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ON A SYSTEM INVOLVING AN INTEGRO-DIFFERENTIAL
INCLUSION WITH SUBDIFFERENTIAL AND CAPUTO
FRACTIONAL DERIVATIVE

A. BOUABSA - S. SAIDI

The current work is concerned with a new system involving an integro-
differential inclusion of subdifferential type and Caputo fractional deriva-
tive, in Hilbert spaces. We use a discretization approach to deal with the
integro-differential inclusion. Then, we proceed by a fixed point theorem
to handle the considered system.

1. Introduction

We are interested, in this paper, in a new system governed by an integro-differential
inclusion and Caputo fractional derivative as follows

—i(t) € Ay (t,u(t)) +g1(1,x(t),u(r)) + Jg 82(t,5,x(s), u(s))ds
ae.te€l:=[0,T],
"o §) ME_ZI(L;O_) ae.tel, 0
x(T)—|—w—%(T) = 0,
u(0) = up € domy(0,-),
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where a €]1,2], w-°D% denotes the weak Caputo fractional derivative, dy/(z,-)
stands for the subdifferential of a proper, lower semi-continuous, convex map
y(t,-) from a real Hilbert space H to [0,+ec|. The real-valued map y(t,-)
(whose effective domain is denoted dom y(z,-)) satisfies an assumption ex-
pressed in term of its conjugate function (see (H]%,) below).
The maps g1 : I/ xH xH — H and g : I X I x Hx H — H are single-valued
maps satisfying suitable assumptions.

For this purpose, we first study the existence and uniqueness of absolutely
continuous solution to a new class of integro-differential inclusions of the form

—ilt) € Dw(t,ule)) + g1 (1u(t)) + | "er(t,s,u(s))ds ae.t€l, o
0
u(0) =up € domy(0,-),

The interest in (2) is motivated by the study of integro-differential sweeping
processes (see [10], [11]), that is the problem above with dy(z,-) = New(0), ie.,
the normal cone of a moving set C(¢) which is r-prox regular. Let us mention
some related results in [9], [12], [24]. We also cite the recent papers [15], [18],
dealing with integro-differential inclusions involving m-accretive (or maximal
monotone) operators (instead of the subdifferentials).

The differential inclusion (2) involving only g; (resp. g») has been stud-
ied in [42] (resp. [8]). In the proof of the well-posedness theorem to (2), we
proceed by a discretization approach. However in [8], a fixed point method is
used there. In our development, we construct a sequence of solutions to per-
turbed differential inclusions with single-valued perturbations (depending only
on time) in each subinterval (using the existence result in [39] and the estimates
in [43]). Then, we prove its convergence to the solution of our problem (2).

Other variants of first-order differential inclusions of subdifferential type
(with their applications) can be found in the scientific literature, see for instance
[5], [6], [13], [14], [20], [21], [28], [29], [31], [39], [41], [43], [45], [47]. As
examples of this class of evolution problems are sweeping processes, we refer
the reader to some achievements on this topic (under different assumptions on
the sets C(¢) or C(t,x)) in [1], [23], [26], [27], [32], [33], [34], [35], [36], [37],
[38], [46], among others.

In the proof of the existence result to (1), we adopt a fixed point theorem,
using the topological properties of the solution set to the Caputo fractional dif-
ferential equation. Some coupled systems driven by evolution problems of sub-
differential type and fractional differential equations have been considered in
[8], [22] and [41].

Contributions on fractional differential theory have been discussed by many au-
thors, see [2], [3], [4], [7], [16], [17], [19], [30], [40], [44], [48], and the refer-
ences therein.
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The paper consists of four sections. In Section 2, we introduce notation and
preliminaries. In Section 3, we prove the well-posedness result concerning (2).
Section 4 is devoted to study (1).

2. Notation and preliminaries

In all that comes, let I := [0, 7] denote an interval of R and let H be a real Hilbert
space whose inner product is denoted by (-,-) and its associated norm by || - ||.
We denote by By [u, r] the closed ball of center u and radius r on H, and by By
the closed unit ball on H.
On the space Cy(I) of continuous maps x : I — H, we consider the norm of uni-
form convergence on /, ||x||. = sup ||x(2)]|.

rel

By L, (I) for p € [1,400[ (resp. p = +o0), we denote the space of measur-
able maps x : I — H such that [} ||x(¢)||?dt < +oo (resp. which are essentially
bounded) endowed with the usual norm |[x||zz ;) = (J; [[x(¢) det)%, 1<p<+o
(resp. endowed with the usual essential supremum norm || - || (). Denote by
Wfll’2 (1), the space of absolutely continuous functions from / to H with deriva-
tives in L2 (I).

Let y be a lower semi-continuous convex function from H into RU {+eo}
which is proper in the sense that its effective domain (dom y) defined by

domy ={x€H : y(x) < +oo}
is non-empty. As usual, its Fenchel conjugate is defined by

¥ (v) = sup[(v,x) — y(x)].

xeH

The subdifferential d y(x) of y at x € dom vy is the set

dy(x) ={veH:y(y) = (v,y—x)+ y(x) Vy € domy},

and its effective domain is Domdy = {x € H : dy(x) # 0}. It is well known
(see, e.g., [13]) that if y is a proper lower semi-continuous convex function,
then its subdifferential operator dy is a maximal monotone operator.

Let S be a non-empty subset of H. Denote by 15 the indicator function of S, that
is, 15(x) = 0 if x € S and +oo otherwise.

A Gronwall-like differential inequality is proved in [10] as follows:

Lemma 2.1. Let y: I — R be a non-negative absolutely continuous function
and let hy,hy,g : I — Ry be non-negative integrable functions. Suppose for
some € >0

() < g(t) +&+hi ()y(t) + ha(2) (¥(1))

D=

/t(y(s))éds ae.tel
0
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Then, for allt € I, one has

00" £ 000+ &) exp [ 465+ 11as) 4.5 [[exo [+ 110

+2{</0tg(s)ds+8>éeéexp</0t(h(r)+l)dr>}
+2/0[ <h(s)—|— 1) exp ([(h(r)ﬂ)dr) </Osg(r)dr+8>£ds,

where h(t) = max (h‘z(t) , hzz(t)> ae.r€l

We recall Schauder’s fixed point theorem [25].

Theorem 2.2. Let C be a non-empty closed bounded convex subset of a Banach
space E. Let f : C — C be a continuous map. If f(C) is relatively compact, then
f has a fixed point.

Let us recall an existence and uniqueness result from [39].

Theorem 2.3. Let y : [ x H — [0, 40| be a map such that

(Hl},) foreacht € I, the function u — y(t,u) is proper, lower semi-continuous,
and convex;

(HI%,) there exist a p-Lipschitz function k : H — R, and an absolutely con-
tinuous function a : I — R, with a derivative a € L]%%+ (1), such that

v (t,u) < w*(s,u)+k(u)la(t) —a(s)| forevery (z,s,u) € I x I x H.

Let uyp € domy/(0, ) be fixed. Then, the differential inclusion

{ —u(t) € dy(t,u(r)) ae.r€el,
u(0) = up € domy(0,-),

admits a unique absolutely continuous solution u(-) on I such that u(t) € domy(z,-)
forallt €l

Now, denote by A(¢) := dy(t,-) the maximal monotone operator in H asso-
ciated with dy(t,-), r € I (y satisfies conditions (H&,)—(H‘%,)). Let us consider
the operator A : L% (1) = L%(I) defined by

Au={ve L) :v(t) € A(t)u(r) ae.}.
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Then, A is well defined since by Theorem 2.3, the differential inclusion
—u(t) € A(t)u(t) = dy(t,u(t)) ae.t €1, u(0) = up € domy(0,-),
admits a unique absolutely continuous solution.

The operator A enjoys the following property, see [39] (see also [21] or
[41D).

Proposition 2.4. Assume that for any t € I, A(t) = dy(t,-) where Y satisfies
conditions (Hl},)-(H]%,) Then, one has

(J) The operator A is maximal monotone.

(T T) If (n)n and (vy,), are two sequences in L% (I) satisfying

(i) forae.t € I: vy(t) € A(t)un(t), Vn € N;

(ii) the sequence (uy), strongly converges to u in L3 (I);

(

i
iii) the sequence (v,), weakly converges to v in L} (I).

Then, one has v(t) € A(t)u(t) a.e.t € L.

We will need the following useful application of Theorem 2.3, regarding an
evolution problem with single-valued perturbation depending only on time, see
[41], [43].

Proposition 2.5. Under the assumptions of Theorem 2.3, if h € L%([Ty, T)) and
ug € domy(Ty,-), then, the evolution problem

{ —u(t) € dy(t,u(t)) +h(t) ae.te[l,T],
u(To) =uy € dom l[/(T()7 -),

admits a unique absolutely continuous solution u(-) satisfying
112 2
HMHL%{([TO,T}) S GHhHL%i([Toj]) +Y*a (3)
where Y, and © are the non-negative real constants defined by
T
Vo= (RO)+3(p+17%) | d(0)dr+2[T = To-+ y(To.uo) = w(T,u(T))]

4)
o =k(0)+3(p+1)*+4. (5)

3. Well-posedness result to the integro-differential inclusion (2)

Our main result will be established under the following assumptions:
Let g1 : I x H — H be a map such that
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(H;]) g1(+,u) is measurable on /, for any u € H;
(ngl) there exists a non-negative real constant M,, such that

i1 (¢,0) | < M, (1+[Jul]) for all (s,u) € 1 x H:

(H;] ) there exists a non-negative real constant K,, such that

|g1(t,u) —g1(t,v)|| < K, ||u—v||forall (t,u,v) €I xH x H.

Let g : I X I x H— H be a map such that
(Hglz) g2(+,-,u) is measurable on I x I, for any u € H;

(H, H?) there exists a non- negative real constant M, satisfying
M2 +4T2M2 SoTZ such that

g2 (t,s,u)|| < Mg, (14 ||u||) for all (z,s,u) € I x I x H,;

(ng) there exists a non-negative real constant K,, such that

||g2(t,5,u) — g2(t,5,v)|| < Kg,||u—v|| forall (t,s) €I x [and u,v € H.
Now, we are able to establish our new theorem regarding the integro-differential
inclusion (2).

Theorem 3.1. Let v : [ X H — [0, 40| be a map satisfying (H,},)(H%,) of The-
orem 2.3. Let gy : I x H— H be a map satisfying (H;l)-(Hgl)—(H;). Let
g2 I xIx H — H be a map satisfying (H;z)-(ng)—(ng). Then, for any ug €
domy(0,-), there is a unique absolutely continuous solution u(-) to (2). More-
over, the following inequalities

g1t u()I] < Mg, (1+L),  |lg2(t,5,u(t))|| < Mg, (1+L)  forall (z,5) € Ix1,

and

T T t
| Nao1Par < v+o [ lleru) + [ gasut)as P, ©
0 0 0

hold true, with the same non-negative real constants o, 7, L defined by (5), (14),
(17), respectively.
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Proof. Part 1: Existence. We proceed by a discretization method.
(A) Construction of the sequence (u,()).
For any n € N*, consider a partition of / such that

T
h=0<t{< - <til=i—<---<t,=T.
n

1

Put u{; = ug. Then, consider the following problem on Ij = [t{,1}']

t
—u(r) eay/(t,u(t))+g1(t,u8)+/0 g2 (t,s,up)ds ae.t eIy,
u(ty) = ug € domy(tf,-).

Define the map 4 for any r € Iy by
t
W) = g (r.5) + [ (e,
0
Thanks to Proposition 2.5, there exists a unique absolutely continuous solution

u™0(-) : I — H to the latter problem since #%(-) € L% (I%). In fact, noting that
(a+b)* <24 +2b* for a,b € R, by (H;) and (H;z), one has for any € I

1} 1 t
i Par = [ i)+ [ sale,sug)as
i t 2
< [ (leatat+ [ leatosiplas)
g ny|2 ! n 2
<2 [ (g () P+ ( [ llsa(e,s,5) ) )
g ny (|12 ! n 2
<2 [ (lgr () P+ ( [ M1+ ) s)” )

n

4
sz/
0

o
< 2/0 <M§1 (1+ [|ug|)* + M, (1+ ]u8H)2T2>dt

(M;<1+||u3u>2+M§2<1+ru8|r>2z2)dr

o
:2/0 (Mg, +T*Mg,)) (1 + ||ug||)dt
<2T (Mg, +T°Mg,)(1+ [|ug|)> < +oo.

Furthermore, u™°(t) € dom y(t,-) for any t € I, and by (3)-(4), setting u} =
u™0(#1), this solution satisfies

1 1y
| i@l < o [ 100 i+ v,
lﬂ n

0 Ty
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where
% = [K0)+3(p+1)7] /; a* (1)dt +2[(1} — 1) + w (15, up) — w(ef, ).

Then, consider the integro-differential inclusion on I} = [¢],#}]

1} t
(1) € Oy (r,u(0) +81 (1) + [ gale,s.aids+ [ ale,s,uf)ds
1
ae.telf,
u(t?) =u € domy(t},).

Define the map 7! for any ¢ € I{ by

1} t
h"’l(t) =gi(t,u])+ gz(t,s,ug)ds—i—/ ga(t,s,uf)ds.
0 1

Thanks to Proposition 2.5, there exists a unique absolutely continuous solution
u™(+) : I' — H to the latter problem with w™! (") = u"0(¢}), since h™!(-) €
Ly(1}). Indeed, noting that (a + b)* < 2a* 4 2b* for a,b € R, by (H,) and

(ngz), one has for any ¢ € I7

1y ty 1y t
e e = [ i)+ [ galesug)dst [ g, Fr
y 4 7y
1 o ' 2
< [ (bl +1 [ eatesyas-+ [ salts.yis] )
tl
t
S/n <2Hg1(t ul)|? —i-ZH/ g2 (t,s,up ds+/ g(t,s ul)ds\|2>dt

lil
_2/ g (t,ul) szt—i—Z/ I gzts,uﬁ)ds—i—/gz(t,s,u’f)dstdt
0

<2 [CateayParea [C) [ ates.iyaslar
1 1
1y t
+4/ u/ g (1,5, )ds|2d
2
<2 [ lneaPares [ ([ letesalas)
2
v [F( [ et saiplas) a
1 tf
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2 2
<2Mg (1+ [Jufl)* (3 — 1} +4/ (L [|ug ) (1) ?a
]

M4 )26
I

<2TMy, (1+ [[uf||)> +4T>My, (1+ |[ug ) (25 — 1) +4T>MZ, (1 + [[uf[|)* (85 — 1)
<2TM; (1+ ||uf||)> + 4T M, (1+ ||uf|)* + AT M, (1 + ||uf]])?
< 2T (Mg, +4T*M;,)(1+ max(|ug|, [luf]))* < +oo.

Furthermore, u™!(t) € domy(t,-) for any t € I, and by (3)-(4), setting u} =
u™(t4), one gets

n

t ty
|l OlRd < o [ e @)+ v,
n [n

1 1

where

n

7= RO +3(p-+ 1] [ 0di-+2(8 —) + wleh ) — widd, ).

n
1

In a similar way, for each i € {2,---,n— 1}, putting u = u™~!(¢"), consider

the integro-differential inclusion on I” = [t7, e8]

—u(t) € dy(t,u(t))+gi(t —i—Z/ﬂ ga(t,s,u] ds+/g2tsu ds

j=0"1j
ae.relf,
u(ty') = ui € domy (7, -).

Define the map A" for any t € I by

R (1) = +Z/ 2(t,s,u}) ds—l—/gztsu

Thanks to Proposition 2.5, there exists a unique absolutely continuous solution
u(-) : I' — H to the latter problem with u™(¢") = u™~1(z!'), since K"(-) €
L}(I'). Indeed, noting that (a+ b)? < 2a* 4 2b* for a,b € R, by (HZ) and
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(H;z), one has for any 1 € I"

M
[ ioipac= [ s, +z / sl [ o
f

i—1 2
S/ (Hgl DI+ Z/ 2(t,5,u} ds—i—/gztsu >dt
I 10
t’(:rl 2 tl('Jrl
gz/ gt (2,0)| dt+2/ Z/ (8,5, ds+/ o5,
" v |\ S
1 2 1 17
<2 [ eteaara [TE [T e saas
o w o |iZ0dt

L ! n 5
—|—4/ H/ ga(t,s,ul )ds||“dt

1! !

t’("H n 2 tl(l-%—l 2
SZ/ g1 (1) dt+4/ ||/ 2(t,5,ut)ds]|

n zlf’
+4/ H/ ga(t,s,ulf dstdt

i+1 2
<2 [, fortaPares [ (L / loaelas)

p , &

l

([ 1t uds)

i+1 i+1 i1 2
SZA Hgl(t,u;z)\|2dz+4A (MgzZ(1+Huyu)(;7“_,7)) dr

Jj=0

+4/ ( (1 [ ) (¢ — 22 )>2dt

< 2M2 (14 el +4/ M2 (14 max )2

0<j<i—1

dt

1
2 22
+4/ﬁ M, (1 ma o) s
< 2M2 (1 + [ )2 — 1) + 4 / M3, (1+ max (] PTdn

+4/’“ 1+ max )7
2 2142
<2(M, +4T Mgz)(1+(§1§l§!§illuﬁll) (ti —17)

< 27 (M3, +472ME) (14 ma |17 < -+

ul)ds||dt

(7
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Furthermore, u™'(t) € dom y(t,-) for any ¢ € I”, and by (3)-(4), setting u}
u™ (¢! ), one gets

i+1 —

[ wirar < o [ ey Pa, ®

i [

where

n

7= R0+ 3+ 17 [ 0+ 20ty — )+ W) Wl )]

i
Now, define the maps u,, h, : [ — H, for each n by
ho(t) = WY (1), uy(t) = u™(t) Ve eI, i€ {0,--- ,n—1}.

It is clear that u,(-) is absolutely continuous on /, and putting

{ 6,(0) =0

eﬂ(t):tln if ¢ e]tln7t1n+1] l6{07"'7n_1}7

one has

(1) € OW(t, un(1)) + &1 (1, 1 (6 +/g2tsun 1 (5)))ds
aetel, )
un (0) = up.

From (8), one gets
T T
| ino) e <o [ ha(e) P+ (10)

where
h() glt”n n +/g2tsun n )))dS,VIGI, (11)

and

V= 100+ 30+ 17 [ @) +2[T + w(0,10) ~ (T (7))

T n=l e .
noting that / (1)t = Y / R (1) P
0 i=0 Y1

From (7), one writes

T n—1
/0 17 (1)t < 22(M§]+4T2M§2)(1+m§1x e 1) 22y 1)
i=0

<2T(M;, +4T2M§2)(1+Omax [l |])?. (12)
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As the function y takes non-negative real values, one has —y(T,u,(T)) <0,
then, coming back to (10), it follows

r 2 r 2
| linlPd < o [ nolRdi+y. (13
0 0

where
y=[k*(0)+3(p+1)7 /OT @ (t)dt +2[T + w(0,u)]. (14)

Combining (12) and (13), it results
r 2 2 2202 2
| Nin(0)|Par < 470082 +4T202) (14 () 2) + ¥

Simplifying yields

T
| lRar < e nlaOl2, (15)
where the real non-negative constants 1 and x are given by
N =4Tc(M, +4T°M;)) and K=1+7.

Since (uy(+)) is absolutely continuous, then, using the Cauchy-Schwarz inequal-
ity and (15), one has forall T € /

\WAﬁ—wﬂZST<AWwa0Wm)
< Tl 4+ )R,

which gives

2uol® +2un(7) — uol®
2uoll® +27 (i + 1 Jun () ]12)-

lun (D" <
<

As a result for each n, one gets
(1=27)|un ()12 < 2lJuo]> +2T 5.

By the choice of the constants My, and My, in (HZ,), one has 1 —271 > 0, then

for any n
[etn (-)|leo < L, (16)

(2(fluolP+Tr)\
L— <1_2Tn> . (17)

where
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This along with (11), (16) and (Hg21 )—(ng), one obtains

([ ()| = (181 (2, 10 (60 ( +/g2tsun (s)))ds]|
<l @)+ [ Nga(r.10(6,(5) s
< (Mg, +TMg,)(1+L). (18)

Combining (15) and (16), it results

T
sup [ | (1)||Pdt < x+nL? :=L,. (19)

neNJ0

(B) Convergence of the sequence (u,(-)).
Let us prove that (u,(-)), is a Cauchy sequence on /.
From (9), one writes for p,q arbitrary integers and a.e. r € [

(1) = 11,0y (85(1)) — [ 52(0,5,105(8,(5)))ds € D (1y(1),
iy 6) = 1110y (0,(0))) — [ 200,5.14(8,(5)))ds € D1, (1))
Since dy/(t,-) is monotone, then, one obtains

it () = 11 (1) (1) — g (1))
< (81(1,uq(84 (1)) = &1(1,up(8,(1))),up (1) — g (1))

</ g2(t,s,uq(6 ds—/ g (t,s u,,(@,,(s)))ds,up(t)—uq(z)>, (20)

According to (H3 ) and (Hp, 3 ), one has for a.e. t €1,

(5111 (8(0))) 21108y 1)), 10 0) — 4(0)

([ altcsan 6,615 [ ga(ts,p(6,60)) s 1) -1 0))
< ) — 6] ¢ 1 1,8,01)) 810,201
luple) )] % [ 20,5, (0,(5)) — 821,15 (0(5)) s
<y 1)~ 1)

(Kgl\uq(eq(m )|+ Ky /Huq —u, ())Hds>



302 A. BOUABSA - S. SAIDI

Ky, [[up () —ug (1)
(llug (8 (1)) = ug ()1 + llug () — up (0| + llup (1) — up (6, (2))]])
+ Koo [l (£) — g (1)[]

! (1005 =5+ ) =511+ i 5)~ By (o) s 21)

By the absolute continuity of u,, for each p, one gets any ¢ € /

t
lap0) <t @) =1 [} (o)l < [ (sl
0,()

P

By construction, for any # € I and any p € N, one has 0 <t —6,(t) < T/p. By
Cauchy-Schwarz inequality, then using (19), one gets forany 0 <¢ < T

)0, = e~ eyt [ o) = () 'ad o

We return to (21) with the help of (16) and (22), it results
(81(7,uq(64(1))) — g1(1,up(0y(1))), up(r) — uq(1))
+</Otgz(tas,uq(eq(S)))ds—/Otgz(nsaup(@p(S)))dsaup(t) —Mq(t)>

< K [Jup(t) — ”q(t)Hz + Kg, [[up(t) — g (1) /0’ [up(s) — g (s)[|ds + Gp4(t),

where G, is defined on I by

1 T % T\?2
Gpq(t) =2LL; (Kq, +TKy,) [(p) + (q) ]; tel

This along with (20), it follows

1d . .
5 el (6) =g (o) 2 = 1) = g )20 1) = g 1)

Ky, |1y (£) = ug(0)|1* + Koy ||1p (1) — ug (1)]] /Ot [tp(5) — ug(s)[|ds + Gpq(1).
(23)

Remark that
lim G Oae.r€l
Jim_ G (1) =
Moreover, since |G, 4(t)] < 4LL17T% (K,, + TK,,) for all ¢ € I, it follows from
the Lebesgue dominated convergence theorem that

T

li G,,(t)dt =0. 24
p;Ew 0 (1) (24)
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By (23), recall that

upe) — g 0) P < 2Ky, ity 1) — 0) P+ 2Gip 1)

t
+ 2K lup ) =g O] [l (5) = ()]s
Let us apply Lemma 2.1. Take € > 0 and set
(1) = llup (1) = ug (D), h (1) = 2K, ha(t) = 2Kq,

g(t) =2Gp4(1), h(t) = max{ 5

then, one gets for all t € [

Jup6)~ 0] = ()~ O+ &) exp ([ s) + 1)as)

+8;/Otexp(/st(h(r)+1)dr>ds
+2[(2/(:Gp,q(S)dere>é —elexp </Ot(h(r)+ 1)6“)}
+2/0l <h<s>+ 1> exp </st(h(r)+ 1)dr> <2/OSGp7q(r)dr+8> s

This along with (24) and the fact that ||u,(0) —u,(0)|| = 0, letting p,g — oo and
€ — 0, it results that |[u,(t) —uy(t)|| = 0 for all # € I. Hence

lim {luy(-) = ug(-) ]|l = 0.

Psq—°

The uniform Cauchy’s criterion therefore ensures the existence of some map
u(-) € Cy(I) such that

(4, (+)) uniformly converges to u(-). (25)
Observe that
[0 (6 (2)) = (D) < [|oan (6 (2)) = s (0) [ + [latn (1) — u()]].
Then, from (22) and (25), we infer that for any ¢ € 1
|tn(6,(2)) —u(t)|| — 0 asn — oo. (26)
From (Hé) and (16), one gets for any (r,s) € I x I

182(2,5,un (60 (5))) || < Mg, (1+L).
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Moreover, by (H;z) one has for any (¢,s) € I x I

| [/ etesanto,0as— [ et.saas
| [ (x50, - teato s
< [ l20,5.10(0a(5))) — 2 ,u(s)) s
< K [ lua(6(5) —u(s)] s,

along with (16) and (26), it follows from the Lebesgue dominated convergence
theorem that

lim =0.
n—oo

/Otg2(t,s,un(6n(s)))ds— /Ot g2(t,s,u(s))ds

Combining this with (18), then, again by the Lebesgue dominated convergence
theorem, it results

2
dt =0. Q7)

T t

’}grolo A /Otgg(t,s,un(en(s)))ds—/ogg(t,s,u(s))ds

Furthermore, note by (ngl) and (16) that for any ¢ € [
181(2,un(6n(1)))[| < My, (1+L),
along with (H;l) and (26), one deduces
181(2,un (0a(2))) — g1 (2, (1)) || < Ko, [|tn(6(1)) —u(1)[| = 0 as n — eo.

An application of the Lebesgue dominated convergence theorem gives

T
lim/ g1 (2, un(0,(2))) — g1 (t,u(r))||*dr = 0. (28)
n—e Jo

Hence, from the preceding modes of convergence in L%, (I) (see (27)-(28)), one
deduces
ha(-) — h(-) in L (1), (29)

t
where h : I — H is defined by h(r) = g1 (¢, u(r)) +/ ga(t,s,u(s))ds, t € 1.
0

Moreover, in view of (19), the sequence (i) is bounded in L2 (I) so that, up
to a subsequence that we do not relabel, we may suppose that (it,(-)), weakly
converges in L% (1) to some w(-) € L% (I).
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For any integer n and any v € H and for 0 < 7 <t < T, from the absolute
continuity of (u,(-)),, one writes

[ 015,59 = (0, 100) — ().

A passage to the limit in the equality as n tends to 4o leads to

v, /T "w(s)ds) = (v, u(t) — u(c)).

Thus, given any 7,t € [ with T <1, one gets [; w(s)ds = u(t) — u(t), and u(-)
is absolutely continuous such that w(-) coincides almost everywhere on / with
i(-). As aresult, i € L2(I) and

iy (1) = a(-)  weakly in L% (1). (30)

(C) Statement of the integro-differential inclusion.

Recall that A is a maximal monotone operator (see Proposition 2.4), along with
(9) and the preceding modes of convergence (25), (29)-(30), then, the integro-
differential inclusion

—u(t) € 81[/(t,u(t))+g1(t,u(t))+/Otg2(t,s,u(s))ds ae.tel,

holds true.
Let us now verify (6).
Passing to liminf as n tends to 4o in (13) (see (11)), using (29)-(30), it results

[ ioiar < v+o [ laeuo)+ [ gates.u)asiar.

Part 2: Uniqueness.
Let u;(+), ua(-) be two solutions to (2). Since dy/(z,-) is monotone then, one has

3 hea6) — ()P < (10,0 4)) — 1 (0, n(0)) 1) — 1 1)

+ </0tg2(t,5,u] (s))ds — /otgz(t,s,btz(s))dsyuz(f) —Ml(f)> :

By (H;) and (H;’z), it results

()~ (1) 2K a(e) — (1)

2K us(t) O] [ Neals) 1 5) s

Applying Lemma 2.1 with € > 0 arbitrary yields u#; = u and ensures the unique-
ness of the solution to the considered problem, namely (2).
The proof of the theorem is then finished. O
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The following remark ends this section.

Remark 3.2. Theorem 3.1 ensures the existence and the uniqueness of the so-
lution to the corresponding integro-differential sweeping process (see Remark
3.1 [41]). We refer to [11], for some concrete examples in this direction.

4. Ecxistence result to (1)

We are interested, here, in the study of a differential equation involving Caputo
fractional derivative coupled with an integro-differential inclusion of subdiffer-
ential type, namely (1).

Assume that o €]1,2].

Definition 4.1. Let f € L},(I), we define the Caputo fractional derivative of
order 8 > 0 by

VN B LD
DB (1) = F(n_ﬁ)/o e
with n = [B] + 1.

Definition 4.2. A mapping u : I — H is w-derivable if there exists a function

w-44 T — H such that, for each ¢ € H, the real valued function ¢ — (¢, u(t)) is

derivable on 7 and that

d
E<¢,M(I)> = <¢7W'

du

E(r», Vtel

w—% is the w-derivative of u.

Definition 4.3. Let u: I — H. The w-Caputo fractional derivative of order o > 0
of the function u is the mapping w-*D%u : I — H such that for each ¢ € H,

(¢, w-"D%u(t)) = “D*(¢p,u)(t), Vt €1

where ‘D% (¢, u) denotes the Caputo fractional derivative of order o of the real-
valued function (¢, u) : 1 — (@, u(r)).

Denote by
Wy () ={ucCu(l), i € Cy(l), “D* 'uc Cy(l), “D*u € L5(I)},

where D%~ 'y, D%y are the Caputo fractional derivatives of order & — 1 and
respectively. Denote by

w-W (1) = {u € Cy(I), w-tt € Cyy(I), w-"D* 'u € Cy(I), w-D%u € L (I)},
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where w-*D* 'y, w-°D%u are the weak Caputo fractional derivatives of order
a — 1 and « respectively.

We recall useful lemmas from [16].

Lemma 4.4. Let G:1x 1 — R be the function defined by

t—s)%"! 1 T—g)o—1 T—g)a-2 .

G(t,s) = : 1"(21) B %1[( 1“((35) "’; (r(a),l) ], ifo<s<t,
’ T—s5)%" Tg)0 .

_%[( F(gf) +(F(a)—1) ] ifr<s<T.

Then,
(1) there exists a non-negative real constant Mg such that

|G(t,5)| < Mg.

(2) Let f € L (I) and let uy : I — H be the function defined by

Way:ATGmgf@MSWeL

Then, the following hold
up € w-Wy (I,
duy

up(0) —w- 5

(0)=0.

d
up(T) +w-=2L(T) =0,

w-"D%us(t) = f(1), Yt €.
(3) Let f € Lg(1). Then, u(t) = [y G(t,s)f(s)ds is a w-W(I) solution to

w-D%u(t) = f(t) ae.t€l,
%0

Lemma 4.5. Let X : I = H be a convex weakly compact valued measurable set-
valued map such that X (t) C EBy for all t € 1. Then, the w-Wy;'”(I) solutions
set of

w-D%u(t) € X(t) ae.t€l,
u(0) —w-4£(0) =0,
u(T) +w-9(T) =0,

is bounded convex equicontinuous and weakly compact in Cy (I).
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In this section we adopt the following assumptions:
Let y : I x H — [0, 4co] be a map such that
(Hy,) For each r € I, domy/(t,-) C Y(t) C §By, where Y : I = H is a measur-
able set-valued map with convex compact values, and & is a non-negative real
constant.
Let g : I x H x H — H be a map such that
(j) &1(-,x,u) is measurable on I, for any (x,u) € H X H;
(/) there exists a non-negative real constant ng, such that

g1 (2, x,u)|| < mg, (1+||x||+ ||u|]) forall (t,x,u) €I xH xH,
(/JJ) there exists a non-negative real constant k,, such that
g1 (t,u,x) —g1(t,v,y)|| <kg, (lu—v|+]|x—y|) forallzelandu,v,x,ycH.
Let gr:1x1IxHxH — H be amap such that
(i) g2(+,-,u,x) is measurable on I x I, for any (u,x) € H X H,;

(if) there exists a non-negative real constant m,, satisfying

2 2.2 1
I’l’lg1 +4T ng < m such that

llg2(t,s,u,x)|| < mg, (14 |Jul| +|jx||) forall (z,s,u,x)€lxIxHXxH,;

(iif) there exists a non-negative real constant kg, such that

HgZ(t?*gvl"?x) —gz(t,s,v,y)H < kgz(H”_vH + HX_YH>
for all (z,s) € I x I and u,v,x,y € H.

Now, we prove the existence result to a new class of systems governed by
integro-differential inclusions of time-dependent subdifferential type and Ca-
puto fractional derivative, namely (1).

Theorem 4.6. Let y : I x H — [0,+o0] be a map satisfying (H&,)—(H&,)—(Hl?,)
Let g1 : I x H x H — H be a map satisfying (j)-(jj)-(jjJj)-

Let g5 : 1 X1 x Hx H — H be a map satisfying (i)-(ii)-(iif).

Then, there is a W-Wg (I) mapping x : I — H and an absolutely continuous
mapping u : I — H satisfying (1).

Proof. Consider the weak-Wy; ™ (I) solutions set

T
= {up: 1 H, ug(e) = [ Gle.s)f(9ds. € 53,},
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where SZ‘OFH
set-valued map ¢ — EBy. In view of Lemma 4.5, the set X is convex, bounded,
equicontinuous, and weakly compact in Cy (7).

For any h € X, let us define the maps

denotes the set of all Lj; (I)-selections of the convex weakly compact

gh(t,x) = g1(t,h(t),x), foreach (t,x) € I x H

and
gh(t,s,x) = ga(t,s,h(s),x), for each (r,s,x) € I x I x H.

It’s clear that by (/) that g (-, x) is measurable on 1, for any x € H. Furthermore,
by (jj) forall (¢,x) € I x H, one has

g1 (1) < g, (14 (|0 + 1)),
so that there exists a non-negative real constant M, such that
g1t )| < My, (1+]|x]),

where
Mg, :=myg, (1+TMgE),

using Lemma 4.4 (1). Moreover, by (jjj) for all (¢,x,y) € I x H X H, one has
g7 (2,) = g1 (e )| = llg1 (2, (2),x) — g1.(1,1(1), ) | < kg, [l —y]-

Similarly, note by (i) that g(-,-,x) is measurable on I x I, for any x € H. Fur-
thermore, by (if) for all (¢,s,x) € I x I x H, one has

185, 5.)1 < g, (1+ 1A(s) | + 1]
so that, there exists a non-negative real constant Mg, such that
83,5, )| < Mg, (1+ ],
where
Mg, :=myg,(1+TMsE),
using Lemma 4.4 (1). Moreover, by (iii) for all (z,s,x,y) € I x I x H x H, one
has

Hgg(tvsax) *gg(f,SaY)H = ||g2(t,s,h(s),x) fgz(t,s,h(S),y)H < kngX*yH'

Hence, by Theorem 3.1 there is a unique absolutely continuous solution uy, to
the integro-differential inclusion

—1p(t) € dy(t,up(t)) + g1 (2, h(t),un(t)) +/Otg2(t,s,h(s),uh(s))ds
ae.tel,
uh(O) = up € dom W(O? ')7

€1V
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with [|uy,(¢)|| < & forallz € I and [ ||its()||?dt < ¢ for non-negative real con-
stants & and { (see Theorem 3.1 and (HS,)).
Now, for each h € X, define the map

T
®(h)(1) = /0 G(t, s)up(s)ds Vi €1,

where u;, denotes the unique absolutely continuous solution to problem (31).
Since uy (1) € domy(z,-), for each 7 € I, then (H]?,) entails that u,(t) € Y(r) C
EBp, where Y (1) is a convex compact subset of H, for each 7 € I. Then, for any
h € X, one has ®(h) € Z, where

Z={us: I —-H, us(t) = /OTG(t,s)f(s)ds, fesyt,

and Z is convex compact in Cy(I) by Lemma 4.5, with ®(X') C Z C X. This
proves that ®(X) is relatively compact.

It remains to check that & is continuous on &'.

Let (hy), C X be a sequence that uniformly converges to 4 in X'. Then, for each
n € N, denote by u;,, the unique absolutely solution to

—tip, (1) Gall/(f,uhn(t))+g1(l7hn(f)7uhn(f))+/0 82(t,8,hn(s),un, (s))ds
ae.rel, (32)
up, (0) = up € domy (0, -),

such that [ ||y, (1)]|%dr < & and ||uy, (¢)|| < & forallz € 1.
Note that (up, (7)) is relatively compact for any ¢ € I (see (H;;’,)), and (up,(+))

is equicontinuous. Then, by Ascoli’s theorem there is a map u € le(l ), such
that (up, (-)) (up to a subsequence that we do not relabel) uniformly converges in
Cr (1) to u with u(0) = ug. Moreover, since [ ||iy, (¢)||>dr < &, one gets (i)
weakly converges to i in L2 (I).

From (jj) and Lemma 4.4 (1), one remarks that

g1t (t), 0, ()| < e, (1 + TMGE+E),  forallr € 1.

Furthermore, in view of (jjj), one has

181 (2, Fn(2), un, (1)) — g1.(2, h(e), u(0)) || < kg, ([17n (1) = R(2) [ + lluan, () — u(2)]])-

We know that (uy, ), (resp. (hy),) uniformly converges to u(-) (resp. h(-)), then,
applying the Lebesgue dominated convergence theorem, one gets

T
timn [ g1 (o, 0), 1, 1) — 1 (0 h(0) () Pl = 0. (33)
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Next, from (ii) and Lemma 4.4 (1), one remarks that
|\ g2(2, 8, hn(s), upn, (s))|| < mg,(1+TMgE+E), forallz e 1. (34)

Furthermore, in view of (iii), one has

182(2,8, hn (), un,, (5)) — 82(2,8, h(s), u(s)) |
< kgy ([ln () = A(s)|| + [|an, (5) = u(s)[])-

Since (up, ) (resp. (hy),) uniformly converges to u(-) (resp. h(-)), then applying
the Lebesgue dominated convergence theorem gives

H/Otgz(t,s,hn(s),uhn(s))ds—/Otgz(t,s,h(s),u(s))ds
< /t HgQ(tvS?hn(s)?”hn(s)) —gg(l,S,h(S),M(S))HdS

/ (Van(s) — h(s)[| + [, () — u(s) [ )ds — O as n — 0. (35)

From (34), one writes

’/Otgz(t,s,hn(s),uhn(s))ds

along with (35), the Lebesgue dominated convergence theorem yields

< Tmg,(1+TMgE+ &),

2

lim dt=0. (36)
n—oo J(

/Ot 82(t,8,hy(s), up, (s))ds — /Ol g2(t,s,h(s),u(s))ds

Combining (32), the uniform convergence (resp. weak convergence in L%{ (1))
of (up,) (resp. (iy,)), along with (33) and (36), then, Proposition 2.4, yields

—u(t) € dy(t,u(t))+gi(t,h(t +/ g2(t,s,h(s),u(s))ds ae.tel

Consequently, by uniqueness, one deduces u;, = u.
Now, we come back to @, one has for all t € 1

(@)~ 20 < | [ G0y )5 [ Glrsmlsyis

T
< Mo /0 i, (5) — un(s) | ds,

using Lemma 4.4 (1). Since (uy,) is uniformly bounded and uniformly con-
verges to up(+), then,

sup () (1) ~ ®()1) | — Oasn — .
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Thus, @ : X — X is continuous. An application of Schauder’s fixed point theo-
rem ensures that ® admits a fixed point A

h(t) = D) (1) = /O " Glt,5)un(s)ds, forall 1 € 1,

which means that, there exists a w-Wy"” () map / and an absolutely continuous
solution uy such that

—1iy (1) e8q/(t,uh(t))+g1(t,h(t),uh(t))+/O 22(t,5,h(s),up(s))ds
ae.tel,

w-“D¥h(t) = uy(t) a.e.rt€l,

h(0) —w-4%(0) =0,

h(T)+w-2(T) =0,
Lth(()) = ugp € dom l[/((), )
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