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ABSTRACT 

Being compute-intensive and memory expensive, it is hard to deploy Deep Neural Network 

(DNN) based models into the embedded devices. Despite recent studies that have shown the 

efforts to explore the Field Programmable Gate Array (FPGA) as an alternative to deploy 

DNN-based models such as AlexNet and VGG, there is still a lot of challenges to implement 

DNN-based object detection model on Field Programmable Gate Array (FPGA). Hence, in 

this research, the design of a scalable parameterised DNN-based object detection model: 

Tiny YOLOv2 targeting on FPGA: Cyclone V PCIE Development Kit using High-Level-

Synthesis (HLS) tool is explored. Considering the hardware resource limitations in term of 

computational resources and memory bandwidth, data quantization is proposed to convert 

the floating point (32-bit) of Tiny YOLOv2 into fixed-point (8-bit) design. To achieve the 

good performance, an in-depth analysis on the computation complexity and memory 

footprint of the Tiny YOLOv2 is also studied to find the best quantization scheme for Tiny 

YOLOv2. The proposed quantization scheme improves the memory requirements to store 

the parameter from 60 MB to 15 MB, which is around ×4 times improvement compared to 

the original floating-point design. Finally, the proposed implementation achieves a peak 

performance density of 0.29 Giga-Operation Per Second (GOPS)/Digital Signal Processing 

Block (DSP) with only 0.4% loss in the accuracy, which the performance is comparable to 

all other previous works. 
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PENAMBAHBAIKAN PEMECUT BERASASKAN TATASUSUNAN BOLEH ATUR 

GET MEDAN UNTUK JARINGAN NEURAL DALAM MENGGUNAKAN OPENCL  

 

 

ABSTRAK 

Pengiraan dan penggunaan ingatan yang intensif telah memberi cabaran untuk pelaksanaan 

algorithma Rangkaian Neural Dalam (DNN) dalam sistem terbenam. Walaupun kajian baru-

baru ini telah menunjukkan usaha untuk menerokai Tatasusunan Logik Boleh Aturcara 

(FPGA) sebagai alternatif untuk melaksanakan pengklasifikasian objek seperti “AlexNet” 

dan “VGG”, namun masih terdapat cabaran untuk melaksanakan algorithma pengesanan 

objek berasaskan rangkaian neural dalam dengan menggunakan tatasusunan logik boleh 

aturcara. Oleh itu, dalam penyelidikan ini, pengesanan objek: “Tiny YOLOv2” yang dapat 

diskalakan ke atas tatasusunan logik boleh aturcara bernama “Cyclone V PCIE Development 

Kit” dengan menggunakan peralatan Tahap Tinggi-Sintesis (HLS) akan dieksploitasikan. 

Memandangkan sumber yang berhad dari segi sumber pengiraan dan kapasiti memori, 

pengkuantuman data telah dicadangkan untuk menukar titik terapung ke titik tetap. Demi 

mencapai pretasi yang baik untuk skim pengkuantuman, analisis terhadap kerumitatan 

pengkiraan dan memori Tiny YOLOv2 telah dikajikan. Skim pengkuantuman yang 

dicadangkan dapat mengurangkan keperluan memori untuk menyimpan data sebanyak 60 

MB sehingga 15 MB, iaitu kira-kira × 4 kali peningkatan berbanding dengan aritmetika titik 

mengambang. Akhir sekali, kajian yang dicadangkan mencapai 0.29 GOPS / DSP dengan 

hanya 0.4% pengorbanan dalam pretasi ketepatan pengesan objek. Pretasi yang dicapaikan 

dapat dibandingkan dengan semua karya sebelumnya 
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INTRODUCTION 

1.1 Background 

The rise of the new digital industrial revolution, also known as Industry 4.0, is a 

significant transformation on the road to an end-to-end value chain with Industrial IoT and 

decentralized artificial intelligent (AI) in manufacturing, production, and logistic. It is 

undoubtedly that the AI will be the highlight and the key to propelling the rise of the new 

era. Deep learning, a subfield in AI family, which recently acts as a catalyst to the growing 

of AI, is inspired by the artificial neural network algorithm. The deep learning is widely 

adopted in various applications, which include video surveillance (Xu et al., 2015; Liu et 

al., 2016; Bashbaghi et al., 2018; Shorfuzzaman et al., 2020; Perez et al., 2021), autonomous 

vehicle (Bojarski et al., 2016; Sallab et al., 2017; Tian et al., 2018, Kuuti et al., 2020), mobile 

robot vision (Zhu et al., 2017; Levine et al., 2018, Chen et al., 2020). The deep learning led 

to early success in 1986, notably a neural network classification model named as LENET 

which is able to recognize the handwritten digits. Unfortunately, the neural network did not 

catch the attention to solve large scale problem. It is mainly due to the limitations in data 

availability and computing power in early 1990. With a large database which is known as 

ImageNet containing millions of labelled images was created in 2010, which led to the 

biggest breakthrough in Artificial Intelligence (AI) history. With the rapid growth of 

computer processing power and larger database, the first large scale deep neural network 

(DNN), namely AlexNet was introduced in 2012. AlexNet achieved a top-5 error of 15.3%, 

more than 10.8% error rate lower than the runner up in the ImageNet Large Scale Visual 
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Recognition Challenge (ILSVRC). The results significantly outperformed all the prior 

competitors and any other traditional classification approach. This led to the rapid evolution 

of Deep Neural Network (DNN) model, consequently the emerging of DNN-based 

classification model such as VGG16 and the emerging of DNN- based object detection 

models such as Recurrent Neural Network (RNN), Region-Based Convolutional Neural 

Network (RCNN), and You-Only-Look-Once (YOLO). The accuracy of these models has 

increased tremendously since 2012, with an increase in the complexity and number of layers 

in the network. The increase in the model size of deep learning model greatly increases the 

number of parameters, consequently leading to a significant increase in the computational 

requirements, memory bandwidth and storage required to store the parameters. For example, 

AlexNet requires around 244 MB of parameters and over 1.4 billion of operations to perform 

classification on a single input image, while VGG16 requires around 500 MB of parameters 

and over 30 billion of operations to perform classification on a single input image. 

This gives a challenge to the deployment of DNN model in consumer devices that 

use embedded, such as household appliances, mobile phones, digital camera, and so on. 

Compared to stationary workstation such as desktop, embedded systems are more limited 

in terms of computational power, memory bandwidth, and power consumption. Hence, 

recent researches have explored the hardware implementation of deep learning models as 

an alternative to accelerate the DNN model. Field Gate Programmable Array (FPGA) can 

provide a relatively high performance, more energy-efficient, flexibility and fast 

development cycle especially with the introduction of High-Level synthesis (HLS) tool such 

as Open Computing Language (OpenCL), enabling the auto-compilation from high- level 

programming such as C/C++ to Hardware Description Language (HDL) such as Verilog or 

VHDL. It greatly reduces the effort on hardware development where the development 




