A STUDY ON k-COALESCENCE OF TWO GRAPHS

V. K. NAJIYA - A. V. CHITHRA

The k-coalescence of two graphs is obtained by merging a k-clique of each graph. The A_{α}-matrix of a graph is the convex combination of its degree matrix and adjacency matrix. In this paper, we present some structural properties of a non-regular graph which is obtained from the k-coalescence of two graphs. Also, we derive the A_{α}-characteristic polynomial of k-coalescence of two graphs and then compute the A_{α}-spectra of k-coalescence of two complete graphs. In addition, we estimate the $A_{\alpha^{-}}$ energy of k-coalescence of two complete graphs. Furthermore, we obtain some topological indices of vertex coalescence of two graphs, and as an application, we determine the Wiener, hyper-Wiener and Zagreb indices of Lollipop and Dumbbell graphs.

1. Introduction

Let G be a simple graph on n vertices with vertex set $v_{1}, v_{2}, \ldots, v_{n}$ and m edges. The adjacency matrix[1] $A(G)=\left[a_{i j}\right]$ of G is defined as an $n \times n$ matrix with $a_{i j}=1$ if v_{i} and v_{j} are adjacent, 0 otherwise. The signless Laplacian matrix $Q(G)$ of G has the form $D(G)+A(G)$, where $D(G)$ is a diagonal matrix with $a_{i i}=\operatorname{deg}\left(v_{i}\right)$. In [10], Nikiforov introduced a new matrix, which is a convex combination of $D(G)$ and $A(G)$, defined as $A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)$, where $\alpha \in[0,1]$. The A_{α} matrix, $A_{\alpha}(G)$ coincides with $A(G), D(G)$ and $\frac{1}{2} Q(G)$ when $\alpha=0,1, \frac{1}{2}$ respectively.

[^0]For a matrix $M, \Phi(M, \lambda)$ denotes the characteristic polynomial of M. The solution for this polynomial constitutes the spectrum of M. The adjacency energy $\varepsilon(G)$ of a graph G is defined as the sum of absolute values of its adjacency eigenvalues. If $\lambda_{i}\left(A_{\alpha}(G)\right)$ denotes the A_{α}-eigenvalues of G, then the A_{α}-energy[7] is defined as $\varepsilon_{\alpha}=\sum_{i=1}^{n}\left|\lambda_{i}\left(A_{\alpha}(G)\right)-\frac{2 \alpha m}{n}\right|$. If G is a regular graph then A_{α}-energy is $(1-\alpha) \varepsilon(G)$.

Let G_{1} and G_{2} be two graphs on n_{1}, n_{2} vertices and m_{1}, m_{2} edges. The k coalescence[9] $G_{1} \circ_{k} G_{2}$ of G_{1} and G_{2} is the graph obtained by merging a clique of order k of both G_{1} and G_{2}. The graph $G_{1} \circ_{k} G_{2}$ is non-regular with $n_{1}+n_{2}-k$ vertices and $m_{1}+m_{2}-\frac{k(k-1)}{2}$ edges. If $k=1$, it is called the vertex coalescence and if $k=2$, it is called the edge coalescence[8]. The merged clique of order k is represented by \mathcal{Q}. It is difficult to calculate a general formula for A_{α}-energy of non-regular graphs. In this paper, we obtain a formula for the A_{α}-energy of vertex coalescence and edge coalescence of two complete graphs.

A topological index is a real number that is invariant under graph isomorphism and is derived from the structure of a graph. They have become prevalent due to their applications in several areas, including chemistry and networks. The most famous indices are Zagreb, Randić, Wiener, harmonic indices and their variants. Many chemists and mathematicians have extensively studied the Wiener index. In this paper, we compute certain topological indices, such as the Wiener index, hyper Wiener index, etc., of k-coalescence of two graphs.

Throughout this paper, K_{n} denotes the complete graph of order n. The matrix I_{n} denotes the identity matrix of order $n, O_{m \times n}$ denotes the 0 matrix of order $m \times n$ and $J_{m \times n}$ is the matrix of order $m \times n$ with all entries equal to one.

This paper is organised as follows. Section 2 presents some definitions and results used for our work. In Section 3, we determine some structural properties of k-coalescence of two graphs. In Section 4, we estimate the A_{α}-characteristic polynomial of k-coalescence of two graphs. In Section 5, A_{α}-spectrum and $A_{\alpha-}$ energy of k-coalescence of two complete graphs are determined. In Section 6, some topological indices of vertex coalescence of two graphs are computed.

2. Preliminaries

This section presents some definitions and theorems used to prove the main results. For basic graph theoretical definitions, the reader can refer to [1].

Definition 2.1. [1] The distance $d(u, v)$ between two vertices u and v in G is the length of the shortest path joining them, if any; otherwise, $d(u, v)=\infty$.

Definition 2.2. [1] A complete subgraph of G is called a clique of G, and a clique of G is a maximal clique of G if it is not properly contained in another
clique of G. The clique number of a graph G is the number of vertices in a maximal clique of G, denoted by $\omega(G)$.

Theorem 2.3. [1] A nontrivial connected graph G is Eulerian if and only if every vertex of G has an even degree.

Definition 2.4. [2] Let G be a finite, undirected, connected simple graph. Wiener index $W(G)$ of a graph G is a distance based topological index, defined as the sum of the distance between all pairs of vertices in a graph G. Let $d_{G}(v)$ be the sum of distance between v and all other vertices of G, then

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v)=\frac{1}{2} \sum_{v \in V(G)} d_{G}(v) .
$$

Definition 2.5. [4] Let G be a finite, undirected, connected simple graph. The hyper-Wiener index $W W(G)$ of a graph G is defined as

$$
W W(G)=\frac{1}{2} W(G)+\frac{1}{2} \sum_{\{u, v\} \subseteq V(G)} d^{2}(u, v)
$$

where $d^{2}(u, v)=d(u, v)^{2}$ and $d(u, v)$ is distance from u to v. Let $d_{G}^{2}(v)$ be the sum of square of distances between v and all other vertices of G, then

$$
W W(G)=\frac{1}{2} W(G)+\frac{1}{4} \sum_{v \in V(G)} d_{G}^{2}(v)
$$

Definition 2.6. [3] The forgotten topological index $F(G)$ of a graph G is

$$
F(G)=\sum_{v \in V(G)} \operatorname{deg}(v)^{3}=\sum_{u v \in E(G)}\left(\operatorname{deg}(u)^{2}+\operatorname{deg}(v)^{2}\right) .
$$

Definition 2.7. [6] The first Zagreb index $M_{1}(G)$ of a graph G is $M_{1}(G)=$ $\sum_{v \in V(G)} \operatorname{deg}(v)^{2}$.

Definition 2.8. [5] The Narumi - Katayama index $N K(G)$ of a graph G is $N K(G)=\prod_{v \in V(G)} \operatorname{deg}(v)$.

3. Structural properties of k-coalescence of graphs

This section estimates the structural properties of k-coalescence of graphs, namely, chromatic number, vertex connectivity, edge connectivity, etc. Throughout the section, G_{i} represents graphs on n_{i} vertices.

We represent a graph's maximum degree and minimum degree by $\Delta(G)$ and $\delta(G)$, respectively.

Proposition 3.1. Let G_{i} be regular graphs of order n_{i} and regularity r_{i} for $i=$ 1,2 and let $G=G_{1} \circ_{k} G_{2}$. Then $\Delta(G)=r_{1}+r_{2}-k+1$.

If $k=n_{1}$ or n_{2}, then $\delta(G)=\max \left\{r_{1}, r_{2}\right\}$ and if $k<n_{1}, n_{2}$, then $\delta(G)=$ $\min \left\{r_{1}, r_{2}\right\}$.

Proof. Let v be any vertex of $G_{1} \circ_{k} G_{2}$. Then

$$
\operatorname{deg}(v)= \begin{cases}\operatorname{deg}_{G_{1}}(v) & \text { if } v \in V\left(G_{1} \backslash \mathcal{Q}\right) \\ \operatorname{deg}_{G_{2}}(v) & \text { if } v \in V\left(G_{2} \backslash \mathcal{Q}\right) \\ \operatorname{deg}_{G_{1}}(v)+\operatorname{deg}_{G_{2}}(v)-k+1 & \text { if } v \in \mathcal{Q}\end{cases}
$$

If G_{1} and G_{2} are regular, then the vertices in \mathcal{Q} have degree $r_{1}+r_{2}-k+1$, which is greater than r_{1} and r_{2}. Thus the maximum degree, $\Delta(G)=r_{1}+r_{2}-$ $k+1$.

Without loss of generality, assume that $k=n_{1}$ and $n_{1}<n_{2}$. Then all the vertices in G_{1} will be merged to a k clique in G_{2} resulting in G_{2} itself. Then $\delta(G)=r_{2}=\max \left\{r_{1}, r_{2}\right\}$.

Next assume $k<n_{1}, n_{2}$. Then there are vertices of degrees r_{1} and r_{2} in $G_{1} \circ_{k} G_{2}$. Thus $\delta(G)=\min \left\{r_{1}, r_{2}\right\}$.

Proposition 3.2. Let $g\left(G_{i}\right)$ be the girth of $G_{i}, i=1,2$. Then the girth of $G_{1} \circ_{k} G_{2}$

$$
g\left(G_{1} \circ_{k} G_{2}\right)= \begin{cases}3 & \text { if } k \geq 3 \\ \min \left\{g\left(G_{1}\right), g\left(G_{2}\right)\right\} & \text { if } k \leq 2\end{cases}
$$

Proof. If k is greater than 2 , then the graph $G_{1} \circ_{k} G_{2}$ will have a cycle of length 3 in \mathcal{Q}.

If $k \leq 2$, then the shortest cycle in $G_{1} \circ_{k} G_{2}$ will be the shortest cycle in either G_{1} or G_{2}.

Proposition 3.3. Let ω_{i} be the clique number of $G_{i}, i=1,2$. Then the clique number of $G_{1} \circ_{k} G_{2}$,

$$
\omega\left(G_{1} \circ_{k} G_{2}\right)=\max \left\{\omega_{1}, \omega_{2}\right\}
$$

Proof. The graph $G=G_{1} \circ_{k} G_{2}$ has G_{1} and G_{2} as induced subgraphs. Thus, any clique of G_{1} and G_{2} is a clique of G as well. Also, the merging of vertices does not produce a new clique. Hence, $\omega\left(G_{1} \circ_{k} G_{2}\right)=\max \left\{\omega_{1}, \omega_{2}\right\}$.

Proposition 3.4. Let \mathcal{K}_{i} be the vertex connectivity of $G_{i}, i=1,2$. Then the vertex connectivity of $G_{1} \circ_{k} G_{2}$,

$$
\mathcal{K}\left(G_{1} \circ_{k} G_{2}\right)=\min \left\{\mathcal{K}_{1}, \mathcal{K}_{2}, k\right\} .
$$

Proof. Suppose \mathcal{K}_{1} and \mathcal{K}_{2} are greater than or equal to k, then $G_{1} \circ_{k} G_{2}$ can be disconnected by removing k vertices in \mathcal{Q}. Otherwise, the minimum vertex-cut of G_{i} belongs to $V\left(G_{i} \backslash \mathcal{Q}\right)$. Therefore, the vertex connectivity of $G_{1} \circ_{k} G_{2}=$ $\min \left\{\mathcal{K}_{1}, \mathcal{K}_{2}, k\right\}$.

Proposition 3.5. Let λ_{i} be the edge connectivity of $G_{i}, i=1,2$. Then the edge connectivity of $G_{1} \circ_{k} G_{2}$,

$$
\lambda_{i}\left(G_{1} \circ_{k} G_{2}\right)=\min \left\{\lambda_{1}, \lambda_{2}\right\}
$$

Proof. If the minimum edge-cut of G_{1} and G_{2} does not belong to \mathcal{Q}, then edge connectivity of $G_{1} \circ_{k} G_{2}=\min \left\{\lambda_{1}, \lambda_{2}\right\}$. If the minimum edge-cut of G_{1} or G_{2} is in \mathcal{Q}, then it is same as the minimum edge-cut of $G_{1} \circ_{k} G_{2}$, therefore $G_{1} \circ_{k} G_{2}=\min \left\{\lambda_{1}, \lambda_{2}\right\}$.

Proposition 3.6. Let G_{1} and G_{2} be Eulerian graphs. Then the graph $G_{1} \circ_{k} G_{2}$ is Eulerian if and only if k is odd.

Proof. If G_{1} and G_{2} are Eulerian, then by Theorem 2.3, every vertex of G_{1} and G_{2} are of even degree. For a vertex v in $G_{1} \circ_{k} G_{2}$

$$
\operatorname{deg}(v)= \begin{cases}\operatorname{deg}_{G_{1}}(v) & \text { if } v \in V\left(G_{1} \backslash \mathcal{Q}\right), \\ \operatorname{leg}_{G_{2}}(v) & \text { if } v \in V\left(G_{2} \backslash \mathcal{Q}\right), \\ \operatorname{leg}_{G_{1}}(v)+\operatorname{deg}_{G_{2}}(v)-k+1 & \text { if } v \in \mathcal{Q}\end{cases}
$$

Then $G_{1} \circ_{k} G_{2}$ is Eulerian if and only if $\operatorname{deg}_{G_{1}}(v)+\operatorname{deg}_{G_{2}}(v)-k+1$ is even, that is k is odd.

C_{4}

$C_{4} \mathrm{O}_{2} C_{4}$

$C_{4}{ }_{\circ} C_{4}$

Figure 1: $C_{4}{ }^{\circ} 2 C_{4}$ is not Eulerian whereas $C_{4} \circ_{1} C_{4}$ is Eulerian.

Proposition 3.7. For $k>1$, the graph $G_{1} \circ_{k} G_{2}$ is Hamiltonian if and only if both G_{1} and G_{2} are Hamiltonian. If $k=1$, then $G_{1} \circ_{k} G_{2}$ is not Hamiltonian.

Proof. If $k=1$, the vertex in \mathcal{Q} is a vertex cut. Then $G_{1} \circ_{k} G_{2}$ is not Hamiltonian.
Consider $k \geq 2$. Let n_{i} be the order of $G_{i}, i=1,2$. Assume G_{1} and G_{2} are Hamiltonian, then they have a Hamiltonian cycle $u_{1} u_{2} \cdots u_{n_{1}} u_{1}$ and $v_{1} v_{2} \cdots v_{n_{2}} v_{1}$ respectively, where u_{i} 's are the vertices of G_{1} and v_{i} 's are the vertices of G_{2}.

Let $u_{r}, u_{r+1}, \cdots, u_{r+k}$ and $v_{1}, v_{2}, \cdots, v_{k}$ be the vertices merging in $G_{1} \circ_{k} G_{2}$. We denote the resulting vertices as $w_{1}, w_{2}, \cdots, w_{k}$. The merging is in such a way that v_{1} merge with u_{r+m+1} for some $m \in\{r, r+1, \cdots, r+k\}$ and is denoted as w_{m+1}, v_{2} merge with u_{r+m+2} and is denoted as w_{m+2} and so on(see Figure 2). Then we can construct a new Hamiltonian cycle

$$
u_{1} u_{2} \cdots w_{1} w_{2} \cdots w_{m} v_{k+1} v_{k+2} \cdots v_{n_{2}} w_{m+1} \cdots w_{k} \cdots u_{n_{1}} u_{1} .
$$

Hence $G_{1} \circ_{k} G_{2}$ is Hamiltonian.
Conversely, if $G_{1} \circ_{k} G_{2}$ is Hamiltonian, then there exists a Hamiltonian cycle $u_{1} u_{2} \cdots w_{1} w_{2} \cdots w_{m} v_{k+1} v_{k+2} \cdots v_{n_{2}} w_{m+1} \cdots w_{k} \cdots u_{n_{1}} u_{1}$. In this cycle, consider the path $w_{m+1} \cdots w_{k} \cdots u_{n_{1}} u_{1} u_{2} \cdots w_{1} w_{2} \cdots w_{m}$. Since there is an edge between w_{m} and w_{m+1}, adding this edge to the path will produce a cycle containing all the vertices of G_{1}. Therefore G_{1} is Hamiltonian. Similarly, we can show that G_{2} is also Hamiltonian.

Figure 2: Hamiltonian cycle in $G_{1} \circ_{k} G_{2}$.

The following proposition gives us a lower and upper bound for the independence number of k-coalescence of two graphs.

Proposition 3.8. Let $\beta_{0}\left(G_{i}\right)$ be the independence number of $G_{i}, i=1,2$. Then the independence number of $G=G_{1} \circ_{k} G_{2}$ satisfies

$$
\beta_{0}\left(G_{1}\right)+\beta_{0}\left(G_{2}\right)-2 \leq \beta_{0}(G) \leq \beta_{0}\left(G_{1}\right)+\beta_{0}\left(G_{2}\right) .
$$

Proof. Let $G=G_{1} \circ_{k} G_{2}$
Case 1: Both G_{1} and G_{2} are complete graphs.
Then the vertices in $V\left(G_{1} \backslash \mathcal{Q}\right)$ are not adjacent to vertices in $V\left(G_{2} \backslash \mathcal{Q}\right)$. Thus $\beta_{0}(G)=2=\beta_{0}\left(G_{1}\right)+\beta_{0}\left(G_{2}\right)$.

Case 2: Either G_{1} or G_{2} is complete.
Without loss of generality, assume that G_{1} is complete and G_{2} is not. If the independent set of G_{2} contains a vertex in \mathcal{Q}, then $\beta_{0}(G)=\beta_{0}\left(G_{2}\right)=\beta_{0}\left(G_{2}\right)+$ $\beta_{0}\left(G_{1}\right)-1$. If the independent set of G_{2} does not contain a vertex in \mathcal{Q}, then the independent set of G contains independent vertices of G_{2} along with a vertex from $G_{1} \backslash \mathcal{Q}$. Thus $\beta_{0}\left(G_{1} \circ_{k} G_{2}\right)=\beta_{0}\left(G_{2}\right)+1=\beta_{0}\left(G_{2}\right)+\beta_{0}\left(G_{1}\right)$.

Case 3: Neither G_{1} nor G_{2} is complete.
If both G_{i} 's have an independent set disjoint from \mathcal{Q} then their union gives the independent set for G, that is, $\beta_{0}(G)=\beta_{0}\left(G_{1}\right)+\beta_{0}\left(G_{2}\right)$. If one of the G_{i} 's has a vertex common in its independent set and \mathcal{Q}, then $\beta_{0}(G)=\beta_{0}\left(G_{1}\right)+\beta_{0}\left(G_{2}\right)-1$. If both G_{i} 's has vertices common in their independent set and \mathcal{Q}, then $\beta_{0}(G)=$ $\beta_{0}\left(G_{1}\right)+\beta_{0}\left(G_{2}\right)-2$.

Proposition 3.9. Let χ_{i} be the chromatic number of $G_{i}, i=1,2$. Then the chromatic number of $G_{1} \circ_{k} G_{2}$,

$$
\chi\left(G_{1} \circ_{k} G_{2}\right)=k+\max \left\{\chi_{1}-k, \chi_{2}-k\right\}
$$

Proof. We need k different colours to colour the vertices in \mathcal{Q}. Since the vertices in $V\left(G_{1} \backslash \mathcal{Q}\right)$ and $V\left(G_{2} \backslash \mathcal{Q}\right)$ are not adjacent, they can be coloured using $\max \left\{\chi_{1}-k, \chi_{2}-k\right\}$ colours. Thus chromatic number of $G_{1} \circ_{k} G_{2}=k+$ $\max \left\{\chi_{1}-k, \chi_{2}-k\right\}$.

4. A_{α}-characteristic polynomial of k-coalescence of graphs

This section computes the A_{α}-characteristic polynomial of k-coalescence of two graphs. Using that, the A_{α}-characteristic polynomial of Lollipop graphs is estimated.

Let G be a graph containing a k-clique. Then we partition the adjacency matrix of G into the form $A(G)=\left[\begin{array}{cc}B & C^{T} \\ C & A\left(K_{k}\right)\end{array}\right]$.

Proposition 4.1. Let G_{1} and G_{2} be two graphs of order n_{1} and n_{2} respectively such that $n_{1}+n_{2}>3 k$. Then the A_{α}-characteristic polynomial of $G_{1} \circ_{k} G_{2}$ is

$$
\begin{aligned}
& \Phi\left(A_{\alpha}\left(G_{1} \circ_{k} G_{2}\right), \lambda\right)=\Phi\left(A_{\alpha}\left(G_{1}\right), \lambda\right) \Phi\left(A_{\alpha}\left(G_{2} \backslash \mathcal{Q}\right), \lambda\right)+\Phi\left(A_{\alpha}\left(G_{2}\right), \lambda\right) \Phi\left(A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right), \lambda\right) \\
& -\Phi\left(A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right), \lambda\right) \Phi\left(A_{\alpha}\left(G_{2} \backslash \mathcal{Q}\right), \lambda\right)\left(\alpha\left|D_{1}(\mathcal{Q})-(k-1) I\right|+\alpha\left|D_{2}(\mathcal{Q})-(k-1) I\right|\right. \\
& \left.\quad+\left|\lambda-\alpha\left(D_{1}(\mathcal{Q})+D_{2}(\mathcal{Q})-(k-1) I\right)-(1-\alpha) A\left(K_{k}\right)\right|\right)
\end{aligned}
$$

where $D_{i}(\mathcal{Q})$ represents the degree matrix of the k vertices in \mathcal{Q} of $G_{i}, i=1,2$.
Proof. The A_{α}-matrix of $G_{1} \circ_{k} G_{2}$ with proper labelling has the form

$$
A_{\alpha}\left(G_{1} \circ_{k} G_{2}\right)=\left[\begin{array}{ccc}
D & R_{1}^{T} & R_{2}^{T} \\
R_{1} & A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right) & O \\
R_{2} & O & A_{\alpha}\left(G_{2} \backslash \mathcal{Q}\right)
\end{array}\right]
$$

where $D=\alpha\left(D_{1}(\mathcal{Q})+D_{2}(\mathcal{Q})-(k-1) I\right)+(1-\alpha) A\left(K_{k}\right)$ and $R_{i}=(1-\alpha) C_{i}$, where C_{i} is the block matrix in the adjacency matrix of G_{i}. Then,

$$
\begin{gathered}
\Phi\left(A_{\alpha}\left(G_{1} \circ_{k} G_{2}\right), \lambda\right)=\left|\lambda-A_{\alpha}\left(G_{1} \circ_{k} G_{2}\right)\right| \\
=\left|\begin{array}{ccc}
\lambda-D & -R_{1}^{T} & -R_{2}^{T} \\
-R_{1} & \lambda-A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right) & O \\
-R_{2} & O & \lambda-A_{\alpha}\left(G_{2} \backslash \mathcal{Q}\right)
\end{array}\right| \\
\left.=\left|\begin{array}{ccc}
\lambda-D & -R_{1}^{T} & -R_{2}^{T} \\
-R_{1} & O & O \\
-R_{2} & O & O
\end{array}\right|+\left|\begin{array}{ccc}
\lambda-D & -R_{1}^{T} & O \\
-R_{1} & O & O \\
-R_{2} & O & \lambda-A_{\alpha}\left(G_{2} \backslash \mathcal{Q}\right)
\end{array}\right|+\left\lvert\, \begin{array}{cc}
\lambda-D & O \\
-R_{1} & \lambda-A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right) \\
-R_{2} & O
\end{array}\right.\right] \left.\begin{array}{c}
\lambda-A_{\alpha}^{T}\left(G_{2} \backslash \mathcal{Q}\right)
\end{array} \right\rvert\, . \\
\text { Adding and subtracting }\left|\begin{array}{ccc}
\lambda-D & O & O \\
-R_{1} & \lambda-A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right) & O \\
-R_{2} & O & \lambda-A_{\alpha}\left(G_{2} \backslash \mathcal{Q}\right)
\end{array}\right|
\end{gathered}
$$

to $\Phi\left(A_{\alpha}\left(G_{1} \circ_{k} G_{2}\right), \lambda\right)$, we get

$$
\begin{aligned}
& \Phi\left(A_{\alpha}\left(G_{1} \circ_{k} G_{2}\right), \lambda\right)=\left|\begin{array}{ccc}
\lambda-D & -R_{1}^{T} & O \\
-R_{1} & \lambda-A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right) & O \\
-R_{2} & O & \lambda-A_{\alpha}\left(G_{2} \backslash \mathcal{Q}\right)
\end{array}\right| \\
& -\left|\begin{array}{ccc}
\lambda-D & O & -R_{2}^{T} \\
-R_{1} & \lambda-A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right) & O \\
-R_{2} & O & \lambda-A_{\alpha}\left(G_{2} \backslash \mathcal{Q}\right)
\end{array}\right|+\left|\begin{array}{ccc}
\lambda-D & O & O \\
-R_{1} & \lambda-A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right) & O \\
-R_{2} & O & \lambda-A_{\alpha}\left(G_{2} \backslash \mathcal{Q}\right)
\end{array}\right| \\
& =\left|\lambda-A_{\alpha}\left(G_{2} \backslash \mathcal{Q}\right)\right|\left|\begin{array}{cc}
\lambda-D & -R_{1}^{T} \\
-R_{1} & \lambda-A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right)
\end{array}\right| \\
& \left.+\left|\lambda-A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right)\right| \begin{array}{cc}
\lambda-D & -R_{2}^{T} \\
-R_{2} & \lambda-A_{\alpha}\left(G_{2} \backslash \mathcal{Q}\right)
\end{array}|-|\lambda-D|| \lambda-A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right)| | \lambda-A_{\alpha}\left(G_{2} \backslash \mathcal{Q}\right) \right\rvert\, .
\end{aligned}
$$

Here,

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda-D & -R_{1}^{T} \\
-R_{1} & \lambda-A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right)
\end{array}\right|= & \left|\begin{array}{cc}
\lambda-\alpha\left(D_{1}(\mathcal{Q})+D_{2}(\mathcal{Q})-(k-1) I\right)-(1-\alpha) A\left(K_{k}\right) & -R_{1}^{T} \\
-R_{1} & \lambda-A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right)
\end{array}\right| \\
= & \left|\begin{array}{cc}
\lambda-\alpha D_{1}(\mathcal{Q})-(1-\alpha) A\left(K_{k}\right) & -R_{1}^{T} \\
-R_{1} & \lambda-A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right)
\end{array}\right| \\
& +\left|\begin{array}{cc}
-\alpha\left(D_{2}(\mathcal{Q})-(k-1) I\right) & -R_{1}^{T} \\
O & \lambda-A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right)
\end{array}\right| \\
& =\left|\lambda-A_{\alpha}\left(G_{1}\right)\right|-\alpha\left|D_{2}(\mathcal{Q})-(k-1) I\right|\left|\lambda-A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right)\right| .
\end{aligned}
$$

Similarly

$$
\left|\begin{array}{cc}
\lambda-D & -R_{2}^{T} \\
-R_{2} & \lambda-A_{\alpha}\left(G_{2} \backslash \mathcal{Q}\right)
\end{array}\right|=\left|\lambda-A_{\alpha}\left(G_{2}\right)\right|-\alpha\left|D_{1}(\mathcal{Q})-(k-1) I\right|\left|\lambda-A_{\alpha}\left(G_{2} \backslash \mathcal{Q}\right)\right|
$$

Therefore,

$$
\begin{gathered}
\Phi\left(A_{\alpha}\left(G_{1} \circ_{k} G_{2}\right), \lambda\right)=\left|\lambda-A_{\alpha}\left(G_{1}\right)\right|\left|\lambda-A_{\alpha}\left(G_{2} \backslash \mathcal{Q}\right)\right|+\left|\lambda-A_{\alpha}\left(G_{2}\right)\right|\left|\lambda-A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right)\right| \\
-\left|\lambda-A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right)\right|\left|\lambda-A_{\alpha}\left(G_{2} \backslash \mathcal{Q}\right)\right|\left(\alpha\left(\left|D_{1}(\mathcal{Q})-(k-1) I\right|+\left|D_{2}(\mathcal{Q})-(k-1) I\right|\right)+|\lambda-D|\right) \\
=\Phi\left(A_{\alpha}\left(G_{1}\right), \lambda\right) \Phi\left(A_{\alpha}\left(G_{2} \backslash \mathcal{Q}\right), \lambda\right)+\Phi\left(A_{\alpha}\left(G_{2}\right), \lambda\right) \Phi\left(A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right), \lambda\right) \\
-\Phi\left(A_{\alpha}\left(G_{1} \backslash \mathcal{Q}\right), \lambda\right) \Phi\left(A_{\alpha}\left(G_{2} \backslash \mathcal{Q}\right), \lambda\right)\left(\alpha\left(\left|D_{1}(\mathcal{Q})-(k-1) I\right|+\left|D_{2}(\mathcal{Q})-(k-1) I\right|\right)+|\lambda-D|\right)
\end{gathered}
$$

Corollary 4.2. Let G_{1} and G_{2} be two graphs of order n_{1} and n_{2} respectively such that $n_{1}+n_{2}>3 k$. Then the adjacency characteristic polynomial of $G_{1} \circ_{k} G_{2}$ is

$$
\begin{aligned}
\Phi\left(A\left(G_{1} \circ_{k} G_{2}\right), \lambda\right)= & \Phi\left(A\left(G_{1}\right), \lambda\right) \Phi\left(A\left(G_{2} \backslash \mathcal{Q}\right), \lambda\right)+\Phi\left(A\left(G_{2}\right), \lambda\right) \Phi\left(A\left(G_{1} \backslash \mathcal{Q}\right), \lambda\right) \\
& -(\lambda-k+1)(x+1)^{k-1} \Phi\left(A\left(G_{1} \backslash \mathcal{Q}\right), \lambda\right) \Phi\left(A\left(G_{2} \backslash \mathcal{Q}\right), \lambda\right) .
\end{aligned}
$$

Remark 4.3. The Lollipop graph, $L(m, n-1)$ is obtained from the coalescence of a vertex from a cycle C_{m} and a pendant vertex from a path P_{n}. The $A_{\alpha}-$ characteristic polynomial of the Lollipop graph is, $\Phi\left(A_{\alpha}(L(m, n-1)), \lambda\right)=$ $\Phi\left(A_{\alpha}\left(P_{n}\right), \lambda\right) \Phi\left(A_{\alpha}\left(P_{m-1}\right), \lambda\right)+\Phi\left(A_{\alpha}\left(C_{m}\right), \lambda\right) \Phi\left(A_{\alpha}\left(P_{n-1}\right), \lambda\right)-\lambda \Phi\left(A_{\alpha}\left(P_{n-1}\right), \lambda\right) \Phi\left(A_{\alpha}\left(P_{m-1}\right), \lambda\right)$.

Using the Remark 4.3, we can calculate the A_{α}-characteristic polynomial of Lollipop graphs and hence find their spectrum.

Figure 3: $L(4,3)$
Example 4.4. The A_{α}-characteristic polynomial of the Lollipop graph $L(4,3)$ is, $\Phi\left(A_{\alpha}(L(4,3)), \lambda\right)=$ $\Phi\left(A_{\alpha}\left(P_{3}\right), \lambda\right) \Phi\left(A_{\alpha}\left(P_{3}\right), \lambda\right)+\Phi\left(A_{\alpha}\left(C_{4}\right), \lambda\right) \Phi\left(A_{\alpha}\left(P_{2}\right), \lambda\right)-\lambda \Phi\left(A_{\alpha}\left(P_{2}\right), \lambda\right) \Phi\left(A_{\alpha}\left(P_{3}\right), \lambda\right)$.

5. A_{α}-spectrum of k-coalescence of complete graphs

In this section, we compute the A_{α}-spectrum and A_{α}-energy of $K_{m} \circ_{k} K_{n}$.
Proposition 5.1. For $m, n>1$, the A_{α}-characteristic polynomial of $K_{m} \circ_{k} K_{n}$ is $\Phi\left(A_{\alpha}\left(K_{m} \circ_{k} K_{n}\right), \lambda\right)=(\lambda-\alpha(m+n-k)+1)^{k-1}(\lambda-\alpha m+1)^{m-k-1}(\lambda-\alpha n+1)^{n-k-1}$ $((\lambda-m+1+(1-\alpha) k)(\lambda-n+1+(1-\alpha) k)(\lambda-\alpha(m+n-2 k)+1-k)-(1-$ $\left.\alpha)^{2} k((m+n-2 k) \lambda-(m+n-2 k) \alpha k-(m-k)(n-k-1)-(n-k)(m-k-1))\right)$.

Proof. The degree matrix of $K_{m} \circ_{k} K_{n}$ with proper labelling has the form

$$
D\left(K_{m} \circ_{k} K_{n}\right)=\left[\begin{array}{ccc}
(m+n-1-k) I_{k} & O_{k \times m-k} & O_{k \times n-k} \\
O_{m-k \times k} & (m-1) I_{m-k} & O_{m-k \times n-k} \\
O_{n-k \times k} & O_{n-k \times m-k} & (n-1) I_{n-k}
\end{array}\right]
$$

The adjacency matrix of $K_{m} \circ_{k} K_{n}$ has the form

$$
A\left(K_{m} \circ_{k} K_{n}\right)=\left[\begin{array}{ccc}
A\left(K_{k}\right) & J_{k \times m-k} & J_{k \times n-k} \\
J_{m-k \times k} & A\left(K_{m-k}\right) & O_{m-k \times n-k} \\
J_{n-k \times k} & O_{n-k \times m-k} & A\left(K_{n-k}\right)
\end{array}\right]
$$

Thus the A_{α}-matrix of $K_{m} \circ_{k} K_{n}$ is $A_{\alpha}\left(K_{m} \circ_{k} K_{n}\right)=$

$$
\left[\begin{array}{ccc}
\beta_{1} & (1-\alpha) J_{k \times m-k} & (1-\alpha) J_{k \times n-k} \\
(1-\alpha) J_{m-k \times k 1} & \beta_{2} & O_{m-k \times n-k} \\
(1-\alpha) J_{n-k \times k} & O_{n-k \times m-k} & \beta_{3}
\end{array}\right],
$$

where $\beta_{1}=\alpha(m+n-1-k) I_{k}+(1-\alpha) A\left(K_{k}\right)$,
$\beta_{2}=\alpha(m-1) I+(1-\alpha) A\left(K_{m-k}\right)$ and $\beta_{3}=\alpha(n-1) I+(1-\alpha) A\left(K_{n-k}\right)$.

Then the characteristic polynomial of $K_{m} \circ_{k} K_{n}$ is

$$
\left|\lambda I-A_{\alpha}\left(K_{m} \circ_{k} K_{n}\right)\right|=\left|\begin{array}{ccc}
\lambda I_{k}-\beta_{1} & -(1-\alpha) J_{k \times m-k} & -(1-\alpha) J_{k \times n-k} \\
-(1-\alpha) J_{m-k \times k} & \lambda I_{k}-\beta_{2} & O \\
-(1-\alpha) J_{n-k \times k} & O & \lambda I_{k}-\beta_{3}
\end{array}\right|
$$

In the above determinant, performing
$C_{l} \rightarrow C_{l}+\frac{1-\alpha}{\lambda-m+1+(1-\alpha) k} \sum_{i=k+1}^{m} C_{i}+\frac{1-\alpha}{\lambda-n+1+(1-\alpha) k} \sum_{j=m+1}^{m+n-k} C_{j}$
for $l=1,2, \cdots, k$ columns we get,

$$
\left|\lambda I-A_{\alpha}\left(K_{m} \circ_{k} K_{n}\right)\right|=\left|\begin{array}{ccc}
\beta_{4} & -(1-\alpha) J_{k \times m-k} & -(1-\alpha) J_{k \times n-k} \\
O & \lambda I-\beta_{2} & O \\
O & O & \lambda I-\beta_{3}
\end{array}\right|
$$

where $\beta_{4}=(\lambda-\alpha(m+n-k)+1) I_{k}-(1-\alpha)\left[\frac{(1-\alpha)(m-k)}{\lambda-m+1+(1-\alpha) k}+\frac{(1-\alpha)(n-k)}{\lambda-n+1+(1-\alpha) k}+1\right] J_{k}$.

$$
\begin{aligned}
& \left|\lambda I-A_{\alpha}\left(K_{m} \circ_{k} K_{n}\right)\right|=\left|(\lambda-\alpha(m+n-k)+1) I_{k}-(1-\alpha) X J_{k}\right| \\
& \quad\left|(\lambda-\alpha(m-1)) I-(1-\alpha) A\left(K_{m-k}\right)\right|\left|(\lambda-\alpha(n-1)) I-(1-\alpha) A\left(K_{n-k}\right)\right|,
\end{aligned}
$$

where $X=\left[\frac{(1-\alpha)(m-k)}{\lambda-m+1+(1-\alpha) k}+\frac{(1-\alpha)(n-k)}{\lambda-n+1+(1-\alpha) k}+1\right]$
Thus
$\Phi\left(A_{\alpha}\left(K_{m} \circ_{k} K_{n}\right), \lambda\right)=(\lambda-\alpha(m+n-k)+1)^{k-1}(\lambda-\alpha m+1)^{m-k-1}(\lambda-$ $\alpha n+1)^{n-k-1}((\lambda-m+1+(1-\alpha) k)(\lambda-n+1+(1-\alpha) k)(\lambda-\alpha(m+n-$ $2 k)+1-k)-(1-\alpha)^{2} k((m+n-2 k) \lambda-(m+n-2 k) \alpha k-(m-k)(n-k-$ $1)-(n-k)(m-k-1))$.

Now, in the following corollary, we obtain the A_{α}-eigenvalues of $K_{m} \circ_{k} K_{n}$.

Corollary 5.2. The A_{α}-eigenvalues of $K_{m} \circ_{k} K_{n}$ are

1. $\alpha(m+n-k)-1$ repeated $k-1$ times,
2. $\alpha m-1$ repeated $m-k-1$ times,
3. $\alpha n-1$ repeated $n-k-1$ times,
4. three roots of the equation $((\lambda-m+1+(1-\alpha) k)(\lambda-n+1+(1-$

$$
\begin{aligned}
& \alpha) k)(\lambda-\alpha(m+n-2 k)+1-k)-(1-\alpha)^{2} k((m+n-2 k) \lambda-(m+n- \\
& 2 k) \alpha k-(m-k)(n-k-1)-(n-k)(m-k-1)))=0
\end{aligned}
$$

The following corollary helps us to determine the A_{α}-energy of non-regular graph $K_{m} \circ_{k} K_{n}$.

Corollary 5.3. The A_{α}-energy of $K_{m} \circ_{k} K_{n}$ is $\varepsilon_{\alpha}\left(K_{m} \circ_{k} K_{n}\right)=$
$(k-1)\left|\alpha(1-2 k)+\frac{2 \alpha m n}{m+n-1}-1\right|+(m-k-1)\left|\alpha(1-k)+\frac{\alpha n(m-n+k)}{m+n-k}-1\right|+$ $(n-k-1)\left|\alpha(1-k)+\frac{\alpha m(n-m+k)}{m+n-k}-1\right|+\left|\beta-X_{1}\right|+\left|\gamma-X_{1}\right|+\left|\delta-X_{1}\right|$, where $X_{1}=\frac{\alpha\left(m^{2}+n^{2}-k^{2}-(m+n-k)\right)}{m+n-k}$ and β, γ, δ are roots of the equation $((\lambda-m+1+(1-\alpha) k)(\lambda-n+1+(1-\alpha) k)(\lambda-\alpha(m+n-2 k)+1-k)-$ $(1-\alpha)^{2} k((m+n-2 k) \lambda-(m+n-2 k) \alpha k-(m-k)(n-k-1)-(n-k)(m-$ $k-1))=0$.
Corollary 5.4. The A_{α}-energy of $K_{m} \circ_{k} K_{m}$ is
$\varepsilon_{\alpha}\left(K_{m} \circ_{k} K_{m}\right)=$
$(k-1)\left|\alpha(1-2 k)+\frac{2 \alpha m^{2}}{2 m-1}-1\right|+2(m-k-1)\left|\alpha(1-k)+\frac{\alpha m k}{2 m-k}-1\right|$ $+\left|\beta-X_{2}\right|+\left|\gamma-X_{2}\right|+\left|\delta-X_{2}\right|$,
where $X_{2}=\frac{\alpha\left(2 m^{2}-k^{2}-(2 m-k)\right)}{2 m-k}$ and β, γ and δ are roots of the equation $(\lambda-m+1+(1-\alpha) k)^{2}(\lambda-2 \alpha(m-k)+1-k)-(1-\alpha)^{2} k((2 m-k) \lambda-$ $2 \alpha k(m-k)-2(m-k)(m-k-1))=0$.

Corollary 5.5. For $m, n>1$, the A_{α}-characteristic polynomial of $K_{m} \circ_{1} K_{n}$ is $\Phi\left(A_{\alpha}\left(K_{m} \circ_{1} K_{n}\right), \lambda\right)=(\lambda-\alpha m+1)^{m-2}(\lambda-\alpha n+1)^{n-2}((\lambda-m+2-\alpha)(\lambda-$ $n+2-\alpha)(\lambda-\alpha(m+n-2))-(1-\alpha)^{2}((m+n-2) \lambda-(m+n-2) \alpha-(m-$ $1)(n-2)-(m-2)(n-1)))$.

Corollary 5.6. The A_{α}-eigenvalues of $K_{m} \circ_{1} K_{n}$ are

1. $\alpha m-1$ repeated $m-2$ times,
2. $\alpha n-1$ repeated $n-2$ times,
3. three roots of the equation $(\lambda-m+2-\alpha)(\lambda-n+2-\alpha)(\lambda-\alpha(m+$

$$
\begin{aligned}
& n-2))-(1-\alpha)^{2}[(m+n-2) \lambda-(m+n-2) \alpha-(m-1)(n-2)-(m- \\
& 2)(n-1)]=0
\end{aligned}
$$

The following corollary helps us to determine the A_{α}-energy of a nonregular graph $K_{m} \circ_{1} K_{n}$.

Corollary 5.7. The A_{α}-energy of $K_{m} \circ_{1} K_{n}$ is
$\left.\varepsilon_{\alpha}\left(K_{m} \circ_{1} K_{n}\right)=\frac{m-2}{m+n-1}|\alpha n(m-n+1)-(m+n-1)|+\frac{n-2}{m+n-1} \right\rvert\, \alpha m(n-m+1)-$ $(m+n-1)\left|+\left|\beta-X_{3}\right|+\left|\gamma-X_{3}\right|+\left|\delta-X_{3}\right|\right.$,
where $X_{3}=\frac{\alpha\left(m^{2}+n^{2}-m-n\right)}{m+n-1}$ and β, γ, δ are roots of the equation $(\lambda-m+2-$ $\alpha)(\lambda-n+2-\alpha)(\lambda-\alpha(m+n-2))-(1-\alpha)^{2}[(m+n-2) \lambda-(m+n-2) \alpha-$ $(m-1)(n-2)-(m-2)(n-1)]=0$.

Corollary 5.8. The A_{α}-energy of $K_{m} \circ_{1} K_{m}$ is
$\varepsilon_{\alpha}\left(K_{m} \circ_{1} K_{m}\right)=\frac{2(m-2)}{2 m-1}(m(2-\alpha)-1)+\left|\frac{2 m^{2}(1-\alpha)-5 m+2-\alpha}{2 m-1}\right|+\left|\beta-\frac{2 m \alpha(m-1)}{2 m-1}\right|+$ $\left|\gamma-\frac{2 m \alpha(m-1)}{2 m-1}\right|$,
where β and γ are roots of the equation $\lambda^{2}-(m-2+\alpha(2 m-1)) \lambda+2(m-$ 1) $(\alpha m-1)=0$.

Corollary 5.9. For $m, n>2$, the A_{α}-characteristic polynomial of $K_{m} \circ_{2} K_{n}$ is $\Phi\left(A_{\alpha}\left(K_{m} \circ_{2} K_{n}\right), \lambda\right)=(\lambda-\alpha m+1)^{m-3}(\lambda-\alpha n+1)^{n-3}(\lambda-\alpha(m+n-2)+$ 1) $\left((\lambda-m+3-2 \alpha)(\lambda-n+3-2 \alpha)(\lambda-\alpha(m+n-4)-1)-2(1-\alpha)^{2}((m+\right.$ $n-4) \lambda-(m+n-4) 2 \alpha-(m-2)(n-3)-(m-3)(n-2)))$.

Now, in the following corollary, we obtain the A_{α}-eigenvalues of $K_{m} \mathrm{O}_{2} K_{n}$.
Corollary 5.10. The A_{α}-eigenvalues of $K_{m} \circ_{2} K_{n}$ are

1. $\alpha m-1$ repeated $m-3$ times,
2. $\alpha n-1$ repeated $n-3$ times,
3. $\alpha(m+n-2)-1$,
4. three roots of the equation $(\lambda-m+3-2 \alpha)(\lambda-n+3-2 \alpha)(\lambda-\alpha(m+$

$$
\begin{aligned}
& n-4)-1)-2(1-\alpha)^{2}[(m+n-4) \lambda-(m+n-4) 2 \alpha-(m-2)(n-3)- \\
& (m-3)(n-2)]=0
\end{aligned}
$$

The following corollary helps us to determine the A_{α}-energy of a nonregular graph $K_{m} \circ_{2} K_{n}$.

Corollary 5.11. The A_{α}-energy of $K_{m} \mathrm{O}_{2} K_{n}$ is
$\left.\varepsilon_{\alpha}\left(K_{m} \circ_{2} K_{n}\right)=\frac{m-3}{m+n-2}|\alpha[(m-n)(n-1)+2]-1|+\frac{n-3}{m+n-2} \right\rvert\, \alpha[(n-m)(m-1)+$ $2]-1\left|+\frac{1}{m+n-2}\right| \alpha(2 m n-3 m-3 n+6)-1\left|+\left|\beta-X_{4}\right|+\left|\gamma-X_{4}\right|+\left|\delta-X_{4}\right|\right.$, where $X_{4}=\frac{\alpha[m(m-1)+n(n-1)-2]}{m+n-2}$ and β, γ, δ are roots of the equation $(\lambda-m+$ $3-2 \alpha)(\lambda-n+3-2 \alpha)(\lambda-\alpha(m+n-4)-1)-2(1-\alpha)^{2}[(m+n-4) \lambda-$ $(m+n-4) 2 \alpha-(m-2)(n-3)-(m-3)(n-2)]=0$.

Corollary 5.12. The A_{α}-energy of $K_{m} \mathrm{O}_{2} K_{m}$ is
$\varepsilon_{\alpha}\left(K_{m} \circ_{2} K_{m}\right)=\frac{m-3}{m-1}|2 \alpha-1|+\frac{1}{2 m-2}\left|\alpha\left(2 m^{2}-6 m+6\right)-1\right|+\left|\frac{m^{2}(1-\alpha)-m(4-3 \alpha)-\alpha+3}{m-1}\right|$ $+\left|\beta-\frac{\alpha(m(m-1)-1)}{m-1}\right|+\left|\gamma-\frac{\alpha(m(m-1)-1)}{m-1}\right|$,
where β and γ are roots of the equation $\lambda^{2}-(m-2+2 \alpha(m-1)) \lambda+2 \alpha m^{2}-$ $m(2 \alpha+3)-2 \alpha+5=0$.

6. Topological indices of vertex coalescence of graphs

In this section, some topological indices of vertex coalescence of graphs are computed. We calculate the Wiener index, hyper-Wiener and Zagreb indices of the Lollipop and Dumbbell graphs using the results.

Proposition 6.1. Wiener index of $G_{1} \circ_{1} G_{2}$ is

$$
W\left(G_{1} \circ_{1} G_{2}\right)=W\left(G_{1}\right)+W\left(G_{2}\right)+\left(n_{2}-1\right) d_{G_{1}}(v)+\left(n_{1}-1\right) d_{G_{2}}(v)
$$

where v is the vertex that is merged in $G_{1} \circ_{1} G_{2}$.

Proof. Let $G=G_{1} \circ_{1} G_{2}$ and v be the vertex merging in G. From Definition 2.4,

$$
\begin{aligned}
W(G) & =\sum_{\{u, w\} \in V\left(G_{1}\right)} d(u, w)+\sum_{\{u, w\} \in V\left(G_{2}\right)} d(u, w)+\sum_{\substack{u \in V\left(G_{1}\right) \\
w \in V\left(G_{2}\right)}} d(u, w) \\
& =W\left(G_{1}\right)+W\left(G_{2}\right)+\left(n_{2}-1\right) d_{G_{1}}(v)+\left(n_{1}-1\right) d_{G_{2}}(v) .
\end{aligned}
$$

Remark 6.2. The Wiener index of cycle is $W\left(C_{m}\right)= \begin{cases}\frac{m^{3}}{8} & \text { if } m \text { is even } \\ \frac{m\left(m^{2}-1\right)}{8} & \text { if } m \text { is odd, }\end{cases}$ and Wiener index of path is $W\left(P_{n}\right)=\frac{n\left(n^{2}-1\right)}{6}$. Thus the Wiener index of Lollipop graph $L(m, n-1)$ is

$$
W(L(m, n-1))= \begin{cases}\frac{m^{3}}{8}+\frac{n\left(n^{2}-1\right)}{6}+(n-1)\left(\frac{m^{2}+2 n(m-1)}{4}\right) & \text { if } m \text { is even } \\ \frac{m\left(m^{2}-1\right)}{8}+\frac{n\left(n^{2}-1\right)}{6}+\frac{(n-1)(m-1)(m+1+2 n)}{4} & \text { if } m \text { is odd }\end{cases}
$$

Remark 6.3. The Dumbbell graph, denoted by $D_{l, m, n-3}$, is obtained from the coalescence of a cycle C_{l} and the pendant vertex of a Lollipop graph $L(m, n-1)$.

The Wiener index of Dumbbell graph $D_{m, m, n-3}$ is $W\left(D_{m, m, n-3}\right)= \begin{cases}\frac{m^{3}}{4}+\frac{n\left(n^{2}-1\right)}{6}+\frac{m\left(m^{2}+3 m n-4 m+4\right)+n(4-6 m+2 m n-2 n)-2}{2} & \text { if } m \text { is even } \\ \frac{m\left(m^{2}-1\right)}{4}+\frac{n\left(n^{2}-1\right)}{6}+(m-1) \frac{m^{2}-3 m+3 m n-3 n+4 n^{2}}{2} & \text { if } m \text { is odd } .\end{cases}$

Figure 4: $D_{4,6,1}$

Proposition 6.4. Hyper-Wiener index of $G_{1} \circ_{1} G_{2}$ is

$$
\begin{aligned}
& W W\left(G_{1} \circ_{1} G_{2}\right)=W W\left(G_{1}\right)+W W\left(G_{2}\right) \\
& \quad+\frac{1}{2}\left(\left(n_{2}-1\right)\left(d_{G_{1}}(v)+d_{G_{1}}^{2}(v)\right)+\left(n_{1}-1\right)\left(d_{G_{2}}(v)+d_{G_{2}}^{2}(v)\right)+2 d_{G_{1}}(v) d_{G_{2}}(v)\right)
\end{aligned}
$$

where v is the vertex that is merged in $G_{1} \circ_{1} G_{2}$.

Proof. Let $G=G_{1} \circ_{1} G_{2}$ and v be the vertex merging in G. From Definition 2.5, $W W(G)=\frac{1}{2}\left(W\left(G_{1}\right)+W\left(G_{2}\right)+\left(n_{2}-1\right) d_{G_{1}}(v)+\left(n_{1}-1\right) d_{G_{2}}(v)\right)$

$$
\begin{aligned}
& +\frac{1}{2}\left(\sum_{\{u, w\} \in V\left(G_{1}\right)} d^{2}(u, w)+\sum_{\{u, w\} \in V\left(G_{2}\right)} d^{2}(u, w)+\sum_{\substack{u \in V\left(G_{1}\right) \\
w \in V\left(G_{2}\right)}} d^{2}(u, w)\right) \\
= & W W\left(G_{1}\right)+W W\left(G_{2}\right) \\
& +\frac{1}{2}\left(\left(n_{2}-1\right)\left(d_{G_{1}}(v)+d_{G_{1}}^{2}(v)\right)+\left(n_{1}-1\right)\left(d_{G_{2}}(v)+d_{G_{2}}^{2}(v)\right)+2 d_{G_{1}}(v) d_{G_{2}}(v)\right) .
\end{aligned}
$$

Remark 6.5. The hyper-Wiener index of of Lollipop graph $L(m, n-1)$ is

$$
\begin{gathered}
W W(L(m, n-1))= \\
\begin{cases}\frac{m^{2}(m+1)(m+2)}{48}+\frac{n^{4}+2 n^{3}-n^{2}-2 n}{24}+\frac{(n-1)\left(m\left(m^{2}+3 m+2\right)+4 n(m-1)(n+1)+3 m^{2} n\right)}{24} & \text { if } m \text { is even } \\
\frac{m\left(m^{2}-1\right)(m+3)}{48}+\frac{n^{4}+2 n^{3}-n^{2}-2 n}{24}+\frac{(m-1)(n-1)((m+1)(m+3)+4 n(n+1)+3 n(m+1))}{24} & \text { if } m \text { is odd. }\end{cases}
\end{gathered}
$$

Remark 6.6. The hyper-Wiener index of Dumbbell graph $D_{m, m, n-3}$ is

$$
\begin{aligned}
& W W\left(D_{m, m, n-3}\right)= \\
& \left\{\begin{array}{cl}
\frac{m^{2}(m+1)(m+2)}{24}+\frac{n^{4}+2 n^{3}-n^{2}-2 n}{24} & \\
+\frac{7 m^{4}+4 m^{3}(-5+7 n)-8 n\left(1-3 n+2 n^{2}\right)+4 m^{2}\left(2-12 n+9 n^{2}\right)+8 m\left(-2+5 n-6 n^{2}+2 n^{3}\right)}{48} & \text { if } m \text { is even } \\
\frac{m\left(m^{2}-1\right)(m+3)}{24}+\frac{n^{4}+2 n^{3}-n^{2}-2 n}{24} & \text { if } m \text { is odd. }
\end{array}\right.
\end{aligned}
$$

Proposition 6.7. The forgotten topological index of $G_{1} \circ_{1} G_{2}$ is

$$
F\left(G_{1} \circ_{1} G_{2}\right)=F\left(G_{1}\right)+F\left(G_{2}\right)+3 \operatorname{deg}_{G_{1}}(v) \operatorname{deg}_{G_{2}}(v)\left(\operatorname{deg}_{G_{1}}(v)+\operatorname{deg}_{G_{2}}(v)\right)
$$

where v is the vertex that is merged in $G_{1} \circ_{1} G_{2}$.
Proof. Let $G=G_{1} \circ_{1} G_{2}$ and v be the vertex merging in G. From Definition 2.6,

$$
\begin{aligned}
F(G)= & \sum_{u \in V\left(G_{1}\right)} \operatorname{deg}_{G_{1}}^{3}(u)-\operatorname{deg}_{G_{1}}^{3}(v)+\sum_{u \in V\left(G_{2}\right)} \operatorname{deg}_{G_{2}}^{3}(u)-d e g_{G_{2}}^{3}(v) \\
& +\left(\operatorname{deg}_{G_{1}}(v)+\operatorname{deg}_{G_{2}}(v)\right)^{3} \\
= & F\left(G_{1}\right)+F\left(G_{2}\right)+3 \operatorname{deg}_{G_{1}}(v) \operatorname{deg}_{G_{2}}(v)\left(\operatorname{deg}_{G_{1}}(v)+\operatorname{deg}_{G_{2}}(v)\right) .
\end{aligned}
$$

Proposition 6.8. First Zagreb index of $G_{1} \circ_{1} G_{2}$ is

$$
M_{1}\left(G_{1} \circ_{1} G_{2}\right)=M_{1}\left(G_{1}\right)+M_{1}\left(G_{2}\right)+2 d e g_{G_{1}}(v) d e g_{G_{2}}(v)
$$

where v is the vertex that is merged in $G_{1} \circ_{1} G_{2}$.
Proof. Let $G=G_{1} \circ_{1} G_{2}$ and v be the vertex merging in G. From Definition 2.7,

$$
\begin{aligned}
& M_{1}(G)= \sum_{u \in V\left(G_{1}\right)} \operatorname{deg}_{G_{1}}^{2}(u)-\operatorname{deg}_{G_{1}}^{2}(v)+\sum_{u \in V\left(G_{2}\right)} d e g_{G_{2}}^{2}(u)-d e g_{G_{2}}^{2}(v) \\
&+\left(\operatorname{deg}_{G_{1}}(v)+\operatorname{deg}_{G_{2}}(v)\right)^{2} \\
&= M_{1}\left(G_{1}\right)+ \\
& M_{1}\left(G_{2}\right)+2 \operatorname{deg}_{G_{1}}(v) \operatorname{deg}_{G_{2}}(v) .
\end{aligned}
$$

Remark 6.9. The first Zagreb index of of Lollipop graph $L(m, n-1)$ is

$$
M_{1}(L(m, n-1))=4(m+n)-2
$$

Remark 6.10. The first Zagreb index of Dumbbell graph $D_{m, m, n-3}$ is

$$
M_{1}\left(D_{m, m, n-3}\right)=4(2 m+n)+2 .
$$

Proposition 6.11. Narumi-Katayama index of $G_{1} \circ_{1} G_{2}$ is

$$
N K\left(G_{1} \circ_{1} G_{2}\right)=N K\left(G_{1}\right) N K\left(G_{2}\right) \frac{\operatorname{deg}_{G_{1}}(v)+\operatorname{deg}_{G_{2}}(v)}{\operatorname{deg}_{G_{1}}(v) \operatorname{deg}_{G_{2}}(v)},
$$

where v is the vertex that is merged in $G_{1} \circ_{1} G_{2}$.
Proof. Let $G=G_{1} \circ_{1} G_{2}$ and v be the vertex merging in G. From Definition 2.8,

$$
\begin{aligned}
N K(G) & =\frac{\prod_{u \in V\left(G_{1}\right)} \operatorname{deg}_{G_{1}}(u) \prod_{u \in V\left(G_{2}\right)} \operatorname{deg}_{G_{2}}(u)}{\operatorname{deg}_{G_{1}}(v) \operatorname{deg}_{G_{2}}(v)}\left(\operatorname{deg}_{G_{1}}(v)+\operatorname{deg}_{G_{2}}(v)\right) \\
& =N K\left(G_{1}\right) N K\left(G_{2}\right) \frac{\operatorname{deg}_{G_{1}}(v)+\operatorname{deg}_{G_{2}}(v)}{\operatorname{deg}_{G_{1}}(v) \operatorname{deg}_{G_{2}}(v)} .
\end{aligned}
$$

7. Conclusion

This paper estimates some structural properties of a non-regular graph obtained from the k-coalescence of two graphs. Also, the A_{α}-characteristic polynomial of k-coalescence of two graphs is determined. Moreover, the A_{α}-spectrum and A_{α}-energy of k-coalescence of two complete graphs are computed. In addition, some topological indices of vertex coalescence of two graphs are estimated. The Wiener, hyper-Wiener and Zagreb indices of Lollipop and Dumbbell graphs are derived as an application.

Acknowledgments

The first author gratefully acknowledges the financial support of the University Grants Commission(UGC), India.

REFERENCES

[1] Chartrand, G. Introduction to graph theory. Tata McGraw-Hill Education, (2006).
[2] Dobrynin, Andrey A., et al. Wiener index of hexagonal systems. Acta Applicandae Mathematica 72.3 (2002): 247-294.
[3] Furtula, Boris, and Ivan Gutman. A forgotten topological index. Journal of mathematical chemistry 53.4 (2015): 1184-1190.
[4] Khalifeh, M. H., Hassan Yousefi-Azari, and Ali Reza Ashrafi. The hyper-Wiener index of graph operations. Computers \& Mathematics with Applications 56.5 (2008): 1402-1407.
[5] Narumi, Hideyuki, and Meiseki Katayama. Simple topological index: a newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons. Memoirs of the Faculty of Engineering, Hokkaido University 16.3 (1984): 209-214.
[6] Nikolić, Sonja, et al. The Zagreb indices 30 years after. Croatica chemica acta 76.2 (2003): 113-124.
[7] S Pirzada, Bilal A Rather, Hilal A Ganie, and Rezwan ul Shaban, On α-adjacency energy of graphs and Zagreb index, AKCE International Journal of Graphs and Combinatorics (2021), 1-8.
[8] Sudhir R. Jog and Raju Kotambari, On the adjacency, Laplacian, and signless Laplacian spectrum of coalescence of complete graphs, Journal of Mathematics 2016 (2016).
[9] Sudhir R. Jog, and Shrinath L. Patil. Spectra of k coalescence of complete graphs. Asia Mathematika, 5(1) (2021), 113-118.
[10] Vladimir Nikiforov, Merging the A-and Q-spectral theories, Applicable Analysis and Discrete Mathematics 11 (2017), no. 1, 81-107.

> V. K. NAJIYA
> Department of Mathematics
> National Institute of Technology Calicut
> India
> e-mail: najiya_p190046ma@nitc.ac.in
A. V. CHITHRA

Department of Mathematics National Institute of Technology Calicut India e-mail: chithra@nitc.ac.in

[^0]: Received on April 20, 2023
 AMS 2010 Subject Classification: 05C50
 Keywords: A_{α}-spectrum, Coalescence, Wiener index, hyper-Wiener index, Zagreb index

