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Abstract: A comparison between Ma-Rokhlin-Wandzura (MRW) and double exponential (DE)
quadrature rules for numerical integration of method of moments (MoM) matrix entries with singular
behavior is presented for multilayer periodic structures. Non Uniform Rational B-Splines (NURBS)
modelling of the layout surfaces is implemented to provide high-order description of the geometry.
The comparison is carried out in order to show that quadrature rule is more suitable for MoM
matrix computation in terms of sampling, accuracy of computation of MoM matrix, and CPU time
consumption. The comparison of CPU time consumption shows that the numerical integration
with MRW samples is roughly 15 times faster than that numerical integration using DE samples
for results with similar accuracies. These promising results encourage to carry out a comparison
with results obtained in previous works where a specialized approach for the specific analysis of
split rings geometries was carried out. This previous approach uses spectral MoM version with
specific entire domain basis function with edge singularities defined on split ring geometry. Thus,
the previous approach provides accurate results with low CPU time consumption to be compared.
The comparison shows that CPU time consumption obtained by MRW samples is similar to the
CPU time consumption required by the previous work of specific analysis of split rings geometries.
The fact that similar CPU time consumptions are obtained by MRW quadrature rules for modelling
of general planar geometries and by the specialized approach for split ring geometry provides an
assessment for the usage of the MRW quadrature rules and NURBS modelling. This fact provides an
efficient tool for analysis of reflectarray elements with general planar layout geometries, which is
suitable for reflectarray designs under local periodicity assumption where a huge number of periodic
multilayer structures have to be analyzed.

Keywords: integral equations; moment methods; multilayered media; periodic structures;
reflectarrays

1. Introduction

Many electrical devices built using planar multilayer structures such as frequency selective surfaces
(FSS) [1], reflectarray/transmitarray [2,3] antennas, phased array antennas, and metasurface (MTS)
leakywave antennas [4–6] are analyzed many times assuming a periodic environment. This assumption
is known as local periodicity assumption and it was experimentally validated in the literature, and was
enabled for accurate design of many antennas [3]. In fact, when the local periodicity assumption is
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used in the design of a reflectarray, the scattering problem of a plane wave obliquely incident on a
periodic multilayered structure has to be analyzed a huge number of times. Therefore, very efficient
numerical tools are required for the solution of this scattering problem.

Since most of these devices work with resonant elements, an accurate modelling of the geometry
of the resonant elements is required. NURBS surfaces show high-order description of the geometry
of layout for complex geometries [7]. Mature Computer Aided Geometric Design (CAGD) based on
NURBS meshing is available. In this work, the NURBS meshing technique used is based on a redesigned
and optimized Paving Algorithm [8]. Although a mesh of NURBS surfaces of an arbitrary layout is
accurate for constructing and storing the surface of layout, more suitable surface meshing for numerical
computation of parameters associated with the surface is preferred (curvature, derivatives, integrations,
etc). Bézier patches provide these desired properties with parametric surfaces defined by Bernstein
polynomials [9]. Moreover, NURBS surfaces can be efficiently treated using Bézier patches [9,10] by
the Cox-de Boor transformation algorithm [11]. In this context, generalized subsectional rooftops
functions are usually defined between pairs of adjacent Bézier patches to approximate the surface
current densities induced on the layout [7].

The most used method for determination of the induced current densities in periodic multilayered
structures is the Method of Moments (MoM) in the spectral domain [12,13]. Unfortunately, when the
MoM in the spectral domain is applied, the MoM matrix entries are a double infinite series with
slow convergence, and larger CPU time consumption is required for an accurate computation of
these double series. In order to speed up this convergence, several approaches have been proposed.
Two-dimensional fast Fourier transforms were implemented by Chan and Mittra to compute the series
when subsectional rectangular or triangular basis functions (BF) are used to model the current density
induced on the layout [14,15]. However, the edges of the layout have to exactly coincide with the
cells of a uniform mesh (rectangular or triangular) defined in the unit cell of the periodic structure.
In [16], the computation is accelerated by means of the combined use of Kummer’s transformation,
Poisson’s formula, and Chebyshev polynomial interpolation. However, a uniform mesh is required
in all these proposals and, unlike NURBS surfaces, these types of meshes provide bad modelling
of complex resonant geometries, particularly curved geometries. In a recent work, a sophisticated
and efficient treatment for MoM in spectral domain was developed for specific entire domain basis
functions which accounts for the singularities of the surface current densities at edges of split ring
geometries [17]. In that treatment, the Fourier transform of basis functions, which appear in the double
infinite series, are expressed in terms of Hankel transforms for this specific geometry of split rings.
These Hankel transforms can be efficiently interpolated in terms of Chebyshev polynomials. Moreover,
asymptotic term of these Fourier transforms is easily identifiable. This fact provides a controlled
truncation of the infinite series in terms of desired accuracy. However, this development is only suitable
for the analysis of the split-rings geometry.

An interesting alternative to the MoM in the spectral domain for the analysis of multilayered
periodic structures is the Mixed Potential Integral Equation (MPIE) formulation of the MoM in the
spatial domain [18–20]. In this latter approach, one has to face the computation of multilayered
periodic Green’s functions where a double infinite series with slow convergence has to be computed.
Moreover, in this approach, integrals with singular integrands appear in the computation of MoM
matrix entries. Fortunately, there are efficient and accurate techniques for fast computation of periodic
Green’s functions for multilayer medium. In [21], the periodic Green’s functions of the periodic
multilayer structure are judiciously interpolated in the spatial domain in terms of 2-D Chebyshev
polynomials after extracting the singular behaviour of the Green’s functions around the source points
(which includes the source singularities plus the images through the closest layers). The evaluation of
singular integrals is a problem that has been addressed in detail in [22–24] for subsectional triangular
BF and free space Green’s functions. Moreover, sophisticated and specific techniques have been
proposed for periodic multilayer structures using entire domain basis functions, which account for the
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singularities of the surface current densities at edges of patches or coplanar dipoles [21,25]. However,
these approaches are not suitable for NURBS surfaces in MoM context.

When the layout geometries are modelled by NURBS, these singular integrals have to be computed
by quadrature rules. The singular integrals can be accurately computed by means of specialized
quadrature rules for integration of singular behavior located in the limit of the integration domain.
Ma-Rokhlin-Wandzura (MRW) quadrature rule [26] and Double Exponential (DE) quadrature rule [27]
are specialized quadrature rules for singular integrals. The MRW quadrature rule is designed for
integrals of functions with logarithmic singularities in the lower limit of the integration interval,
while the DE quadrature rule is suitable for integrals of functions with a wide variety of singular
behaviors located at endpoints of the integration interval. Both MRW [21,25,28] and DE [27,29,30]
quadrature rules have been successfully used for the determination of integrals with singularities that
arise in the application of the MoM for multilayer problems. In more recent works results obtained
by MRW [31–33] or by DE [34,35], quadrature rules are used as comparison patterns. However,
the performance of these two types of quadrature rules have never been compared in an MoM context.
In fact, the MRW quadrature has only been used for integration of the logarithmic singular behavior of
integrands that arise in MoM. In this work, we show a comparison between both quadrature rules
for integration of MoM matrix entries with singular behavior for NURBS modelling of general planar
geometry of layout embedded in multilayer periodic structures. The comparison is carried out in
terms of sampling of quadrature rules, accuracy, and CPU time consumption for computation of MoM
matrix entries.

This paper is organized as follows. Section 2 shows a description of the solution of the MPIE
using generalized rooftop defined on a pair of adjacent Bézier patches. In this section, the formulation
of numerical integration involved in the MoM matrix entries is shown by MRW and DE quadrature
rules. Section 3 shows convergent patterns of results for computation of MoM matrix entries using
both types of quadrature rules. In this section, validations and comparisons of CPU time consumptions
are also carried out for analysis of a multilayer periodic structure based on dual concentric split-rings
geometry. Finally, the conclusions are provided in Section 4.

2. Description of the Problem

Let us consider a periodic multilayer structure of px × py cell size with NC dielectric layers of
thickness hp (p = 1, . . . , NC) and complex permittivity εp= ε0εr,p(1-jtanδp). The multilayer medium is
upper limited by free space and lower limited by either free space or ground plane. This multilayer
medium hosts an interface with periodic planar layout with negligible thickness and arbitrary geometry
(see unit cell in Figure 1). For simplicity in this work, an unique interface with periodic layout is
considered but more interfaces with periodic layout can be considered. These surfaces of planar
layouts will be considered as PEC throughout. On these surfaces, surface current densities J(x,y) and
surface charge densities σ(x,y) are induced by either linearly or circular polarized incident plane wave
with incidence direction given by the angular spherical coordinate θinc and ϕinc. Both, current and
charge densities are related to each other by a known continuity equation. Since the periodic surfaces
are planar, the induced current densities J(x,y) have no z-component. These induced currents and
charge densities satisfy a MPIE from boundary conditions on PEC [19,20]. In order to solve the MPIE,
expansion in term of known BFs weighted by unknown coefficients, and method of weighted residual
with weighting functions (WFs) are applied.

In this work, the planar surface of the layout hosted of the unit cell of the periodic structure is
modelled by NURBS surfaces. The NURBS are efficiently discretized as piecewise Bezier patches [7,9,10]
using the Cox-de Boor transformation algorithm [11]. Figure 1 shows in grey color the planar surface
with generic geometry, which is discretized in terms of Bézier patches. Each Bézier patch is a
parametric surface defined by rectangular parametric coordinates u and v. Both rectangular parametric
coordinates, u and v, vary from 0 to 1 along the Bézier patch. Thus, known relationships between



Electronics 2020, 9, 2043 4 of 14

Cartesian coordinates (x, y) and parametric coordinates (u, v) are defined in each Bézier patch by a
pre-processing procedure [7]:

x(u, v) =
2∑

p=0

2∑
q=0

xpqB2
p(u)B2

q(v)

y(u, v) =
2∑

p=0

2∑
q=0

ypqB2
p(u)B2

q(v)

 (1)

where Bp
2(·) is the pth-Bernstein polynomial [9] of degree 2 and values xpq and ypq (p,q = 0, 1, 2) are

the control points of Bézier patches, which are obtained in the pre-processing procedure. Once these
relationships given in (1) are available for each Bézier patch, subsectional rooftops Jj(u,v) (j = 1, . . . , Nb)
functions and razor blade functions can be defined between a pair of adjacent Bézier patches from their
parametric coordinates u and v, as proposed in [7]. The razor-blade joins the centers of each adjacent
Bezier patches (i.e., values of x and y given by (1) when u = v = 0.5 in each adjacent Bezier patch) by
means the isoparametric curved lines Ci (i = 1, . . . , Nb).
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Figure 1. Unit cell of px × py size of a multilayer periodic structure with NC dielectric layers. kth interface
hosts planar generic layout. Bézier patches’ discretization of the surface of the planar layout is shown.
On this interface, generalized rooftops and razor blade defined on a pair of adjacent Bézier patches
are shown.

Therefore, the rooftops functions are used as BFs (j = 1, . . . , Nb) and razor-blade are used as
WFs [7]. Taking into account the relationships given in (1), the expansion of the surface current densities
J(x,y) in term of the known BFs Jj(u,v) (j = 1, . . . , Nb) are given by:

J[x(u, v), y(u, v)] =
Nb∑
j=1

c j,J j(u, v) (2)

where cj (j = 1, . . . , Nb) are unknown coefficients.
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When the expansion given in (2) is substituted in the MPIE and razor-blade are used as WFs,
the resultant system of equations for the unknown coefficients cj (j = 1, . . . , Nb) is obtained:

Nb∑
j=1

(
Zind

i j + Zcap
i j

)
c j = ei(i = 1, . . . , Nb) (3)

where the coefficients ei of the system of the linear equations can be computed by the next line integral:

ei =

∫
Ci

Eexc
t (x, y, z = zk) · dr (4)

With Et
exc(x,y,z = zk), the tangential electric field generated in the observation point (x,y,z = zk)

by multilayer substrate in the absence of the patches when a plane wave impinges on the multilayer
medium. The coefficients Zij

ind and Zij
cap are obtained as follows:

Zind
i j = jω

∫
Ci

find
j (x, y, z = zk) · dr (5)

Zcap
i j =

[
f cap
j (x+i , y+i , z = zk) − f cap

j (x−i , y−i , z = zk)
]

(6)

where:

find
j (x, y, z = zk) =

1∫
0

1∫
0

GA
xx[x− x′(u, v), y− y′(u, v), z = z′ = zk]J j(u, v)

∣∣∣Juv(u, v)
∣∣∣dudv (7)

f cap
j (x, y, z = zk) =

1∫
0

1∫
0

GΦ[x− x′(u, v), y− y′(u, v), z = z′ = zk]∇J j(u, v)
∣∣∣Juv(u, v)

∣∣∣dudv (8)

With |Juv(u,v)| the determinant of Jacobian matrix of the relationships given in (1). GA
xx is the

periodic Green’s function for the x-component of the vector potential and GΦ is the periodic Green’s
function for the scalar potential, respectively, both for the periodic multilayer structure of Figure 1.
In this work, the periodic Green’s functions of the periodic multilayer structure are efficiently obtained
by the pre-processing procedure of interpolation described in [21]. In this procedure, the periodic
Green’s functions of the periodic multilayer structure are judiciously interpolated in the spatial domain
in terms of 2-D Chebyshev polynomials after extracting the singular behaviour of the Green’s functions
around the source points (which includes the source singularities plus the images through the closest
layers). The singular behaviour of the periodic Green’s functions is proportional to 1/(4πρ) where
ρ = [(x − x′)2 + (y − y′)2]1/2 [21]. Since the periodic Green’s functions provide singular behaviour when
the Cartesian coordinates x and y of the observation point and the Cartesian coordinates x′ and y′ of
the source point are close, the integrands of the bi-dimensional integrals shown in (7) and (8) show a
similar singular behaviour. This singular behaviour of these integrands is produced in parametric
domain of Bézier patch around values uobs and vobs, which satisfy the following system of equation:

x = x′(uobs, vobs)

y = y′(uobs, vobs)

}
(9)

where the relationships between the Cartesian variables x′ and y′ and the parametric variables u and v
are given by (1) in each Bézier patch. Once the values uobs and vobs are available for each observation



Electronics 2020, 9, 2043 6 of 14

point in each Bézier patch, the integrals (7) and (8) can be handled in order to take into account the
singular behavior of the integrands around the values uobs and vobs.

Let us consider G[x-x′(u,v),y-y′(u,v)] stands either Green’s function GA
xx or GΦ for fixed values of

Cartesian coordinates x and y of the observation point in the kth-interface (i.e., when z = z′ = zk). Let us
also consider that K(u,v) stands either x or y component of a fixed BF or the divergence of fixed BF.
Then the integrals (7) and (8) can be expressed as:

1∫
0

1∫
0

F[u, v]dudv =

vobs∫
0

uobs∫
0

F[u, v]dudv

︸                 ︷︷                 ︸
I

+

1∫
vobs

uobs∫
0

F[u, v]dudv

︸                 ︷︷                 ︸
II

+

1∫
vobs

1∫
uobs

F[u, v]dudv

︸                 ︷︷                 ︸
III

+

vobs∫
0

1∫
uobs

F[u, v]dudv

︸                 ︷︷                 ︸
IV

(10)

where,
F[u, v] = G[x− x′(u, v), y− y′(u, v)]K(u, v)

∣∣∣Juv(u, v)
∣∣∣ (11)

Since the Green’s functions provide singular behaviour (i.e., G[x − x′(u,v),y − y′(u,v)] for fixed
values of x and y is proportional to 1/(4πρ)) when (9) is satisfied, the square domain 0 < u,v < 1 of the
bi-dimensional integral of F(u,v) is divided in four rectangular regions where the values of the values
uobs and vobs are located in the corner of each region, as shown in Figure 2:
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Figure 2. Integration domain of the integrals (7) and (8) divided in four rectangular regions, each of
which with the singular behavior of the integrand located in a corner of each region.

Each integral of the right side of (10) can be accurately computed by means of specialized
quadrature rules for integration of singular behavior located in the limit of the integration domain
using an appropriate trivial variable change. In this work, we compare the performance of two
specialized quadrature rules for the numerical integration of (7) and (8) by the division of regions
given in (10): MRW quadrature rules [26] and DE quadrature rules [27]. The MRW quadrature rules
are specifically designed for integrals of functions with logarithmic singularities in the lower limit
of the integration interval (0,1), while the DE quadrature rules are suitable for integrals of functions
with a wide variety of singular behaviors located at endpoints of the integration interval (−1,1). Let us
consider tm, wm abscissas and weights, respectively, for either MRW or DE quadrature rules. In order to
show an example, let us consider the term II of the right side of (10). If we define the variable changes
u = (1 − tu)uobs, v = (1 − vobs)tv + vobs, then integration domain of the new variables tu and tv is (0,1) ×
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(0,1). The singular behavior is produced in the integration domain around of the values tu = 0 and
tv = 0 (i.e., singular behavior is produced in the lower limit of integration interval of new variables tu

and tv). In this condition, the integral can be accurately computed from tm, wm abscissas and weights
obtained by MRW quadrature rules, as shown below:

1∫
vobs

uobs∫
0

F[u, v]dudv = uobs(1− vobs)

MMRW∑
m=1

NMRW∑
n=1

wmwnF[u(tm), v(tn)] (12)

where MMRW × NMRW are the number of samples used in the MRW quadrature rule. Similar treatment
can be made for the remaining integrals to the right side of (10).

On the other hand, if we define the variable changes u = (tu + 1)uobs/2, v = [(1 − vobs)tv + (1 +

vobs)]/2, then integration domain of the new variables tu and tv is (−1,1) × (−1,1). In this case, singular
behavior is produced in the integration domain around of the values tu = 1 and tv = −1 (i.e., singular
behavior is produced at endpoints of the integration interval of new variables tu and tv). In this
condition, the integral can be accurately computed from tm, wm abscissas and weights obtained by DE
quadrature rules, as shown below:

1∫
vobs

uobs∫
0

F[u, v]dudv =
uobs(1− vobs)

4

MDE∑
m=1

NDE∑
n=1

wmwnF[u(tm), v(tn)] (13)

where MDE × NDE are the number of samples used in the DE quadrature rule. Similar treatment can
be done for the remaining integrals to the right side of (10). Both MRW [21,25,28] and DE [27,29,30]
quadrature rules have been successfully used for the determination of integrals with singularities that
arise in the application of the MoM for multilayer problems. In more recent works, results obtained
by MRW [31–33] or by DE [34,35] quadrature rules are used as comparison patterns. However,
the performance of these two types of quadrature rules have never been compared to each other in
an MoM context. In fact, the MRW quadrature has been used in the literature only for integration
of logarithmic singular behavior of integrands that arise in the MoM context and not for integration
of singular behavior proportional to 1/(4πρ). In this work, we show a comparison of both types of
quadrature rules in terms of sampling, accuracy, and CPU time consumption for integration of (7) and
(8) with singular behavior proportional to 1/(4πρ) when the observation and source point are close.
These comparisons are obtained by sequential programming of home-made FORTRAN code (parallel
programming is not implemented).

3. Numerical Results

Let us consider the reflectarray element based on dual concentric split-rings, as shown in Figure 3a:
Figure 3a shows a periodic cell of px × py = 5 × 5 mm2 size, which consists of dual concentric

split rings centered in the center. The split-rings of fixed w width are printed on 0.787 mm thick
Rogers Duroid 5880 (εr,1 = 2.2 and tanδ1 = 0.0009) [36]. The outer split-ring consists of symmetrical
arcs with subtended angle ψ2 and inner radious ρ2. The inner split-ring also shows symmetrical arcs
but, with subtended angle ψ1 and inner radious ρ1. Fixed simmetrical axis are considered for outer
split-ring, while the simmetrical axis of the inner split-ring are able to rotate an α angle, as shown in
Figure 3a. This reflectarray element has provided satisfactory electrical reflexion properties under local
perodicity assumption (i.e., the reflectarray element is in periodic enviroment) in circular polarized
reflectarray designs [17,37] by means of a variable rotation technique [38,39]. The outer split-rings
work at 19.95 GHz, while the inner split-rings work at 29.75 GHz. Let us consider the following
values of the geometrical parameters ψ1 = 162.8 deg, ψ2 = 150.4 deg, α = 0 deg, ρ2 = 1.85 mm,
ρ1 = 1.20 mm, w = 0.2 mm for the following results that will be shown at 29.75 GHz under normal
incident (i.e., θinc = ϕinc = 0). These values of geometrical parameters are not arbytrary since these
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values ensure that the phase of the complex number of copolar reflexion coefficients for ‘x’ and ‘y’
direction are shifted 180 deg to each other at 29.75 GHz under normal incidence [17]. This condition of
180 deg in the shifting of the phases is a necessary condition to apply VRT [38,39] in the reflectarray
design. Figure 3b shows the discretization of the dual concentric split-rings in terms of Bézier patches.
Since the inner split-ring works at 29.75 GHz and the outer split-rings work at lower frequency of
11.95 GHz, the inner split-ring is discretized in terms of more Bézier patches than the outer split rings
to provide accure results at 29.75 GHz.
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in terms of Bézier patches.

Figure 4a,b show the magnitude and phase of the complex number of the integrand of (8) in
the integration domain given for region I shown in Figure 2 for a fixed Bézier patch under study.
Similar results are obtained for the integrand of (7) (not shown). We can see that there is singular
behaviour of the magnitude of the integrand around the values uobs = vobs = 0.485 (i.e., the values of
the coordinates ‘x’ and ‘y’ of the observation point have been selected in order to satisfy the condition
(9) when uobs = vobs = 0.485). The distribution of the 7 × 7 DE samples and 5 × 5 MRW samples are
also shown in the integration domain. We would like to point out that the 7 × 7 DE samples are the
minimum number of samples provided by DE quadrature rules when the level of the quadrature is
null [27]. In Figure 4a, we can see that the singular behaviour is captured pretty well by the 7 × 7
DE samples. However, this fact is obtained by the cost of oversampling the rest of corners of the
rectangular integration domain. Thus, the rest of the integration domain is badly sampled by DE
quadrature rules. This is because the DE quadrature rules are suitable for integrals of functions with
singular behaviors located at endpoints of the integration domain. Note that, due to this, the rest
of the integration domain is badly sampled by DE quadrature. Moreover, this fact could provide a
bad capture of the soft behavior of the phase of the integrand in the integration domain, as shown in
Figure 4b. On the contrary, the MRW sampling is specifically designed for integrals of functions with
singularities in the lower limit of the integration interval. In this way, the 5 × 5 MRW samples keep an
optimal sampling between the sampling of the singular behavior of the magnitude of the integrand
and the sampling of the magnitude and phase of integrand in the rest of the integration domain.
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Figure 4. Magnitude (a) and phase (b) of the integrand of (8) in the integration domain given in region
I for the decomposition shown in Figure 2. The values of the coordinates ‘x’ and ‘y’ of the observation
point have been selected in order to satisfy the condition (9) when uobs = vobs = 0.485. Distribution of 7
× 7 DE samples and 5 × 5 MRW samples are also shown in the integration domain of region I.

Table 1 shows the convergence pattern of the inductive, Z11
ind, and capacitive, Z11

cap, contributions
of the MoM coefficient matrix of the system of linear equations given in (3). This convergence pattern
is shown with respect to the number of MRW samples per region used in the integration of (7) and
(8). Since the functions fj

ind (j = 1, . . . ,Nb) have no singular behavior, the line integral given in (5) can
be numerically computed by conventional Gauss-Legendre (GL) quadrature rules [40]. In this work,
we use 4 GL samples for integration of the line integral shown in (5). A similar convergence pattern is
shown in Table 2 but, in this case with respect to the number of DE samples used in the integration of
(7) and (8).

Table 1. Convergence pattern with respect to the number of MRW samples per region of the inductive,
Z11

ind, and capacitive, Z11
cap, contributions of the MoM coefficient matrix.

Number of Samples MMRW
× NMRW per Region Z11

ind Z11
cap

3 × 3 (0.2167181 + 14.19454j) (−0.0061680079 − 712.6991j)
5 × 5 (0.2167180 + 14.29379j) (−0.0056559443 − 699.2062j)

10 × 10 (0.2167187 + 14.32665j) (−0.0058996081 − 695.4257j)
15 × 15 (0.2167188 + 14.32226j) (−0.0057702065 − 695.0881j)
20 × 20 (0.2167189 + 14.31678j) (−0.0057617426 − 695.0215j)
25 × 25 (0.2167189 + 14.31555j) (−0.0057619214 − 695.0031j)

Table 2. Convergence pattern with respect to the number of DE samples per region of the inductive,
Z11

ind, and capacitive, Z11
cap, contributions of the MoM coefficient matrix.

Number of Samples MDE × NDE per
Region Z11

ind Z11
cap

7 × 7 (level 0 of DE quadrature) (0.2233992 + 14.89468j) (−0.0060498714 − 718.6270j)
13 × 13 (level 1 of DE quadrature) (0.2167199 + 14.45327j) (−0.0056549907 − 697.3384j)
25 × 25 (level 2 of DE quadrature) (0.2167186 + 14.35121j) (−0.0057088733 − 695.0247j)
51 × 51 (level 3 of DE quadrature) (0.2167187 + 14.32173j) (−0.0057591200 − 694.9873j)

101 × 101 (level 4 of DE quadrature) (0.2167180 + 14.31637j) (−0.0057511926 − 694.9833j)
203 × 203 (level 5 of DE quadrature) (0.2167156 + 14.31532j) (−0.0057668090 − 694.9734j)

If we compare the results shown in Tables 1 and 2, we can see that a lesser number of samples
are required by MRW quadrature than that required by DE quadrature to reach the same number of
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significant digits. For example, in order to reach three significant digits of imaginary part of Z11
ind

and Z11
cap (note that the imaginary part is significantly higher than the real part), MRW quadrature

requires 10 × 10 samples per each region shown in Figure 2, while the DE quadrature requires 51 × 51
samples per region. Note that this fact is produced in spite of MRW quadrature rules specifically
being designed for integrals of functions with logarithmic singularities and not with singularities
proportional to 1/(4πρ). These results anticipate a CPU time savings when MRW quadrature rules are
used instead of DE quadrature rules.

In order to compare the CPU time consumption by MRW and DE quadrature rules, the phase
curves shown at 29.75 GHz in [17] have been reproduced by MRW and DE quadrature rules in the
numerical integration of (7) and (8). The geometrical variables ψ1 and α used to reproduce results
given in [17] are shown in Figure 5 (i.e., these values of the geometrical parameters ψ1 and α ensure
that the required condition of 180 deg of phase difference is satisfied at 29.75 GHz to apply VRT).
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and (8), by MRW quadrature, DE quadrature for a different number of samples per region and by CST.

In our analysis, 284 BFs have been used (i.e., Nb = 284 has been used). Figure 6 shows the
reproduced results using the 3 × 3 MRW samples per region, 7 × 7 DE samples per region and 13 × 13
DE samples per region. The results obtained in [17] by the proposed method in [17] and by CST
simulations carried out in [17] are also shown. We would like to point out that the proposed method
in [17] consists of a sophisticated and efficient treatment in the spectral domain for specific entire
domain basis functions, which account for the singularities of the surface current densities at the edges
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of the arcs of the split rings. In that treatment, the MoM matrix entries are expressed as infinites series
where Fourier transforms of the entire domain basis functions with edge singularities are involved.
In order to compute these Fourier transforms, the part of the basis functions, which depends on an
angular polar coordinate, is expanded as Fourier series. This expansion leads Fourier transforms of the
basis function in terms of Hankel transforms. These Hankel transforms can be efficiently interpolated
in terms of Chebyshev polynomials. Moreover, due to Fourier expansion, the asymptotic term of
these Fourier transforms is easily identifiable. This fact provides a controlled truncation of the infinite
series in terms of desired accuracy. Thus, important CPU time savings is expected when the proposed
method in [17] is applied since it is specifically designed and speeded up for analysis of the split-rings
geometry, while the implementation of specialized quadrature rules for integration of (7) and (8)
consider the general planar surface of complex geometries.

In Figure 6, we can see that the results obtained by 3 × 3 MRW samples and 13 × 13 DE samples
per region have good agreements with the results provided by the proposed method in [17] and CST
simulations shown in [17]. However, the results provided by the 7 × 7 DE samples per region show
distorted phase curves (i.e., 7 × 7 DE samples per region are insufficient to achieve convergence).
Table 3 shows the CPU time consumption required per point of each pair of phase curves (∠RRHCP,RHCP

and ∠RLHCP,LHCP) shown in Figure 6 by each type of analysis method. Relative percent of CPU
time consumption is also shown with respect to the maximum CPU time required in order to ease
comparisons. The CPU time consumption required by 7 × 7 DE samples per region is not shown
since these samples are insufficient to achieve convergence. These results were obtained on a laptop
computer with processor Intel Core i7-6700HQ, 2.6 GHz of clock frequency with 32 GB of RAM.
We would like to point out that the laptop computer used for our results is the same laptop computer
used in [17]. In this way, an honest comparison of CPU time consumption can be carried out with that
required by the shown simulations in [17].

Table 3. CPU time consumption required per point of the phase curves of ∠RRHCP,RHCP and ∠RLHCP,LHCP

for results shown in Figure 6.

Type of Analysis Method CPU Time (s) per Point Relative Percent

3 × 3 MRW samples per region 6.42 6.60%
13 × 13 DE samples per region 97.28 100%

Proposed method in [17] 4.93 5.07%
CST simulations in [17] 80.19 82.4%

In Table 3, we can see that the analysis carried out by the numerical integration of (7) and (8) using
3 × 3 MRW samples per region is roughly 15 times faster than that numerical integration using 13 × 13
DE samples per region (i.e., the relative percent of CPU time consumption obtained with 3 × 3 MRW
samples with respect to that obtained with 13 × 13 DE samples is roughly 6.6%). Moreover, we can
see that the CPU time consumption obtained by 3 × 3 MRW samples per region is comparable with
the CPU time consumption required by the proposed method in [17] (i.e., the relative percent of CPU
time consumption obtained with proposed method in [17] with respect to that obtained with 13 × 13
DE samples is roughly 5.07%). On the other hand, the CPU time consumption obtained by 13 × 13
DE samples per region is comparable with the CPU time consumption required by CST simulations
in [17] (i.e., the relative percent of CPU time consumption obtained with CST simulations in [17] with
respect to the obtained 13 × 13 DE samples is roughly 82.4%). We would like to remember that the
implementation of MRW quadrature rules for integration of (7) and (8) consider a general planar
surface of complex geometries, while the proposed method in [17] is designed for specific analysis of
the split-rings geometry. In this way, the fact that similar CPU time consumptions are obtained by
both general purpose software with MRW quadrature rules and proposed method in [17] provides
favourable results for the general purpose software. Thus, this fact justifies the effort to implement
MRW quadrature in MoM context with NURBS modelling of geometries.
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4. Conclusions

A comparison of the accuracy in terms of samples used by MRW and DE quadrature rules for
integration of MoM matrix entries with singular behavior have been carried out for multilayer periodic
structures which host a general planar layout. A decomposition of the integration domain in four
regions are carried out for efficient implementation of both types of quadrature rules. In order to
provide high-order description of the geometry of layout for complex geometries, NURBS modelling
of layout surface has been implemented and generalized rooftops defined on pair of adjacent Bézier
patches have been used in the approximation of induced surface current densities on the layout.

Samplings of MRW and DE quadrature have been compared to capture the behavior of the
integrands of the integrals that arise in the computation of MoM matrix entries. The singular behaviour
of the integrand is captured pretty well by the DE samples, but at the cost to oversample the rest of
corners of the rectangular integration domain. Thus, the rest of the integration domain is badly sampled
by DE quadrature rules. On the contrary, MRW samples keep an optimal sampling between the
sampling of the singular behavior and the sampling in the rest of the integration domain. Convergence
patterns of MoM matrix entries with respect to the number of samples are compared for both types of
quadrature rules. A smaller number of samples are required by MRW quadrature than those required
by DE quadrature to reach the same number of significant digits.

Finally, the obtained promising results encourage a comparison with results obtained in previous
works, where a specialized approach for the specific analysis of split rings geometries was carried out.
The results shown in this previous work for the analysis of split rings geometries have been reproduced
by MRW and DE quadrature rules and NURBS modelling of layout geometry. Good agreements with
results provided by previous works are obtained when 3 × 3 MRW samples and 13 × 13 DE samples
per region are used. Comparison of CPU time consumption shows that the numerical integration
with 3 × 3 MRW samples per region is roughly 15 times faster than that numerical integration using
13 × 13 DE samples per region. Moreover, the CPU time consumption obtained by 3 × 3 MRW samples
per region is similar to the CPU time consumption required by previous work designed for specific
analysis of the split-rings geometry.

Therefore, this fact provides an efficient tool for the analysis of reflectarray elements with general
planar layout geometries, which is suitable for reflectarray designs under local periodicity assumption
where a huge number of periodic multilayer structures have to be analyzed.
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