.; and Kaur, J.; (2019), A generalization of G-metric spaces and related fixed point theorems, *Mathematical Inequalities and Applications*, 22, 1145-1160.
- [44] Jain, K.; Kaur, J.; and Bhatia, S.S.; (2022), A generalization of GP-metric space and generalized G_b-metric space and related fixed point results, Journal of Mathematical and Computational Science, 12, 27 pages, Article ID 132.
- [45] Jleli, M.; and Samet, B.; (2018), On a new generalization of metric spaces, *Journal of Fixed Point Theory and Application*, **20**, 128.
- [46] Alnaser, L.A.; Lateef, D., Fouad, H.A., and Ahmad, J.; (2019), Relational theoretic contraction results in *F*-metric spaces, *Journal of Nonlinear Sciences and Applications*, **12**, 337-344, doi: 10.22436/jnsa.012.05.06.
- [47] Bera, A., Garai, H., Damjanović, B., and Chanda, A.; (2019), Some interesting results on *F*-metric spaces, *Filomat*, **33:10**, 3257-3268, doi: 10.2298/FIL1910257B.
- [48] Lateef, D., and Ahmad, J.; (2019), Dass and Gupta's fixed point theorem in *F*-metric spaces, *Journal of Nonlinear Sciences and Applications*, **12**, 405-411, doi: 10.22436/jnsa.012.06.06.
- [49] Mitrović, Z.D., Aydi, H., Hussain, N., and Mukheimer, A.; (2019), Reich, Jungck, and Berinde common fixed point results in *F*-metric spaces and an application, *Mathematics*, 7, 387, 10 pages, doi: 10.3390/math7050387.
- [50] Altun, I., and Erduran, A.; (2022), Two fixed point results on *F*-metric spaces, *Topological Algebra and its Applications*, **10**, 61-67, doi: 10.1515/taa-2022-0114.

- [51] Dutta, P.N.; and Choudhary, B.S.; (2008), A generalization of contraction principle in metric spaces, *Fixed Point Theory and Applications*, Article ID 406368.
- [52] Doric, D.; (2009), Common fixed point for generalized (ψ, ϕ) -weak contraction, *Applied Mathematics Letters*, Article ID 406368.
- [53] Aghajani, A.; Abbas, M.; and Roshan, J.R.; (2014), Common fixed point of generalized weak contractive mappings in partially ordered *b*-metric spaces, *Mathematica Slovaca*, 64(4), 941-960, doi: 10.2478/s12175-014-0250-6.
- [54] Rao, N.S; and Kalyani, K; (2022), Fixed point results for (ψ, ϕ) -weak contractions in ordered *b*-metric spaces, *CUBO*, *A Mathematical Journal*, **24(2)**, 343-368, doi: 10.56754/0719-0646.2402.0343.