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SOME PROPERTIES FOR ν-ZEROS OF PARABOLIC
CYLINDER FUNCTIONS

C. BLANCHET-SCALLIET - D. DOROBANTU - B. NIETO

Abstract. Let Dν(z) be the Parabolic Cylinder function. We study the ν-zeros
of the function ν 7→ Dν(z) with respect to the real variable z. We establish
a formula for the derivative of a zero and deduce some monotonicity results.
Then we also give an asymptotic expansion for ν-zeros for large positive z.

1. Introduction

Since the mid-twentieth century, real and complex zeros of special functions
such as Bessel functions, Parabolic Cylinder functions, Hankel functions etc.
have been intensively studied for various applications in physics, applied math-
ematics and engineering.

Studies on zeros for a special function of order ν and argument z have been
performed by several authors. For example, Olver finds the z-zeros of Parabolic
Cylinder functions [14] for large values of ν . The case of Bessel functions
has been frequently studied (see for example Olver [13], Watson [17], Lafor-
gia and Natalini [9]. In [5], the author presents a selection of results on the
zeros of Bessel functions. Other authors have been interested in the z-zeros of
Hermite functions or Confluent Hypergeometric functions (see for example [6],
[7]). In [6], Elbert and Muldoon study the variation of the z-zeros of the Hermite
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function and establish a formula for the derivative of a zero with respect to the
parameter ν .

Fewer studies have been published on the ν-zeros. In [11] or [8], the authors
study the behavior of the ν-zeros of the Hankel function of the first kind. Later
on, these results were improved by Cochran [3]. Conde and Kalla [4] compute
the ν-zeros of the Bessel function. Slater [15] gives an asymptotic formula for
large ν-zeros of the Parabolic Cylinder function when z is fixed. Besides that,
little is known, about the ν-zeros of the Parabolic Cylinder function. However,
these zeros appear in the first passage time law of an Ornstein Uhlenbeck pro-
cess and other associated laws ([1], [2], [10]).

In this paper we study the ν-zeros of the Parabolic Cylinder function, the
solution of the differential equation{

y′′ (z)+
(
ν + 1

2 −
1
4 z2
)

y(z) = 0,
y(z) ∼

z→+∞
zνe−z2/4,

where the Parabolic Cylinder function, denoted Dν(z), is to be considered as
function of its order ν .

The aim of this paper is to complete Slater’s study and to propose a formula
for ν-zeros for large values of z. We also establish a formula for the derivative
of a ν-zero and deduce some monotonicity results. Since the z-zeros of Hermite
functions are linked to those of Parabolic Cylinder functions, our analysis is
based on the results of [6]. Asymptotic expressions for the ν-zeros are derived
from the expansion of Olver [14]. Our analysis is similar to that of [3] for
Hankel functions. Only real parameters are considered in this paper.

The paper is organized as follows : in Section 2 we present some properties
for the ν-zeros of the Parabolic Cylinder function Dν(z). Section 3 focusses on
the behavior of the ν-zeros for large z. Moreover, numerical verifications of the
asymptotic expansion are displayed.

2. Variation of zeros

In this section we present some properties for the ν-zeros of the Parabolic Cylin-
der function Dν(z) with respect to the real variable z. Since the function is
holomorphic (see [12], ch. 10) in the complex plane, the set of ν-zeros has no
accumulation points and there is a countably infinite number of zeros. More-
over, in the real case they are strictly positive [2]. In the following, we denote
by (νn(z))n≥1 the ordered sequence of zeros of the function ν 7→ Dν(z).

The following proposition gives some monotonicity properties of the zeros.

Proposition 2.1. For all n ∈ N∗ :
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1. The first derivative of the n− th ν-zero is given by :

∂zνn (z) =
2

√
π
∫

∞

0 e−(2νn(z)+1)u+ z2
2 tanh(u)er f c

(
z
√

tanh(u)
2

)
du√

sinh(u)cosh(u)

(1)

2. The function z 7→ νn (z) is strictly increasing and convex.

Proof. 1. Let z(ν ,α) a zero of the function z 7→ cos(α)Hν(z)+sin(α)Gν(z)
where α is fixed and Hν(z) and Gν(z) are linear independent solutions of
y′′−2zy′+2νy = 0 with Hν(z)∼ (2z)ν and Gν(z)∼ 1√

π
Γ(1+ν)z−ν−1ez2

when z →+∞. In [6], the authors compute the derivative with respect to
ν and obtain

∂ν z(ν ,α)=

√
π

2

∫
∞

0
e−(2ν+1)u+z(ν ,α)2 tanh(u)er f c

(
z(ν ,α)

√
tanh(u)

) du√
sinh(u)cosh(u)

.

Since Dν(z) = 2−
ν

2 e−
z2
4 Hν

(
z√
2

)
, then choosing α = 0 the result is a

direct. consequence of the local inversion theorem.

2. Elbert and Muldoon [6] (Corollary 7.2) prove that ν 7→ z(ν ,α) is com-
pletely monotonic : ∂νz(ν ,α)> 0, (−1)k∂ k+1

ν z(ν ,α)≥ 0, k = 1,2, . . . ,n.
The conclusion follows from the local inversion theorem.

If z = 0, Formula (1) can be simplified. Indeed, the zeros (νn(0))n≥1 of
ν 7→ Dν(0) are the positive odd integers, νn(0) = 2n−1. In this particular case,
(1) becomes:

∂zνn (z) |z=0 =
2

√
π
∫

∞

0
e−(4n−1)udu√
sinh(u)cosh(u)

=

{ 2√
π

if n = 1,
2√

π(n−1)B(n−1, 3
2)

if n ≥ 2.

Remark 2.1. We can prove that the function z 7→ νn (z) is strictly increasing
without using the form (1) of the derivative ∂zνn (z). Indeed, on the one hand,
thanks to [2] (Proposition 3.14), we have :∫

∞

z
D2

νn(z) (x)dx =−νn (z)Dνn(z)−1 (z)∂νDνn(z) (z) .

On the other hand, by differentiating Dνn(z) (z) = 0 with respect to z, we get

∂νDνn(z) (z)∂zνn (z)+νn (z)Dνn(z)−1 (z) = 0.
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Therefore

∂νDνn(z) (z) =−
νn (z)Dνn(z)−1 (z)

∂zνn (z)
.

So that we finally get

∂zνn (z) =
νn (z)

2 D2
νn(z)−1 (z)∫

∞

z D2
νn(z)

(x)dx
> 0.

As a consequence of (1), we obtain some bounds on the derivative of a ν-
zero with respect to z.

Corollary 2.1.1. The following inequalities hold

1. If z > 0, then νn (z)> 1 for all n ∈ N∗ and

4
√

π (νn (z)−1)B
(

νn(z)−1
2 , 3

2

) ≤ ∂zνn (z)≤
4e−

z2
2

√
π (νn (z)−1)er f c

(
z√
2

)
B
(

νn(z)−1
2 , 3

2

) .
2. If z < 0, then 0 < ν1(z)< 1 and νn (z)> 1 for n ≥ 2. We also have

2e−
z2
2

cν1(z)
√

πer f c
(

z√
2

) ≤ ∂zν1 (z)≤
2√

πcν1(z)
,

4e−
z2
2

√
π (νn (z)−1)er f c

(
z√
2

)
B
(

νn(z)−1
2 , 3

2

) ≤ ∂zνn (z)≤
4

√
π (νn (z)−1)B

(
νn(z)−1

2 , 3
2

) , n ≥ 2,

where cν1(z) ∈
[
1 π

2

)
is a constant depending on ν1(z).

Proof. 1. If z = 0, the zeros (νn(0))n≥1 are the positive odd integers. Since
the z 7→ νn (z) is strictly increasing (see Proposition 2.1), then for z > 0,
we get

νn (z)> νn (0)≥ ν1 (0) = 1, n ∈ N∗.

Since u is positive, then tanh(u) ∈ [0,1] and

e
z2
2 er f c

(
z√
2

)
≤ e

z2
2 tanh(u)er f c

(
z

√
tanh(u)

2

)
≤ 1.

Moreover, νn (z)> 1 for all n ∈ N∗, then

∫
∞

0

e−(2νn(z)+1)u√
sinh(u)cosh(u)

=
νn (z)−1

2
B
(

νn (z)−1
2

,
3
2

)
.
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2. On the one hand, in the case of negative z, the strictly monotonicity prop-
erty of z 7→ νn(z) gives νn (z)< νn (0) = 2n−1 for all n ∈ N∗.

On the other hand, the behavior of Dν (z) for large negative z is ([12]) :

Dν(z) = zνe−
z2
4
(
1+O

(
|z|−2))− √

2πe−νπi

Γ(−ν)
z−ν−1e

z2
4
(
1+O

(
|z|−2)) .

(2)
If ν ∈N, the dominant part (second term) in (2) vanishes and Dν(z) −→

z→−∞

0. Therefore νn(z) −→
z→−∞

n−1 for all n ∈ N∗. We deduce that for n ∈ N∗,

we have
n−1 < νn (z)< 2n−1.

If z < 0, then 1 ≤ e
z2
2 tanh(u)er f c

(
z
√

tanh(u)
2

)
≤ e

z2
2 er f c

(
z√
2

)
.

Moreover∫
∞

0

e−(2ν+1)u√
sinh(u)cosh(u)

=

{
cν ∈

[
1 π

2

)
if 0 < ν ≤ 1,

ν−1
2 B

(
ν−1

2 , 3
2

)
if ν > 1,

where cν is a constant depending on ν .

Remark 2.2. In the case z < 0, by using the inequality n−1 < νn (z)< 2n−1,
we obtain less accurate bounds depending only on n.

3. Asymptotic expansions of ν-zeros for large z

We are now interested in the behavior of ν-zeros for large positive values of z.
Since the ν-zeros are positive, we restrict ourselves to the case of real positive
ν .

Asymptotic expansion of Parabolic cylinder function
Recall that the Parabolic cylinder function Dν (z) is solution of the differen-

tial equation :

y′′ (z)+
(

ν +
1
2
− 1

4
z2
)

y(z) = 0, z ∈ C. (3)

The behavior of Dν (z) for large positive z and z >> |ν | is ([12]) :

Dν (z) = e−
z2
4 zν
[
1+O

(
z−2)] . (4)

Equation (3) has two turning points at
√

4ν +2 and −
√

4ν +2 The asymp-
totic behavior of Dν (z) changes significantly depending on the relative position
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of z with respect to the turning points. The asymptotic behavior (4) is still not
valid if z runs through an interval containing one of the turning points. In this
case, an Airy type expansion is needed to obtain those of the Parabolic cylinder
function. Its expression is ( [14], [16]) :

D 1
2 µ2− 1

2

(
µt
√

2
)

=
µ→+∞

2
√

πµ
1
3 g(µ)

(
ξ (t)

t2 −1

) 1
4

Ai
(

µ
4
3 ξ (t)

)
Aµ (ξ )+

Ai′
(

µ
4
3 ξ (t)

)
µ

8
3

Bµ (ξ )

 ,
(5)

where Ai is the Airy function of the first kind,

2
3
(−ξ (t))

3
2 =

∫ 1

t

√
1−u2du, −1 < t ≤ 1(ξ ≤ 0) ,

2
3
(ξ (t))

3
2 =

∫ t

1

√
u2 −1du, t ≥ 1(ξ ≥ 0) ,

g(µ) ∼
µ→+∞

2−
1
4 µ2− 1

4 e−
1
4 µ2

µ
1
2 µ2− 1

2

(
1+

1
2 ∑

s≥1

2sγs

µ2s

)
and the coefficients γs are defined by

Γ

(
1
2
+ z
)

∼
z→+∞

√
2πe−zzz

∑
s≥0

γs

zs .

More details on these coefficients γs and their computation can be found in [14],
pages 134-135. For example, Olver finds for s ≤ 4 :

γ0 = 1, γ1 =− 1
24

, γ2 =
1

1152
,

γ3 =
1003

414720
, γ4 =

4027
39813120

.

The functions Aµ and Bµ satisfy Aµ (ξ ) ∼
µ→+∞

∑s≥0
As(ξ (t))

µ4s , Bµ (ξ ) ∼
µ→+∞

∑s≥0
Bs(ξ (t))

µ4s , where the coefficients As (ξ (t)) and Bs (ξ (t)) are given by

As (ξ (t)) = ξ (t)−3s
2s

∑
m=0

βm

(
ξ (t)

t2 −1

) 3
2

(2s−m)u2s−m(t),

Bs (ξ (t)) =−ξ (t)−3s
2s+1

∑
m=0

αm

(
ξ (t)

t2 −1

) 3
2

(2s−m+1)u2s−m+1(t),

α0 = 1 and αm =
(2m+1)(2m+3) . . .(6m−1)

m!(144)m ,βm =−6m+1
6m−1

αm

and us(t) are polynomials in t of degrees 3s (s odd), 3s− 2 (s even, s ≥ 2) and
they satisfy the recurrence relation

(t2 −1)u′(t)−3stus(t) = rs−1(t),
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where

8rs(t) = (3t2 +2)us(t)−12(s+1)trs−1(t)+4(t2 −1)r′s−1(t).

Formula (5) gives the asymptotic behavior of Dν (z) if z runs through an
interval containing the turning point

√
4ν +2. Near the other turning point

−
√

4ν +2 (so when z < 0), the asymptotic behavior of Dν (z) is given by an-
other formula (see [14], (9.7.)). As in this section we study the ν-zeros only in
the case of large positive z, this second formula will not be useful here.

Remark 3.1. If z belongs to an interval containing the other turning point
−
√

4ν +2, the study of the asymptotic behavior of the zeros is easier. The
zeros tend to positive integers.

Indeed, in this case the asymptotic behavior of the Parabolic cylinder func-
tion is given by ( [14], [16]) :

D 1
2 µ2− 1

2

(
−µt

√
2
)

=
µ→+∞

2
√

πµ
1
3 g(µ)

(
ξ (t)
t2−1

) 1
4

[
sin
( 1

2 πµ2)(Ai
(

µ
4
3 ξ (t)

)
Aµ (ξ )+

Ai′
(

µ
4
3 ξ (t)

)
µ

8
3

Bµ (ξ )

))

+ cos
(

1
2

πµ
2
)Bi

(
µ

4
3 ξ (t)

)
Aµ (ξ )+

Bi′
(

µ
4
3 ξ (t)

)
µ

8
3

Bµ (ξ )

 , (6)

where Bi is the Airy function of the second kind. Recall that ([13])

Ai(z) ∼
z→+∞

1
2
√

π
z−

1
4 e−

2
3 z

3
2 Ai′(z) ∼

z→+∞
− 1

2
√

π
z

1
4 e−

2
3 z

3
2 ,

Bi(z) ∼
z→+∞

1√
π

z−
1
4 e

2
3 z

3
2 Bi′(z) ∼

z→+∞

1√
π

z
1
4 e

2
3 z

3
2 .

As the factor Bi
(

µ
4
3 ξ (t)

)
Aµ (ξ )+

Bi′
(

µ
4
3 ξ (t)

)
µ

8
3

Bµ (ξ ) goes to infinity when

µ →+∞, to obtain the zeros of D 1
2 µ2− 1

2
we must cancelled this terme. If 1

2 µ2 =

n+ 1
2 in (6), the cosine vanishes and, hence, the dominant part vanishes.

Asymptotic expansion of ν-zeros
For large positive values of z, the ν-zeros of Dν(z) are linked to an, n =

1,2, . . . , the zeros of the Airy function (Ai(an) = 0). The zeros of Ai have been
studied ([13]). Olver shows that they are all real and negative. They may be
expressed asymptotically as

an ∼
n→+∞

−
(

3π

2

(
n− 1

4

)) 2
3

.

The following proposition gives the behavior of νn (z) when z → ∞.
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Proposition 3.1. For large positive z, we have :

νn (z) =
z2

4
− 1

2
− z

2
3 2−

2
3 an +O

(
z−

2
3

)
, (7)

where an, n = 1,2, . . . are the zeros of the Airy function.

Proof. We apply the method given in [3] to compute the zeros of the Hankel
function.

Taking µ =
√

2ν +1 in (5), the original argument z of Dν(z) has temporarily
been replaced by t (ξ )

√
2
√

2ν +1. The ν-zeros of Dν

(
t (ξ )

√
2
√

2ν +1
)

are
given asymptotically by the ν-zeros of the right hand side of (5). These zeros
in turn appear to be given by the ν-solutions of Ai

(
(2ν +1)

2
3 ξ (t)

)
= 0, from

which we deduce that
(2ν +1)

2
3 ξ (t)∼ an,

as ν →+∞. Since an is negative, then ξ (t)< 0. Hence we obtain the asymptotic
relation between zeros of the Airy function and ν-zeros of the Parabolic cylinder
function (we restore the original argument z = t (ξ )

√
2
√

2ν +1):(
an

ξ (t)

) 3
2

∼ 2νn +1 =
z2

2t2 (ξ )
,

where ξ and t are related by the relation 2
3 (−ξ (t))

3
2 =

∫ 1
t

√
1−u2du. We de-

duce that the limiting case that gives rise to large values of z (so large values of
νn) is ξ (t) → 0. As ξ is negative, so the case ξ (t) ↑ 0 is associated with the
behavior of the ν-zeros of Dν(z) for large positive z. We easily deduce that if
ξ (t) ↑ 0, then t ↑ 1 and t (ξ ) = 1+2−

1
3 ξ − 1

10 2−
2
3 ξ 2 +o

(
ξ 3
)
.

Thus, for z → ∞,

2ν j +1 =
z2

2t2 (ξ )
=

z2

2
1(

1+2−
1
3 ξ − 1

10 2−
2
3 ξ 2 +o(ξ 3)

)2

=
z2

2

(
1−2

2
3 ξ +

1
5

2−
2
3 ξ

2 +o
(
ξ

3))
=

z2

2
− z

2
3 2

1
3 a j +

1
10

2
2
3 z−

2
3 a2

j + z−2O(1) .

Remark 3.2. The expansions (7) are still valid for complex values of the pa-
rameters.
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Numerical verification
The values of the function ν 7→ Dν (z) exceed the computer capabilities,

the zeros are no longer observable and computable. For large values of z, the
function oscillates between +∞ and −∞, so numerical verifications will be per-
formed for moderate values of z. To check the quality of our results, we compare
graphically the ν-zeros given by the asymptotic expansion (7) with those of the
function. The computations are done in Python.

Figure 1: Comparison of ν-zeros of Dν (z) for z = 23 with the asymptotic de-
velopment (7)

.

Figure 1 provides the graph of the Parabolic Cylinder functions Dν (23) in
blue. The small red crosses mark the ν-zeros calculated with the formula (7).

We observe that, although the asymptotic formula (7) is for large z, for
z = 23 we already obtain acceptable estimates. We clearly see the loss of accu-
racy, but numerical right shift of the ν-zeros estimated with (7) can be explained
as follows. Since simulations cannot be performed for very large z, as n increase,
the zeros of Airy function become dominant on (7). The quantity −z

2
3 2−

2
3 an > 0

becomes too small, which involves a right shift on the simulation. This example
shows that our formula allows to evaluate the first five ν-zeros even for moder-
ates values of z.
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