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Introduction

Current and historical temperatures are considered 
the main factors shaping the geographic distribution and 
abundance of life on Earth (Bennett et al., 2021) because 
temperature changes can negatively affect organisms if they 
exceed their thermal tolerance limits (Chown & Nicolson, 
2004). Insects are extremely vulnerable to environmental 
changes as they are highly dependent on external temperature 
to ensure their biological functions (e.g., reproduction, 
foraging, and biotic interactions with other species) 
(Angilletta, 2009; Colinet Hervé et al., 2015). Since there are 
increasingly higher mean and extreme temperatures due to 
climate change, it is essential to understand the vulnerability 
of insects to this threat (Lovejoy & Hannah, 2005; Bellard et 
al., 2012). The threat is particularly dangerous in the tropics, 
where high baseline temperatures and small increases can 
severely impact insect metabolism and survival (Sunday et 
al., 2014). Moreover, phenotypic plasticity contributes very 
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little to heat tolerance in some insects, which need to migrate 
to higher elevations in response to increasing temperatures 
(García-Robledo et al., 2016), and heat tolerance evolves 
much slower than cold tolerance, leaving a lower potential  
for heat than cold adaptation (Bennett et al., 2021). 
Therefore, elevational gradients have served as important 
natural laboratories to evaluate plasticity and adaptation 
to different thermal regimes (García-Robledo et al., 2016; 
Pepin et al., 2022).

Bees have been used as a model group to understand 
the immediate responses to environmental changes, including 
thermal shifts (Bernier & Schoene, 2009). For instance, 
Pereboom and Biesmeijer (2003) found that small stingless 
bees get hotter faster than larger bees, which indicates that 
body size is a fundamental determinant of thermal tolerance. 
The honeybee Apis mellifera L. is of high economic and 
ecological importance worldwide, as it has a cosmopolitan 
distribution and pollinates a wide variety of native and cultivated 
plant species (Baena-Díaz et al., 2022; Cruz et al., 2022). 
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The ecological success of A. mellifera is linked to its ability 
to adapt to a wide range of climatic and environmental 
conditions (Dáttilo et al., 2022; Hodkinson, 2005; Obeso  et 
al., 2018; Woyke et al., 2003). Recently, Sánchez-Echeverría 
et al. (2019) found that differences in thermal variability along 
small spatial scales of a few kilometers from the same city 
can influence the breadth of thermal tolerance of A. mellifera, 
indicating that the thermal tolerance of A. mellifera can be 
variable in sites with contrasting environmental characteristics 
such as urban and rural sites, in addition to demonstrating the 
plasticity and adaptation capacity of A. mellifera to different 
environmental conditions (Smith et al., 2015; Peters et al., 
2016; Conrad et al., 2021; Mccabe et al., 2022). 

The morphological, behavioral, and physiological 
adaptations that A. mellifera possesses allow it to exist and 
develop in a great diversity of climatic conditions (Hodkinson, 
2005; Obeso  et al., 2018). In this sense, the climatic variability 
hypothesis states that as the range of climatic variation 
increases, the individuals adapted to these sites would have 
a broader range of thermal tolerance and, therefore, greater 
acclimatization capacities that allow them to cope with 
changes in weather conditions (Molina et al., 2012; Gutiérrez 
et al., 2016; Shah et al., 2021). Therefore, environmental 
conditions play a vital role not only in determining the 
presence of a species through short-term processes such as 
phenotypic plasticity (e.g., acclimatization) but also in long-
term processes such as adaptive evolution by modifying its 
morphological and physiological characteristics (Chown & 
Nicolson, 2004; Angilletta, 2009; Hoiss et al., 2012). There 
is evidence of morphological and behavioral variation 
of A. mellifera in contrasting environments (Aizen et al., 
2009; Parker et al., 2010). An interesting aspect is that the 
wide distribution of A. mellifera includes a wide range of 
elevations, inhabiting areas from 0 to 3,700 m.a.s.l. in both 
tropical and temperate zones (Cortina et al., 2019; Rabe 
et al., 2005; Dutton et al., 1981). According to the climate 
variability hypothesis, populations at higher elevations would 
present more significant climatic variability than those at 
low altitudes (Janzen, 1967). However, we do not know how 
environmental characteristics, body mass, and body size may 
differ among different populations along elevation gradients 
(Oyen et al., 2016; Peters et al., 2016).

Studies on the thermal tolerance of honeybees along 
elevational gradients have not been performed, even though 
these studies could help us to predict its response to future 
climatic change. Motivated by these concerns, the objective 
of this study was to determine the cold and heat tolerance, 
besides thermal range of A. mellifera workers at three different 
elevations, in addition to evaluating whether there is a 
relationship between body mass and thermal tolerance along an 
elevation gradient in the Mexican Transition Zone, an important 
biodiversity hotspot where the Nearctic and Neotropical 
biogeographic regions converge. At the population level, we 
expected the thermal tolerance and range to change along 
the elevation gradient, according to the climate variability 

hypothesis, where the greatest range of temperature variation 
is found in sites with higher elevation. At the individual level, 
we postulated that larger-bodied workers could tolerate higher 
temperature extremes (both minimum and maximum) because 
they would gain and lose heat more slowly than smaller bees 
(i.e., they would not need to tolerate extreme temperatures) 
(Willmer & Unwin, 1981; Bishop & Armbruster, 1999).

Material and Methods

Sites studied

The study was conducted at three sites along an 
elevation gradient in the Mexican Transition Zone (Figure 1). 
Site A – “Centro de Investigaciones Costeras La Mancha” – is a 
coastal area located in the municipality of Actopan, Veracruz, 
Mexico (19°59’’61.11” N and 96°38’36.11’’W). The average 
annual temperature is 25 °C, with an elevation of 11 m.a.s.l., 
and annual rainfall varies between 1,200 and 1,500 mm. 
The driest season occurs between November and May; the 
rainy season begins in June, with the maximum precipitation 
peak in July (Castillo, 2006). The study area has various 
vegetation types, including coastal dunes, mangroves, low 
deciduous forests, medium sub-deciduous forests, and low 
floodable evergreen forests (Castillo & Medina, 2002). Site 
B – “Santuario del Bosque de Niebla” – is within a protected 
natural area of mountain cloud forest located in the city of 
Xalapa, Veracruz, Mexico (19°31’05” N - 96°56’ 3” W) and 
presents an average elevation range of 1,324 m.a.s.l. This site 
has a temperate humid and semi-warm humid climate with an 
average annual temperature of 18 °C and an average annual 
rainfall of 1,500 mm (INEGI, 2016). Site C – “Comunidad de 
Miguel Hidalgo y Costilla” – is located in the municipality 
of Tlachichuca, Puebla, Mexico (19°04’56’’N, 97°18’50’’O), 
on the west face of the slopes of the Citlaltépetl volcano, at 
3,304 m.a.s.l. with a predominance of coniferous forest and 
pine-oak forest vegetation, with average annual temperatures 
of 10 °C, as well as an average annual rainfall of 762 mm 
(Villegas et al., 2011).

Sampling honeybees

We collected A. mellifera worker bees between April 
and July 2022 between 08:00 and 16:00 hours (Figure 2). We 
caught individuals found foraging on flowers with the help of 
an entomological net and placed them inside plastic jars with 
sufficient ventilation. The individuals were transferred to the 
laboratory to weigh them and carry out the thermal tolerance 
experiments 4-6 hours after their capture.

Body mass and thermal tolerance 

From each collected individual, we measured body 
mass and critical thermal limits. We placed captured bees 
in 1.5 mL Eppendorf tubes to measure fresh weight body 
mass with a digital scale before performing thermal tolerance 
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experiments (Profesional Digital Mini Scale, range 50g x 
0.001g). As measurements of thermal tolerance, we used 
the critical thermal maximum and minimum (CTmax and 
CTmin), which are the high and low temperatures at which 
individuals lose muscular control. For this purpose, the tubes 
were placed in a Benchmark model BSH300 mini dry bath 
incubator. The initial temperature was 25 °C, which increased 
one degree per minute to measure CTmax and decreased the 
temperature one degree per minute for CTmin until reaching 
the critical temperature. A digital thermocouple (Kamtop) was 
placed inside the incubator (± 0.1 °C) to confirm the critical 
thermal values (Oyen et al., 2016; González et al., 2021). 
As some individuals do not recover from thermal tolerance 
measurements, different individuals were used to measuring 
CTmax or CTmin. We carried out the experiments with a total 
of 310 A. mellifera individuals, 114 from Site A (n = 60 for 
CTmax and n = 54 for CTmin), 88 from Site B (n = 27 for 
CTmax and n = 61 for CTmin), and 108 from Site C (n = 54 
for CTmax and n = 54 for CTmin). In addition, we calculated 

the range of thermal tolerance from the difference of the 
CTmax and CTmin values through bootstrapping, choosing 
20 bee individuals from each of the two treatments to form 
10 random pairs.

Data analysis

We used Generalized Linear Models (GLMs) with a 
Gaussian distribution to test whether the body mass, thermal 
tolerance (CTmax and CTmin), and range of thermal tolerance 
of A. mellifera (i.e., dependent variables) change among 
the three sampled elevations (i.e., independent variables). 
When significant differences were observed, we performed 
contrast analyses to determine differences between pairs of 
sites (Crawley, 2012). For residual and contrast analyses, 
we used the RT4Bio package (Reis-Jr, 2015). Moreover, we 
also used GLMs to test whether the body mass of A. mellifera 
workers was associated with their thermal tolerance (i.e., 
CTmax and CTmin) at each of the sampled sites. We used 

Fig 1. Geographical location of the three sites where Apis mellifera worker bees were collected. Site A – “Centro 
de Investigaciones Costeras La Mancha” (11 m.a.s.l.), Site B – “Santuario del Bosque de Niebla” (1,324 m.a.s.l.), 
and Site C – “Comunidad de Miguel Hidalgo y Costilla” (3,304 m.a.s.l.).
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χ² tests to estimate the goodness of fit of our models, which 
is the deviance divided by the dispersion parameter for the 
model. Analyses were done in software R, version 4.2.3 (R 
Development Core Team, 2023).

Results

We observed that the body mass of A. mellifera differed 
between the sampled elevations (χ² = 46.836, P < 0.001) 
(Figure 2A). Specifically, A. mellifera individuals from the 
intermediate elevation (i.e., 1,324 m.a.s.l.) had higher body 
mass values (Mean ± SD: 0.077 ± 0.0109 g) than individuals 
from the lower (0.066 ± 0.0123 g) and higher (0.071 ± 
0.0096 g) elevation (i.e., 11 and 3,304 m.a.s.l., respectively). 
Regarding thermal tolerance, the thermal critical maximum 
(CTmax) of A. mellifera did not differ between the sampled 
sites (χ² = 3.267, P = 0.19) (11 m.a.s.l.: 50.54 ± 4.74 °C;  

1,324 m.a.s.l.: 48.46 ± 4.81 °C; 3,304 m.a.s.l.: 50.26 ± 5.29 °C) 
(Figure 2B). However, we observed that CTmin of A. mellifera 
differs between elevations (χ² = 13.691, P = 0.001) (Figure 2C). 
In this case, individuals collected in the sites with lower 
and intermediate elevations had higher CTmin values than 
individuals at the higher elevation (11 m.a.s.l.: 11.90 ± 2.38 °C; 
1,324 m.a.s.l.: 11.29 ± 2.64 °C; 3,304 m.a.s.l.: 10.35 ± 1.09 °C).  
We also observed that the thermal tolerance range in A. 
mellifera differed between elevations (χ² = 10.056, P = 0.009) 
(Figure 2D). Specifically, we observed that A. mellifera collected 
at lower elevations had a lower thermal tolerance range  
(11 m.a.s.l.: 38.43 ± 3.85 °C; 1,324 m.a.s.l.; 37.01 ± 2.67 °C) 
compared to the individuals collected at the site with the 
highest elevation (3,304 m.a.s.l.: 39.71 °C ± 3.17 °C). Finally, 
we found no evidence that body mass was associated with 
thermal tolerance (i.e., CTmax and CTmin) at any of the three 
sampled elevations (All P-values > 0.05).

Fig 2. Values of (A) body mass (g), (B) critical thermal maximum (CTmax), (C) critical thermal minimum (CTmin), and 
(D) thermal tolerance range of Apis mellifera individuals at different elevations: Site A (11 m.a.s.l.), Site B (1,324 m.a.s.l.), 
and Site C (3,304 m.a.s.l.). Different letters above the bars denote significant differences between treatments (P < 0.05).  
At the same time, the median and the upper and lower quartiles of the values are represented in the box and whisker graphs.
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Discussion

Studies have shown that Apis mellifera can be present 
in sites where environmental conditions (e.g., temperature, 
humidity, precipitation, and wind speed) are highly contrasting 
(Maleszka, 2018). In this study, we found that different 
populations of A. mellifera have adapted to contrasting 
environmental conditions along an elevation gradient in the 
Mexican Transition Zone, a site within its non-native range. 
Specifically, we found differences in A. mellifera body mass, 
cold tolerance, and thermal range but no changes in heat 
tolerance at different elevations. 

Previous studies have found that, in general, there is 
an increase in bee body size at higher elevations (Gerard et 
al., 2018; Noteen & Rehaan, 2020). These results confirm 
Bergmann’s Rule (Bergmann, 1847), a fundamental rule 
of biogeography that postulates that there is a trend for the 
presence of larger individuals in colder habitats since larger 
animals would have a lower surface-area ratio, which would 
help reduce heat loss in colder environments. Similarly, we 
show that the body mass of A. mellifera populations was 
higher at higher elevation sites when compared to the lowest 
site located on the Gulf of Mexico coast. This finding is 
according to the reformulation of Bergmann’s Rule made by 
Rensch (1938), which refers to populations living in cooler 
climates being generally larger than populations living in 
warmer regions. Therefore, the difference in body mass 
between A. mellifera populations between elevations could 
be related to different facets and selection mechanisms of 
these populations over acclimation time and environmental 
conditions since body size is a fundamental life-history 
trait that is directly related to the metabolism, fecundity, 
individual’s movement, and dispersal capacity of the colonies 
(Blanckenhorn, 2000; Greenleaf et al., 2007; Al-Kahtani & 
Taha, 2021). Thus, it is unlikely that the size-thermal tolerance 
relationship results from evolutionary processes. Instead, 
it is more likely attributed to gene flow and adaptation to 
environmental conditions, considering the relatively short 
history of A. mellifera on the American continent, in contrast 
to its much longer evolutionary presence in Asia, Europe, and 
Africa (Harrison & Fewell, 2002; Han et al., 2012).

An important factor determining the spatial distribution 
of insects along elevational gradients is their thermal tolerance 
(Addo-Bediako et al., 2000; Overgaard et al., 2011). In this 
study, we observed that the CTmax of A. mellifera does not 
change along the elevation gradient. However, as expected, 
we observed that A. mellifera individuals captured at the 
highest elevation site had a lower CTmin (i.e., they tolerated 
colder temperatures) and a larger thermal tolerance range. 
The decrease in CTmin with increasing elevation has been 
found in other groups of insects, such as in ants (Bishop et al., 
2017) and, recently, in bumblebees from the Andes (González 
et al., 2022), who explain this phenomenon by the rule de 
Brett (1959), which proposes that heat tolerance presents less 

geographical variation than cold tolerance, as observed in this 
study. Furthermore, a recent study by Sánchez-Echevarría 
et al. (2019) showed that A. mellifera individuals collected 
in urban heat islands had higher CTmin values than those 
collected in rural sites, while CTmax did not differ. This 
information allows us to infer possible phenotypic plasticity 
of A. mellifera to environmental variation between sites 
and that thermal tolerance could be an adaptive response 
that should limit the distribution of A. mellifera. Therefore, 
identifying how and why A. mellifera is adaptively plastic 
to environments with contrasting temperatures, which can 
help us understand how honeybees adapt to environmental 
change and go through evolutionary dynamics (Fischman 
et al., 2017). Also, as expected, we found that A. mellifera 
populations from the highest elevation exhibited a greater 
thermal tolerance range, suggesting that high-elevation 
populations could be locally adapted to high temperature 
fluctuations. These results agree with the climate variability 
hypothesis, which states that climate becomes more variable 
at higher latitudes and elevations and that, therefore, species 
at these conditions should have a wider tolerance than species 
that are distributed at lower latitudes and elevations (Stevens, 
1989; Chown et al., 2004). In addition, this result confirms the 
Janzen Rule that predicts a greater range of thermal tolerance 
where there is a more variable temperature environment, such 
as sites located at high elevations (Janzen, 1967; Gaston et 
al., 2009). It is essential to highlight that, to date, we do not 
know the processes of genetic divergence of A. mellifera 
in its non-native distribution despite being a species with a 
wide distribution. Future studies should analyze the local 
adaptation processes of A. mellifera to understand better how 
climate and temperature shape the distribution and ecological 
functions of this exotic and invasive species in ecosystems.

Many studies have shown that insect thermal tolerance 
is related to body size and may play a role in niche partitioning 
and biogeographical distribution patterns (Pereboom & 
Biesmeijer, 2003; Oyen et al., 2016). This is because larger 
organisms gain and lose heat more slowly than smaller 
species, which allows them to reach higher temperature 
excesses (Bishop & Armbruster, 1999). However, we did 
not find evidence of a relationship between body mass and 
thermal tolerance (CTmax or CTmin) in any of the studied 
elevations, despite body mass differing between elevations. 
These results are similar to those reported by Sánchez-
Echevarría et al. (2019), where the authors also did not find 
a relationship between body mass and thermal tolerance 
(CTmax and CTmin) in A. mellifera from contrasting thermal 
environments. That is possible because thermal tolerance 
is not only limited by body size but also by other factors, 
such as the general physiological condition or the presence 
of additional environmental stressors (González-Tokman et 
al., 2021).

In this study, we found that different populations of 
A. mellifera differed in thermal tolerance along an elevation 
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gradient in the Mexican Transition Zone, with cold tolerance 
being more variable than heat tolerance, as in other systems 
(Bennett et al., 2021). Together, our findings indicate 
local adaptation or phenotypic plasticity in contrasting 
environments in the non-native distribution of A. mellifera, 
which would allow this species to expand its range of 
distribution. Studying thermal physiology along elevation 
gradients can help us to understand how the multiple factors 
related to global change could shape the thermal tolerance of 
the most important managed insect worldwide and its biotic 
interactions and ecosystem function. Finally, it is necessary 
to carry out future research to more clearly elucidate how 
the environment shapes A. mellifera populations at different 
spatial and temporal gradients.
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