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ABSTRACT Corrosion under insulations is described as localized corrosion that forms because of moisture
penetration through the insulation materials or due to contaminants’ presence within the insulation mate-
rial. The traditional non-destructive inspection techniques operating at a low frequency require removing
insulation material to enable inspection, due to poor signal penetration. Several high-frequency inspection
techniques such as the microwave technique have shown successful inspection in detecting the defect under
insulations, without removing the insulations. However, the microwave technique faces several challenges
such as poor spatial imaging, large errors in terms of defect size and depth owing to stand-off distance
variations, optimal frequency point selection, and the presence of the outlier in microwave measurement data.
The microwave technique in conjunction with machine learning approaches has tremendous potential and
viability for assessing corrosion under insulation. This paper provides an in-depth review of non-destructive
techniques for assessing corrosion under insulation, as well as the possibility of using machine learning
approaches in microwave techniques in comparison to other conventional techniques.

INDEX TERMS Corrosion under insulation, machine learning-based technique, microwave non-destructive
testing.

I. INTRODUCTION

Corrosion Under Insulation (CUI) is a severe defect in various
critical applications, especially in nuclear, marine, aerospace,
power generation, and oil and gas industries [1]-[6]. In these
industries, the corrosion is grown invisibly in the metal
substrate under insulation due to the intrinsic coating
imperfections, humidity, and water invasion that makes struc-
tural thinning [7]-[9]. This structure’s weakness can lead to
a catastrophic failure on asset integrity which has several
adverse consequences, including production losses, mainte-
nance cost, environmental pollution, and personnel risk in
terms of health and safety [10]-[12]. Therefore, an accurate
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and quick inspection for CUI detection is required to avoid
the aforementioned consequences and enhance the system’s
overall integrity.

Various inspection techniques are commonly used to detect
CUI. Among the CUI detection techniques, mass loss mea-
surement [13] is one of the simplest methods to inspect
the structure and detect the CUI. The mass loss measure-
ment is based on the weight variation between the defected
and defect-free specimens. The weight variation occurs due
to the CUI causing significant loss to the weight of the
defective structure. However, the mass loss approach can
not accurately evaluate the CUI due to no guarantee that
the loosed weight is because of the CUI or related to other
factors. Moreover, the mass loss inspection is costly and
time-consuming due to the cleaning process using alcohol
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and the required drying time, which is not practical in real-
world applications [13]. On the other hand, Non-Destructive
Testing (NDT)is a promising concept in real-world appli-
cations to detect, monitor, and obtain valuable information
about CUI severity. An NDT technique can evaluate material
integrity for surface or sub-surface defects or metallurgical
conditions without interfering in any way with the destruc-
tion of the material or its suitability for service [14]. In the
industrial sector, there are several types of conventional NDT
techniques that are routinely employed, such as Scanning
Kelvin Probe (SKP) [15], Giant Magneto Resistive (GMR)
[16], eddy current [17] and ultrasonic testing [13]. These
conventional techniques have their benefits and drawbacks in
terms of safety, expenditures, processing time, and efficiency
of the inspected materials. In terms of inspection efficiency,
the performance of the aforementioned NDT techniques is
degraded due to the field penetration limitation through the
dielectric insulations [18], [19].

Recently, microwave NDT has emerged as a promising
technique for corrosion detection under dielectric insula-
tions. The electromagnetic waves at a frequency range of
300 MHz — 300 GHz can penetrate the dielectric insulation
and interact properly with the metal surface [20]-[23]. The
variations in the reflected signals can reveal and evaluate the
CUI [22], [24], [25]. Compared to conventional NDT tech-
niques, microwave NDT can perform a non-contact scanning,
inexpensive one-side inspection, and it does not require a cou-
plant material or controlled environment to interact with the
inspected material. Although these advantages, microwave
NDT faces several challenges such as poor spatial imaging
due to the stand-off distance variations [26], [27], which
reduce the sensitivity of the corrosion detection and locat-
ing. Moreover, the nonlinear growth of microwave signal
attenuation due to the surface roughness degrades the corro-
sion level estimation accurately [28], [29]. These microwave
NDT challenges still exist because most of the utilized tech-
niques are based on simple signal processing, such as single
frequency point selection [30].

Nowadays, several studies have recommended machine
learning techniques to improve the inspection quality and reli-
ability of microwave NDT [27], [30]-[33]. Machine learn-
ing techniques have an outstanding performance in various
real-world applications such as biomedical [34]-[37], image
processing [38]-[40], and language processing [41]-[43].
Moreover, machine learning techniques have been success-
fully used with conventional NDT techniques for detecting
and evaluating various types of defects [44]-[46]. The perfor-
mance of conventional NDT techniques has been improved
significantly after utilizing suitable machine learning algo-
rithms for CUI detection [47]-[49]. However, minimal work
is conducted using microwave NDT based on machine learn-
ing techniques for CUI detection and evaluation [22], [26],
[50]. In this paper, the prospect of using machine learning-
based microwave NDT technique for CUI is comprehensively
reviewed. After presenting the introduction herein, Section 2
discusses the conventional NDT techniques, including their
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FIGURE 1. X-ray radiography inspection setup.

advantages and disadvantages. Section 3 explains the uti-
lized microwave sensors in NDT applications by comparing
their processing techniques. Section 4 presents the stages
of microwave NDT for CUI detection based on machine
learning in terms of pre-processing, features extraction, and
classification modules.

Il. CONVENTIONAL NDT TECHNIQUES

Various conventional NDT techniques are well established
in the industry, such as x-ray, thermography, eddy currents,
Giant Magneto Resistive (GMR) [16], Scanning Kelvin Probe
(SKP) [15], eddy currents [17]. These techniques can be per-
formed on various structures in terms of conductive and non-
conductive materials to evaluate different types of defects
such as cracks, delamination, and debonding. However, CUI
detection and accurate severity evaluation are still challeng-
ing for these conventional techniques [5], [22], [51], [52],
as discussed in this section.

A. X-RAY INSPECTION

One of the radiography inspection methods for distinguishing
the distortion of permeating radiation in materials is the
X-ray inspection approach [22]. The X-rays technique uses
short wavelength electromagnetic radiation to photograph the
structure’s profile and determine the thickness of the sample
under test [53]. A detector measures the quantity of radia-
tion that goes through the sample being tested. Compared
to defect-free locations, voids and discontinuities change the
quantity of the received radiations at the detector, which
leads to highlighting the thickness variations in the inspected
specimen, as shown in Figure 1.

Compton X-ray backscattering approach is utilized in
epoxy-coated mild steel to identify and analyze the corrosion
undercoating [54]. The thickness variation of the specimen
under test is represented by the radiographic image and the
typical profile of grey values in the radiographic image.
The presence of thickness loss reveals the corrosion damage
in the specimen. The degree of corrosion of the test sample
is proven by the greyscale image created by scanning the
test sample in a stepwise motion. However, the quantitative
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FIGURE 2. Passive and active modes thermography inspection
technique [26].

information obtained from the grayscale of the detected cor-
rosion cannot estimate the corrosion level accurately. More-
over, performing X-ray inspection requires protection due to
the long exposure to X-ray radiation leads to health and safety
implications [55].

Employing machine learning in X-ray inspection approach
is feasible to accurately detect and cluster the corro-
sion and corrosion-free regions. Linear Discriminant Algo-
rithm (LDA) is used in X-ray photoelectron spectroscopy
technique for classifying the defect area of copper cylinder
coated with epoxy resin [56]. LDA is a common preprocess-
ing approach for dimensionality reduction to find a linear
projection of high-dimensional observations into a lower-
dimensional space [57]. In addition, LDA can define optimal
linear decision boundaries in the resulting latent space for
pattern classification applications [58]. The study presents
81.6 % accuracy in discriminating between the corrosion and
corrosion-free regions in the copper undercoating.

B. THERMOGRAPHY INSPECTION

The thermography inspection approach can eliminate the
health and safety issues due to radioactive sources. This
approach is another NDT technique for observing the tem-
perature distribution of the Sample Under Test (SUT) [59].
The temperature distribution is captured using an infrared
camera that sensitive to small thermal variations. Thermog-
raphy inspection techniques are classified into passive and
active thermography, as shown in Figure 2 [26]. The passive
thermography analysis is performed under the two mediums
in thermal disequilibrium, while the active thermography is
performed by modifying the temperature of the medium using
artificial heat sources such as a lamp, laser, and ultrasonic.
The shape of the defects is detected as different temperature
distributions compared to the non-defect area.

An active thermography inspection approach with a heat
chamber is used in the metal shingles to detect and ana-
lyze the corrosion without removing the coating layer [60].
This technique is applied to inspect metal with the coated
paint layer. The thermal contrast is recorded and analyzed by
the Maximum Normalized Temperature Difference (MNTD)
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analysis. The MNTD analysis aims to obtain the temperature
difference between the corroded and non-corroded regions.
The finding shows that the thermal contrast changes with the
presence of corrosion. This technique is a non-contact inspec-
tion technique. It is possible to track high temperatures and
hazardous objects safely [61]. However, the thermal contrast
between the corroded and non-corroded areas is influenced
by the type of coatings.

In terms of active thermography, Pulsed Thermogra-
phy (PT) is less influenced by the type of coatings. The PT
technique is a rapid NDT technique for heating the surface
of SUT using a high-intensity pulse of light [62]. This tech-
nique is applied to inspect epoxy coating with ceramic flakes
[63]. A sequence of thermograms is obtained and used to
inspect the corrosion undercoatings. The study presents that
all the CUIs with different coatings are detected. In addition,
the changes in thermal contrast between the defects in either
the coating layer or metal layer present a significant success.
However, there are no significant changes in the thermal
contrast between flat and conical bottom holes. Hence, the
PT technique cannot significantly determine the form of the
CUI and, worse yet, the CUI depth. Moreover, thermography
NDT provides less quantitative information about sub-surface
defects in the case of thick insulation layers [30].

Grosso et al. [63] deploy the Finite Element Model (FEM)
for the post-processing of the defect identification in this
study to determine the shape of the CUI [63]. FEM is a
computation approach that has been used to find approxi-
mate solutions to differential equations [64], [65]. The FEM
subdivides a large system into smaller, simpler parts called
finite elements. The FEM model aids in determining the
diameter of the defects in this investigation since the diameter
of the defects impacts the temperature value presented as
well as thermal contrast. The thermal contrast between flat
and conical bottom hole defects is effectively shown using
the FEM model. This research also shows a good correlation
between the experimental and simulated data. On the other
hand, the FEM model is unable to classify the defects as it is
not a clustering algorithm.

Machine learning algorithms have been employed in the
infrared thermography approach to classify defects. A Per-
ceptron Neural Network (PNN) model is hybridized with the
pulsed infrared thermography approach for classifying the
corrosion and corrosion-free regions in the aluminum with
fiberglass coating automatically [55]. PNN is a feed-forward
neural network used to learn and classify the input vectors
into the class with the most similar characteristics [66]-[68].
The PNN model succeeds in yielding 94 % corrosion
classification. However, owing to heat dispersion from the
surrounding defects, there are still inaccuracies in the clas-
sifications of non-defect zones. The edges of the corrosion
are also incorrectly characterized. In addition, to train well-
performing models, the PNN model necessitates a large num-
ber of training samples.

In order to reduce the detection error rate using significant
contrast, CNN is employed with thermography inspection
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FIGURE 3. The principle of eddy current [26].

to classify the defect and non-defect area in Carbon Fiber
Reinforced Polymers (CFRP) sample [69]. The thermog-
raphy inspection result can be distinguished depending on
the temperature variation between the defect and defect-
free components. The results illustrate that the CNN model
improves defect identification by generating a clearer contrast
between the defect and defect-free areas. Additionally, the
CNN model is more resilient to thermal signal distortions,
which are ambient noise and non-uniform heating. However,
the CNN model requires a massive training sample to train a
relatively accurate model.

C. EDDY CURRENT TESTING

Eddy Current Testing (ECT) technique can provide quan-
titative information such as the depth of CUI. The ECT
approach is commonly used for inspecting the conductive
materials in heavy industries to detect surface and subsurface
defects [70], [71]. A primary transmitter coil is used in the
ECT probe to establish magnetism surrounding the inspected
metallic location, as shown in Figure 3 [26]. As a result,
eddy currents are induced on the metallic specimen. The eddy
currents generate a secondary magnetism that is polarized in
the opposite direction as the source field [72]. In the case of
defect presence, eddy currents become weak and influence
the secondary magnetic field [73]. The difference in the
magnetism is measured using a coil or a magnetic sensor to
differentiate between the defect and defect-free locations.

In terms of CUI, the method concept in [74] has employed
ECT to predict the level of corrosion in insulated steel plates.
The amplitude of obtained signals is normalized and used to
represent the level of corrosion. The CUI is clearly observed
due to the linear correlation between the level of CUI and
normalized signals’ amplitude. However, a pre-knowledge is
required to select the efficient parameters that can effectively
represent CUI [75]. Moreover, the ECT is sensitive to lift-off
variations between the probe and the inspected surface, which
degrades the depth penetration [76], [77].

Pulsed Eddy Current (PEC) technique is proposed to
enhance the penetration of Eddy current [72]. The pulsed
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magnetic field used can penetrate between the probe and
Sample Under Test (SUT) via any non-magnetic substances.
It improves the penetration depth of CUI inspection for dif-
ferent depths by applying a single pulse [72]. PEC is used to
examine the presence of CUI in the gas pipeline [78], [79].
In this case, the signal amplitude represents the depth of the
corrosion. The study shows that conventional EC testing can
predict the depth of CUI, but PEC can enhance the penetration
depth of the magnetic field. However, there is a limitation on
the lift-off distance for the measurement, which affects the
accuracy of the measurement. The PEC technique needs to be
carried out the measurement in the Lift-Off Intersection (LOI)
area to eliminate the lift-off distance effect.

Leveraging the PEC technique, a supervised machine
learning algorithm has evolved to improve the measurement
accuracy of a predicted thickness of the sample [80]. This
work employs Gaussian Process Regression (GPR) model to
predict the wall loss in coated carbon steel sample, which
illustrates the corrosion under insulation. GPR model is a
non-parametric, Bayesian approach to modeling the uncer-
tainty of the prediction [81], [82]. GPR model calculates the
probability distribution over all functions that fit the data [83],
[84]. The experimental result with the GPR model achieves
lower nominal errors and error variances. This framework
also improves the scanning speed and reduces the inspection
time of the sample. However, larger datasets increase the
evaluation time of the sample. In addition, the accuracy of
the prediction decreases.

D. GIANT MAGNETO RESISTIVE

Giant Magneto Resistive (GMR) is usually used to inspect the
surface and subsurface defects in conductive and magnetic
materials [85]. GMR employs a ferromagnetic layer in which
the electron orientation is easily manipulated by applying an
external magnetic field [86]. In NDT, the GMR sensor is usu-
ally implemented as a magnetic receiver in the ECT technique
to increase the sensitivity of small defect detections [87],
[88]. The magnetic moment of GMR sensor ferromagnetic
layers is aligned with the secondary magnetic field generated
by eddy currents, which overcomes antiferromagnetic cou-
pling [89]. As a result, the resistance to current is low. In the
presence of CUI, the secondary magnetic field established by
eddy currents becomes weak. The magnetic moment of both
GMR ferromagnetic layers is in the opposite direction owing
to antiferromagnetic coupling, resulting in high resistance.
GMR sensor can directly measure the magnetic field changes
[87]. Figure 4 depicts the mechanism of the GMR sensor with
an external magnetic field.

Eddy current array technology is presented to improve the
penetration of Eddy current. It uses a very low-frequency
eddy current with GMR sensing elements to illustrate CUI
of thick aluminum weather jacketing pipes with quicker and
high-resolution images [73]. By changing the eddy current to
a very low operating frequency, the sensor arrays can cover
more expansive areas while maintaining the traditional eddy
current testing technique’s advantages. The study shows that
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the magnetic fields from a larger spatial wavelength sensor
penetrate further into the SUT at low frequency. By using
the magneto resistive sense element mounted on a sensor,
the sensitivity and speed of measurement of the scanner
increased. In this case, a C-scan image is used to inspect the
corrosion under coatings of the inspected pipelines. The eddy
current sensor array with magneto resistive sensing elements
presents a big success in inspecting the CUIL. The sensor
succeeds in inspecting the diameter of the area of corrosion
under coatings. However, manually shifting the sensor is a
must for wide scanning areas. In addition, the size and weight
of this sensor is the limitation for hand-carry.

The use of supervised machine learning in the eddy cur-
rents with the GMR method has improved the accuracy of
corrosion and corrosion-free regions classification [88], [90].
The study utilizes Support Vector Machine (SVM), Naive
Bayes, logistic regression and random forests to classify
the CUI and CUl-free areas to examine the corrosion in
the coated cast-iron pipeline [90]. The research presents an
excellent classification result of corrosion and non-corrosion
zones, with the SVM classifier achieving the best clas-
sification. 90 % classification accuracy is obtained using
the SVM algorithm. However, supervised machine learning
approaches need a huge amount of training sets in order to
construct a more accurate model.

E. SCANNING KELVIN PROBE

In terms of Scanning Kelvin Probe (SKP), it is commonly
employed to determine the coating failure of poorly con-
ductive materials instead of conductive materials by measur-
ing the work function or Volta Contact Potential Difference
(Vcpp) of the material [91], [92]. SKP utilizes a Kelvin probe
near the surface of the specimen to form a capacitor, as shown
in Figure 5 [9].

The contact potential is generated between the surface of
the Kelvin probe and the sample. The Vcpp between the
conductive vibrating tip and sample is brought into equilib-
rium [93]. In the case of CUI presence, the differences in
Vepp occur and the probe’s vibration induces Alternating
Current (AC). The induced AC is measured at the resistor,
RN, to obtain the value of Vcpp [24]. The corrosion potential
of the sample interface impacts and varies linearly to the
Verp [95].

The atmospheric corrosion of epoxy resin-coated galva-
nized steel is studied using the method concept in [91].
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The Vcpp surface distribution is obtained and plotted to
measure the corrosion potential. The regularity of the Vcpp
distribution is affected when CUI is present. SKP presents
a useful method for accessing the spatial separation of the
electrochemical reactions at the interface of the defect and
the surrounding metal or paints in this study. However, the
defect obtains a more positive potential profile value com-
pared to the topography of the same area. The accuracy of
the inspection of CUI depth is low.

SKP method is proposed in a different way to enhance the
potential profile value of SKP [96]. It is applied in epoxy-
coated carbon steel to illustrate the uniformity of the CUI. The
Variation Coefficient (VC) of the Vcpp is used to eliminate
the issue of positive potential value. The VC is the deviation
of the average Vcpp from the mean values of each sample.
The VC at various exposure times is used to illustrate the
variations over the sample graph. It can be concluded that the
lower the VC value, the more uniform the CUI. Hence, SKP
succeeds in detecting CUIL. However, the capacitance between
the probe and conductive substrate may differ as the coated
steel is exposed to the corrosive aqueous medium. The Vcpp
is therefore affected.

The SKP approach employs unsupervised machine learn-
ing to classify the corrosion and corrosion-free areas. The
k-means clustering algorithm is employed to categorize the
corrosion under the insulation of coated low-carbon steel
[97]. The k-means algorithm clusters the corrosion under
insulation based on the surface potential of the sample
obtained using the SKP technique. The study presents a
k-means clustering algorithm managed to classify the cor-
rosion and non-corrosion zones. However, the clustering
images appear noisy. In addition, some of the regions are
improperly clustered. This is because of the local signal
fluctuations in the detected surface potential.

F. ULTRASONIC INSPECTION
Ultrasonic Testing (UT) is utilized to enhance the inspection
of CUI depth. UT is often employed in sound conducting
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materials to examine internal corrosion [98]. UT employs an
ultrasonic transducer to induce ultrasound waves toward the
Sample Under Test (SUT) [94], [99], as shown in Figure 6.
The Time Of Flight (TOF) of ultrasonic reflected waves is
used to calculate the metal losses of the internal and external
surfaces [100]. Hence, it is usually used for thickness mea-
surement and corrosion monitoring.

Ultrasonic testing with the CNN model is introduced in
stainless steel specimens to image the defects at the bending
part of the pipe [101]. CNN is a deep learning algorithm
that can compile the retrieved reduced characteristics into a
high-level depiction [102]. CNN is also capable of analyzing
an input image, determining the significance of different
attributes and distinguishing between them [103]. An auto-
mated system based on damage detection of pipe bend is
achieved. The results prove that a normalized rate of detection
of 89 % is obtained. The misdiagnosis defects are due to no
discernible difference in color or juxtaposition between the
subject and the surrounding. However, conventional ultra-
sonic testing suffers from weak wave reflection from a thin
metal substrate coated with a thick coating.

Compared to conventional ultrasonic inspection, Phased
Array Ultrasonic Testing (PAUT) uses multiple elements to
induce and receive ultrasound pulses in a single transducer for
surface and near-surface inspection [104]. This transducer
can scan, steer and focus the beam at different angles over
the inspected material [105]. The received signals obtained
by the multiple elements are summed together and recorded
for further analysis. The PAUT commonly employs C-scan to
illustrate the inspected sample in 2D images. PAUT inspec-
tion is faster and able to cover a larger area compared to
conventional ultrasonic inspection [106].

In terms of corrosion detection, Phased Array Ultrasonic
Testing (PAUT) is used to detect the corrosion-under-paint in
a carbon steel substrate [104]. C-scan is employed to image
the corrosion undercoating of the sample. The corrosion
under 1 mm paint thickness is successfully identified and
located. However, the boundaries of the detected corrosion
are not clear enough to accurately measure the defect size.
This is due to the non-smooth corroded surface of the speci-
men, making the defect size assessment challenge. Moreover,
the conventional PAUT requires gel or water as couplant to
inspect a specimen surface which is insatiable for a specimen
that cannot be immersed.

Machine learning is also being emerged in the PAUT
inspection to detect the presence of defects precisely. In order
to identify the corrosion in the coated aluminum block,
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a Convolutional Neural Network (CNN) is trained and
employed [107]. CNN model learns the characteristics of the
representations from data and delivers a data output based on
previous knowledge [108], [109]. According to the findings,
the CNN model can identify all of the corrosion zones with
additional training using a small amount of experimental data.
However, the CNN model requires a massive training sample
to train a relatively accurate model.

Table 1 summarizes an evaluation of numerous conven-
tional NDT techniques. The conventional NDT techniques
detect the CUI with low accuracy. The emergence of machine
learning approaches in conventional NDT techniques helps
in identifying and distinguishing the CUI and CUI-free areas
with higher precision. In addition, the inspection time is
reduced.

In inspecting CUI, the main limitation of the aforemen-
tioned techniques is the field penetration through the coating
layer, as shown in Table 1. The coating layer changes the
standoff distance between the sensor and the metal substrate,
making deep field evaluation a challenge, especially in com-
posite coatings [110]. Although machine learning approaches
have improved the inspection quality of the aforementioned
techniques, an alternative NDT technique is required to han-
dle the field penetration limitation of the conventional NDT
techniques for further improving the CUI evaluation.

IlIl. MICROWAVE NDT

Compared to the conventional NDT, microwave NDT is a
powerful technique for inspecting the under-coating defect
such as CUI Electromagnetic waves at electromagnetic
frequencies (300 MHz- 300 GHz) can deeply penetrate
the composite insulation and are sensitive to the thick-
ness changes in the surface of the metal substrate [26],
[111], [112]. The microwave NDT technique provides sev-
eral advantages, such as non-contact inspection, and does
not need a couplant for the signal transmission into the
sample under test [113]-[116]. The microwave NDT tech-
nique has prompted the search approach for inspecting the
defects within and under the composite materials. Microwave
impulses, unlike ultrasonic waves, can propagate through the
composite structures’ insulation and interface with underly-
ing structural materials [18]. In microwave NDT, the mag-
nitude and phase of the transmitted and/or reflected waves
are commonly used to evaluate the Sample Under Test
(SUT) [117].

Among microwave waveguides, an Open-Ended Rectan-
gular Waveguide (OERW) is frequently employed to inspect
metal surfaces coated with dielectric and composite materi-
als. Hence, OERW is usually used to examine the defects
such as delamination, crack, and CUI. The OERW induces
the microwave signal towards the SUT. The shift in reso-
nant frequency, magnitude and phase of the reflection coef-
ficient of the microwave signal is used to image the defects.
A sweeping frequency is in the microwave NDT techniques
presented in [24]. The OERW probe is operated in K-band
to evaluate the coated atmospheric corrosion on mild steel.
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TABLE 1. Comparison summary of various conventional NDT techniques.

Ref. No.

Technique

Concept of use

Advantages

Disadvantages

[54]

[56]

[60]

[63]

[63]

[55]

[69]

[74]

[72]

[80]

[73]

[90]

[91]

[96]

Compton X-ray
backscattering

X-ray-LDA

Active mode IRT

IRT-PT

IRT-PT-FEM

IRT-PT-PNN

IRT-CNN

ECT

ECT-PEC

ECT-PEC-GPR

ECT-array with GMR
sensing elements

ECT-GMR-SVM

SKP

SKP

CUI evaluation on
coated mild steel

CUI clustering in epoxy

resin caoted copper

Corrosion detection in

coated paint layer metal

shringles

CUI and defect
detection in the epoxy
coating with ceramic
flakes

CUI shape
determination in the
epoxy coating with
ceramic flakes

CUI clustering in
aluminum with
fiberglass coating

Defect classification in
CFRP sample

Prediction of corrosion
in insulated steel plates

CUI mapping of gas
pipeline

Wall loss prediction in
coated carbon steel

Imaging of CUI for

thick aluminum weather

jacketing pipes

CUI classification in

coated cast-iron pipeline

Corrosion detection in
epoxy resin-coated
galvanized steel

Corrosion detection in
epoxy coated carbon
steel

Inspect the thickness loss of
the sample under test.

Able to present the degree of
corrosion.

Dimensionality reduction.
Able to discriminate corrosion
and corrosion-free regions.
Inspect the corrosion with
thermal contrast.

Non-contact technique.

Able to inspect high
temperature and hazardous
samples safely.

Able to detect CUI in different
coating materials.

Able to detect the location and
type of defects.

Able to determine the diameter
of CUL

Able to determine the shape of
CUL

Good correlation between
experimental and simulated
data.

Able to classify the CUI and
CUI-free regions.

Able to generate a clearer
contrast between defect and
defect-free areas.

More resilient to thermal
signal distortions.

Sensitive to surface detects.
Predict CUI accurately by
normalized signals’ amplitude.

Fast CUI inspection.

Achieve corrosion mapping.
Achieve the determined
penetration depth of the
magnetic field.

Able to predict the wall loss
with lower nominal errors and
error variances.

Improve the scanning speed.
Reduce the inspection time.

Able to inspect more
expansive areas.

The high sensitivity and fast
measurements.

Penetrate further into SUT at
low frequency.

Flexible.

Able to classify the CUI and
CUI-free zones accurately.

Determine the spatial
separation of electrochemical
reaction at the corrosion.
Corrosion is detected by using
topography and the potential
profile of the sample surface.

Able to detect the uniformity
of the CUL

Eliminate the positive
potential value issue.

Unable to provide quantitative
information for depth of CUL
Hazard to health.

Cannot work well with high
dimension.

The thermal contrast is affected
by type of coatings.

Unable to detect the shape and
depth of CUL

Unable to cluster the CUI and
CUI-free regions.

Inaccuracies in classification of
non-CUI zones.

Huge amount of training
samples are required to train
the model.

Massive training samples are
required to train accurate
model.

Pre-knowledge is required to
represent CUI effectively.
Sensitive to lift-off distance
between the probe and
inspected sample’s surface.

Measure LOI area to eliminate
lift-off distance effect.

Large datasets increase the
evaluation time.

Large datasets decrease the
prediction accuracy.

Manually shift for wide
scanning areas.
Bigger in size and heavier.

Huge amount of training
samples are required to train
the model.

The defect obtains a more
positive potential profile value
than topography of the same
area.

The accuracy of CUI depth
inspected is low.

The capacitance may differ and
affect the Volta contact
potential.
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TABLE 1. (Continued.) Comparison summary of various conventional NDT techniques.

[97] SKP-k-means CUI classification in - Able to classify CUI and non- - Clustering images appear
coated low-carbon steel CUI areas. noisy.

- Some regions are improperly
clustered.

[100] uT In-Line Inspection (ILI) - Calculation of metal losses - A coupling medium is required.
for CUI underground using TOF of the reflected - Not capable of giving detailed

ultrasonic signal. data of thickness loss.

[101] UT-CNN Defects detection of - Automated damage detection - Incorrect defect detection due
stainless steel bending of pipe bend. to no discernable difference in
pipe color between the subject and

surrounding.

[104] UT-PAUT Corrosion detectionin - Multiple elements are used to - Complex.
carbon steel with paint scan, steer and focus the beam - Expensive than a microwave
coating with a single transducer. imaging system.

- Produce clearer images over - Boundaries of detected
the microwave imaging corrosion are not clear.
system. - Require gel or water as
couplant.
- Unable to use with specimen
cannot be immersed.

[107] UT-PAUT-CNN Corrosion identification - Able to identify all the CUI - Huge amount of training
in coated aluminum areas. samples are required to train
block the model.

Electronic Modules typically fed by rectangular waveguides and flared in electric
fields and magnetic fields to ensure that both fields are sim-
ilar. Frequency Modulated Continuous Wave (FMCW) radar
transmits an electromagnetic signal but does not continuously

Horn Antenna sweep the frequency. Figure 7 illustrates the experimental
Steel Plate setup. The 2D image is obtained at the waveguide aperture by

T

FIGURE 7. Experimental setup of horn antenna microwave NDT
technique [59].

The 2D vision is constructed using the average magnitude
and phase of the reflection coefficient. In this case, average
magnitude offers a more accurate depiction of CUI detection
as the phase has been influenced by the surface’s roughness
and is more sensitive to lift-off distance. Moreover, OERW
provides high-resolution, non-contact and intuitive images.
It has the advantage of short processing time compared to the
conventional NDT techniques. However, relatively high-cost
microwave equipment is the drawback. Hence, this proposed
technique has shown the potential for inspecting, imaging and
monitoring CUL

A horn antenna is another microwave sensor that provides
high gain and wide bandwidth for varying frequencies [59].
It is often used to inspect metal sheets coated with dielectric
and insulation for delamination, crack, and CUI. The horn
antenna transmits and receives the microwave signals to or
from the SUT. Similar to the OERW, the alteration in resonant
frequency as well as the magnitude and phase of the reflection
coefficient of the microwave signals to image the defects.

A pyramidal horn antenna with a rectangular waveguide
is used as the microwave sensor to inspect the CUI in steel
plate with paint coatings [59]. Pyramidal horn antennas are
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using the phase difference between the sent and received sig-
nals. In the presence of CUI, the phase of the signal responses
is changed. The significant signal changes to signify the
corrosion area are due to the corrosion’s permittivity change.
The phase shift is capable of illustrating the depth of CUI The
ability to move the sensor with respect to the sample surface is
another advantage over conventional NDT techniques. How-
ever, some phase shifts and variations in amplitude among the
healthy data are due to the aluminum flakes in the paint and
the poor coating application. In addition, it will be better if
the sensor can focus the beam at a more concentrated angle,
allowing much smaller corrosion to be detected.

There has been substantial research and development using
Radio Frequency Identification (RFID) for examining the
CUL RFID is used to inspect the steel corrosion sensing
and characterization under insulation. RFID utilizes radio
frequency to transfer power and data between a reader and
a tag [94]. The reflected signals from the SUT are measured
to image the defects. RFID sensors are classified into passive
and active sensors. The reader’s signal supplies power to the
passive RFID sensors. In contrast, the signals transmitted by
active RFID sensors are powered by themselves and capable
of delivering a more readability range than passive RFID
sensors [118].

A chipless RFID sensor is applied to monitor the pipeline
coating by detecting the concentration of salty water ingress
in the pipeline coating [119]. The data of S; (transmis-
sion coefficient) is measured using Vector Network Analyser
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(VNA). The amplitudes of the measured Sy; are plotted to
illustrate the variations over 2D imaging using various salty
water ingress concentrations. Thus, the finding presents that
the detection of the concentration of water salinity level can
act as an early prediction for CUI. The CUI can be precisely
estimated compared to the IRT technique by the water salinity
level with the simple detection of water presence. However,
the challenges such as tag localization, read range extension
and tag detection are required to be overcomed so that it can
be widely deployed.

Furthermore, Spiral Ring Resonator (SRR) is one of the
MNDT techniques commonly used to inspect the coating
defects such as liquid ingress or air breach wirelessly. SRR
generates a high-isolation band-stop filter frequency. In the
case of defect presence, the resonant frequency is relocated
in accordance with the degree of the damage. A 55-element
array of exactly similar and symmetrical Rectangular Spiral
Ring Resonators (RSRR) coupled with a transmission line is
employed to detect the water ingress in the insulation layer for
the early prediction of CUI [120]. The data of measured S|
is measured using VNA. The 2D image is obtained using the
amplitudes of the measured S;;. The study demonstrates that
the shifting of the resonant frequency represents the amount
of water ingress. The amount of water can be identified by
using this technique compared to the IRT technique. The
RSRR sensors are low profile, tunability and small size com-
pared to other microwave sensors. However, the separation
between the array members and the number of elements
in the array should be investigated to optimize the sensor’s
performance.

In addition, Guided Microwave Testing (GMT) is fre-
quently used to analyze a significant proportion of the
pipeline. GMT employs the cladding and insulated pipeline
as a coaxial waveguide to promote the propagation of elec-
tromagnetic waves. In the defect presence, the impedance
discontinuities occur in the waveguide, causing the reflec-
tion of the incident microwave signal. Hence, the defects
are detected and located. GMT is applied to detect the wet
insulation in insulated galvanized steel ducting pipes [121].
The amplitude of the reflection coefficient of the signal is
used to represent the level of water ingress. 2D image is
obtained utilizing the amplitudes coefficient. The finding
presents that the sensor shows high sensitivity towards the
volume of water. Compared to other techniques, GMT is more
suitable to apply in long-range inspection for the pipeline.
However, the water not only grows in one direction, and it is
hard to predict the water path. Hence, more attempts should
be made to model the realistic scenario of the growth of water
in the insulation layer. Besides, replacing the foam block
with composite materials are necessary to obtain an accurate
result.

Microwave NDT techniques are superior compared to
conventional NDT techniques in terms of field penetra-
tion through the insulation, short processing time and high-
resolution images. Non-contact is one of microwave NDT’s
advantages as the UT technique requires a coupling medium.
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Compared to conventional NDT techniques, the CUI depth
can be indicated by phase shift and moving the sensor over
the sample surface using microwave NDT. In addition, con-
ventional NDT techniques can only detect the water presence,
whereas microwave NDT techniques can detect the volume
of water presence. This technique possesses the capability to
increase the precision of early CUI detection.

Table 2 summarizes an evaluation of numerous con-
ventional microwave NDT approaches. Among all the
microwave sensors discussed, OERW operated in K-band
shows an outstanding result in detecting CUI by using multi-
ple operating frequencies. Short processing time is an advan-
tage for OERW as it can produce high-resolution images
simultaneously. However, the entire corrosion area is chal-
lenging to get since the thickness of the corroded area is very
thin. It requires high-cost microwave equipment to operate.
Besides that, as a result of stand-off deviations and the appro-
priate frequency range to be chosen, the output of OERW is
degraded [122]. Therefore, to attain the best possible image
resolution and assessment reliability for CUI, the outliers and
noise must be removed by signal processing approaches.

IV. MICROWAVE NDT-BASED MACHINE LEARNING
Conventional NDT techniques still face some limitations,
such as poor spatial imaging, field penetration limitation, and
blurred defects shape, which reduce the quality of inspection
of CUI The recent research field is particularly reliable on
the developments of NDT automation. This minimizes the
dependence on the operators’ understanding and expertise.
Thus, signal processing with machine learning classifiers is
employed in NDT techniques to enhance the reliability of the
inspection of CUI. Moreover, it can improve the prediction
rate of the CUI level.

NDT technique based on the Machine Learning (ML)
approaches commonly passes via three stages: pre-
processing, feature extraction, and classification [123]. In the
pre-processing stage, a set of steps are executed prior to data
analysis which aims to refine and eliminate unnecessary data
to minimize the analysis errors. On the other hand, the feature
extraction stage aims to obtain several informative features
from a large set of data for better data interpretation. In terms
of the classification stage, the extracted features are classified
using a machine learning classifier to group similar data into
several classes, such as defect and defect-free. Machine learn-
ing clearly shows remarkable improvement in simulation and
data processing. ML-based models have demonstrated a good
forecast precision and strong ability for fitting analysis. ML is
used for configuration simplification, structure supposition,
fault performance assessment, experimental development
over recent years, and materials science [127]. The ML-based
models used in CUI are to detect, image, and evaluate the
severity of CUI or compute the CUI defect depth growth rates
and estimate the failure probability. In the following sub-
sections, various algorithms that are commonly used in the
three stages are discussed.
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TABLE 2. Relative overview of the conventional microwave NDT approaches.

Ref. No. Technique Concept of use Advantages Disadvantages
[24] OERW operated in CUI evaluation on coated - Multiple operating frequencies - High cost of microwave
K-band mild steel can be applied. equipment.
- Non-contact. - Hard to obtain the whole
- High-resolution image. corrosion area if the thickness
- Short processing time. of the corroded area is very
thin.
[59] Horn antenna with Microwave-based - High gain. - Better if smaller corrosion can
rectangular monitoring system for CUI - Wide bandwidth. be detected.
waveguide - Able to illustrate the depth of
CUL
[119] Chipless RFID Detect salty water ingress - Passive and wireless sensor. - Two linearly polarised antennas
in pipeline coating - Predictive approach for CUI by  need to be placed
the water salinity level. perpendicularly to each other to
avoid crosstalk.
[120] RSRR coupled with ~ Detect water ingress in the - Early detection for CUL - Long in size as 55-elements

transmission line insulation layer

[121] Detect wet insulation in

pipes

Guided Microwave
Testing (GMT)

- Real-time CUI prediction

monitoring.

- Early detection for CUL
- Suitable to be applied in long-

range pipeline inspection.

- The sensor shows high

array of RSRR is used.

- The experiment was carried out

by using a foam block.

- Prediction of water in one

direction.

sensitivity towards the volume
of water.

A. PRE-PROCESSING

In this section, only well-known pre-processing techniques
are discussed as an example for the signal processing stage,
such as Discrete Wavelet Transform (DWT), Hilbert Trans-
form (HT), and Variational Mode Decomposition (VMD).
DWT is a discretized Wavelet Transform (WT) for identify-
ing and removing the electrical noise from the signals [128].
WT splits a stream of data into numerous levels reflecting
distinct bandwidths [30], [129]. The position of the WT at
each scale determines the electrical noise. A threshold is
defined with the noise information. The noise is removed
effectively by eliminating the threshold value below the
threshold. In detecting the miniatured delamination in the
coated Perfect Electric Conductor (PEC), the DWT technique
is used to filter out background noise from the signal obtained
using a dual-ridges OERW [124]. The DWT is applied in con-
junction with the intensity analysis of the signal to predict the
delamination’s depth. By applying the DWT signal denoise,
the estimation of the defect depth is significantly accurate.
However, the number of scales of signal decomposed needs
to select appropriately so that the information of the signal is
preserved.

HT is a technique used to obtain the instantaneous fre-
quencies and amplitude for the non-stationary signal [130].
A signal is decomposed into Intrinsic Mode Function (IMF)
using the Empirical Mode Decomposition (EMD), which is a
finite set of intrinsic components. The HT is applied to each
IMFs to obtain the features of instantaneous frequencies and
amplitude of the signal. The features are presented in time-
frequency representation (Hilbert spectrum) for each IMF.
In detecting the crack in the stainless steel pipe, the HT
approach is used to decompose the signals obtained using the
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microwave guided wave technique [125]. The HT is applied
to the IMFs for the detection of defects. The results present a
high accuracy in defect detection as the noises and irrelevant
signals are reduced. However, there are still some outliers in
the interpretations. Besides, the application of EMD to break
the beam down into IMFs causes the mode mixing problem
for the signal.

Variational Mode Decomposition (VMD) technique can
eradicate the mode mingling issue of EMD in decomposition
by adopting the Alternate Direction Method Of Multipli-
ers (ADMM) approach [126]. The VMD technique demon-
strates its supremacy for predicting crude oil, wind velocity
and image processing [131], [132]. VMD is a technique used
to define a signal set of Variational Mode Functions (VMFs)
and disintegrate the signal’s fundamental modes around their
respective predicted center frequencies. In other words, it can
reduce the frequency overlapping among different intrinsic
modes and signal complexity. In detecting the defects in the
wind turbine gearbox and bearing, the vibration signal is split
using the VMD technique [126]. The results demonstrate
that VMD’s reconstructed signals show significant results in
defects’ information. However, the mode number of the VMD
technique needs to be pre-determined to avoid over and under
decomposition problems.

A comparison between several preprocessing techniques is
provided in Table 3. All the above-mentioned preprocessing
techniques help to estimate defect detection more accurately.
The HT and VMD techniques are suggested to combine since
both of the techniques are working on the vibrating signals.
In addition, the VMD technique can minimize the issue of
mode mixing in the EMD technique. The VMD technique can
replace the EMD technique to decompose signals into VMFs.
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TABLE 3. Comparison summary of preprocessing techniques.

Ref. Technique Concept of use Advantages Disadvantages
No.
[124] DWT Noise suspension from GW - Signal noise can be removed. - Require selecting the number of
ultrasonic signals - Estimation of defect detection scales of signal decomposed
is accurate. appropriately.
[125] HT Signal decomposition from - Increase the accuracy of defect - Outlier presence.
ultrasonic sensors detection. - EMD causes mode mixing problem
in signals decomposition.
[126] VMD Vibration signal decomposition - Eliminate mode mixing - Performance depends on mode

from wind turbine gearbox and
bearing

problem in EMD technique.

- Reduce the frequency

overlapping among different
intrinsic modes.

- Reduce signal complexity.

number.

- Mode number needs to be pre-

determined to avoid over and under
decomposition problem.

Then, to acquire the features of instantaneous frequencies
and amplitude of the signal, the HT approach is adopted for
the VMFs. This can further increase the accuracy of defect
detection.

B. FEATURE EXTRACTION

Feature extraction is a process to reduce data dimensionality
to more manageable sets for data analysis [133]. In feature
extraction, a selection process aims to obtain the domi-
nant information and remove the redundant raw data fac-
tors. These redundant features reduce the predictive model’s
precision and agility, causing a significant impact on the
model’s analytical precision and implementation efficiency.
In microwave NDT, the frequency sweeping generates a
high dimensionality feature vector. This high dimensionality
of the features increases the processing time and computa-
tional complexity of machine learning algorithms. Therefore,
Partial Least Squares (PLS), Principal Component Analy-
sis (PCA) and Nonnegative Matrix Factorization (NMF) are
discussed in this section due to performing feature extraction
and dimensionality reduction simultaneously.

PLS algorithm is one of the famous approaches to imple-
menting feature extraction. PLS is a multivariate linear
approach for analyzing the relations between two groups of
variables which are dependent and independent [134]. The
independent variables (predictors) scales, which reflect their
linear combinations, are reduced to several Latent Variables
(LVs). LVs eliminate the model’s complexity by allocating
X-space variables with no relationship to Y-space variables
with low weights, lowering model overfit possibilities and
increasing interpretability. To facilitate this, the orthogonal
score PLS, referred to as the Non-Linear Estimation By Iter-
ative Partial Least Squares (NIPALS) algorithm, boosts both
the disparity and the regression with the response variables
inside the predictors themselves. PLS can be implemented
in regression, classification, variable selection, and survival
analysis.

Ser. et al. [135] suggest the forecast of anti-corrosion
performance, employing the Genetic Algorithm-Partial Least
Square (GA-PLS) approach. The authors optimize the
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quantity of LVs utilized in the concept. They find out that
three LVs exhibit the lowest Percentage Root Mean Square
Error Of Cross-Validation (%2RMSECV). The forecast of
the GA-PLS model can be seen in the publication. From
the graph, the authors conclude that the GA-PLS model is
fairly successful, with some of the points not well scattered
along with the parameters determined. Thus, the GA-PLS
model reveals that the correlations between the quantum
chemical factors and inhibitor performance are not effectively
captured.

PCA algorithm is one of the methods used to perform
feature extraction. PCA is commonly used to reduce high-
dimensional data to low-dimensional data [136]. It substitutes
a smaller number of uncorrelated principal components for a
large number of original interrelated variables while retaining
the information in the data set of original variables. PCA is
well-known for identifying analytical patterns with massive
data volumes [137]. Besides that, PCA is a uniform conver-
sion of data into a new reference frame to position the axis
with the greatest variance becoming the primary significant
element and the following largest part as the second principal
component when the data is mapped to one axis.

Ali et al. [138] propose a Supervised-PCA (SPCA) tech-
nique in their paper to image the CUI in metallic structures.
The authors show the SPCA 2D visualization in their paper.
SPCA technique is used to project the explicative variables
according to the direction of the response variables. PCA
maps the periodicity points to 15 dominant components in
lower frequency. SPCA is applied to the training and test
data sets. An outstanding result is obtained in this paper. The
SPCA succeeds in extracting and differentiating the infor-
mation with corrosion and without corrosion. Then, the ML
algorithm is applied to classify the inspected locations into
corrosion and corrosion-free over a 2D spatial image. This
shows good applicability of undetected flaws in terms of fault
pattern classification and sharp lateral resolutions. However,
the lower frequency characteristics do not correlate to the
sweeping frequencies as the disappearance of initial data.

NMF algorithm is implemented for feature extraction
in dimension reduction [139]. The NMF algorithm is a
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collection of algorithms for multivariate analysis and linear
algebra. A low-rank matrix approximation is used by NMF to
approximate a matrix [140]. In other words, when the orig-
inal high-dimensional data matrix is recreated using solely
additive linear combinations, it is transformed into a data
representation based on parts [141], [142]. NMF is a typical
technique for segregating spatial frequency characteristics
blindly into defect and defect-free regions.

The smooth Itakura-Saito NMF (S-ISNMF) algorithm is
suggested by Gao et al. [143] for the detection of CUI in
a coated steel pipeline using an X-band OERW approach.
S-ISNMF algorithm is used for the purpose of analyzing the
frequency spectrum characteristics of the reflected signals
between defect and defect-free areas. Location and shape esti-
mation of the CUI are both effectively accomplished using the
S-ISNMF algorithm. The smoothness parameter contributed
to the improvement of the sensitivity of the microwave NDT
system while simultaneously reducing noise. The S-ISNMF
algorithm estimates the defects’ shape with 82.6 % accu-
racy. However, as a consequence of these varying beginning
optimization parameters, NMF yields a different estimated
outcome at each iteration of the program. [30]. Additionally,
when the spectral resolution is poor, NMF delivers the worst
results [144].

Table 4 shows the comparison between the PLS, PCA
and NMF algorithms. The PLS algorithm can be employed
with the genetic algorithm. The number of LVs used is opti-
mized by using GA-PLS. Besides that, it exhibits the lowest
%RMSECV. It is quite efficient for simple processes. For
PCA algorithm, it can be utilized to become a supervised-
PCA approach. It can project explicative variables according
to the direction of the response variables. It is successfully
extracted and differentiates the information with corrosion
and without corrosion. Supervised-PCA is very efficient for
simple processes. However, two approaches can be regarded
as low learning approaches with one hidden layer model
structure. They can be efficient for simple processes, but
their expressive capacity for complex structures can be inad-
equate [137]. For the NMF algorithm, it is very efficient for
CUI shape and location estimation as the NMF algorithm
successfully estimates the CUI shape with 82.6 % accuracy.
However, the NMF algorithm provides a different approxi-
mated result for each run time. Hence, the feature extraction
algorithm must collaborate with the feature classification
algorithm to obtain a better prediction result.

C. CLASSIFICATION STAGE

In the classification stage, a classifier algorithm is used to
split a set of observations into subset groups according to
their type. There are two categories for data classification:
Supervised Machine Learning (SML) algorithms and unsu-
pervised machine learning algorithms. Supervised learning
provides a function to map inputs to desired outputs [145].
Such approaches require prior status labeling in renowned
regimes (i.e., input data). Figure 8 illustrates the process of
SML. For unsupervised learning, it learns structure from the
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data without prior labeling. Unsupervised learning is useful
once the prior knowledge is not available or the sample size
is small [147].

Artificial Neural Network (ANN) is one of the SML algo-
rithms. ANN model is an essential tool for addressing com-
plicated issues [148]. The imaginary network feeds informa-
tion from the information source to the initial level’s neural
neurons. The neurons convert the data into an impulse and
transmit the impulse to the neurons in the following tier as
an input. The precision with which the results were produced
improves as the neural network learns. The neural networks
make a decision based on prior learning and extrapolate from
them. Figure 9 demonstrates the architecture of a typical
ANN.

Analyses of the ANN ensemble are presented by Ali et al.
[149]. The authors adopt a waveguide sensor equipped with
split-ring resonators-based ANN to improve the defect detec-
tion accuracy. ANN and Support Vector Machine (SVM)
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TABLE 4. Comparison summary of the feature extraction approaches.

Ref.No.  Technique Concept of use Advantages Disadvantages
[135] PLS GA-PLS in - Number of LVs used is optimised. - Low learning approach.
forecasting the anti- - Lowest %RMSECV. - One hidden layer model structure.
corrosion - Efficient for simple processes. - Inadequate for complex structures.
performance
[138] PCA Supervised-PCA in - Project explicative variables according - Lower frequency characteristics
imaging the CUI to the direction of the response do not correlate to the sweeping
variables. frequencies.
- Succeed to extract and differentiate the - Inadequate for complex structures.
information with corrosion and without
corrosion.
- Efficient for simple processes.
[143] NMF S-ISNMF in CUI - Succeed to detect the CUI'in terms of - Different approximated result for
detection location and shape estimation. each run time.
- 82.6 % accuracy of defects’ shape - Worst result when low spectral
estimation. resolution.
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

FIGURE 10. The architecture of ANFIS technique [146].

classifiers are integrated to create a hybrid AI model.
The combined model has a defect classification accuracy
of 99.62 %. Adaptive Neural Based Fuzzy Inference Sys-
tem (ANFIS) is used to enhance the prediction of corrosion
rate by lessening the dependency on data as ANFIS can
simulate the existing data while accounting for expertise’s
insights [150]. ANFIS is an adaptive system employing the
ANN and Fuzzy Logic (FL). The authors present the analysis
of the ANFIS model in CUI in their paper. Figure 10 shows
the architecture of the ANFIS technique with two sources,
one outcome and two criteria [146]. It can be employed
to evaluate the degree of CUI. This model shows a suc-
cessful result in predicting the corrosion rate as it is only
a 0.0005 Mean Absolute Deviation (MAD) value. ANFIS
model enhances the corrosion rate prediction by taking into
account the all the input parameters for the cause of CUI, such
as insulation condition, type of insulation and environment.
Moreover, there is an additional benefit of the ability to
observe the level of degradation at each temperature. How-
ever, the parameters of the ANFIS model (center and spread
of each membership function) need to be pre-determined to
avoid prediction error.

Random Forests (RF) is used to predict and make a deci-
sion by dividing the original data randomly. RF is a super-
vised classification based on an ensemble learning approach.
RF works with the theory of establishing a multiplicity of
decision trees throughout the learning process, where each of
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them can produce a reaction if a new collection of elements
is presented while screening [151]. Breiman’s ‘“‘bagging”
and spontaneous partition of elements are combined in this
approach to create a regulated variance decision tree series.
Figure 11 presents the workflow of the RF algorithm. The
networks are randomly distributed via bootstrap clustering,
with every tree being built on a randomly chosen labeled
dataset and split classification.

Microwave NDT-based RF defect classification was pro-
posed by Pan et al. [152] in their publication. Microwave
ground penetrating radar is used in this research to detect
the defect. The RF algorithm is then employed to classify the
defects. Defects are classified with a precision of 98 % using
the RF algorithm. The RF algorithm, in addition, reduces the
amount of time required to complete the defect categorization
process. In order to identify additional defect mechanisms,
it is recommended that the learning library be expanded.

The supervised ML algorithms are efficient and powerful
as they can solve complex problems and provide high accu-
racy on the corrosion rate, size and depth of the inspected
area. However, SML algorithms require a pre-knowledge,
such as training sample labeling to learn before they pre-
dict the CUI with high precision. Compared to supervised
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TABLE 5. Comparison summary of the feature classification approaches.

Ref. No. Technique Concept of use Advantages Disadvantages
[149] ANN-queguiQe ANN  ensemble  for 99.62 % accuracy of defect - No defect evaluation.
sensor with split- classification.
ring resonators defect assessment
[152] RF-microwave Defect classification - 98 % accuracy in classifying the - Learning library is required to
GPR defects. be larger.
[153] K-means Traditional K-means in - Sufficient to detect rust with - Prediction accuracy reduces
the Hue component images of H% higher than 98%.  when the images are non-red
- Suitable for image recognition bridges.
and clustering.
[50] K-means based Defect detection in steel - Small-size defects are - Sensitive to outlier presence
IFFT pipeline coated with significantly detected. which degrades the clustering
GFRP accuracy.
- Fail to deal with overlapping
clusters
[154] FCM-OEWA Defect detection and - Microwave poor resolution - Sensitive to noise and outliers.
visualization images are improved.
- Area of interest is identified.
[155] GMM Membership - Provide the details of mean and - Require high-precision data
determination for open covariance. collection.
clusters - Optimize the probability - Require a high percentage of

- Fast model with a runtime

cluster members.

- Require various locations in
the peak of field star and
cluster member distribution.

estimation of distribution
parameters.

complexity.

- Possible for each cluster to

describe data points.

approaches, unsupervised ML algorithms aid the analysis of
input data sources, assisting in generating empirical findings
from unlabeled inputs without the need for prior labeling.

K-means clustering algorithm is one of the basic unsuper-
vised learning algorithms employed to address the grouping
issue. The k-means algorithm splits the collected data into
k of clusters. The data within each cluster is quite similar
and different from other clusters. The k-means algorithm
is utilized once the data labeling is not provided for the
training set. Liao et al. [153] recommended the traditional
K-means technique in the Hue (H) component to identify
corrosion issues on the steel bridge coatings using digital
image identification. They observed that the conventional
K-means algorithm in the H portion is sufficient to detect rust
with the images with H% higher than 98%, known as group
A. The observation proves that K-means is very suitable for
image recognition and clustering algorithms.

The K-means clustering algorithm is used with a
microwave NDT technique to boost the image analysis
performance and flaw discovery in composite materials
[50]. The reflection coefficient of the microwave signals is
obtained from Glass Fiber Reinforced Polymer (GFRP) using
the OERW probe. Inverse Fast Fourier Transform (IFFT)
is employed to translate the reflection coefficients to the
time domain. Thereafter, the magnitude of the converted data
is clustered into two groups which are defect and defect-
free. The proposed technique significantly detects small-size
defects compared to several conventional microwave NDT
techniques. However, the extent of delamination is larger
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than the actual one as the outlier presence in microwave
reflection coefficients. In addition, the k-means algorithm
assigns the objects exclusively to one cluster and fails to deal
with overlapping clusters [156].

It is possible to allocate objects to numerous groups
using the Fuzzy C-Means (FCM) clustering algorithm and
to cope with overlapping clusters [157]. The FCM algo-
rithm splits objects into clusters based on their greatest
similarities, whereas the least similar objects are divided
into distinct clusters [158]. Hoshyar et al. [154] proposed a
microwave NDT-based FCM clustering algorithm for defect
identification and visualization. The Open-Ended Waveguide
Antenna (OEWA) is used for defect detection in compos-
ite material-coated metal discs. The findings show that the
FCM algorithm is able to accurately identify and depict the
issue. The low-resolution microwave images are effectively
improved using FCM, allowing it to locate the defects’ loca-
tions. FCM, on the other hand, continues to make mistakes by
incorrectly classifying certain regions that are not defective
as defective zones. This is due to the fact that FCM is very
sensitive to outliers and noise.

Compared to FCM, Gaussian Mixture Model (GMM) is
less influenced by the outliers. GMM is a stochastic frame-
work in which all information is taken from a collection of
Gaussian distribution with uncertain variables [155]. GMM
can be known as the outgrowth algorithm of K-means clus-
tering as GMM provides details about the mean and the
covariance, which defines a distribution’s ellipsoidal shape.
The expectation-maximization algorithm is used to suit the
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GMM by optimizing the probability estimates of distribution
parameters.

Table 5 presents the comparison of machine learning-based
microwave NDT techniques. The feature classification is
used to enhance the prediction of defect detection by mini-
mizing the prediction error of the prediction factor. It lessens
the dependency on the data. It is very suitable for image
recognition and clustering. The inspection quality in terms
of defect detection, classification, size, depth and shape is
further improved compared to the conventional techniques.
Moreover, the prospect of using ML algorithms that are used
with conventional NDT is also applicable to microwave NDT.
There are still more works to be done in researching the
ML-based microwave NDT approach to add more advantages
in inspecting CUL

Based on our knowledge, there is no corrosion inspection
research has yet been done on this algorithm. GMM can offer
many advantages for the inspection of corrosion. GMM is
a very fast model with a runtime complexity. In addition,
GMM is possible for each cluster to describe the data point.
High-precision data collection, a high percentage of cluster
members, and various locations in the peak of field star and
cluster member distribution are, however, needed. With the
reliability of the membership determination and classifica-
tion, GMM will do well in the CUI inspection.

V. CONCLUSION
Conventional NDT techniques are incredibly essential in
industrial and service. These techniques can predict the CUI
earlier without removing the insulation layer before catas-
trophic damage occurs. The performance of the inspection of
CUI using conventional NDT techniques, which are profile
radiography, infrared thermography, scanning Kelvin Probe,
ultrasonic testing, and eddy current testing, is degraded as the
development of composite materials become the insulation
layer of the metal. This is because of the field penetra-
tion limitation of conventional NDT techniques in compos-
ite materials. In addition, the conventional NDT techniques
face the spatial figure with low sharpness and fuzzy defect
pattern challenges. Using the microwave NDT technique,
the microwave signals can penetrate the insulation layer and
detect the CUI. Moreover, the microwave NDT techniques
provide non-contact, operator-friendly processing, no cou-
plant and no complicated post-processing over conventional
NDT techniques. Thus, the trend of using microwave NDT
techniques has risen among researchers and in the indus-
tries. However, these great techniques are still facing some
challenges, such as stand-off deviations and appropriate
frequency points to be chosen, which will reduce the quality
of inspection of CUIL

Among all the microwave NDT techniques, rectangular
waveguides show better performance in the inspection of
CUL The rectangular waveguide can perform on its own or
collaborate with other components. However, the detection of
the whole area of corrosion is still a limitation of rectangular
waveguides. This is because the researchers focus on enhanc-
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ing the quality of sensors while lacking soft computing tech-
niques applied in microwave NDT techniques. The outliers
can be removed by soft computing approaches to improve the
accuracy of detected CUIL

Soft computing methods like signal processing and artifi-
cial intelligence-based machine learning can solve noise in
the signal and signal complexity. Therefore, the soft comput-
ing techniques can collaborate with microwave NDT tech-
niques to solve the limitations and achieve a positive result
for the inspection of CUI. As mentioned, materials inspection
using microwave NDT techniques might cause default-free
diffraction on the edges of the defect. By using the machine
learning technique, it is possible to identify the defect and
non-defect areas as it can solve complex and non-linear data.

In addition, Al-based machine learning techniques can be
used to detect and image the severity of the CUI. Besides
that, they can provide the prediction on the CUI and estimate
the remaining life of the material under test. Hence, early
preparation can be done by the industrial to repair or change
the materials under test. The application of deep learning
in microwave NDT techniques can also build an automated
mechanism for enhancing the effectiveness and control of
products during manufacturing and operation.

REFERENCES

[1] Q. Cao, M. Brameld, N. Birbilis, and S. Thomas, “On the mitigation
of corrosion under insulation (CUI) of mild steel using local cathodic
protection,” Corrosion, vol. 75, no. 12, pp. 1541-1551, Dec. 2019, doi:
10.5006/3197.

[2] N. R. A. Burhani, M. Muhammad, and M. C. Ismail, “Corrosion under
insulation rate prediction model for piping by two stages of artificial neural
network,” in Proc. AIP Conf., vol. 2035, no. 1, 2018, Art. no. 030004, doi:
10.1063/1.5075560.

[3] B. Bavarian, Y. Ikder, B. Samimi, and L. Reiner, “Protection of
corrosion under insulation using vapor phase corrosion inhibitors,
corrologic V,CI-658,” Cortec Corp., Saint Paul, MN, USA, Apr. 2015.
Accessed: Mar. 1, 2022. [Online]. Available: https://www.cortecvci.com/
Publications/Papers/Corrologic-VpCI-658-inhibitor-effects-on-CUI-final-
report.pdf

[4] Y.-H. Tsai, J. Wang, W.-T. Chien, C.-Y. Wei, X. Wang, and S.-H. Hsieh,

“A BIM-based approach for predicting corrosion under insulation,”

Autom. Construct., vol. 107, Nov. 2019, Art.no. 102923, doi:

10.1016/j.autcon.2019.102923.

E. O. Eltai, F. Musharavati, and E. S. Mahdi, “Severity of corrosion under

insulation (CUI) to structures and strategies to detect it,” Corrosion Rev.,

vol. 37, no. 6, pp. 553-564, Dec. 2019, doi: 10.1515/corrrev-2018-0102.

[6] M. E. Akbar, N. H. M. M. Shrifan, G. N. Jawad, and N. A. M. Isa,
“Assessment of delamination under insulation wusing ridge
waveguide,” [EEE Access, vol. 10, pp.36177-36187, 2022, doi:
10.1109/ACCESS.2022.3163308.

[7] Z. Yuan, Y. Tu, Y. Zhao, H. Jiang, and C. Wang, “Degradation behavior
and aging mechanism of decay-like fractured GRP rod in composite insu-
lator,” IEEE Trans. Dielectr. Electr. Insul., vol. 26, no. 3, pp. 1027-1034,
Jun. 2019, doi: 10.1109/TDEIL.2019.007788.

[8] W. Tu, S. Zhong, Y. Shen, and A. Incecik, “Nondestructive testing

of marine protective coatings using terahertz waves with stationary

wavelet transform,” Ocean Eng., vol. 111, pp. 582-592, Jan. 2016, doi:
10.1016/j.oceaneng.2015.11.028.

R. Yang, Y. He, H. Zhang, and S. Huang, “Through coating imaging

and nondestructive visualization evaluation of early marine corrosion

using electromagnetic induction thermography,” Ocean Eng., vol. 147,

pp. 277-288, Jan. 2018, doi: 10.1016/j.oceaneng.2017.09.023.

[10] M. J. Cullin, G. Birmingham, R. Srinivasan, and G. Hailu, “Injectable

sodium bentonite inhibitors for corrosion under insulation,” J. Pipeline
Syst. Eng. Pract., vol. 11, no. 4, Jun. 2020, Art. no. 04020036, doi:
10.1061/(asce)ps.1949-1204.0000488.

[5

—

[9

—

88205


http://dx.doi.org/10.5006/3197
http://dx.doi.org/10.1063/1.5075560
http://dx.doi.org/10.1016/j.autcon.2019.102923
http://dx.doi.org/10.1515/corrrev-2018-0102
http://dx.doi.org/10.1109/ACCESS.2022.3163308
http://dx.doi.org/10.1109/TDEI.2019.007788
http://dx.doi.org/10.1016/j.oceaneng.2015.11.028
http://dx.doi.org/10.1016/j.oceaneng.2017.09.023
http://dx.doi.org/10.1061/(asce)ps.1949-1204.0000488

IEEE Access

T.S. Yee et al.: Prospect of Using Machine Learning-Based Microwave NDT Technique for CUI: A Review

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

M. Yang and J. Liu, “In situ monitoring of corrosion under insulation using
electrochemical and mass loss measurements,” Int. J. Corrosion, vol. 2022,
pp. 1-12, Jan. 2022, doi: 10.1155/2022/6681008.

S. Winnik, “Corrosion-under-insulation (CUI) guidelines revised edition,”
in Europaen Federation of Corrosion, vol. 55. Cambridge, U.K.: Wood-
head Publishing, 2016, pp. 67-70.

J.Z.Yi, H. X. Hu, Z. B. Wang, and Y. G. Zheng, “Comparison of critical
flow velocity for erosion-corrosion of six stainless steels in 3.5 wt% NaCl
solution containing 2 wt% silica sand particles,” Wear, vols. 416-417,
pp. 62-71, Dec. 2018, doi: 10.1016/j.wear.2018.10.006.

S. K. Dwivedi, M. Vishwakarma, and P. A. Soni, “‘Advances and researches
on non destructive testing: A review,” Mater. Today, Proc., vol. 5, no. 2,
pp. 3690-3698, 2018, doi: 10.1016/j.matpr.2017.11.620.

A. Hunze, J. Bailey, G. Sidorov, P. Bondurant, and T. Mactutis, “Non-
destructive testing of critical infrastructure with giant magneto resis-
tive sensors,” Proc. SPIE, vol. 9804, pp.319-328, Apr. 2016, doi:
10.1117/12.2217930.

F. Varela, M. Yongjun Tan, and M. Forsyth, “An overview of major
methods for inspecting and monitoring external corrosion of on-shore
transportation pipelines,” Corrosion Eng., Sci. Technol., vol. 50, no. 3,
pp. 226-235, May 2015, doi: 10.1179/1743278215Y.0000000013.

F. Zou and F. B. Cegla, ““On quantitative corrosion rate monitoring with
ultrasound,” J. Electroanal. Chem., vol. 812, pp. 115-121, Mar. 2018, doi:
10.1016/j.jelechem.2018.02.005.

M. F. Akbar, G. N. Jawad, L. R. Danoon, and R. Sloan, “Delam-
ination detection in glass-fibre reinforced polymer (GFRP) using
microwave time domain reflectometry,” in Proc. 15th Eur. Radar
Conf. (EuRAD), Sep. 2018, pp. 253-256, doi: 10.23919/EURAD.2018.
8546540.

M. FE. Akbar, “Delamination thickness estimation using microwave time
domain reflectometry,” in Material Characterisation and Nondestructive
Testing using Microwave Technique. Manchester, U.K.: Univ. Manchester,
2018.

H. Yang, Q. Chen, H. Cao, D. Fan, J. Huang, J. Zhao, B. Yan, W. Zhou,
W. Zhang, and H. Zhang, “Radiofrequency thawing of frozen minced
fish based on the dielectric response mechanism,” Innov. Food Sci.
Emerg. Technol., vol. 52, pp. 80-88, Mar. 2019, doi: 10.1016/j.ifset.2018.
10.013.

R. Li, S. Zhang, X. Kou, B. Ling, and S. Wang, “Dielectric properties of
almond kernels associated with radio frequency and microwave pasteuriza-
tion,” Sci. Rep., vol. 7, no. 1, pp. 1-10, Feb. 2017, doi: 10.1038/srep42452.
R. Wu, H. Zhang, R. Yang, W. Chen, and G. Chen, ‘‘Nondestructive testing
for corrosion evaluation of metal under coating,” J. Sensors, vol. 2021,
pp. 1-16, Jun. 2021, doi: 10.1155/2021/6640406.

C. Viegas, B. Alderman, P. G. Huggard, J. Powell, K. Parow-Souchon,
M. Firdaus, H. Liu, C. 1. Duff, and R. Sloan, “Active millimeter-wave
radiometry for nondestructive testing/evaluation of composites—Glass
fiber reinforced polymer,” IEEE Trans. Microw. Theory Techn., vol. 65,
no. 2, pp. 641-650, Feb. 2017, doi: 10.1109/TMTT.2016.2625785.

H. Zhang, Y. He, B. Gao, G. Y. Tian, L. Xu, and R. Wu, “Evaluation
of atmospheric corrosion on coated steel using K-band sweep frequency
microwave imaging,” IEEE Sensors J., vol. 16, no. 9, pp. 3025-3033,
May 2016, doi: 10.1109/JSEN.2016.2522983.

M. F. Akbar, G. N. Jawad, C. L. Duff, and R. Sloan, “Porosity evaluation
of in-service thermal barrier coated turbine blades using a microwave
nondestructive technique,” NDT E, Int., vol. 93, pp. 64-77, Jan. 2018, doi:
10.1016/j.ndteint.2017.09.015.

N. H. M. M. Shrifan, M. F. Akbar, and N. A. M. Isa, “Prospect of
using artificial intelligence for microwave nondestructive testing tech-
nique: A review,” IEEE Access, vol. 7, pp. 110628-110650, 2019, doi:
10.1109/ACCESS.2019.2934143.

T. W. Siang, M. Firdaus Akbar, G. Nihad Jawad, T. S. Yee, and
M. L. S. M. Sazali, ““A past, present, and prospective review on microwave
nondestructive evaluation of composite coatings,” Coatings, vol. 11, no. 8,
p. 913, Jul. 2021, doi: 10.3390/coatings11080913.

M. Yi, S. Li, H. Yu, W. Khan, C. Ulusoy, A. Vera-Lopez, J. Papapolymerou,
and M. Swaminathan, ““Surface roughness modeling of substrate integrated
waveguide in D-band,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 4,
pp. 1209-1216, Apr. 2016, doi: 10.1109/TMTT.2016.2535290.

K. Lomakin, G. Gold, and K. Helmreich, “Analytical waveguide model
precisely predicting loss and delay including surface roughness,” IEEE
Trans. Microw. Theory Techn., vol. 66, no. 6, pp. 2649-2662, Jun. 2018,
doi: 10.1109/TMTT.2018.2827383.

88206

(30]

(31]

(32]

[33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

[42]

(43]

[44]

[45]

[46]

(47]

N. H. M. M. Shrifan, M. F. Akbar, and N. A. M. Isa, “Maximal
overlap discrete wavelet-packet transform aided microwave nondestruc-
tive testing,” NDT E, Int., vol. 119, Apr. 2021, Art. no. 102414, doi:
10.1016/j.ndteint.2021.102414.

P. Asadi, M. Gindy, and M. Alvarez, “A machine learning based
approach for automatic rebar detection and quantification of dete-
rioration in concrete bridge deck ground penetrating radar B-scan
images,” KSCE J. Civil Eng., vol. 23, no. 6, pp. 2618-2627, Jun. 2019,
doi: 10.1007/s12205-019-2012-Z.

M. S. Coutinho, L. R. G. S. Lourenco Novo, M. T. De Melo,
L. H. A. De Medeiros, D. C. P. Barbosa, M. M. Alves, V. L. Tarrago,
R. G. M. Dos Santos, H. B. T. D. L. Neto, and P. H. R. P. Gama, ‘““Machine
learning-based system for fault detection on anchor rods of cable-stayed
power transmission towers,” Electric Power Syst. Res., vol. 194, May 2021,
Art. no. 107106, doi: 10.1016/j.epsr.2021.107106.

N. H. M. M. Shrifan, M. F. Akbar, and N. A. M. Isa, “An adaptive outlier
removal aided k-means clustering algorithm,” J. King Saud Univ.-Comput.
Inf. Sci., pp. 1-12, Jul. 2021, doi: 10.1016/J.JKSUCI.2021.07.003.

M. Alber, A. B. Tepole, W. R. Cannon, S. De, S. Dura-Bernal,
K. Garikipati, G. Karniadakis, W. W. Lytton, P. Perdikaris, L. Petzold,
and E. Kuhl, “Integrating machine learning and multiscale
modeling—Perspectives, challenges, and opportunities in the biological,
biomedical, and behavioral sciences,” NPJ Digit. Med., vol. 2, no. 1,
pp. 1-11, Nov. 2019, doi: 10.1038/s41746-019-0193-y.

B. Mirza, W. Wang, J. Wang, H. Choi, N. C. Chung, and P. Ping, ‘““Machine
learning and integrative analysis of biomedical big data,” Genes, vol. 10,
no. 2, p. 87, Jan. 2019, doi: 10.3390/genes10020087.

H. Seo, M. B. Khuzani, V. Vasudevan, C. Huang, H. Ren, R. Xiao, X. Jia,
and L. Xing, ‘“Machine learning techniques for biomedical image segmen-
tation: An overview of technical aspects and introduction to state-of-art
applications,” Med. Phys., vol. 47, no. 5, pp. e148—e167, May 2020, doi:
10.1002/mp.13649.

W. Luo, D. Phung, T. Tran, S. Gupta, S. Rana, C. Karmakar, A. Shilton,
J. Yearwood, N. Dimitrova, T. B. Ho, S. Venkatesh, and M. Berk, “Guide-
lines for developing and reporting machine learning predictive models
in biomedical research: A multidisciplinary view,” J. Med. Internet Res.,
vol. 18, no. 12, p. €323, Dec. 2016, doi: 10.2196/jmir.5870.

J. Rodellar, S. Alférez, A. Acevedo, A. Molina, and A. Merino, “Image
processing and machine learning in the morphological analysis of blood
cells,” Int. J. Lab. Hematol., vol. 40, pp.46-53, May 2018, doi:
10.1111/ij1h.12818.

Z. Wang, H. Di, M. A. Shafiq, Y. Alaudah, and G. Alregib, ““Successful
leveraging of image processing and machine learning in seismic structural
interpretation: A review,” Leading Edge, vol. 1, vol. 37, no. 6, pp. 451-461,
Jun. 2018, doi: 10.1190/t1e37060451.1.

H. Singh, Practical Machine Learning and Image Processing. Berkeley,
CA, USA: Apress, 2019, pp. 1-169, doi: 10.1007/978-1-4842-4149-3.

A. Le Glaz, Y. Haralambous, D.-H. Kim-Dufor, P. Lenca, R. Billot,
T.C.Ryan, J. Marsh, J. DeVylder, M. Walter, S. Berrouiguet, and
C. Lemey, “Machine learning and natural language processing in mental
health: Systematic review,” J. Med. Internet Res., vol. 23, no. 5, May 2021,
Art. no. 15708, doi: 10.2196/15708.

M. Khanbhai, P. Anyadi, J. Symons, K. Flott, A. Darzi, and E. Mayer,
“Applying natural language processing and machine learning tech-
niques to patient experience feedback: A systematic review,” BMJ
Health Care Informat., vol. 28, no. 1, Mar. 2021, Art. no. 100262,
doi: 10.1136/bmjhci-2020-100262.

S. L. Marie-Sainte, N. Alalyani, S. Alotaibi, S. Ghouzali, and
I. Abunadi, “Arabic natural language processing and machine learning-
based systems,” [EEE Access, vol. 7, pp.7011-7020, 2019, doi:
10.1109/ACCESS.2018.2890076.

A. Niccolai, D. Caputo, L. Chieco, F. Grimaccia, and M. Mussetta,
“Machine learning-based detection technique for NDT in industrial
manufacturing,” Mathematics, vol. 9, no. 11, p. 1251, May 2021, doi:
10.3390/math9111251.

J. B. Harley and D. Sparkman, “Machine learning and NDE: Past,
present, and future,” in Proc. AIP Conf., 2019, Art. no. 090001, doi:
10.1063/1.5099819.

1. Virkkunen, T. Koskinen, O. Jessen-Juhler, and J. Rinta-aho, “‘Augmented
ultrasonic data for machine learning,” J. Nondestruct. Eval., vol. 40, no. 1,
pp. 1-11, Mar. 2021, doi: 10.1007/s10921-020-00739-5.

K. Ikeda and A. Kamimura, “‘Hammering acoustic analysis using machine
learning techniques for piping inspection,” J. Robot. Mechtron., vol. 32,
no. 4, pp. 789-797, Aug. 2020, doi: 10.20965/jrm.2020.p0789.

VOLUME 10, 2022


http://dx.doi.org/10.1155/2022/6681008
http://dx.doi.org/10.1016/j.wear.2018.10.006
http://dx.doi.org/10.1016/j.matpr.2017.11.620
http://dx.doi.org/10.1117/12.2217930
http://dx.doi.org/10.1179/1743278215Y.0000000013
http://dx.doi.org/10.1016/j.jelechem.2018.02.005
http://dx.doi.org/10.23919/EURAD.2018.8546540
http://dx.doi.org/10.23919/EURAD.2018.8546540
http://dx.doi.org/10.1016/j.ifset.2018.10.013
http://dx.doi.org/10.1016/j.ifset.2018.10.013
http://dx.doi.org/10.1038/srep42452
http://dx.doi.org/10.1155/2021/6640406
http://dx.doi.org/10.1109/TMTT.2016.2625785
http://dx.doi.org/10.1109/JSEN.2016.2522983
http://dx.doi.org/10.1016/j.ndteint.2017.09.015
http://dx.doi.org/10.1109/ACCESS.2019.2934143
http://dx.doi.org/10.3390/coatings11080913
http://dx.doi.org/10.1109/TMTT.2016.2535290
http://dx.doi.org/10.1109/TMTT.2018.2827383
http://dx.doi.org/10.1016/j.ndteint.2021.102414
http://dx.doi.org/10.1007/s12205-019-2012-Z
http://dx.doi.org/10.1016/j.epsr.2021.107106
http://dx.doi.org/10.1016/J.JKSUCI.2021.07.003
http://dx.doi.org/10.1038/s41746-019-0193-y
http://dx.doi.org/10.3390/genes10020087
http://dx.doi.org/10.1002/mp.13649
http://dx.doi.org/10.2196/jmir.5870
http://dx.doi.org/10.1111/ijlh.12818
http://dx.doi.org/10.1190/tle37060451.1
http://dx.doi.org/10.1007/978-1-4842-4149-3
http://dx.doi.org/10.2196/15708
http://dx.doi.org/10.1136/bmjhci-2020-100262
http://dx.doi.org/10.1109/ACCESS.2018.2890076
http://dx.doi.org/10.3390/math9111251
http://dx.doi.org/10.1063/1.5099819
http://dx.doi.org/10.1007/s10921-020-00739-5
http://dx.doi.org/10.20965/jrm.2020.p0789

T.S. Yee et al.: Prospect of Using Machine Learning-Based Microwave NDT Technique for CUI: A Review

IEEE Access

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

M. F. Sheikh, K. Kamal, F. Rafique, S. Sabir, H. Zaheer, and K. Khan,
“Corrosion detection and severity level prediction using acoustic emission
and machine learning based approach,” Ain Shams Eng. J., vol. 12, no. 4,
pp. 3891-3903, Dec. 2021, doi: 10.1016/j.asej.2021.03.024.

A. Amer, A. Alshehri, H. Saiari, A. Meshaikhis, and A. Alshamrany,
“Artificial intelligence Al assisted thermography to detect corrosion under
insulation CUL” in Proc. SPE Middle East Oil Gas Show Conf., Dec. 2021,
doi: 10.2118/204690-MS.

N. H. M. M. Shrifan, G. N. Jawad, N. A. M. Isa, and M. F. Akbar,
“Microwave nondestructive testing for defect detection in compos-
ites based on K-means clustering algorithm,” [EEE Access, vol. 9,
pp. 48204828, 2021, doi: 10.1109/ACCESS.2020.3048147.

M. Grenier, V. Demers-Carpentier, M. Rochette, and F. Hardy, ‘‘Pulsed
eddy current: New developments for corrosion under insulation examina-
tions,” in Proc. 19th World Conf. Non-Destructive Test., 2016, pp. 13—17.
Accessed: Mar. 12, 2022. [Online]. Available: http://ndt.net/?id=19239
A. Amer, S. Aramco, A. Alshehri, and I. Al-Taie, “Inspection challenges
for detecting corrosion under insulation (CUI) in the oil and gas industry,”
in Proc. 17th Middle East Corrosion Conf. Exhib., 2018, pp. 1-4.

M. Jolly, A. Prabhakar, B. Sturzu, K. Hollstein, R. Singh, S. Thomas,
P. Foote, and A. Shaw, “Review of non-destructive testing (NDT) tech-
niques and their applicability to thick walled composites,” Proc. CIRP,
vol. 38, pp. 129-136, Jan. 2015, doi: 10.1016/j.procir.2015.07.043.

M. Margret, M. Menaka, V. Subramanian, R. Baskaran, and
B. Venkatraman, ‘‘Non-destructive inspection of hidden corrosion through
Compton backscattering technique,” Radiat. Phys. Chem., vol. 152,
pp. 158-164, Nov. 2018, doi: 10.1016/j.radphyschem.2018.07.015.

S. Doshvarpassand, C. Wu, and X. Wang, “An overview of corrosion defect
characterization using active infrared thermography,” Infr. Phys. Technol.,
vol. 96, pp. 366-389, Jan. 2019, doi: 10.1016/J.INFRARED.2018.12.006.
S. Varvara, C. Berghian-Grosan, R. Bostan, R. L. Ciceo, Z. Salarvand,
M. Talebian, K. Raeissi, J. Izquierdo, and R. M. Souto, “Experimental
characterization, machine learning analysis and computational modelling
of the high effective inhibition of copper corrosion by 5-(4-pyridyl)-1,3,4-
oxadiazole-2-thiol in saline environment,” Electrochimica Acta, vol. 398,
Dec. 2021, Art. no. 139282, doi: 10.1016/j.electacta.2021.139282.

M. Dotfer, R. Kelz, and G. Widmer, “Deep linear discriminant analysis,”
in Proc. Int. Conf. Learn. Representations, 2016, pp. 1-13. Accessed:
Apr. 4, 2022. [Online]. Available: http://www.cp.jku.at/

A. Tharwat, T. Gaber, A. Ibrahim, and A. E. Hassanien, “Linear dis-
criminant analysis: A detailed tutorial,” Al Commun., vol. 30, no. 2,
pp. 169-190, Jan. 2017, doi: 10.3233/AIC-170729.

D. S. Herd, “Microwave based monitoring system for corrosion under
insulation,” Heriot-Watt Univ., Edinburgh, AS, U.K., Tech. Rep., 2016.
M. Wicker, B. P. Alduse, and S. Jung, “Detection of hidden corrosion in
metal roofing shingles utilizing infrared thermography,” J. Building Eng.,
vol. 20, pp. 201-207, Nov. 2018, doi: 10.1016/j.jobe.2018.07.018.

F. Ciampa, P. Mahmoodi, F. Pinto, and M. Meo, “‘Recent advances in active
infrared thermography for non-destructive testing of aerospace compo-
nents,” Sensors, vol. 18, no. 2, p. 609, Feb. 2018, doi: 10.3390/518020609.
G. Cadelano et al., “Corrosion detection in pipelines using infrared ther-
mography: Experiments and data processing methods,” J. Nondestruct.
Eval., vol. 35, no. 49, pp. 1-11, Aug. 2016, doi: 10.1007/S10921-016-
0365-5.

M. Grosso, 1. C. P. Margarit-Mattos, and G. R. Pereira, “Pulsed ther-
mography inspection of composite anticorrosive coatings: Defect detection
and analysis of their thermal behavior through computational simulation,”
Materials, vol. 13, no. 21, p. 4812, Oct. 2020, doi: 10.3390/ma13214812.
C. Liu and R. G. Kelly, “A review of the application of finite element
method (FEM) to localized corrosion modeling,” Corrosion, vol. 75,
no. 11, pp. 1285-1299, Nov. 2019, doi: 10.5006/3282.

Q. Fang, C. Ibarra-Castanedo, and X. Maldague, “Automatic defects seg-
mentation and identification by deep learning algorithm with pulsed ther-
mography: Synthetic and experimental data,” Big Data Cognit. Comput.,
vol. 5, no. 1, p. 9, Feb. 2021, doi: 10.3390/bdcc5010009.

A. A. Heidari, H. Faris, S. Mirjalili, 1. Aljarah, and M. Mafarja,
“Ant lion optimizer: Theory, literature review, and application in
multi-layer perceptron neural networks,” Nature-Inspired Optimizers
(Studies in Computational Intelligence), vol. 811. 2020, pp.23-46,
doi: 10.1007/978-3-030-12127-3_3.

A. A. Heidari, H. Faris, I. Aljarah, and S. Mirjalili, “An efficient
hybrid multilayer perceptron neural network with grasshopper opti-
mization,” Soft Comput., vol. 23, no. 17, pp. 7941-7958, Jul. 2018,
doi: 10.1007/s00500-018-3424-2.

VOLUME 10, 2022

(68]

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

(77

(78]

(791

[80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

Z. Zhao, S. Xu, B. H. Kang, M. M. J. Kabir, Y. Liu, and R. Wasinger,
“Investigation and improvement of multi-layer perceptron neural net-
works for credit scoring,” Exp. Syst. Appl., vol. 42, no. 7, pp. 3508-3516,
May 2015, doi: 10.1016/j.eswa.2014.12.006.

Y. Cao, Y. Dong, Y. Cao, J. Yang, and M. Y. Yang, “Two-stream con-
volutional neural network for non-destructive subsurface defect detection
via similarity comparison of lock-in thermography signals,” NDT E, Int.,
vol. 112, Jun. 2020, Art. no. 102246, doi: 10.1016/j.ndteint.2020.102246.
A. N. AbdAlla, M. A. Faraj, F. Samsuri, D. Rifai, K. Ali, and Y. Al-Douri,
“Challenges in improving the performance of eddy current testing:
Review,” Meas. Control, vol. 52, nos. 1-2, pp. 46-64, Nov. 2018, doi:
10.1177/0020294018801382.

L. Xie, B. Gao, G. Y. Tian, J. Tan, B. Feng, and Y. Yin, “Coupling pulse
eddy current sensor for deeper defects NDT,” Sens. Actuators A, Phys.,
vol. 293, pp. 189-199, Jul. 2019, doi: 10.1016/j.sna.2019.03.029.

R. Mardaninejad and M. S. Safizadeh, “Gas pipeline corrosion map-
ping through coating using pulsed eddy current technique,” Russian
J. Nondestruct. Test., vol. 55, no. 11, pp. 858-867, Nov. 2019, doi:
10.1134/S1061830919110068.

S. Denenberg, T. Dunford, Y. Sheiretov, S. Haque, B. Manning,
A. Washabaugh, and N. Goldfine, “Advancements in imaging corrosion
under insulation for piping and vessels,” Mater. Eval., vol. 73, no. 7,
pp. 987-995, Jul. 2015.

N. Yusa, T. Tomizawa, H. Song, and H. Hashizume, ‘“‘Probability of
detection analyses of eddy current data for the detection of corrosion,”
Mater. Sci., vol. 4, pp. 3-7, 2018, doi: 10.26357/BNiD.2018.031.

Y. Kuts, S. Maievskyi, A. Protasov, I. Lysenko, and O. Dugin, *“Study
of parametric transducer operation in pulsed eddy current non-destructive
testing,” in Proc. IEEE 38th Int. Conf. Electron. Nanotechnol. (ELNANO),
Apr. 2018, pp. 24-26.

M. Ricci, G. Silipigni, L. Ferrigno, M. Laracca, I. D. Adewale, and
G. Y. Tian, “Evaluation of the lift-off robustness of eddy current
imaging techniques,” NDT E, Int., vol. 85, pp. 43-52, Jan. 2017, doi:
10.1016/j.ndteint.2016.10.001.

Z. Jin, Y. Meng, R. Yu, R. Huang, M. Lu, H. Xu, X. Meng, Q. Zhao,
Z.Zhang, A. Peyton, and W. Yin, “Methods of controlling lift-off in con-
ductivity invariance phenomenon for eddy current testing,” IEEE Access,
vol. 8, pp. 122413-122421, 2020, doi: 10.1109/ACCESS.2020.3007216.
X. Chen, J. Li, and Z. Wang, “Inversion method in pulsed eddy cur-
rent testing for wall thickness of ferromagnetic pipes,” IEEE Trans.
Instrum. Meas., vol. 69, no. 12, pp.9766-9773, Dec. 2020, doi:
10.1109/TIM.2020.3005114.

A. Sophian, G. Tian, and M. Fan, “Pulsed eddy current non-destructive
testing and evaluation: A review,” Chin. J. Mech. Eng., vol. 30, no. 3,
pp. 500-514, 2017, doi: 10.1007/s10033-017-0122-4.

A. Sophian, F. Nafiah, T. S. Gunawan, N. A. M. Yusof, and A. Al-Kelabi,
“Machine-learning-based evaluation of corrosion under insulation in ferro-
magnetic structures,” IIUM Eng. J., vol. 22, no. 2, pp. 226-233, Jul. 2021,
doi: 10.31436/iiumej.v22i2.1692.

L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model pre-
dictive control using Gaussian process regression,” IEEE Trans. Con-
trol Syst. Technol., vol. 28, no. 6, pp.2736-2743, Nov. 2020, doi:
10.1109/TCST.2019.2949757.

M. Sharifzadeh, A. Sikinioti-Lock, and N. Shah, ‘““Machine-learning meth-
ods for integrated renewable power generation: A comparative study of
artificial neural networks, support vector regression, and Gaussian process
regression,” Renew. Sustain. Energy Rev., vol. 108, pp. 513-538, Jul. 2019,
doi: 10.1016/j.rser.2019.03.040.

E. Schulz, M. Speekenbrik, and A. Krause, “A tutorial on Gaussian pro-
cess regression: Modelling, exploring, and exploiting functions,” J. Math.
Psychol., vol. 85, pp. 1-16, Aug. 2018, doi: 10.1016/j.jmp.2018.03.001.
V. L. Deringer, A. P. Bartok, N. Bernstein, D. M. Wilkins, M. Ceriotti, and
G. Csanyi, “Gaussian process regression for materials and molecules,”
Chem. Rev., vol. 121, no. 16, pp.10073-10141, Aug. 2021, doi:
10.1021/acs.chemrev.1c00022.

J. Bailey, N. Long, and A. Hunze, “Eddy current testing with giant magne-
toresistance (GMR) sensors and a pipe-encircling excitation for evaluation
of corrosion under insulation,” Sensors, vol. 17, no. 10, p. 2229, Sep. 2017,
doi: 10.3390/s17102229.

L. Jogschies et al., “Recent developments of magnetoresistive sensors
for industrial applications,” Sensors, vol. 15, no. 11, pp. 28665-28689,
Nov. 2015, doi: 10.3390/S151128665.

D. Rifai, A. Abdalla, K. Ali, and R. Razali, “Giant magnetoresis-
tance sensors: A review on structures and non-destructive eddy current
testing applications,” Sensors, vol. 16, no. 3, p. 298, Feb. 2016, doi:
10.3390/s16030298.

88207


http://dx.doi.org/10.1016/j.asej.2021.03.024
http://dx.doi.org/10.2118/204690-MS
http://dx.doi.org/10.1109/ACCESS.2020.3048147
http://dx.doi.org/10.1016/j.procir.2015.07.043
http://dx.doi.org/10.1016/j.radphyschem.2018.07.015
http://dx.doi.org/10.1016/J.INFRARED.2018.12.006
http://dx.doi.org/10.1016/j.electacta.2021.139282
http://dx.doi.org/10.3233/AIC-170729
http://dx.doi.org/10.1016/j.jobe.2018.07.018
http://dx.doi.org/10.3390/s18020609
http://dx.doi.org/10.1007/S10921-016-0365-5
http://dx.doi.org/10.1007/S10921-016-0365-5
http://dx.doi.org/10.3390/ma13214812
http://dx.doi.org/10.5006/3282
http://dx.doi.org/10.3390/bdcc5010009
http://dx.doi.org/10.1007/978-3-030-12127-3_3
http://dx.doi.org/10.1007/s00500-018-3424-2
http://dx.doi.org/10.1016/j.eswa.2014.12.006
http://dx.doi.org/10.1016/j.ndteint.2020.102246
http://dx.doi.org/10.1177/0020294018801382
http://dx.doi.org/10.1016/j.sna.2019.03.029
http://dx.doi.org/10.1134/S1061830919110068
http://dx.doi.org/10.26357/BNiD.2018.031
http://dx.doi.org/10.1016/j.ndteint.2016.10.001
http://dx.doi.org/10.1109/ACCESS.2020.3007216
http://dx.doi.org/10.1109/TIM.2020.3005114
http://dx.doi.org/10.1007/s10033-017-0122-4
http://dx.doi.org/10.31436/iiumej.v22i2.1692
http://dx.doi.org/10.1109/TCST.2019.2949757
http://dx.doi.org/10.1016/j.rser.2019.03.040
http://dx.doi.org/10.1016/j.jmp.2018.03.001
http://dx.doi.org/10.1021/acs.chemrev.1c00022
http://dx.doi.org/10.3390/s17102229
http://dx.doi.org/10.3390/S151128665
http://dx.doi.org/10.3390/s16030298

IEEE Access

T.S. Yee et al.: Prospect of Using Machine Learning-Based Microwave NDT Technique for CUI: A Review

[88] M. Djamal and R. Ramli, “Giant magnetoresistance sensors based on
ferrite material and its applications,” in Magnetic Sensors—Development
Trends and Applications. IntechOpen, Nov. 2017, pp. 111-132, doi:
10.5772/INTECHOPEN.70548.

[89] M.-D. Cubells-Beltran, C. Reig, J. Madrenas, A. De Marcellis, J. Santos,
S. Cardoso, and P. Freitas, “Integration of GMR sensors with dif-
ferent technologies,” Sensors, vol. 16, no. 6, p. 939, Jun. 2016, doi:
10.3390/516060939.

[90] R. Falque, “Automatic data interpretation and enhanced localization for
inline remote field eddy current tools,” Open Publications UTS Scholar,
Tech. Rep., 2018.

[91] B. Losiewicz, M. Popczyk, M. Szklarska, A. Smotka, P. Osak, and
A. Budniok, “Application of the scanning Kelvin probe technique for
characterization of corrosion interfaces,” Solid State Phenomena, vol. 228,
pp. 369-382, Mar. 2015, doi: 10.4028/www.scientific.net/SSP.228.369.

[92] R. Grothe, C. N. Liu, M. Baumert, O. Hesebeck, and G. Grundmeier,
“Scanning Kelvin Probe Blister test measurements of adhesive
delamination—Bridging the gap between experiment and theory,”
Int. J. Adhes. Adhesives, vol. 73, pp. 8-15, Mar. 2017, doi: 10.1016/
JIJADHADH.2016.11.006.

[93] M. Uebel, A. Vimalanandan, A. Laaboudi, S. Evers, M. Stratmann,
D. Diesing, and M. Rohwerder, “Fabrication of robust reference tips and
reference electrodes for Kelvin probe applications in changing atmo-
spheres,” Langmuir, vol. 33, no. 41, pp. 10807-10817, Oct. 2017, doi:
10.1021/acs.langmuir.7b02533.

[94] H. Zhang, “Radio frequency non-destructive testing and evaluation of
defects under insulation,” Tech. Rep., 2014.

[95] 1. A. Shozib, A. Ahmad, A. M. Abdul-Rani, M. Beheshti, and A. A. Aliyu,
“A review on the corrosion resistance of electroless Ni-P based composite
coatings and electrochemical corrosion testing methods,” Corrosion Rev.,
vol. 40, no. 1, pp. 1-37, Feb. 2022, doi: 10.1515/corrrev-2020-0091.

[96] G. Ebrahimi, J. Neshati, and F. Rezaei, “An investigation on the effect of
H3PO4 and HCl-doped polyaniline nanoparticles on corrosion protection
of carbon steel by means of scanning Kelvin probe,” Prog. Organic Coat-
ings, vol. 105, pp. 1-8, Apr. 2017, doi: 10.1016/j.porgcoat.2016.12.016.

[97] C. Sun, S.-J. Ko, S. Jung, C. Wang, D. Lee, J.-G. Kim, and Y. Kim,
“Visualization of electrochemical behavior in carbon steel assisted by
machine learning,” Appl. Surf. Sci., vol. 563, Oct. 2021, Art. no. 150412,
doi: 10.1016/j.apsusc.2021.150412.

[98] S. Brockhaus, M. Ginten, S. Klein, M. Teckert, O. Stawicki,
D. Oevermann, S. Meyer, and D. Storey, “In-line inspection (ILI)
methods for detecting corrosion in underground pipelines,” Underground
Pipeline Corrosion, Detection, Anal. Prevention, pp. 255-285, Jan. 2014,
doi: 10.1533/9780857099266.2.255.

[99] S. Caines, F. Khan, J. Shirokoff, and W. Qiu, “Experimental design
to study corrosion under insulation in harsh marine environments,”
J. Loss Prevention Process Industries, vol. 33, pp. 39-51, Jan. 2015, doi:
10.1016/j.j1p.2014.10.014.

[100] H. Taheri and A. A. Hassen, ‘“Nondestructive ultrasonic inspection of
composite materials: A comparative advantage of phased array ultrasonic,”
Appl. Sci., vol. 9, no. 8, p. 1628, Apr. 2019, doi: 10.3390/app9081628.

[101] B. Yu, K. D. Tola, C. Lee, and S. Park, “Improving the ability of a laser
ultrasonic wave-based detection of damage on the curved surface of a
pipe using a deep learning technique,” Sensors, vol. 21, no. 21, p. 7105,
Oct. 2021, doi: 10.3390/s21217105.

[102] Y. He, B. Deng, H. Wang, L. Cheng, K. Zhou, S. Cai, and F. Ciampa,
“Infrared machine vision and infrared thermography with deep learning:
A review,” Infr. Phys. Technol., vol. 116, Aug. 2021, Art. no. 103754, doi:
10.1016/j.infrared.2021.103754.

[103] T. Kattenborn, J. Leitloff, F. Schiefer, and S. Hinz, “Review on con-
volutional neural networks (CNN) in vegetation remote sensing,” ISPRS
J. Photogramm. Remote Sens., vol. 173, pp.24-49, Mar. 2021, doi:
10.1016/j.isprsjprs.2020.12.010.

[104] A. Yassin, M. S. U. Rahman, and M. A. Abou-Khousa, “Imaging of
near-surface defects using microwaves and ultrasonic phased array tech-
niques,” J. Nondestruct. Eval., vol. 37, no. 4, pp. 1-8, Sep. 2018, doi:
10.1007/510921-018-0526-9.

[105] J. Brizuela, J. Camacho, G. Cosarinsky, J. M. Iriarte, and
J. FE  Cruza, “Improving elevation resolution in phased-array
inspections for NDT,” NDT E, Int., vol. 101, pp. 1-16, Jan. 2019,
doi: 10.1016/j.ndteint.2018.09.002.

[106] M.-J. Jung, B.-C. Park, J.-H. Bae, and S.-C. Shin, “PAUT-based
defect detection method for submarine pressure hulls,” Int. J. Nav.
Archit. Ocean Eng., vol. 10, no. 2, pp.153-169, Mar. 2018, doi:
10.1016/j.ijnaoe.2017.06.002.

88208

[107] T. Latéte, B. Gauthier, and P. Belanger, “Towards using convolutional
neural network to locate, identify and size defects in phased array ultra-
sonic testing,” Ultrasonics, vol. 115, Aug. 2021, Art. no. 106436, doi:
10.1016/j.ultras.2021.106436.

[108] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the
recent architectures of deep convolutional neural networks,” Artif. Intell.
Rev., vol. 53, no. 8, pp. 5455-5516, Apr. 2020, doi: 10.1007/s10462-020-
09825-6.

[109] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan,
O. Al-Shamma, J. Santamaria, M. A. Fadhel, M. Al-Amidie, and L. Farhan,
“Review of deep learning: Concepts, CNN architectures, challenges, appli-
cations, future directions,” J. Big Data, vol. 8, no. 1, pp. 1-74, Mar. 2021,
doi: 10.1186/s40537-021-00444-8.

[110] A.Omar, “A note on NDT technology for detection of defects in oil and
gas pipes,” Int. J. Thermal Environ. Eng.,vol. 12,n0.2, pp. 117-118,2016,
doi: 10.5383/ijtee.12.02.006.

[111] M. T. Ghasr, M. J. Horst, M. Lechuga, R. Rapoza, C. J. Renoud, and
R. Zoughi, “Accurate one-sided microwave thickness evaluation of lined-
fiberglass composites,” IEEE Trans. Instrum. Meas., vol. 64, no. 10,
pp. 2802-2812, Oct. 2015, doi: 10.1109/TIM.2015.2426352.

[112] G. N. Jawad and M. F. Akbar, “IFFT-based microwave non-destructive
testing for delamination detection and thickness estimation,” [EEE
Access, vol. 9, pp. 98561-98572, 2021, doi: 10.1109/ACCESS.2021.
3095105.

[113] T. D. Carrigan, B. E. Forrest, H. N. Andem, K. Gui, L. Johnson,
J. E. Hibbert, B. Lennox, and R. Sloan, “Nondestructive testing of non-
metallic pipelines using microwave reflectometry on an in-line inspection
robot,” IEEE Trans. Instrum. Meas., vol. 68, no. 2, pp. 586-594, Feb. 2019,
doi: 10.1109/TIM.2018.2847780.

[114] M. S. Ur Rahman, A. Yassin, and M. A. Abou-Khousa, ‘“Microwave
imaging of thick composite structures using circular aperture probe,”
Meas. Sci. Technol., vol. 29, no. 9, Aug. 2018, Art. no. 095403, doi:
10.1088/1361-6501/aad2cf.

[115] S. Lenka, “Corrosion under insulation (CUI)-inspection technique
and prevention,” Indian National Seminar Exhibition on Non-
Destructive Evaluation, Thiruvananthapuram, India, Tech. Rep., 2017,
pp. 97-103.

[116] Z. Li, A. Haigh, C. Soutis, A. Gibson, and P. Wang, “A review
of microwave testing of glass fibre-reinforced polymer composites,”
Nondestruct. Test. Eval., vol. 34, no. 4, pp.429-458, Oct. 2019, doi:
10.1080/10589759.2019.1605603.

[117] A.J. K. M. Firdaus, R. Sloan, C. I. Duff, M. Wielgat, and J. F. Knowles,
“Microwave nondestructive evaluation of thermal barrier coated tur-
bine blades using correlation analysis,” in Proc. 46th Eur. Microw.
Conf. (EuMC), Oct. 2016, pp.520-523, doi: 10.1109/EuMC.2016.
7824394.

[118] Y.-H. Tsai, J. Wang, W.-T. Chien, C.-Y. Wei, X. Wang, and
S.-H. Hsieh, “A BIM-based approach for predicting corrosion under insu-
lation,” Autom. Construction, vol. 107, Nov. 2019, Art. no. 102923, doi:
10.1016/j.autcon.2019.102923.

[119] S. Deif, L. Harron, and M. Daneshmand, ‘“Out-of-sight salt-water con-
centration sensing using Chipless-RFID for pipeline coating integrity,”
in [EEE MTT-S Int. Microw. Symp. Dig., Jun. 2018, pp. 367-370, doi:
10.1109/MWSYM.2018.8439237.

[120] S. Deif and M. Daneshmand, “Long array of microwave sen-
sors for real-time coating defect detection,” IEEE Trans. Microw.
Theory Techn., vol. 68, no. 7, pp. 2856-2866, Jul. 2020, doi:
10.1109/TMTT.2020.2973385.

[121] S. M. Bejjavarapu and F. Simonetti, “An experimental model for
guided microwave backscattering from wet insulation in pipelines,”
J. Nondestruct. Eval., vol. 33, no. 4, pp.583-596, Oct. 2014,
doi: 10.1007/s10921-014-0254-8.

[122] M. F. Akbar, R. Sloan, C. Duff, M. Wielgat, and J. Knowles,
“Nondestructive testing of thermal barrier coated turbine blades using
microwave techniques,” Mater. Eval., vol. 74, no. 4, pp.543-551,
2016.

[123] B.Ahn,J.Kim, and B. Choi, “Artificial intelligence-based machine learn-
ing considering flow and temperature of the pipeline for leak early detec-
tion using acoustic emission,” Eng. Fract. Mech., vol. 210, pp. 381-392,
Apr. 2019, doi: 10.1016/j.engfracmech.2018.03.010.

[124] T. S. Yee and M. F. Akbar, “Under insulation microwave non-
destructive  testing using dual-ridges open-ended rectangular
waveguide,” in Proc. 11th Int. Conf. Robot., Vis., Signal Process.
Power  Appl., 2022, pp.684-689, doi: 10.1007/978-981-16-
8129-5_104.

VOLUME 10, 2022


http://dx.doi.org/10.5772/INTECHOPEN.70548
http://dx.doi.org/10.3390/s16060939
http://dx.doi.org/10.4028/www.scientific.net/SSP.228.369
http://dx.doi.org/10.1016/J.IJADHADH.2016.11.006
http://dx.doi.org/10.1016/J.IJADHADH.2016.11.006
http://dx.doi.org/10.1021/acs.langmuir.7b02533
http://dx.doi.org/10.1515/corrrev-2020-0091
http://dx.doi.org/10.1016/j.porgcoat.2016.12.016
http://dx.doi.org/10.1016/j.apsusc.2021.150412
http://dx.doi.org/10.1533/9780857099266.2.255
http://dx.doi.org/10.1016/j.jlp.2014.10.014
http://dx.doi.org/10.3390/app9081628
http://dx.doi.org/10.3390/s21217105
http://dx.doi.org/10.1016/j.infrared.2021.103754
http://dx.doi.org/10.1016/j.isprsjprs.2020.12.010
http://dx.doi.org/10.1007/s10921-018-0526-9
http://dx.doi.org/10.1016/j.ndteint.2018.09.002
http://dx.doi.org/10.1016/j.ijnaoe.2017.06.002
http://dx.doi.org/10.1016/j.ultras.2021.106436
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.1186/s40537-021-00444-8
http://dx.doi.org/10.5383/ijtee.12.02.006
http://dx.doi.org/10.1109/TIM.2015.2426352
http://dx.doi.org/10.1109/ACCESS.2021.3095105
http://dx.doi.org/10.1109/ACCESS.2021.3095105
http://dx.doi.org/10.1109/TIM.2018.2847780
http://dx.doi.org/10.1088/1361-6501/aad2cf
http://dx.doi.org/10.1080/10589759.2019.1605603
http://dx.doi.org/10.1109/EuMC.2016.7824394
http://dx.doi.org/10.1109/EuMC.2016.7824394
http://dx.doi.org/10.1016/j.autcon.2019.102923
http://dx.doi.org/10.1109/MWSYM.2018.8439237
http://dx.doi.org/10.1109/TMTT.2020.2973385
http://dx.doi.org/10.1007/s10921-014-0254-8
http://dx.doi.org/10.1016/j.engfracmech.2018.03.010
http://dx.doi.org/10.1007/978-981-16-8129-5_104
http://dx.doi.org/10.1007/978-981-16-8129-5_104

T.S. Yee et al.: Prospect of Using Machine Learning-Based Microwave NDT Technique for CUI: A Review

IEEE Access

[125] K. Abbasi and W. M. Alobaidi, ““Estimation of time-of-flight based on
threshold and peak analysis method for microwaves signals reflected from
the crack,” Nondestruct. Test. Eval., vol. 33, no. 4, pp. 393-404, Oct. 2018,
doi: 10.1080/10589759.2018.1495204.

[126] M. F. Isham, M. S. Leong, M. H. Lim, and Z. A. Ahmad, ‘“Variational
mode decomposition: Mode determination method for rotating machinery
diagnosis,” J. Vibroengineering, vol. 20, no. 7, pp. 2604-2621, Nov. 2018,
doi: 10.21595/jve.2018.19479.

[127] Y. Diao, L. Yan, and K. Gao, “Improvement of the machine learning-
based corrosion rate prediction model through the optimization of
input features,” Mater. Des., vol. 198, Jan. 2021, Art. no. 109326, doi:
10.1016/j.matdes.2020.109326.

[128] R. Ramos, B. Valdez-Salas, R. Zlatev, M. S. Wiener, and J. M. B. Rull,
“The discrete wavelet transform and its application for noise removal in
localized corrosion measurements,” Int. J. Corrosion, vol. 2017, pp. 1-7,
2017, doi: 10.1155/2017/7925404.

[129] T. S. Yee, M. F. Akbar, N. A. Ghazali, and M. F. P. Mohamed,
“Defects detection using complementary split ring resonator with
microstrip patch antenna,” in Proc. 11th Int. Conf. Robot., Vis., Sig-
nal Process. Power Appl., 2022, pp. 625-631, doi: 10.1007/978-981-16-
8129-5_95.

[130] K. Sudheera and N. M. Nandhitha, “Application of Hilbert trans-
form for flaw characterization in ultrasonic signals,” Indian J. Sci.
Technol., vol. 8, no. 13, pp. 1-6, Jul. 2015, doi: 10.17485/ijst/2015/
v8il3/56303.

[131] Z. Li, Y. Jiang, Q. Guo, C. Hu, and Z. Peng, “Multi-dimensional vari-
ational mode decomposition for bearing-crack detection in wind turbines
with large driving-speed variations,” Renew. Energy, vol. 116, pp. 55-73,
Feb. 2018, doi: 10.1016/j.renene.2016.12.013.

[132] M. Zhang, Z. Jiang, and K. Feng, “‘Research on variational mode decom-
position in rolling bearings fault diagnosis of the multistage centrifugal
pump,” Mech. Syst. Signal Process., vol. 93, pp. 460—493, Sep. 2017, doi:
10.1016/j.ymssp.2017.02.013.

[133] R. R. Zebari, A. M. Abdulazeez, D. Q. Zeebarce, D. A. Zebari,
and J. N. Saeed, “A comprehensive review of dimensionality reduction
techniques for feature selection and feature extraction,” J. Appl. Sci.
Technol. Trends, vol. 1, no. 2, pp.56-70, May 2020, doi: 10.38094/
jastt1224.

[134] T. Mehmood and B. Ahmed, “The diversity in the applications of partial
least squares: An overview,” J. Chemometrics, vol. 30, no. 1, pp. 4-17,
Jan. 2016, doi: 10.1002/cem.2762.

[135] C. T. Ser, P. 2uvela, and M. W. Wong, “Prediction of corrosion
inhibition efficiency of pyridines and quinolines on an iron surface
using machine learning-powered quantitative structure-property relation-
ships,” Appl. Surf. Sci., vol. 512, May 2020, Art. no. 145612, doi:
10.1016/j.apsusc.2020.145612.

[136] M. F. Akbar, G. N. Jawad, L. D. Rashid, and R. Sloan, ‘“Nondestructive
evaluation of coatings delamination using microwave time domain reflec-
tometry technique,” IEEE Access, vol. 8, pp. 114833-114841, 2020, doi:
10.1109/ACCESS.2020.3003829.

[137] N.-D. Hoang, “‘Image processing-based pitting corrosion detection using
Metaheuristic optimized multilevel image thresholding and machine-
learning approaches,” Math. Problems Eng., vol. 2020, pp.1-19,
May 2020, doi: 10.1155/2020/6765274.

[138] A. Ali, A. Albasir, and O. M. Ramahi, “Microwave sensor for imaging
corrosion under coatings utilizing pattern recognition,” in Proc. IEEE
Int. Symp. Antennas Propag. (APSURSI), Jun. 2016, pp. 951-952, doi:
10.1109/APS.2016.7696184.

[139] N. B. Erichson, A. Mendible, S. Wihlborn, and J. N. Kutz,
“Randomized nonnegative matrix factorization,” Pattern Recognit.
Lett., vol. 104, pp.1-7, Mar. 2018, doi: 10.1016/j.patrec.2018.
01.007.

[140] R. Kannan, G. Ballard, and H. Park, “A high-performance par-
allel algorithm for nonnegative matrix factorization,” ACM SIG-
PLAN Notices, vol. 51, no. 8, pp.1-11, Nov. 2016, doi: 10.1145/
3016078.2851152.

[141] Z. Li, J. Tang, and X. He, “Robust structured nonnegative
matrix factorization for image representation,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 5, pp. 1947-1960, May 2018, doi:
10.1109/TNNLS.2017.2691725.

[142] D. P. Varikuti, S. Genon, A. Sotiras, H. Schwender, F. Hoffstaedter,
K. R. Patil, C. Jockwitz, S. Caspers, S. Moebus, K. Amunts, C. Davatzikos,
and S. B. Eickhoff, “Evaluation of non-negative matrix factorization
of grey matter in age prediction,” Neurolmage, vol. 173, pp. 394-410,
Jun. 2018, doi: 10.1016/j.neuroimage.2018.03.007.

VOLUME 10, 2022

[143] S. Mei, H. Yang, and Z. Yin, “An unsupervised-learning-based
approach for automated defect inspection on textured surfaces,” IEEE
Trans. Instrum. Meas., vol. 67, no. 8, pp. 1266-1277, Jun. 2018, doi:
10.1109/TIM.2018.2795178.

[144] B. Qin, C. Hu, and S. Huang, “Target/background classification reg-
ularized nonnegative matrix factorization for fluorescence unmixing,”
1IEEE Trans. Instrum. Meas., vol. 65, no. 4, pp. 874-889, Apr. 2016, doi:
10.1109/TIM.2016.2516318.

[145] F. Y. Osisanwo, J. E. T. Akinsola, O. Awodele, J. O. Hinmikaiye,
O. Olakanmi, and J. Akinjobi, “Supervised machine learning algorithms:
Classification and comparison,” Int. J. Comput. Trends Technol., vol. 48,
no. 3, pp. 128-138, Jun. 2017, doi: 10.14445/22312803/1ICTT-V48P126.

[146] M. M. Mehmet?sahin and R. Erol, “A comparative study of neu-
ral networks and ANFIS for forecasting attendance rate of soccer
games,” Math. Comput. Appl., vol. 22, no. 4, p. 43, Nov. 2017, doi:
10.3390/mca22040043.

[147] X. Yuan, B. Huang, Y. Wang, C. Yang, and W. Gui, “Deep learning-
based feature representation and its application for soft sensor modeling
with variable-wise weighted SAE,” IEEE Trans. Ind. Informat., vol. 14,
no. 7, pp. 3235-3243, Jul. 2018, doi: 10.1109/T11.2018.2809730.

[148] J.-S. Chou, N.-T. Ngo, and W. K. Chong, “The use of artificial
intelligence combiners for modeling steel pitting risk and corrosion
rate,” Eng. Appl. Artif. Intell., vol. 65, pp.471-483, Oct. 2017, doi:
10.1016/j.engappai.2016.09.008.

[149] A. Ali, B. Hu, and O. Ramahi, “Intelligent detection of cracks in
metallic surfaces using a waveguide sensor loaded with metamaterial
elements,” Sensors, vol. 15, no. 5, pp. 11402-11416, May 2015, doi:
10.3390/5150511402.

[150] M. M. Khan, A. A. Mokhtar, and H. Hussin, ““A neural based fuzzy
logic model to determine corrosion rate for carbon steel subject to cor-
rosion under insulation,” Appl. Mech. Mater., vols. 789-790, pp. 526-530,
Sep. 2015, doi: 10.4028/www.scientific.net/ AMM.789-790.526.

[151] N. Morizet, N. Godin, J. Tang, E. Maillet, M. Fregonese, and
B. Normand, ‘““Classification of acoustic emission signals using wavelets
and random forests : Application to localized corrosion,” Mech.
Syst. Signal Process., vols. 70-71, pp. 1026-1037, Mar. 2016, doi:
10.1016/j.ymssp.2015.09.025.

[152] Y. Pan, X. Zhang, M. Sun, and Q. Zhao, “Object-based
and supervised detection of potholes and cracks from the
pavement images acquired by UAV,” Int. Arch. Photogramm.,
Remote Sens. Spatial Inf. Sci., vol42, pp.209-217, Sep. 2017,
doi: 10.5194/isprs-archives-XLII-4-W4-209-2017.

[153] K.-W. Liao and Y.-T. Lee, “Detection of rust defects on steel bridge
coatings via digital image recognition,” Autom. Construct., vol. 71,
pp. 294-306, Nov. 2016, doi: 10.1016/j.autcon.2016.08.008.

[154] A. N. Hoshyar, M. Rashidi, R. Liyanapathirana, and B. Samali, “Algo-
rithm development for the non-destructive testing of structural damage,”
Appl. Sci., vol. 9, no. 14, p. 2810, Jul. 2019, doi: 10.3390/app9142810.

[155] M. Agarwal, K. K. Rao, K. Vaidya, and S. Bhattacharya, “ML-MOC:
Machine learning (kNN and GMM) based membership determination for
open clusters,” Monthly Notices Roy. Astronomical Soc., vol. 502, no. 2,
pp. 2582-2599, Feb. 2021, doi: 10.1093/mnras/stab118.

[156] J. Heil, V. Héring, B. Marschner, and B. Stumpe, “Advantages of fuzzy
k-means over k-means clustering in the classification of diffuse reflectance
soil spectra: A case study with west African soils,” Geoderma, vol. 337,
pp. 11-21, Mar. 2019, doi: 10.1016/j.geoderma.2018.09.004.

[157] K. H. Memon and D.-H. Lee, “Generalised kernel weighted fuzzy
c-means clustering algorithm with local information,” Fuzzy Sets Syst.,
vol. 340, pp. 91-108, Jun. 2018, doi: 10.1016/j.fss.2018.01.019.

[158] Y. Ding and X. Fu, “Kernel-based fuzzy c-means clustering algorithm
based on genetic algorithm,” Neurocomputing, vol. 188, pp. 233-238,
May 2016, doi: 10.1016/j.neucom.2015.01.106.

TAN SHIN YEE received the bachelor’s degree
in electronic engineering from Universiti Sains
Malaysia (USM), Nibong Tebal, Malaysia,
in 2020. She is currently pursuing the Ph.D. degree
in microwave non-destructive testing with the
School of Electrical and Electronic Engineering.

88209


http://dx.doi.org/10.1080/10589759.2018.1495204
http://dx.doi.org/10.21595/jve.2018.19479
http://dx.doi.org/10.1016/j.matdes.2020.109326
http://dx.doi.org/10.1155/2017/7925404
http://dx.doi.org/10.1007/978-981-16-8129-5_95
http://dx.doi.org/10.1007/978-981-16-8129-5_95
http://dx.doi.org/10.17485/ijst/2015/v8i13/56303
http://dx.doi.org/10.17485/ijst/2015/v8i13/56303
http://dx.doi.org/10.1016/j.renene.2016.12.013
http://dx.doi.org/10.1016/j.ymssp.2017.02.013
http://dx.doi.org/10.38094/jastt1224
http://dx.doi.org/10.38094/jastt1224
http://dx.doi.org/10.1002/cem.2762
http://dx.doi.org/10.1016/j.apsusc.2020.145612
http://dx.doi.org/10.1109/ACCESS.2020.3003829
http://dx.doi.org/10.1155/2020/6765274
http://dx.doi.org/10.1109/APS.2016.7696184
http://dx.doi.org/10.1016/j.patrec.2018.01.007
http://dx.doi.org/10.1016/j.patrec.2018.01.007
http://dx.doi.org/10.1145/3016078.2851152
http://dx.doi.org/10.1145/3016078.2851152
http://dx.doi.org/10.1109/TNNLS.2017.2691725
http://dx.doi.org/10.1016/j.neuroimage.2018.03.007
http://dx.doi.org/10.1109/TIM.2018.2795178
http://dx.doi.org/10.1109/TIM.2016.2516318
http://dx.doi.org/10.14445/22312803/IJCTT-V48P126
http://dx.doi.org/10.3390/mca22040043
http://dx.doi.org/10.1109/TII.2018.2809730
http://dx.doi.org/10.1016/j.engappai.2016.09.008
http://dx.doi.org/10.3390/s150511402
http://dx.doi.org/10.4028/www.scientific.net/AMM.789-790.526
http://dx.doi.org/10.1016/j.ymssp.2015.09.025
http://dx.doi.org/10.5194/isprs-archives-XLII-4-W4-209-2017
http://dx.doi.org/10.1016/j.autcon.2016.08.008
http://dx.doi.org/10.3390/app9142810
http://dx.doi.org/10.1093/mnras/stab118
http://dx.doi.org/10.1016/j.geoderma.2018.09.004
http://dx.doi.org/10.1016/j.fss.2018.01.019
http://dx.doi.org/10.1016/j.neucom.2015.01.106

IEEE Access

T.S. Yee et al.: Prospect of Using Machine Learning-Based Microwave NDT Technique for CUI: A Review

NAWAF H. M. M. SHRIFAN received the bach-
elor’s degree in computer science and engineer-
ing from the University of Aden, Aden, Yemen,
in 2006, and the MSc. and Ph.D. degrees from
Universiti Sains Malaysia (USM), in 2017 and
2022, respectively. He is currently an Assistant
Professor with the Department of Oil and Gas
Engineering, Faculty of Oil and Minerals, Uni-
versity of Aden. His current research interests
include microwave nondestructive testing, and
computational intelligence algorithms.

AHMED JAMAL ABDULLAH AL-GBURI
received the M.Eng. and Ph.D. degrees in elec-
tronics and computer engineering (telecommuni-
cation systems) from Universiti Teknikal Malaysia
Melaka (UTeM), Malaysia, in 2017, and 2021,
respectively. He is currently a Postdoctoral Fellow
with the Microwave research Group (MRG), Fac-
ulty of d Electronics and Computer Engineering,
UTeM. He has authored and coauthored a number
of journals and proceedings. His research inter-
ests include electromagnetic bandgap (EBG), artificial magnetic conductor
(AMC), frequency selective surface (FSS), UWB antennas, array antennas,
and small antennas for UWB and 5G applications. He has received the Best
Paper Award from the IEEE Community and won a number of Gold, Silver,
and Bronze medals in international and local competitions.

88210

NOR ASHIDI MAT ISA received the B.Eng.
degree (Hons.) in electrical and electronic engi-
neering and the Ph.D. degree in electronic
engineering (majoring in image processing and
artificial neural network) from Universiti Sains
Malaysia (USM), in 1999 and 2003, respectively.
He is currently a Professor with the School of Elec-
trical and Electronic Engineering, USM. He has
published more than 180, 217 and 294 arti-
cles indexed in WoS-ISI (H-index 30), Scopus
(H-index 36), and Google Scholar (H-Index 42), respectively. His research
interests include intelligent systems, image processing, neural networks,
computational intelligence, and medical image processing. Due to his out-
standing achievement in research, he gained recognition, both national and
internationally. He was recognized as a top 2% researcher in category—
Citation Impact in Single Calendar Years 2019 and 2020 by Stanford Univer-
sity, USA, in 2019 and 2020, and Top Research Scientist Malaysia (TRSM)
by Akademi Sains Malaysia (ASM), in 2020.

MUHAMMAD FIRDAUS AKBAR (Member,
IEEE) received the B.Sc. degree in commu-
nication engineering from International Islamic
University Malaysia (IIUM), Malaysia, in 2010,
and the M.Sc. and Ph.D. degrees from The
University of Manchester, Manchester, U.K, in
2012 and 2018, respectively. From 2010 to 2011,
he was with Motorola Solutions, Pulau Pinang,
Malaysia, as a Research and Development Engi-
neer. From 2012 to 2014, he was an Electrical
Engineer with Usains Infotech Sdn Bhd, Penang. He is currently a Senior
Lecturer with Universiti Sains Malaysia (USM). He is also the Founder and
the Director of USM start-up company, Visionlytics Sdn Bhd. His current
research interests include electromagnetics, microwave nondestructive test-
ing, microwave sensor, and imaging.

VOLUME 10, 2022



