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ALGEBRAIC SURFACES WITH NONHYPERELLIPTIC
LINEAR PENCIL OF GENUS 4 AND IRREGULARITY ONE

T. TAKAHASHI

We construct algebraic surfaces with nonhyperelliptic linear pencil of
genus 4 and of rank 3 whose slope is equal to 4 and with irregularity one.
Furthermore, we consider the converse. Namely, we obtain the structure
of the surfaces with the above properties.

1. Introduction

Throughout the paper, all the varieties are defined over the field C of complex
numbers.

The set of smooth projective curves of genus 4 is separated into 3 types.
Namely, Eisenbud-Harris general case(cf. [1]), Eisenbud-Harris special nonhy-
perelliptic case (cf. [6]), and hyperelliptic case. Let C be a smooth projective
curve of genus 4. If C is Eisencud-Harris general (E-H general, for short), C
has two base point free pencil of degree 3. In this case, C is obtained as an
irreducible divisor of P1 ×P1 that is linearly equivalent to triple of a diagonal
divisor. If C is Eisenbud-Harris special nonhyperelliptic (E-H special, for short),
then C has only one base point free pencil of degree 3. In this case, C is obtained
as a divisor of the Hirzebruch surface of degree 2 that is linearly equivalent to
the triple of the tautological divisor. If C is hyperelliptic, then C is obtained as a
bisection of the Hirzebruch surface of degree 3.
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Let f : S → B be a surjective morphism from a smooth projective surface
S onto a smooth projective curve B such that the genus of a general fiber is
4. Denote by KS/B the relative canonical divisor, and by ωS/B := OS(KS/B) the
relative dualizing sheaf. Then the direct image f∗ωS/B is a locally free sheaf
of rank 4. If we assume f is not isotrivial, then it is well-known that K2

S/B > 0
and ∆( f ) := deg f∗ωS/B > 0, and the slope λ ( f ) := K2

S/B/∆( f ) is defined. If we
assume further that f is relatively minimal, the following inequalities hold (cf,
[5], [8], [9].)

(1) If a general fiber is E-H general, then λ ( f )≥ 7/2.
(2) If a general fiber is E-H special, then λ ( f )≥ 24/7.
Furthermore, if q(S)> b, then λ ( f )≥ 4 holds. (cf. [13].)

In this note, we investigate a smooth projective surface with the following
properties:

(i) There is a surjective morphism f : S → P1 whose general fiber is E-H
special nonhyperelliptic curve of genus 4.

(ii) f is relatively minimal and not isotrivial.
(iii) q(S) = 1 and λ ( f ) = 4.

This paper is organaized as follows:
In §2, we set some notations and consider the basic results. A curve obtained

as a double cover over an elliptic curve branched over six points is a nonhyper-
elliptic curve of genus 4. (cf. [13].) We give the condition for the curve to be
E-H special from the viewpoint of the branch locus.

In §3, we construct surfaces with the above properties. In the last of this
section, we prove that our examples are isomorphic to a fiber product of some
rational ruled surface and some elliptic ruled surface over P1 ×P1.

In §4, we consider the converse of §3 and classify the surfaces with the
above properties. In order to prove some statements, we use the slope equality
of nonhperelliptic E-H special fibration of genus 4. (cf. [6]. )

2. Preliminaries

Notations 2.1. For a variety X , denote by e(X) the topological Euler num-
ber of X . If X is smooth, denote by KX the canonical divisor of X , and put
ωX := OX(KX). For two divisors D1 and D2 over X , D1 ∼ D2 means linearly
equivalence. Denote by pg(X) := dimH0(OX(KX)) the geometric genus of X ,
and by q(X) := dimH1(OX) the irregularity of X . Moreover, if dimX = 2, de-
note by χ(OX) := 1−q(X)+ pg(X) the Euler-Poincaré characteristic of X . For
a divisor D, denote by Bs|D| the base locus of |D|.
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For a Hirzebruch surface Σd := P(OP1 ⊕OP1(d)), let µ : Σd → P1 be the
ruling, ∆0 the tautological divisor. Namely, ∆2

0 = d. If Γ is a fiber of µ , then
denote by ∆∞ the section of µ with ∆∞ ∼ ∆0 −dΓ.

Definition 2.2. Let C be a reduced curve on a smooth surface S. A singularity
p ∈C is said to be negligible if one of the following (i) and (ii) holds:

(i) p is a double point of C.
(ii) p is a triple point and after a blow-up of S at p, the multiplicity of C at

the inverse image of p is less than 3.

Remark 2.3. Let B be a reduced curve on a smooth projective surface Y . As-
sume there is an invertible sheaf L with L⊗2 ∼= OY (B). We can construct a
double cover h : Ŷ → Y in the total space of L branched along B. Let p′ ∈ Ŷ be
an inverse image of a point p ∈B by h. Then p′ is a rational double point of Ŷ
if and only if p is a negligible singularity of B.

Lemma 2.4. Let C ⊂ P2 be a smooth cubic curve, and Q0 ⊂ P2 a conic. Assume
that Q0|C is a reduced divisor of C of degree 6. If h0 : C̃ →C is a double cover
branched along Q0|C, then we have the following:

(1) If Q0 is a smooth conic, then C̃ is an E-H general curve of genus 4.
(2) If Q0 is a union of two lines, then C̃ is an E-H special curve of genus 4.

PROOF Consider the double cover over P2 branched along Q0.

The following lemma is trivial.

Lemma 2.5. Let C be an elliptic curve, and δ a divisor on C of degree 6. Then
δ is of type (2) of Lemma 2.4 if and only if δ is a pull back of some divisor of
degree 2 by some triple cover C → P1.

Remark 2.6. Note that in the Hiezebruch surface of degree 2, the restriction
of the tautological divisor to an E-H special curve of genus 4 gives a canonical
divisor of the curve. Namely, the restriction of the rational map defined by the
complete linear system of the tautological divisor to the curve is nothing but the
canonical map of the curve. If the curve is embedded into P3 together with the
Hirzebruch surface Σ2, then the image of Σ2 is a quadric cone with a vertex, and
the image of the curve does not go through the vertex.

3. Construction

Fix a non-negative integer d, and consider the Hirzebruch surface Σd . Let a
be a non-negative integer. Then we have Bs|2∆0 + aΓ| = /0 which leads us to



394 T. TAKAHASHI

the fact that there exist irreducible and nonsingular members in |2∆0 +aΓ|. Let
D1 ∈ |2∆0 + aΓ| be such a member. Since the restriction map H0(OΣd (2∆0 +
aΓ)) → H0(OD1(2∆0 + aΓ)) is surjective, there exists an irreducible and non-
singular member D2 ∈ |2∆0 + aΓ| such that D1 and D2 intersect at 4a+ 4d
points transversally. A general member D3 of the pencil generated by D1 and
D2 is irreducible and nonsingular and intersects with D1 and D2 transversally.
Let {p j} j=1,··· ,4a+4d be the set of the intersection points of D1, D2 and D3, and
ε : Σ̃ → Σd the blow-up at the set. Put Ei := ε−1(p j) for j = 1, · · · ,4a+4d.

Let D̃i be the proper transform of Di by ε , and put D̃ := ∑
3
i=1 D̃i. Then

we have D̃ ∼ ε∗(6∆0 + 3aΓ)− 3∑
4a+4d
i=1 Ei, and we obtain a cyclic triple cover

h : S → Σ̃ branched along D̃. Note that D̃ is a union of three disjoint smooth
curves D̃1, D̃2 and D̃3, and hence, S is smooth. Furthermore, Σ̃ has a base point
free linear pencil |D̃i|. Let β : Σ̃ → P1 be the pencil. Then h can be considered
as follows: If we put qi := β (D̃i) for i = 1,2,3, and if we let γ : C → P1 be
a cyclic triple cover branched at {q1,q2,q3}, then we have S = Σ̃×P1 C, and h
coincides with a natural projection S → Σ̃. Since C is an elliptic curve, S has an
elliptic pencil, and we obtain q(S)> 0.

Lemma 3.1. In the above notations, we have the following:

K2
S = 12(a+d −2)

e(S) = 24(a+d)−12
pg(S) = 3(a+d −1)
q(S) = 1

PROOF Since KS ∼ h∗(ε∗(2∆0 +(2a+ d − 2)Γ)−∑
4a+4d
j=1 E j) by the ad-

junction formula, we obtain the formula for K2
S by the complicated calculation.

We have
e(S) = 3(e(Σd)−3e(B̃i))+3e(B̃i)

= 3(8+6g(B̃i)−6)−6g(B̃i)+6
= 24(a+d)−12.

By Noether’s formula, we have χ(OS) = 3(a+d−1). Note that the natural
morphism α : S →C is a hyperelliptic fibration of genus a+d−1, and λ (α) =
4(a+ d − 2)/(a+ d − 1), which is the minimum of the slope of fibrations of
genus a+d −1 by [13]. Hence, we obtain the formula for the irregularity of S
and the geometric genus of S. (See [13].)

Remark 3.2. (1) Put f := µ ◦ ε ◦ h : S → P1. Then f is an E-H special non-
hyperelliptic fibration of genus 4 with λ ( f ) = 4..

(2) The value χ(OS) is obtained by another way as follows:
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If we put δ := ε∗(2∆0 +aΓ)−∑iEi, then we have

h∗OS ∼=O
Σ̃
⊕O

Σ̃
(−δ )⊕O

Σ̃
(−2δ ),

and hence, by using Leray’s spectral sequence and the Riemann-Roch theorem,
we obtain

χ(OS) = χ(O
Σ̃
)+χ(O

Σ̃
(−δ ))+χ(O

Σ̃
(−2δ )) = 3a+3d −3.

Similarly, we have

pg(S) = dimH0(O
Σ̃
(K

Σ̃
))+dimH0(O

Σ̃
(δ +K

Σ̃
))+dimH0(O

Σ̃
(2δ +K

Σ̃
))

= a+d −1+dimH0(O
Σ̃
(ε∗(2∆0 +(2a+d −2)Γ)−∑ j E j).

Hence, by the result of Lemma 3.1, we obtain

dimH0
(
O

Σ̃
(ε∗(2∆0 +(2a+d −2)Γ)−∑

j
E j

)
= 2a+2d −2.

On the other hand, we have

dimH0(OΣd (2∆0 +(2a+d −2)Γ)) = 6a+6d −3,

that is less than dimH0(O
Σ̃
(ε∗(2∆0 +(2a+ d − 2)Γ)−∑ j E j)+ 4a+ 4d. This

implies that a member of |2∆0 +(2a+d −2)Γ| going through any 4a+4d −1
points of {p j} j goes through the remaining one point, which is similar to the
Cayley-Bacharach theorem. (cf. e.g., [7].)

(3) If p j1 , p j2 ∈ {p j} j=1,··· ,4a+4d are contained in the same fiber Γ0 of the
ruling Σd → P1, then the proper transform Γ̃0 is a (−2)-curve, and dominated
by 3 disjoint (−2)-curves by h. Let {Γ̃k} be a set of (−2)-curves of Σ̃ and
{Cl} be a set of (−2)-curves of S obtained by the same way. Let ν̂ : S → Ŝ and
ν : Σ̃ → Σ̂ be the contractions of these (−2)-curves {Γ̃k} and {Cl}. We have the
following commutative diagram:

S ν̂−−−−→ Ŝ

h

y yĥ

Σ̃ −−−−→
ν

Σ̂.

(4) Consider the P1-bundle h̃ : X := P(O
Σ̃
⊕O

Σ̃
(Di)) → Σ̃. Let H be the

tautological divisor of X . Note that S can be considered as a member of |3H|,
which implies that any irreducible and nonsingular member S0 ∈ |3H| has the



396 T. TAKAHASHI

same invariants as S. Let hS0 : S0 → Σ̃ be the restriction of h̃ to S0. Then hS0 is
a triple cover and f0 := µ ◦ ε ◦hS0 : S0 → P1 is an E-H special nonhyperelliptic
fibration of genus 4. Furthermore, h∗S0

Di gives a hyperelliptic fibraton α0 : S0 →
C0 of genus a + d − 1 over an elliptic curve C0, and we have the following
commutative diagram:

S0
g0−−−−→ C0

hS0

y yγ

Σ̃ −−−−→
β

P1,

where γ : C0 → P1 is a triple cover.
In the following arguments, we use the same notations S, C, f , α and h as

the case of cyclic covering, instead of S0, C0, f0, α0 and hS0 , respectively.

Consider the natural morphism ((µ ◦ε)×β ) : Σ̃ → P1×P1. Denote by F0 a
fiber of µ ◦ε and by F̃0 a fiber of β . We have F0F̃0 = 2 and hence, deg((µ ◦ε)×
β ) = 2. Let τ :P1×P1 →P1 be a natural projection with f = τ ◦((µ ◦ε)×β )◦h
and τ̂ : P1 ×P1 → P1 the other natural projection. Moreover, let Γ0 be a fiber
of τ and ∆0,0 a fiber of τ̂ . Then the branch locus B0 of ((µ ◦ ε)×β ) satisfies
B ∼ 2∆0,0 + 2(a+ d)Γ0, and has at most ordinary nodes as its singularities. If
Γ′

0 is a fiber of τ containing the singularity of B0, then the fiber of τ ◦(µ ◦ε)×β

dominating Γ′
0 is a union of two (−1)-curves and a (−2)-curve. Namely, it is

the case where two points of {p j} are contained in the same fiber of µ .

Next, consider the natural morphism ( f ×α) : S → P1 ×C. This is also a
double cover. Since

λ (α) =
K2

S
χ(OS)

=
4((a+d −1)−1)

a+d −1
,

and since this is the lower bound of the slope for the fibration of genus a+d−1,
α does not have the degenerate fiber with the positive H-index in the sence
of [13]. Let ι : P1 ×C → P1 and ι̃ : P1 ×C → C be the natural projections,
and denote by ∆̂ a fiber of ι . Then the branch locus B of ( f ×α) satisfies
B∼ 2(a+d)∆̂+ ι̃∗m0 for some m0 ∈ Div(C) with degm0 = 6, and has at most
the negligible singularities.

Consider the natural morphism (idP1 × γ) : P1 ×C → P1 ×P1. It is clear
that any fiber of f is mapped onto the same fiber of τ by ((µ ◦ ε)×β ) ◦ h and
(idP1 × γ)◦ ( f ×α). Furthermore, if two fibers F̃ and F̃ ′ of α are mapped onto
the same fiber of τ̂ by ((µ ◦ ε)× β ) ◦ h, then they are mapped onto the same
fiber by (idP1 × γ)◦ ( f ×α).

By considering above, we obtain the following:
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Theorem 3.3. Let the notations be as above. Then S is the minimal resolution
of the fiber product Σ̂×P1×P1 (P1 ×C)

PROOF Any point of S that is not contained in any (−2)-curve is mapped
to the same point by ((µ ◦ ε)×β ) ◦ h and (idP1 × γ) ◦ ( f ×α). Therefore, we
have the natural morphism S → Σ̂×P1×P1 (P1×C). It is clear that this morphism
contracts only (−2)-curves of Remark 3.2 (3).

Remark 3.4. From Theorem 3.3, we have B = ( f ×α)∗B0. If ∆̂ is generic,
then the divisor B|

∆̂
is of type (2) of Lemma 2.4 by Lemma 2.5. Namely, we

obtain another evidence for the fact that a general fiber of f : S → P1 is an EH-
special curve of genus 4.

Let Γ0 be a fiber of τ such that B0 contact at a point p0 ∈ Γ0, and put
∆̂ := ((µ ◦ ε)×β )∗Γ0. B contacts with ∆̂ at 3 points of ((µ ◦ ε)×β )−1(p0).
Hence, the fiber of f dominating Γ0 is a union of 2 elliptic curves intersect at 3
points transversally, and a fiber with H-index 3/7. (cf. [6].)

4. Classification

In this section, we consider the converse of the previous section. We assume as
follows:

Assumption 4.1. Let f : S → P1 be a nonhyperelliptic E-H special fibration of
genus 4. Assume f is not isotrivial. Furthermore, we assume λ ( f ) = 4, q(S) = 1
and that S is minimal (and hence, f is relatively minimal).

Let α : S → C := Alb(S) be the Albanese map of S. C is an elliptic curve.
Denote by g the fiber genus of α .

Lemma 4.2. Let the notations and the conditions be as above. Let ( f ×α) : S →
P1×C be the natural morphism. Then we have deg( f ×α) = 2 and pg(S) = 3g.

PROOF Since λ ( f ) = 4, we have K2
S = 4pg(S)−12. Hence,

λ (α) =
K2

S
pg(S)

= 4− 12
pg(S)

,

which leads us to
4− 12

pg(S)
≥ 4− 4

g
,

(cf. [13]), and we obtain

pg(S)≥ 3g. (1)
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Eα := α∗ωS/C is a locally free sheaf over C with rkEα = g and degEα = pg(S).
Let F be a fiber of f and F a fiber of α . We have deg( f ×α) = FF.

If we assume FF> 3, then (KS−3F)F < 0, and KS−3F cannot be effective.
Hence, any indecomposable component E ′ of Eα satisfies 3rkE ′ > degE ′ (cf.
[2]), and we have 3rkEα > degEα , namely, 3g > pg(S) holds, which contradicts
to (1).

The case FF= 1 must be excluded because in this case, we have S ∼= P1×C
which contradicts the assumption that f is not isotrivial.

Therefore, FF = 2 holds and ( f ×α) : S → P1 ×C is a double cover. If
D0 is a fiber of the natural projection ι : P1 ×C → P1, and if ι̃ : P1 ×C → C is
the natural projection, then B ∼ 2(g+1)D0+ ι̃∗m0 holds for some m0 ∈ Div(C)
with degm0 = 6. Let m1 ∈ Div(C) be a divisor with 2m1 ∼ m0 and h : S′ →
P1 ×C the double cover branched along B and constructed in the total space of
OP1×C((g+1)D0+ ι̃∗m1). Then any singularity of S′ dominates a singularity of
B. Let

Ŝ −−−−→ S′

h

y y f×α

W −−−−→
ν ′

P1 ×C

be the canonical resolution of S′. ν ′ is a composition of blow-ups, and h is a
double cover whose branch locus is smooth. The canonical divisor of Ŝ satisfies

KŜ ∼ h∗(ν ′∗((g−1)D0 + ι̃
∗m1)− Ẽ)

for some effective divisor Ẽ whose components are exceptional divisors. Hence,
we have

pg(S) = pg(Ŝ)≤ dimH0(OP1×C((g−1)D0 + ι̃
∗m1) = 3g.

By combining this inequality with (1), we obtain pg(S) = 3g.

Corollary 4.3. Let the notations be as in Lemma 4.2. Then the branch locus B
of ( f ×α) has at most negligible singularities as its singularities.

PROOF Since any fiber F of α is mapped onto P1 as a double cover, α is
a hyperelliptic fibration of genus pg(S)/3. Since

λ (α) =
K2

S
pg(S)

= 4− 12
pg(S)

=
4(g−1)

g
,

there is no fiber with positive H-index for hyperelliptic fibration in the sense of
[13]. Hence, B has at most negligible singularities as its singularities.
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Lemma 4.4. Let the notations be as above. Then we have

f∗ωS/P1 ∼=OP1 ⊕OP1(n)⊕3,

where n = pg(S)/3+1.

PROOF From Corollary 4.3, the branch locus B of f̃ := ( f ×α) has at
most negligible singularities. Hence, we have

f∗ωS/P1 ∼= ι∗ f̃∗ωS/P1

∼= ι∗(OP1×C(nD0 + ι̃∗m1)⊕OP1×C)
∼=OP1(n)⊕3 ⊕OP1 .

Put E := f∗ωS/P1 , and consider the exact sequence

0 → L → Sym2E
η−→ f∗ω

⊗2
S/P1 −→ T → 0,

where η is the multiplication map. η can be written as

OP1 ⊕OP1(n)⊕3 ⊕OP1(2n)⊕6 → OP1(n)⊕3 ⊕OP1(2n)⊕6,

and hence, L ∼=OP1 holds and η is surjective.
Let ψ : S · · · →W := P(E) be the rational map defined by the natural sheaf

homomorphism f ∗E → ωS/P1 . ψ is called the relative canonical map. Let T be
the tautological divisor of W and F a fiber of π : W → P1. By [9], there exists
an irreducible relative hyperquadric Q containing S′ := ψ(S) and Q satisfies
Q ∼ 2T .

Since a general fiber of f is EH-special, Q has the relative vertex V0. See
Remark 2.6.

In the proof of the next lemma, we use the knowledge of H-index for the
nonhyperelliptic E-H special fibration of genus 4. See [6] for detail. See also
[12].

Lemma 4.5. Let the notations be as above. Then we have

V0 = P
(
E/OP1 ⊕OP1(n)⊕2) .

PROOF Let X0 ∈ H0(OW (T )) and X1,X2,X3 ∈ H0(OW (T − nF)) be the
global sections defining the homogeneous coordinates of each fiber of π . Let
Ψ ∈ H0(OW (2T )) be the global section defining Q. Then Ψ can be written as

Ψ = cX2
0 + ∑

i≥0, j≥0
i+ j≤2

ψi, jX
2−i− j
1 X i

2X j
3 , (2)
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where c ∈ C is a constant and ψi, j ∈ H0(OP1(2n)). The rank of the 2-form of
X1, X2 and X3 in the right hand side of (2) is 3 when c = 0 while 2 when c ̸= 0.

If c = 0, then we have V0 = P(E/OP1(2n)⊕3), while if c ̸= 0, we have V0 =
P(E/OP1 ⊕OP1(2n))⊕2). By considering (2), the discriminant locus of Q is
defined by det(ψ̃i j) when c = 0, where ψ̃ii = ψii and ψ̃i j = (1/2)ψi j for i ̸= j.
Namely, the degree of the discriminant locus of Q is 6n, and hence, the sum
of H-index is larger than or equal to (18/7)n. On the other hand, the sum of
H-index is

K2
S/P1 −

24
7

∆( f ) =
12
7

n,

a contradiction. By considering similarly, the degree of the discriminant locus of
Q is 4n when c ̸= 0, and we obtain the sum of H-index is (12/7)n. Furthermore,
we have V0 = P(E/OP1 ⊕OP1(2n)⊕2).

Remark 4.6. (1) By the proof of Lemma 4.5 and by the result of [12], H-index
of a fiber of f is arising from the discriminant locus of Q. Namely, the relative
canonical image of S is disjoint from the relative vertex of Q.

(2) Let ρ : W̃ → W be the blow-up along V0. Then we have the following
commutative diagram:

W̃
ρ−−−−→ W

π̃

y yπ

P(E0) −−−−→
ξ

P1,

where E0 = OP1 ⊕OP1(2n)⊕2, π̃ is a P1-bundle and ξ is a P2-bundle. If we
denote by TE0 the tautological divisor of P(E0), and by F a fiber of ξ , then we
have

W̃ ∼= P(OP(E0)(TE0)⊕OP(E0)(nF)).

(cf. [11].) If we put T̃ ∼ ρ∗T , and if we let E be the exceptional divisor of ρ ,
then we have T̃ ∼ π̂∗TE0 +E. If we let Q̃ be the proper transform of Q by ρ ,
there exists a relative hyperquadric Q0 of P(E0) with Q̃ = π̂−1(Q0).

If we put B̂0 := P(E0/OP1(n)⊕2)(⊂ P(E0)), we have Q0 ∩ B̂0 = /0. Let
ρ0 : P̃ → P(E0) be the blow-up along B̂0. We have the following commutative
diagram:

P̃
ρ0−−−−→ P(E0)

π̂

y yξ

P1 ×P1 −−−−→
τ

P1,
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where π̂ is a P1-bundle and τ is the natural projection. If we let Γ0 be a fiber of
τ , and if we let ∆0,0 be a fiber of another natural projection τ̂ : P1 ×P1 → P1,
then we have

P̃ ∼= P(OP1×P1 ⊕OP1×P1(∆0,0 +nΓ0)).)

We can consider as Q0 ⊂ P̃, and the restriction map π̂0 := π̂|Q0 : Q0 → P1 ×P1

is a double cover whose branch locus B0 is linearly equivalent to 2∆0,0 +2nΓ0.
Q0 has a linear pencil |π̂∗

0 ∆0,0| that is pulled-back to the elliptic pencil of S.
This pencil gives α . Moreover, the triple cover γ : C → P1 is naturally defined.

Theorem 4.7. Let the notations be as above. Then S is a minimal resolution
of S′ := Q0 ×P1×P1 (P1 ×C). The singularity of S′ is a rational double point
dominating the negligible singularity of B0.

PROOF The statement for the fiber product can be proved by the same
argument as Theorem 3.3. The statement for the singularity is clear.

Corollary 4.8. Let the notaions and the conditions be as above.
(i) Let B be a divisor of P1 ×C that is linearly equivalent to kD0 + ι̃∗m0

for some integer k and some divisor m0 of degree 6. Then the restriction of B
to any fiber of P1 ×C → P1 is a pull-back of the divisor of degree 2 on P1 by a
triple cover C → P1 if and only if B is a pull-back of a bisection of P1 ×P1 by
idP1 × γ .

(ii) If B is not a pull-back of a bisection of P1 ×P1, the nonhyperelliptic
fibration of genus 4 on the double cover of P1 ×C branched along B is E-H
general.

Proposition 4.9. Let the notations be as before. Then there exists a relative
hypercubic Y ∈ |3T − 3nF | such that S′ is a complete intersection of Q and Y ,
where F is a fiber of π .

PROOF Since π̃Q̃ : Q̃ → Q0 is a P1-bundle, we have

Pic(Q̃)∼= ZT̃ ⊕ π̃
∗
Q̃

Pic(Q0).

Since S′∩V0 = /0 in W , we obtain S′ ∼ 3T̃ −3nF̃ as the divisor of Q̃, where F̃ is
a fiber of π ◦ρ . Hence, it is sufficient to prove that the restriction map

H0(OW̃ (3T̃ −3nF̃))→ H0(OQ̃(3T̃ −3nF̃))

is surjective.
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The followings are easily calculated:

dimH0(OW̃ (3T̃ − π̃∗(2TE0 +3nF))) = 0,

dimH0(OW̃ (3T̃ −3nF̃)) = 10,

where F is a fiber of ξ . From Remark 4.6, we have

Q̃ ∼= P(OQ0(TE0)⊕OQ0(nΓ0)),

where Γ0 is a fiber of ξ |Q0 . We have

H i(OQ̃(3T̃ − π̃
∗(3nF)))∼=

3⊕
j=0

H i(OQ0( jTE0 − jnF)).

Consider the exact sequence

0 →OP(E0)(( j−2)TE0)→OP(E0)( jTE0)→OQ0( jTE0)→ 0,

for j = 1,2,3. Note that R1ξ∗OP(E0)(( j − 2)TE0) = 0 holds. Similarly, we
have ξ∗OP(E0)(−TE0) = 0, and we obtain ξ∗OQ0(TE0)

∼= ξ∗OP(E0)(TE0)
∼=OP1 ⊕

OP1(n)⊕2. Hence, equality dimH0(OQ0(TE0 −nF)) = 2 holds.
Next, we consider the cases j = 2,3. We use the notations of Remark 4.6.

Since we can consider as OQ0( jTE0)
∼= OQ0(π̂

∗
0 ( j∆0 + jnΓ)) for any positive

integer j, we have

(π̂0)∗OQ0( jTE0)
∼=OΣ0( j∆0 + jnΓ)⊕OΣ0

by the projection formula. Hence, we obtain

H i(OQ0( jTE0 − jnF))
∼= H i(OΣ0(( j∆0)))⊕H i(OΣ0(( j−1)∆0 − (a+d)Γ))
∼= H i(OP1)⊕( j+1)⊕H i(OP1(−n))⊕ j,

which leads us to
dimH0(OQ0(2TE0 −2nF)) = 3,
dimH0(OQ0(3TE0 −3nF)) = 4.

and combining with the above results, we obtain

dimH0(OQ̃(3T̃ − π̃
∗(3nF))) = 10.

Therefore, we obtain the isomorphism

H0(OW̃ (3T̃ −3nF̃))∼= H0(OQ̃(3T̃ −3nF̃)).
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Remark 4.10. In [3], the following is proved:

Theorem 4.11. (cf. [3]) Let S be a minimal surface of general type of maximal
Albanese dimension. The equality K2

S = 4χ(OS) holds if and only if:

(a) q(S) = 2 and

(b) the canonical model of S is a double cover of the Albanese surface Alb(S)
whose branch divisor is ample and has at most nigligible singularities.

Under the condition of the theorem, if Alb(S) =C1×C2 for some two ellip-
tic curves C1 and C2, then S has two pencils whose bases are C1 and C2. More-
over, the slope of each pencil is 4. (They do not depend on the fiber genus.) The
result of our paper (containing the case of E-H general, because we do not use
the condition that f is E-H special in the proof of Lemma 4.2 and Corollary 4.3)
is similar to this theorem.

In fact, a surface like above exists. For i = 1,2, let ιi : C1 ×C2 → Ci be
the natural projection and Fi a fiber of ιi. For integers m and n, there exists a
curve B ∈ |2mF1 +2nF2| with at most negligible singularities. If S is a minimal
resolution of the double cover over C1 ×C2 branched along B, then we have
K2

S = 4mn and χ(OS) = mn. If h : S → C1 ×C2 is the double cover and if α :
S → Alb(S) is the Albanese map, then there exists a unique homomorphism ϕ :
Alb(S)→C1×C2 of Abelian varieties with h=α ◦ϕ . Clearly, ϕ is isomorphism
and h is the Albanese map of S. This example is the special case of [4, Example
4.1] and [10, Example 7.1].
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