

IMPROVED FIELD PROGRAMMABLE GATE ARRAYBASED
ACCELERATOR OF DEEP NEURAL NETWORKUSING

OPENCL

YAP JUNE WAI

MASTER OF SCIENCE IN ELECTRONIC ENGINEERING

2022

Faculty of Electronics and Computer Engineering

IMPROVED FIELD PROGRAMMABLE GATEARRAYBASED

ACCELERATOR OF DEEP NEURAL NETWORKUSING OPENCL

Yap June Wai

Master of Science in Electronic Engineering

2022

IMPROVED FIELD PROGRAMMABLE GATEARRAYBASED ACCELERATOR

OF DEEP NEURAL NETWORKUSING OPENCL

YAP JUNE WAI

A thesis submitted

in fulfillment of the requirements for the degree of

Master of Science in Electronic Engineering

Faculty of Electronics and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2022

DECLARATION

I declare that this thesis entitled “Improved Field Programmable Gate Array (FPGA)Based

Accelerator of Deep Neural Network Using OpenCL” is the result of my own research except

as cited in the references. The thesis has not been accepted for any degree and is not

concurrently submitted in candidature of any other degree.

Signature :

Name : YAP JUNE WAI

Date :
15 AUGUST 2022

DEDICATION

Specially dedicated to my beloved family

i

ABSTRACT

Being compute-intensive and memory expensive, it is hard to deploy Deep Neural Network

(DNN) based models into the embedded devices. Despite recent studies that have shown the

efforts to explore the Field Programmable Gate Array (FPGA) as an alternative to deploy

DNN-based models such as AlexNet and VGG, there is still a lot of challenges to implement

DNN-based object detection model on Field Programmable Gate Array (FPGA). Hence, in

this research, the design of a scalable parameterised DNN-based object detection model:

Tiny YOLOv2 targeting on FPGA: Cyclone V PCIE Development Kit using High-Level-

Synthesis (HLS) tool is explored. Considering the hardware resource limitations in term of

computational resources and memory bandwidth, data quantization is proposed to convert

the floating point (32-bit) of Tiny YOLOv2 into fixed-point (8-bit) design. To achieve the

good performance, an in-depth analysis on the computation complexity and memory

footprint of the Tiny YOLOv2 is also studied to find the best quantization scheme for Tiny

YOLOv2. The proposed quantization scheme improves the memory requirements to store

the parameter from 60 MB to 15 MB, which is around ×4 times improvement compared to

the original floating-point design. Finally, the proposed implementation achieves a peak

performance density of 0.29 Giga-Operation Per Second (GOPS)/Digital Signal Processing

Block (DSP) with only 0.4% loss in the accuracy, which the performance is comparable to

all other previous works.

ii

PENAMBAHBAIKAN PEMECUT BERASASKAN TATASUSUNAN BOLEH ATUR

GET MEDAN UNTUK JARINGAN NEURAL DALAM MENGGUNAKAN OPENCL

ABSTRAK

Pengiraan dan penggunaan ingatan yang intensif telah memberi cabaran untuk pelaksanaan

algorithma Rangkaian Neural Dalam (DNN) dalam sistem terbenam. Walaupun kajian baru-

baru ini telah menunjukkan usaha untuk menerokai Tatasusunan Logik Boleh Aturcara

(FPGA) sebagai alternatif untuk melaksanakan pengklasifikasian objek seperti “AlexNet”

dan “VGG”, namun masih terdapat cabaran untuk melaksanakan algorithma pengesanan

objek berasaskan rangkaian neural dalam dengan menggunakan tatasusunan logik boleh

aturcara. Oleh itu, dalam penyelidikan ini, pengesanan objek: “Tiny YOLOv2” yang dapat

diskalakan ke atas tatasusunan logik boleh aturcara bernama “Cyclone V PCIE Development

Kit” dengan menggunakan peralatan Tahap Tinggi-Sintesis (HLS) akan dieksploitasikan.

Memandangkan sumber yang berhad dari segi sumber pengiraan dan kapasiti memori,

pengkuantuman data telah dicadangkan untuk menukar titik terapung ke titik tetap. Demi

mencapai pretasi yang baik untuk skim pengkuantuman, analisis terhadap kerumitatan

pengkiraan dan memori Tiny YOLOv2 telah dikajikan. Skim pengkuantuman yang

dicadangkan dapat mengurangkan keperluan memori untuk menyimpan data sebanyak 60

MB sehingga 15 MB, iaitu kira-kira × 4 kali peningkatan berbanding dengan aritmetika titik

mengambang. Akhir sekali, kajian yang dicadangkan mencapai 0.29 GOPS / DSP dengan

hanya 0.4% pengorbanan dalam pretasi ketepatan pengesan objek. Pretasi yang dicapaikan

dapat dibandingkan dengan semua karya sebelumnya

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my supervisor Professor

Dr Zulkalnain bin Mohd Yussof from Faculty of Electronic and Computer Engineering

(FKEKK), Universiti Teknikal Malaysia Melaka (UTeM) for his guidance and assistance

throughout the completion of this thesis. I would also like to express my sincere

acknowledgement to my co-supervisor, Dr Sani Irwan bin Salim from Faculty of Electronic

and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for his advice

throughout the project. It is a genuine pleasure to express my deep sense of appreciation to

UTeM Zamalah Scheme for the financial support throughout this project

iv

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATION

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF SYMBOLS AND ABBREVIATIONS xii

LIST OF APPENDICES xv

LIST OF PUBLICATIONS xvi

 INTRODUCTION 1
1.1 Background 1

1.2 Problem Statement 3
1.3 Research Question 4

1.4 Hypothesis 5
1.5 Research Objective 5
1.6 Research Scope 5
1.7 Contribution of Research 6

1.8 Thesis Outline 7

 LITERATURE REVIEW 9
2.1 Machine Learning 9

2.2 Neural Network 9
2.3 Deep Convolutional Neural Network 11
2.4 Common Layers used to Build Deep Convolutional Neural Networks 12

2.4.1 Convolutional Layer 13
2.4.2 Pooling Layer 14

2.4.3 Activation Layer 16
2.5 Common Architecture in Deep Neural Networks 18

2.5.1 Deep Neural Networks Image Classification 19

v

2.5.1.1 AlexNet 20
2.5.1.2 Visual Geometry Group (VGG) 20

2.5.2 Deep Neural Networks Object Detection 21
2.5.2.1 Region-Based Convolutional Neural Network (R-CNN) 22
2.5.2.2 Fast Region Based Convolutional Neural Network (Fast

RCNN) 23
2.5.2.3 Faster Region Based Convolutional Neural Network (Faster

RCNN) 24

2.5.2.4 You Only Look Once (YOLO) 24
2.5.2.5 You Only Look Once version 2 (YOLOv2) 26

2.5.3 Summary of Modern Deep Neural Networks (DNNs) 26
2.6 Field Programmable Gate Array (FPGA) 27

2.7 Board Selection Study 28
2.8 High-Level Synthesis (HLS) 30

2.8.1 Open Computing Language (OpenCL) 30
2.8.2 Intel Field Programmable Gate Array Software Development Kit for

OpenCL 35
2.9 Data Quantization 36
2.10 Related Work on Field Programmable Gate Array 39

 METHODOLOGY 44

3.1 Project Implementation Description 44
3.2 Experimental Setup 44

3.2.1 Board Specification 45
3.2.2 Hardware and Software Installation 46

3.3 Design and Development 51

3.3.1 Design Flow Using Intel FPGA SDK for OpenCL 51
3.3.2 Overall System Design Overview 54

3.3.3 Tiny YOLOv2 Architecture 57
3.3.4 Analysis of Computational Complexity and Space Complexity 59

3.3.5 Optimization on Convolution Operation 61
3.3.5.1 General Matrix to Matrix Multiplication (GeMM) Based

Convolution 61
3.3.5.2 Data Rearrangement On-The-Fly 62

3.3.5.3 Tiled Matrix Multiplication 63
3.3.6 Optimization on Hardware Synthesis using OpenCL Specification 64

3.3.6.1 Loop Unrolling 65
3.3.6.2 Kernel Vectorization 65
3.3.6.3 Local Memory Caching 66

3.3.7 Optimization on Hardware Resources 67
3.3.7.1 Merging Batch Normalization into Convolution 67

3.3.7.2 Data Quantization 70
3.4 Performance Evaluation 75

3.4.1 The Profiling Stage for Identifying the Exact Resources Consumption

 75
3.4.2 Mean Average Precision (mAP) 76

vi

3.4.3 Performance Density 79

 RESULTS AND DISCUSSION 81

4.1 In-Depth Analysis on the Computation Complexity and Space Complexity 81
4.2 In-Depth Analysis on the Biases and Weights 85
4.3 The Hardware Resource Utilization and Performance 93
4.4 Evaluation on the Accuracy of the Proposed Accelerator 98
4.5 Comparison of the Performance between Software Implementation and Hardware

Implementation 105
4.6 Performance Comparison with Previous Research with FPGA-based Design 107

 CONCLUSION AND RECOMMENDATIONS 109

5.1 Conclusion 109

5.2 Future Work and Improvements 111

REFERENCES 113

APPENDICES 121

vii

LIST OF TABLES

TABLE TITLE PAGE

Table 2.1 The Summary of Modern Deep Neural Networks 27

Table 2.2 The Overview of Four Low-End FPGAs in Market 29

Table 2.3 The Overview of High-Level Synthesis Tools 30

Table 2.4 The Summary of Resources in Context 33

Table 2.5 The Summary of Previous Related Works 43

Table 3.1 The Specification of Cyclone V PCIE Development Kit 46

Table 3.2 The Summary of Specification Used in This Work 48

Table 3.3 The System Environment Variable Configuration 48

Table 3.4 The Configuration of Tiny YOLOv2 on Pascal VOC 2007 Dataset 58

Table 4.1 The Precision Study for the Parameters of Tiny YOLOv2 in 8-bit fixed

point 90

Table 4.2 The Summary of Per Class Average Precision between the Original

Tiny YOLOv2 and Proposed Work 104

Table 4.3 The Summary of the Comparison of the Performance between Software

Implementation and FPGA Implementation 106

Table 4.4 The Summary of Comparison with Previous Works on FPGA 108

viii

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 2.1 The Perceptron Model (Haykin et al., 1994) 10

Figure 2.2 Simple Neural Network 11

Figure 2.3 The Overview of Architecture of Deep Neural Network (LeCun et al.,

1998) 12

Figure 2.4 Architecture of LeNet-5, a Convolutional Neural Network for digit

recognition (LeCun et al., 1998). 13

Figure 2.5 The Overview of Convolutional Layer (Zhang et al., 2015) 13

Figure 2.6 Example of Max pool with a 2 × 2 filter and a stride of 2 15

Figure 2.7 Example Average Pool with a 2 × 2 filter and a stride of 2 16

Figure 2.8 Sigmoid Function (Han et al., 1995) 17

Figure 2.9 Hyperbolic Tangent (Zamanlooy et al., 2013) 17

Figure 2.10 Rectified Linear Unit (Krizhevsky et al., 2012) 18

Figure 2.11 Leaky Rectified Linear Unit (Krizhevsky et al., 2012) 18

Figure 2.12 The Difference between classification (a) and object detection (b) 19

Figure 2.13 The Architecture of AlexNet (Krizhevsky, 2012) 20

Figure 2.14 The Architecture of VGG-16 (Simonyan et al., 2014) 21

Figure 2.15 The Overview of Region-based CNN (R. Girshick et al., 2014) 23

Figure 2.16 The Overview of Fast Region-based CNN (R. Girshick et al., 2015) 23

Figure 2.17 The Overview of Faster RCNN (R. Girshick et al., 2015) 24

Figure 2.18 The Overview of You Only Look Once (YOLO) (Redmon et al., 2016) 25

Figure 2.19 The Architecture of You Only Look Once (YOLO) (Redmon et al.,

2016) 26

ix

Figure 2.20 The Architecture of Intel Arria 10 FPGA (Intel Altera, 2016) 28

Figure 2.21 OpenCL Platform Model (Munshi et al, 2011) 31

Figure 2.22 OpenCL Execution Model 32

Figure 2.23 OpenCL Memory Model (Munshi et al, 2011) 34

Figure 2.24 The OpenCL Platform Model for FPGAs (Intel, 2017) 36

Figure 2.25 The Overview of Data Quantization Techniques 37

Figure 2.26 The Architecture of PipeCNN 41

Figure 2.27 The Comparison of Data Pipelining (a) and Without Pipelining (b) 41

Figure 2.28 The Decomposition of Matrix Multiplication, Singular Value

Decomposition 42

Figure 3.1 The Summary of Workflow Progress 44

Figure 3.2 The Layout Diagram of Cyclone V PCIE Development Kit 45

Figure 3.3 Hardware and Software Installation Workflow 47

Figure 3.4 Device Manager of the Workstation 49

Figure 3.5 The Board Support Package of Cyclone V PCIE Development Kit 50

Figure 3.6 Design and Development Flow of OpenCL 53

Figure 3.7 The Overall Top-Down System Design Overview 55

Figure 3.8 Memory Architecture of The Proposed Accelerator 56

Figure 3.9 The Architecture of Tiny YOLOv2 with Pascal VOC 2007 dataset 57

Figure 3.10 Mapping 3D Convolution to GeMM Based Convolution 62

Figure 3.11 Pseudo Code for Data Rearrangement on-the-fly 63

Figure 3.12 Tiled Matrix Multiplication 64

Figure 3.13 Kernel Vectorization 66

Figure 3.14 The Workflow of Designing a Quantizer 72

Figure 3.15 The Proposed Quantization Scheme 74

x

Figure 3.16 The workflow of Profiling Process 76

Figure 3.17 The Confusion Matrix 77

Figure 3.18 Intersection of Union (IoU) 78

Figure 4.1 The Computation Complexity and Space Complexity of Tiny YOLOv2

running on Pascal VOC 2007 Datasets 82

Figure 4.2 The Segmentation of Operations in Tiny YOLOv2 83

Figure 4.3 The Segmentation of Parameters in Tiny YOLOv2 83

Figure 4.4 Segmentation of Number of Operations in Each Layer of Tiny YOLOv2 85

Figure 4.5 Segmentation of Number of Parameters in Each Layer of Tiny YOLOv2 85

Figure 4.6 The Data Distribution of Bias in Each Layer of Tiny YOLOv2 87

Figure 4.7 The Data Distribution of the Weights in Each Layer of Tiny YOLOv2 88

Figure 4.8 The Visualised SNQR Test Using MATLAB on the Weights

Convolutional Layer No 5 89

Figure 4.9 The Data Distribution of Quantized Bias in Each Layer of Tiny

YOLOv2 91

Figure 4.10 The Data Distribution of Quantized Weight in Each Layer of Tiny

YOLOv2 92

Figure 4.11 ALUTs Utilization on Cyclone V PCIE Development Kit with Different

Configurations of BLOCK_SIZE and SIMD 94

Figure 4.12 FFs Utilization on Cyclone V PCIE Development Kit with Different

Configurations of BLOCK_SIZE and SIMD 94

Figure 4.13 RAMs Utilization on Cyclone V PCIE Development Kit with Different

Configurations of BLOCK_SIZE and SIMD 95

Figure 4.14 DSPs Utilization on Cyclone V PCIE Development Kit with Different

Configurations of BLOCK_SIZE and SIMD 95

xi

Figure 4.15 Throughput Achieved on Cyclone V PCIE Development Kit with

Different Configurations of BLOCK_SIZE and SIMD 98

Figure 4.16 The Comparison of Detection Results Between Ground Truth, Original

Tiny YOLOv2 and Proposed Fixed-Point Design Using Pascal VOC

2007 Test Datasets 100

Figure 4.17 The Comparison of Detection Results between Floating Point Design

and Fixed Point Design Using Random Images 101

Figure 4.18 The Wrong Samples of Ground Truth, Original Tiny YOLOv2 and

Proposed Fixed-Point Design Using Pascal VOC 2007 Test Datasets 102

Figure 4.19 The Comparison of Proposed Accelerator on FPGA with Software

Implementation 107

xii

LIST OF SYMBOLS AND ABBREVIATIONS

2D 2 Dimensional

3D 3 Dimensional

AI Artificial Intelligence

ALM Adaptive Logic Module

ALUT Adaptive Look Up Table

AP Average Precision

API Application Programming Interface

BN Batch Normalization

BSP Board Support Package

CNN Convolutional Neural Network

COCO Common Object in Context

CPU Central Processing Unit

CU Compute-Unit

CV Computer Vision

DL Deep Learning

DNN Deep Neural Network

DSP Digital Signal Processing

FF Flip-Flop

FPGA Field Programmable Gate Array

GEMM General Matrix-Matrix Multiplication

xiii

GFLOPS Giga Floating Point Operations Per Second

GMACS Giga Multiplication-Accumulates per Second

GOPS Giga Operations Per Second

GPIO General Purpose Input Output

GPU Graphic Processing Unit

GUI Graphic User Interface

HDL Hardware Description Language

HLS High Level Synthesis

ILSVRC ImageNet Large Scale Visual Recognition Challenge

IoT Internet of Things

IOU Intersection Over Union

MAP Mean Average Precision

ML Machine Learning

NN Neural Network

OpenCL Open Computing Language

PE Processing Element

RAM Random Memory Access

RCNN Region Based Convolutional Neural Network

ReLU Rectifier Linear Unit

ROI Region of Interest

RTL Register-Transfer Level

SDK Software Development Kit

SIMD Single Instruction Multiple Data

xiv

SVD Singular Value Decomposition

SVM Support Vector Machine

VOC Visual Object Classification

YOLO You Only Look Once

xv

LIST OF APPENDICES

APPENDIX TITLE PAGE

APPENDIX A MATLAB Analysis on the Weights and Biases of Tiny Yolo-v2

Layers 121

APPENDIX B Maximum Value Analysis on Tiny-Yolo-v2 layers 130

xvi

LIST OF PUBLICATIONS

Indexed Journal

Yap, J.W., Yussof, Z.M., Salim, S.I. and Lim, K.C., 2018. Fixed Point

ImplementationofTiny-Yolo—v2 using OpenCL on FPGA. International Journal of

Advanced ComputerScience and Applications (IJACSA), 9(10), pp.62.

Yap, J.W., Yussof, Z.M., and Salim, S.I., 2019. A Scalable FPGA based Accelerator

forTiny-YOLO-v2 using OpenCL. International Journal of Reconfigurable and

EmbeddingSystem (IJRES), 8(10), pp.206.

1

INTRODUCTION

1.1 Background

The rise of the new digital industrial revolution, also known as Industry 4.0, is a

significant transformation on the road to an end-to-end value chain with Industrial IoT and

decentralized artificial intelligent (AI) in manufacturing, production, and logistic. It is

undoubtedly that the AI will be the highlight and the key to propelling the rise of the new

era. Deep learning, a subfield in AI family, which recently acts as a catalyst to the growing

of AI, is inspired by the artificial neural network algorithm. The deep learning is widely

adopted in various applications, which include video surveillance (Xu et al., 2015; Liu et

al., 2016; Bashbaghi et al., 2018; Shorfuzzaman et al., 2020; Perez et al., 2021), autonomous

vehicle (Bojarski et al., 2016; Sallab et al., 2017; Tian et al., 2018, Kuuti et al., 2020), mobile

robot vision (Zhu et al., 2017; Levine et al., 2018, Chen et al., 2020). The deep learning led

to early success in 1986, notably a neural network classification model named as LENET

which is able to recognize the handwritten digits. Unfortunately, the neural network did not

catch the attention to solve large scale problem. It is mainly due to the limitations in data

availability and computing power in early 1990. With a large database which is known as

ImageNet containing millions of labelled images was created in 2010, which led to the

biggest breakthrough in Artificial Intelligence (AI) history. With the rapid growth of

computer processing power and larger database, the first large scale deep neural network

(DNN), namely AlexNet was introduced in 2012. AlexNet achieved a top-5 error of 15.3%,

more than 10.8% error rate lower than the runner up in the ImageNet Large Scale Visual

2

Recognition Challenge (ILSVRC). The results significantly outperformed all the prior

competitors and any other traditional classification approach. This led to the rapid evolution

of Deep Neural Network (DNN) model, consequently the emerging of DNN-based

classification model such as VGG16 and the emerging of DNN- based object detection

models such as Recurrent Neural Network (RNN), Region-Based Convolutional Neural

Network (RCNN), and You-Only-Look-Once (YOLO). The accuracy of these models has

increased tremendously since 2012, with an increase in the complexity and number of layers

in the network. The increase in the model size of deep learning model greatly increases the

number of parameters, consequently leading to a significant increase in the computational

requirements, memory bandwidth and storage required to store the parameters. For example,

AlexNet requires around 244 MB of parameters and over 1.4 billion of operations to perform

classification on a single input image, while VGG16 requires around 500 MB of parameters

and over 30 billion of operations to perform classification on a single input image.

This gives a challenge to the deployment of DNN model in consumer devices that

use embedded, such as household appliances, mobile phones, digital camera, and so on.

Compared to stationary workstation such as desktop, embedded systems are more limited

in terms of computational power, memory bandwidth, and power consumption. Hence,

recent researches have explored the hardware implementation of deep learning models as

an alternative to accelerate the DNN model. Field Gate Programmable Array (FPGA) can

provide a relatively high performance, more energy-efficient, flexibility and fast

development cycle especially with the introduction of High-Level synthesis (HLS) tool such

as Open Computing Language (OpenCL), enabling the auto-compilation from high- level

programming such as C/C++ to Hardware Description Language (HDL) such as Verilog or

VHDL. It greatly reduces the effort on hardware development where the development

