
Received: 12 November 2021 Revised: 11 February 2022 Accepted: 12 February 2022 Published on: 13 March 2022

DOI: 10.1002/itl2.358

L E T T E R

Towards visual programming abstractions in
Software-Defined Networking

Elisa Rojas1 Eder Ollora Zaballa2 Victoria Noci1

1Universidad de Alcalá, Dpto. de
Automatica, Alcalá de Henares, Spain
2DTU Fotonik, Technical University of
Denmark, Kongens Lyngby, Denmark

Correspondence
Elisa Rojas, Universidad de Alcalá, Dpto.
de Automatica, Alcalá de Henares, Spain.
Email: elisa.rojas@uah.es

Eder Ollora Zaballa, DTU Fotonik,
Technical University of Denmark,
Kongens Lyngby, Denmark.
Email: eoza@fotonik.dtu.dk

Funding information
Comunidad de Madrid; Ministerio de
Ciencia e Innovación

Since Software-Defined Networking (SDN) emerged, the research community
and industry have developed numerous projects and fostered novel use cases.
However, engineers now need to learn how to program the control and data
planes, which might slow down technology acceptance. To accelerate it, visual
programming abstractions facilitate the incorporation of SDN technologies and
assist in creating new applications. So far, very little effort has been made in this
field. This letter presents an early-stage SDN visual abstraction initiative based
on the Scratch/Blockly programming framework, initially aimed at kids. The
objective is to illustrate how this work could be extended to provide value-added
resources for network programming.

K E Y W O R D S

blockly, human-defined networking, network programmability, scratch, Software-Defined
Networking, softwarized networks, visual programming

1 INTRODUCTION

In 2008, the report publication of the OpenFlow protocol started a revolution in network programming, later on, entitled
as Software-Defined Networking (SDN).1 Although the topic was far from being new, control plane logical centraliza-
tion and softwarization, along with the use of OpenFlow (to communicate the control and the data planes), encouraged
researchers to develop new use cases.2 The limitations of OpenFlow fostered data plane programming, emerging as the
latest evolution in network management together with P43 as its reference language. As data plane programming evolved,
another Control-Data Plane Interface (CDPI), popularly known as Southbound Interface (SBI), protocol was needed.
P4Runtime became, at this point, the de facto protocol for data planes programmed in P4.

While centralized control planes became a popular topic among researchers, creating a Proof-of-Concept (PoC) con-
trol plane for specific tests was possible but time-consuming, and particularly challenging for industry.4 Creating reliable,
resilient, and optimized control planes for data centers or telco-grade applications was only feasible for experienced pro-
grammers and developers with a networking-specific background. The complexity of creating control plane applications
was –and is– still evident. Due to the steep learning curve, we identify a gap in SDN programming, that is, the missing
possibility to fully or partially provide a reliable visual programming abstraction for the SDN control and/or data planes.
At this point, we believe that a visual framework for network programming could serve as a software wizard or assistant,

Elisa Rojas and Eder Ollora Zaballa should be considered joint first author.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. Internet Technology Letters published by John Wiley & Sons Ltd.

Internet Technology Letters. 2022;5:e358. wileyonlinelibrary.com/journal/itl2 1 of 6
https://doi.org/10.1002/itl2.358

https://orcid.org/0000-0002-6385-2628
https://orcid.org/0000-0003-4669-694X
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fitl2.358&domain=pdf&date_stamp=2022-03-13


2 of 6 ROJAS et al.

capable of setting up the very few initial parts of any application, thus, softening that curve. At the same time, industry
innovation processes would benefit from it, as engineers could leverage it to learn about the field and quickly acquire
some basic knowledge about it.

The letter is structured as follows: Section 2 reviews the current state of the art regarding visual programming. Section 3
depicts the abstractions for control and data planes. Section 4 presents ScratchingSDN, an application of visual program-
ming in SDN. Next, Section 5 discusses how this work can be extended and improved, and it concludes in Section 6.

2 RELATED WORK

Two main topics are related to the idea conveyed in this letter: visual programming and SDN. In the case of the former,
Scratch5 and Blockly6 are well-known sets of tools and libraries that facilitate programming by using a visual code editor,
although others like Snap! and EduBlocks also follow the same approach. The conceptually connected blocks represent
logical expressions, including variables or loops, and can be converted to various languages. In this way, the learning curve
is flattened by allowing code bootstrapping that can be rapidly generated using visual entities. The use cases involving
Blockly are numerous.

Currently, published work focuses on a wide variety of Blockly-based topics and use cases. Ashrov et al.7 present
a behavioral programming study based on JavaScript and a Blocky-based architecture. The authors try to apply the
aforementioned tools to client-side web and smartphone applications. Nguyen et al.8 introduce BlocklyAR, a visual pro-
gramming interface to create Augmented Reality (AR) applications. The authors managed to create an interface that can
replicate existing applications but implied less development effort. Weintrop et al.9,10 leverage a block-based program-
ming interface for industrial robotics. The goal of the study is to make robotics programming more accessible. A low-scale
test shows that programmers with no previous experience can properly program a virtual robot.

On the other hand, so far, SDN has not been of great focus when developing high-level programming abstractions
based on visual programming; probably because visual and block-based programming are generally applied to learn either
basic programming or provide an accessible programming interface to non-expert professionals. Still, when developing
high-level programming abstractions based on visual programming, a few researchers have contributed to the field by
integrating these abstractions for SDN. For example, Schultz et al.11 present a Graphical User Interface (GUI) named
OpenGUFi. This platform provides a visual abstraction of the underlying network and enables network actions via the
control interface. Using gestures, network managers can trigger network handovers and visualize traffic flows involving
wireless access points and mobile clients. Other approaches consider that providing a human-like interface is critical for
the evolution of SDN.4 In this regard, StreaMon12 is an XML-based abstraction for monitoring in SDN, while OpenFunc-
tion13 is an abstraction for SDN middleboxes. Two recently published pre-prints present SeaNet14 and Lucid,15 focused on
high-level abstractions for control and data planes, respectively. Additionally, focusing on the data plane, Graph-to-P416

allows the user to define a parse graph using blocks that represent parse states. Each parse state extracts the header it
carries as a name, and the compiler will translate the graphical representation to the P4 pipeline code (including the
parser). Similarly, P4click17 facilitates data plane programming based on data plane modules. Also, 𝜇P418 abstracts from
the underlying hardware and their lower-level architecture, but it still requires a considerable understanding of data plane
programming. Finally, Michel et al.19 survey programmable data plane abstractions and questions how to measure the
tradeoff between supported functionality, resulting in performance, and API simplicity.

Therefore, though many of these works focus on high-level abstractions for SDN, none achieves a truly visual abstrac-
tion. Accordingly, the main contribution of our letter is the proof that visual programming and SDN can be merged to
provide a drag-and-drop interface for network managers.

3 ABSTRACTIONS FOR CONTROL AND DATA PLANES

The SDN architecture typically comprises three layers or planes: data or infrastructure, control, and application (see
Figure 1). Elements from each plane communicate with the adjacent layer elements using different protocols. The bound-
ary between each adjacent layer is an interface. The Northbound Interface (NBI) defines the boundary between the control
and application planes. Some example protocols of the NBI include HTTP/S (REST) mainly for external applications, but
also for internal ones that can use programming APIs (Python, Java, Go, etc.). Similarly, the SBI is the common boundary
of the control and the data plane. The elements that belong to the control and data plane communicate using protocols

 24761508, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/itl2.358 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ROJAS et al. 3 of 6

DP FUNCTION
SBI AGENT

DP FUNCTION
SBI AGENT

NE 1 NE n

NBI PROTOCOL

SBI PROTOCOL

E
N

A
L

P
T

N
E

M
E

G
A

N
A

M

SBI DRIVER
CONTROLLER LOGIC

NBI AGENT

NBI DRIVER
APP LOGIC

APP 1

NBI DRIVER
APP LOGIC

APP n

F I G U R E 1 A visual representation of the SDN architecture. NE stands for Network Element, APP for Application, NBI for
Northbound Interface and SBI for Southbound Interface

such as OpenFlow, P4Runtime or NETCONF (among others). To provide visual programming abstractions, it is necessary
to define the control and data plane requirements and how these map to the elements that belong to each plane.

3.1 Defining the control plane structure

The control plane structure depends on the actual SDN controller implementation. For example, the Ryu SDN controller
is characterized by offering a simple approach to developing SDN applications. The architecture of Ryu provides an event
queue and event loop that further forwards the events to the appropriate internal handlers. New control plane applica-
tions in Ryu inherit from the base application that allows developers to create methods with decorators that handle new
events, such as PACKET_IN events. Similarly, other popular controllers like the Open Network Operating System (ONOS)
offer a similar approach to handle new events but try to provide a higher abstraction to disengage the SDN architectural
planes clearly. The ONOS SDN controller uses an Open Services Gateway initiative (OSGi) framework to include mod-
ular applications. Creating new applications in ONOS offers the possibility to generate independent oar packages that
can be installed at runtime. This separates the controller’s core layer and core applications and the possible applications
that might be aggregated at runtime. These applications are also called bundles and can be installed, uninstalled, started,
and stopped without modifying the state of the runtime OSGi. OpenDaylight offers a similar architecture to ONOS but
is based on models instead of specific programming APIs. Due to their modularity, architecture, and performance, both
ONOS and OpenDaylight are considered production-grade controllers but require a steeper learning curve, making it
complicated to develop new applications for newcomers efficiently.

Figure 2A shows how visual programming abstractions relate to the control and data planes. In this figure, the control
plane (as previously defined in Figure 1) is divided into three layers, first, the controller-dependent code applications
(either based on Ryu or ONOS), then the core (which includes basic services, such as topology discovery), and finally the
SBI protocols and drivers. Although we consider Ryu and ONOS as relevant examples of SDN controllers, many others
exist, like NOX/POX or Floodlight,20 and they all share similar architectural definitions.

3.2 Defining the data plane structure

As seen in Figure 1, the data plane comprises the bottom-most part of the architecture; eg, OpenFlow/P4Runtime
switches, P4-programmable FPGAs or P4 SmartNICs. While OpenFlow data plane hardware has become popular, no
custom pipeline can be programmed on these switches. The recent advances in programmable Application-Specific
Integrated Circuits (ASICs) and Field-Programmable Gate Arrays (FPGAs) offer the possibility to define pipeline

 24761508, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/itl2.358 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 6 ROJAS et al.

Controller-independent visual 

programming abstraction

Controller-dependent code

Controller core

Southbound protocols & 

drivers

Ryu Python 

control plane code

ONOS Java control 

plane code

OpenFlow & OVS 

drivers

OpenFlow/P4Runtime 

& vendor drivers

Blocky Scratch

PACKET_

IN

USER INPUT:

Packet �ield 

conditions,

Switch ID, etc.

PACKET_

OUT

FLOW_

MOD

USER INPUT:

Switch ID, 

Port, etc.

dependency

USER INPUT:

Table �ields,

Switch ID,

Port etc.

dependency

Ryu ONOS

E
N

A
L

P 
L

O
R

T
N

O
C

E
X

A
M

P
L

E

U
S

E
 C

A
S

E

(a)

Switch-independent visual 

programming abstraction

Data plane architecture

Target

V1Model/ 

BMv2 

To�ino / 

To�ino ASIC

To�ino target
BMv2 Simple 

Switch

Graphs Modules

SimpleSume 

/ NetFPGA

FPGA target

PARSER

H1 H2

H3

PARSER

H1 Hn

PIPELINE

ACLL3L2

Hn

E
N

A
L

P 
A

T
A

D

Device-independent and 

device dependent code

Portable 

code
Externs Externs Externs

Portable 

code

Portable 

code

(b)

F I G U R E 2 Mapping of A, visual abstractions to control plane components, and B, visual abstractions to data plane components

FLOW_MOD

PACKET_IN

HEADER/

FIELD

SWITCH ID HEADER/ FIELD MATCHING

SWITCH ID

OUTPUT PORT

OUTPUT PORT

SWITCH ID

PACKET_OUT

F I G U R E 3 Block-based example case. A PACKET_IN handler that outputs PACKET_OUT and FLOW_MOD messages based on user
input parameters

processing code. Nowadays, software and hardware switches can be programmed using P4, which opens new gaps for net-
work developers. While P4 offers a standard specification, different architectures exist, complicating creating a program
that works on every target and architecture.

Figure 2B illustrates how a graph or module-based framework could be used to generate a visual representation of the
data plane application or to generate the modular pipeline (ultimately translated into the P4 code of the selected target).

4 SCRATCHINGSDN

ScratchingSDN (available in GitHub21) is a Blockly-based Ryu visual programming framework for the control plane.
Its main objective was to develop a framework that could be used to program a network simply via drag-and-drop
actions. Its architecture is founded on a set of new blocks for the Blockly editor, following the same idea of Scratch
for kids learning how to program. These blocks, when combined, generate handlers for the Ryu controller. Ryu was
selected due to its simplicity and, as it mainly uses OpenFlow as its SBI protocol. In particular, we modeled four Open-
Flow messages: PACKET_IN and PORT_STATUS (switch-to-controller messages), and PACKET_OUT and FLOW_MOD
(controller-to-switch messages). Although OpenFlow outlines many messages, the reason for those was that they are,
statistically, the most frequently leveraged by SDN engineers to define runtime network functionality. Once the messages
were designed, we edited the HTML and JavaScript code of Blockly, first cloning the Python editor –as Ryu is Python
based– and, afterwards, providing an empty Ryu app template, which would be later on populated with the translated
content of the blocks.

The typical SDN workflow encompasses the reception of a switch-to-controller message and the action to be applied
in response to it (controller-to-switch). Figure 3 illustrates the visual structure that handles a PACKET_IN message. All
these blocks offer a text input for developers in order to define which parameters to filter in the handler, eg, the destination
MAC for a PACKET_IN message. Once a set of blocks is defined, ScratchingSDN translates them online in their web-based
editor and allows the download of a piece of Ryu code (Python-based), which is directly executable in the Ryu framework.
Hence, the code is ready following a visual approach, in which the network administrator should not write a single line
of Python code.

To evaluate ScratchingSDN, we created a simple topology with two hosts connected via two different paths. We man-
aged to install a default route from one to the other, which was diverted to the second one when the main one failed.

 24761508, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/itl2.358 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ROJAS et al. 5 of 6

F I G U R E 4 Screenshot of ScratchingSDN containing part of the code developed via drag and drop

The whole scenario was developed strictly via drag-and-drop actions, without further intervention or code writing. As an
example, Figure 4 depicts a piece of the developed code. Once the PoC was developed and evaluated, ScratchingSDN was
successfully extended to support ONOS. ONOS is focused on industry-based deployments and possesses higher network
abstractions, but still, ScratchingSDN seems to facilitate the creation of SDN projects. The amount of generated code per
block project is more extensive as well, as Ryu requires a single Python file, while ONOS needs a Java bundle, which will
be compiled afterward.

5 DISCUSSION AND FUTURE WORK

ScratchingSDN facilitates initial developments in SDN frameworks, simply by drag-and-drop actions and without specific
knowledge about the supporting programming language. Its features are still clearly limited, and it could be extended to
support additional headers and fields to decide when to execute a handler, such as the PACKET_IN handler. The same
can be used to support PACKET_OUT or FLOW_MOD messages. Moreover, this block-based framework can be lever-
aged for multiple controllers. Future research could also focus on including handlers for all the headers supported in the
latest CDPI protocols. On the other hand, the main drawback that we found was the dependence of the controllers’ NBI
with its SBI (particularly with Ryu). In this regard, it is critical to disengage both entities for portable –and truly visual–
programming.

For these reasons, although we intended to generate a genuinely visual layer above SDN controllers, we believe this
is not scalable in the long term, as controllers are continuously growing and being updated. However, ScratchingSDN
provides an alternative advantage: the ability to deploy an initial piece of code from scratch that can be later modified and
extended, ie, to avoid starting from a blank file, which is particularly challenging for newcomers in the area. It is important
to note that many developers in the field copy and paste code from other examples. Therefore, ScratchingSDN could grant
an easy and clean starting point, even if developing the complete functionality appears to be challenging at this stage.

6 CONCLUSION

This letter has introduced the existing projects and works that use visual programming abstractions. The reduced number
of research works explains why little work leverages visual programming in SDN. As a PoC, we implemented Scratch-
ingSDN, which, to the best of our knowledge, is the first proposal that merges the Blockly framework with an SDN
controller (Ryu and ONOS) for network programming based on visual abstractions. We believe this PoC accomplishes
the objective of serving as a starting point for network programmers. However, as explained in Section 5, there is likely
more research to be done in this field: the frameworks exist but lack extended features and a more comprehensive range
of functionalities. For the control plane visual abstractions, frameworks need to support other controllers, other Open-
Flow (even P4Runtime) messages, or specific API calls. For the data plane, new targets have to be supported and simple
visual abstractions to define data plane logic functions.

ACKNOWLEDGMENTS
This work was funded in part by grants through projects TAPIR-CM (S2018/TCS-4496) and IRIS-CM (CM/JIN/2019-039)
of Comunidad de Madrid, and ONENESS (PID2020-116361RA-I00) of the Spanish Ministry of Science and Innovation.

 24761508, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/itl2.358 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 6 ROJAS et al.

PEER REVIEW
The peer review history for this article is available at https://publons.com/publon/10.1002/itl2.358.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in ScratchingSDN at https://github.com/NETSERV-
UAH/TFGs/tree/master/201906-VictoriaNoci.

ORCID
Elisa Rojas https://orcid.org/0000-0002-6385-2628
Eder Ollora Zaballa https://orcid.org/0000-0003-4669-694X

REFERENCES
1. Kreutz D, Ramos FMV, Veríssimo PE, Rothenberg CE, Azodolmolky S, Uhlig S. Software-defined networking: a comprehensive survey.

Proc IEEE. 2015;103(1):14-76. doi:10.1109/JPROC.2014.2371999
2. Garrich M, Moreno-Muro FJ, Bueno Delgado MV, Pavón MP. Open-source network optimization software in the open SDN/NFV transport

ecosystem. J Lightwave Technol. 2019;37(1):75-88. doi:10.1109/JLT.2018.2869242
3. Bosshart P, Daly D, Gibb G, et al. P4: programming protocol-independent packet processors. SIGCOMM Comput Commun Rev.

2014;44(3):87-95. doi:10.1145/2656877.2656890
4. Rojas E. From software-defined to human-defined networking: challenges and opportunities. IEEE Network. 2018;32(1):179-185. doi:10.

1109/MNET.2017.1700070
5. Scratch – Imagine, Program, Share. https://scratch.mit.edu/. Accessed on November 9, 2021.
6. Blockly|Google Developers. https://developers.google.com/blockly. Accessed on November 9, 2021.
7. Ashrov A, Marron A, Weiss G, Wiener G. A use-case for behavioral programming: an architecture in JavaScript and Blockly for interactive

applications with cross-cutting scenarios. Sci Comput Program. 2015;98:268-292. Special Issue on Programming Based on Actors, Agents
and Decentralized Control doi: 10.1016/j.scico.2014.01.017

8. Nguyen VT, Jung K, Blockly AR DT. A visual programming Interface for creating augmented reality experiences. Electronics.
2020;9(8);1-20.

9. Weintrop D, Shepherd DC, Francis P, Franklin D. Blockly goes to work: block-based programming for industrial robots. B&B‘17.
2017;29-36.

10. Weintrop D, Afzal A, Salac J, et al. Evaluating CoBlox: A Comparative Study of Robotics Programming Environments for Adult Novices.
CHI ‘18. Association for Computing Machinery. New York, NY, USA: ACM; 2018.

11. Schultz J, Szczepanski R, Haensge K, Maruschke M, Bayer N, Einsiedler H. OpenGUFI: An extensible graphical user flow interface for an
SDN-enabled wireless testbed. In: CIT ‘15.; 2015: 770-776.

12. Bonola M, Bianchi G, Picierro G, Pontarelli S, Monaci M. StreaMon: a data-plane programming abstraction for software-defined stream
monitoring. IEEE Trans Dependable Secure Comput. 2017;14(6):664-678. doi:10.1109/TDSC.2015.2499747

13. Tian C, Munir A, Liu AX, Yang J, Zhao Y. OpenFunction: an extensible data plane abstraction protocol for platform-independent
software-defined Middleboxes. IEEE/ACM Trans Netw. 2018;26(3):1488-1501. doi:10.1109/TNET.2018.2829882

14. Zhou Q, Gray AJ, McLaughlin S. Towards a knowledge graph based autonomic Management of Software Defined Networks. arXiv Preprint
arXiv:2106.13367 2021.

15. Sonchack J, Loehr D, Rexford J, Walker D. Lucid: a language for control in the data plane. SIGCOMM ‘21. Association for Computing
Machinery. New York, NY, USA; ACM; 2021:731-747.

16. Ollora Zaballa E, Zhou Z. Graph-To-P4: A P4 boilerplate code generator for parse graphs. ANCS’19. New York, NY: IEEE; 2019:1-2.
17. Ollora Zaballa E, Franco D, Berger MS, Higuero M. A perspective on P4-based data and control plane modularity for network automation.

New York, NY, USA: Association for Computing Machinery; 2020:59-61.
18. Soni H, Rifai M, Kumar P, Doenges R, Foster N. Composing dataplane programs with uP4. SIGCOMM ‘20. Association for Computing

Machinery. New York, NY, USA: ACM; 2020:329-343.
19. Michel O, Bifulco R, Rétvári G, Schmid S. The programmable data plane: abstractions, architectures, algorithms, and applications. ACM

Comput Surv. 2021;54(4):1-36.
20. Ahmad S, Mir AH. Scalability, consistency, reliability and security in SDN controllers: a survey of diverse SDN controllers. J Netw Syst

Manage. 2021;29(1):1-59.
21. Noci V. ScratchingSDN. https://github.com/NETSERV-UAH/TFGs/tree/master/201906-VictoriaNoci. Accessed on November 9, 2021).

How to cite this article: Rojas E, Ollora Zaballa E, Noci V. Towards visual programming abstractions in
Software-Defined Networking. Internet Technology Letters. 2022;5(3):e358. doi: 10.1002/itl2.358

 24761508, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/itl2.358 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [05/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://publons.com/publon/10.1002/itl2.358
https://github.com/NETSERV-UAH/TFGs/tree/master/201906-VictoriaNoci
https://github.com/NETSERV-UAH/TFGs/tree/master/201906-VictoriaNoci
https://orcid.org/0000-0002-6385-2628
https://orcid.org/0000-0002-6385-2628
https://orcid.org/0000-0003-4669-694X
https://orcid.org/0000-0003-4669-694X
info:doi/10.1109/JPROC.2014.2371999
info:doi/10.1109/JLT.2018.2869242
info:doi/10.1145/2656877.2656890
info:doi/10.1109/MNET.2017.1700070
info:doi/10.1109/MNET.2017.1700070
https://scratch.mit.edu/
https://developers.google.com/blockly
info:doi/10.1016/j.scico.2014.01.017
info:doi/10.1109/TDSC.2015.2499747
info:doi/10.1109/TNET.2018.2829882
https://github.com/NETSERV-UAH/TFGs/tree/master/201906-VictoriaNoci

	Towards visual programming abstractions in Software-Defined Networking 
	1 INTRODUCTION
	2 RELATED WORK
	3 ABSTRACTIONS FOR CONTROL AND DATA PLANES
	3.1 Defining the control plane structure
	3.2 Defining the data plane structure

	4 SCRATCHINGSDN
	5 DISCUSSION AND FUTURE WORK
	6 CONCLUSION

	ACKNOWLEDGMENTS
	PEER REVIEW
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

