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S1 Image pre-processing algorithm implementation

Since the pixel intensity value of the noise is comparable to those inside the clot domain, running a general-
purpose denoising algorithm on the image directly does not remove the noise e↵ectively. To alleviate this
problem, we binarize the image such that the pixel intensity above a specific intensity value is set to 1 and
the rest is 0. In this work, we binarize the image based on the pixel intensity distribution of the image
according to the following formula

Ipbin =
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>><

>>:

1 if Ip � I + ��

0 otherwise

(S1)

Where Ip is the intensity of pixel p, Ipbin is the binarized version of pixel p, I is the mean pixel intensity
value of the image, � is the standard deviation of the image’s pixel intensity distribution, and � is a constant
parameter that can be tuned. A typical � value used in this study is 1.5. As shown in panel b of figure S1 ,
binarizing the image di↵erentiates the bright, sparsely spaced (noisy) regions from the bright, tightly packed
thrombus region.

S2 Automated clot boundary selection algorithm

After the image frames are pre-processed, and the boundary is segmented, the ending result may contain
multiple disconnected segments (see panel c of figure S2). In this work, we pick the boundary with the largest
perimeter as the final clot domain boundary. To perform this selection automatically, the boundary pixels
are represented as a graph where each boundary pixels are the graph vertex. Vertex connectivity is defined
as pixels that share a corner or an edge. The algorithm performs a depth first search (DFS) graph traversal
starting from an initial vertex v0 until every vertex in the locally connected graph is visited. These visited
vertices are marked with an index value, and a new starting vertex v0 is selected from the list of un-visited
vertices. The algorithm continues until every boundary pixel on the graph is visited. The boundary with
the largest number of boundary pixels is selected as the clot boundary.

S3 Clot boundary interpolation between time steps

Points along the boundary are linearly interpolated in time to obtain the clot boundary geometry between
subsequent time increments. Since the clot boundary is a closed curve for our model purposes, we interpolate
between points on the boundary with the same angle to the geometric center of mass of the clot. This process
can be seen as drawing rays radially outward from the clot geometric center of mass and interpolate clot
boundary points between intersecting points along those rays S3. A tree search algorithm is used to e�ciently
locate the intersection point between each ray and the B-Spline curve that represents the boundary of the
clot. The tree search recursively performs local curve refinement until an intersection point with the desired
tolerance is found. The complete algorithm description for the tree search is provided in Algorithm 2. The
interpolation accuracy of the clot boundary across time increments was further examined by down sampling
the image data and re-interpolating the temporally down sampled images between each frame. The data
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was down sampled by removing every two frames between the images. The boundary of the removed frames
were then interpolated using the IVISim framework, and examined against the original boundary as directly
obtained from the original image stack. The down sampling analysis and comparison was performed on
the CD41 channel as the shell of the clot has the most dynamic features. Figures S4 and S5 present the
interpolated boundary from the down sampled image (marked in yellow lines), and the extracted boundary
from the original image stack (marked in red line), for both WT and diYF knockout cases respectively. We
observe that the interpolated boundaries show excellent agreement.

S4 Details of finite element numerical formulation

S4.1 Blood flow numerical formulation

Blood is assumed to be an incompressible, Newtonian fluid. Flow around the thrombus is computed using the
unsteady Navier-Stokes equation. Flow inside the porous thrombus domain is modeled using the Brinkman
equation for low Reynolds number flow inside porous media [39]. The system is solved using a Petrov-
Galerkin stabilized finite element. Briefly, let ⌦ be the fluid (blood) domain, and � = @⌦ is the domain
boundary. The flow equations are solved using a Petrov-Galerkin stabilized formulation of the Navier-Stokes
equation with the overall weak form stated as follows:
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where we use the notation (a, b)⌦ =
R
⌦ a · b d⌦; µ, ⇢ are averaged whole blood dynamic viscosity and density

respectively; u, p are the velocity and pressure trial functions; v, q are the respective test functions; Ru is
the momentum residual; ⌧u and ⌧p are the velocity and pressure stabilization terms [40]; Kf is thrombus
permeability. Thrombus permeability is modeled as a function of thrombus porosity � using the Kozeny-
Carman relation:

Kf =
�3

150(1� �)2
(S3)

S4.2 Chemical transport numerical formulation

The mass transport problem is solved using the SUPG stabilized unsteady advection di↵usion equation.
We model hindered di↵usion inside the clot domain by assigning di↵erent di↵usivity value inside the clot.
Discontinuity in the di↵usivity field leads to instability which requires additional stabilization. In this work,
we use the continuous interior penalty stabilization method outlined in [41] which are briefly defined as
follows
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where w and c are the standard test and trial functions of the concentration field respectively; u is the
background flow velocity; J(w, c) is the continuous interior penalty stabilization parameter defined as
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where [a] = a
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is the jump of value a across element facet @⌦e; h@⌦e is the measure of facet @⌦e;

variable u? is a vector perpendicular to the flow velocity u; � and �? are constant parameters.
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S5 Additional illustrations

Here we include two additional illustrations that supplement the data and content in the main manuscript.
First, Figure S6 supplements the observations discussed in Section 3.4 and Figure 7. Here we provide
estimates of the pressure force, the shear force, and the sum total of both for the WT and diYF mouse
clots studied in this manuscript. The panels a-c in Figure S6 establishes that the pressure force is dominant
compared to the shear force, and justifies our choice of including the total hemodynamic force to account for
relative variabilities between pressure and shear. Second, Figure S7 supplements the observations presented
in Section 3.1 regarding comparisons of trends in clot kinematics as extracted using the automated approach
in IVISim and those obtained from averaging of clot kinematics extracted using a non-automated method
across multiple mouse experiments.

S6 Sensitivity analysis for image processing

In this analysis, we examine the sensitivity of the segmented image area and aspect ratio to the image pro-
cessing parameters for IVISim. For this purpose, we implemented an integration of the IVISim codebase with
the open source library Dakota [47, ?]. Dakota is a specialized library for conducting parameter sensitivity,
uncertainty quantification, and optimization. For our sensitivity analysis, the sampling of image process-
ing parameters was done using the Latin hypercube sampling technique implemented within Dakota. The
bounds of the image processing parameters distributions were chosen based on an initial manual inspection
of the segmentation results to ensure no unfeasible parameter ranges are specified as inputs.

S6.1 Analysis with synthetic image data

To examine the sensitivity to image processing parameters, we developed a set of synthetic ellipsoidal clot
image data with added noise. The added noise over the entire analysis domain is a Gaussian noise centered
at 0 with standard deviation equal to the standard deviation of the microscopy image pixel intensities. The
background intensity level of the overall image is the mean intensity value of the microscopy image pixels
outside of the imaged clot domain, and the ellipse pixel intensity is two standard deviations higher than the
background intensity. With the synthetic ellipsoidal image based tests, we have the advantage of knowing an
exact clot area, aspect ratio, and boundary locations, which can be compared against the segmented value
using our methodology. For our analysis, we chose synthetic elliposidal images with aspect ratio equals to
0.5, 0.75, and 1.0, which correspond to Figures S8, S9, and S10 respectively. The panel b. represents the
ellipse geometry on a background grid, the panel c. represents the synthetic image version of the ellipse that
is used for sensitivity analysis. Panel a. in these figures represent the output from the sensitivity analysis
conducted through the integration of IVISim with Dakota. The analysis tested variations in the four key
parameters for the image processing module as described in Section 2.2, S1, and S2: namely threshold �,
median filter size, Gauss filter size (or blur size), and Gauss filter standard deviation (or blur strength).
We quantified area and aspect ratio of the segmented image with reference to that of the exact specified
ellipsoid, and in general observe that the segmentations reproduce the same ellipsoid with an error range of
5-10% as observed across Figures S8, S9, and S10.

S6.2 Analysis with microscopy image data

We further extended the sensitivity analysis to image processing of the microscopy data. The same procedure
stated above has been followed, but for images at individual instances in time. Figure S11 presents the results
from the Dakota Latin Hypercube Sampling analysis for one such sample image at one instant in time. Panel
b. shows the overlay of multiple segmentation outputs all superposed into one image, and we observe that
the segmented outline (marked in red) is very robust across changes to the four image processing parameters
identified above. For this image, the main variations are observed in the low intensity tail/distal region of the
clot. Panel a. shows that within the chosen range of image processing parameters, the resulting area varies
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within approximately  10% of the mean value, and aspect ratio varies within approximately  5% of the
mean value. Here, we note that the computed aspect ratio is the aspect ratio of the segmented boundaries
oriented as shown in Figure S11b.

S7 Additional illustrations: Animations

Two di↵erent animations have been provided as supplementary information for this manuscript, to visualize
the unsteady clot hemodynamics interactions obtained from IVISim workflow. The first animation movie file
named: sup-movie-wt.mp4 demonstrates the evolution of clot kinematic and force-deformation through
time for the wild type (WT) mouse model described in the manuscript. The second animation movie file
named: sup-movie-diyf.mp4 demonstrate the same for the diYF knockout mouse model described in the
manuscript. The clot image presented is that of the CD41 channel which constitute the solid region of the
clot domain. Each animation provides also the dynamic computed predictions of clot shape and flow-induced
stresses on the clot boundary, for a total duration of 165 seconds (that is 2 mins and 45 seconds) of real
time.
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S8 List Of Algorithms

Algorithm 1 Algorithm implemented for the selection of largest boundary segment in the IVISim automated
image processing module.

G = Graph representation of boundary pixels
V = Set of all vertices in G
visited[v] = False 8 v 2 V
color[v] = 0 8 v 2 V
c = 0
for v0 2 V do

if not visited[v0] then
U = DFS(G; v0) . U is an array of all visited nodes from DFS(G; v0)
visited[u] = True 8 u 2 U
color[u] = c 8 u 2 U
c+ = 1

end if
end for

Algorithm 2 Algorithm implemented for B-spline - ray intersection within IVISim automated image pro-
cessing module

r✓ = Ray emanating from the clot center of mass at the angle ✓
C = B-spline curve where C(s) is the coordinate point on the curve at parameter s
s = [0, 1/3, 2/3]
`(s) = [(s[0], s[1]), (s[1], s[2]), (s[2], s[0])]
sij = (s[i], s[j]) 2 `(s) is a line segment bounded by C(s[i]) and C(s[j]) that intersects r✓
while length(sij) > tol do

s0 = [si, si +
1
3 (sj � si), si +

2
3 (sj � si), sj ] . Subdivide into four points evenly spaced in s

sij = (s[i], s[j]) 2 `(s0) where sij intersects with r✓.
end while
return C((sij [1] + sij [0])/2) . Intersection point is the midpoint between the line segment bounds
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S9 All Supplementary Figures

Figure S1: (a) Raw image is obtained from intravital microscopy experiment; (b) image is binarized to remove
most of the non-clot domains; (c) salt and pepper noise is removed using median filter; (4) clot is smoothed
out using gaussian filter.
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Figure S2: (a) Filtered image is segmented using k-means clustering; (b) canny edge detection is used to
get boundary pixels; (c) disconnected boundary are sorted by its perimeter length; (d) the boundary with the
largest perimeter is selected as the clot domain.
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Figure S3: (a) Clot boundary is interpolated between frames by interpolating between points intersecting a
ray emanating from clot center; (b,c,d,e) intersection point is e�ciently computed by successively reducing
line segment size.
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Figure S4: Interpolated boundary from a down sampled image frames compared to the original segmented
boundary data for the wild type data set. The avg. error is the average point-wise distance from the original
and interpolated boundary along the same interpolating ray.
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Figure S5: Interpolated boundary from a down sampled image frames compared to the original segmented
boundary data for the diYF data set. The avg. error is the average point-wise distance from the original and
interpolated boundary along the same interpolating ray.
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Figure S6: Components of the clot-hemodynamic interaction force and clot force-deformation behavior: a)
pressure force; b) shear force; c) total force.
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Figure S7: Illustration of a quantitative comparison for the one WT mouse model sample clot domain
kinematics data against the averaged clot domain kinematics trends as reported in [30], where the clot domain
is interpreted from the CD41 fluorescence signal intensities. The more accurate automated reconstruction
approach outputs agree reasonably well with the statistically averaged trends from multiple mice, obtained
using a non-automatic reconstruction algorithm.
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Figure S8: a) Sensitivity of the segmented boundary; b) baseline synthetic image; c) noisy image with seg-
mented boundary overlay.
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Figure S9: a) Sensitivity of the segmented boundary; b) baseline synthetic image; c) noisy image with seg-
mented boundary overlay.
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Figure S10: a) Sensitivity of the segmented boundary; b) baseline synthetic image; c) noisy image with
segmented boundary overlay.
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Figure S11: CD41 channel a) Variability of the segmented boundary based on varying image segmentation
parameters; b) all segmented boundaries overlay on the clot image.
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Figure S12: P-Selectin channel a) Variability of the segmented boundary based on varying image segmentation
parameters; b) all segmented boundaries overlay on the clot image.

xvii


	Introduction
	Methods
	Intravital microscopy in a mouse laser injury model
	Automated segmentation workflow
	Image pre-processing
	Image segmentation and clot boundary identification

	Reconstruction of clot dynamics
	Front tracking algorithm for moving clot domain marking
	Moving fictitious domain stabilized finite element formulation
	Flow and transport modeling
	Dynamic clot domain properties

	Simulation case-studies

	Results
	Characterization of in vivo dynamic flow environment around a clot
	Validation of model predictions using cAlb transport
	Comparing clot-flow interactions across the WT and diYF models
	Characterization of flow-induced clot deformation properties

	Discussion
	Image pre-processing algorithm implementation
	Automated clot boundary selection algorithm
	Clot boundary interpolation between time steps
	Details of finite element numerical formulation
	Blood flow numerical formulation
	Chemical transport numerical formulation

	Additional illustrations
	Sensitivity analysis for image processing
	Analysis with synthetic image data
	Analysis with microscopy image data

	Additional illustrations: Animations

	List Of Algorithms
	All Supplementary Figures



