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ABSTRACT The effectiveness of user-oriented traffic routing applications to mitigate traffic congestion in
Intelligent Transportation Systems depends on their degree of adoption, which usually evolves depending
on subjective and exogenous factors. This paper proposes a user experience and social dynamics model to
analyze and evaluate traffic routing methods, based on fuzzy rules and discrete choice theory. The model has
been applied to the optimal Traffic-Weighted Multi-Maps (TWM) routing method to evaluate the adoption
dynamics and analyze convergence towards the system optimum. Route unfairness and resistance to change
are also considered in the model. Experimental results are obtained simulating the evolution of the drivers’
population behavior. Simulation is carried over synthetic and real networks, using optimized TWM maps.
The experimental results show how the TWM system evolves to a stationary System Optimum, improving
overall traffic congestion and showing how User Equilibrium variability is bounded as it depends on user
routing choices influenced by behavioral patterns.

INDEX TERMS Dynamic traffic assignment, multi-map routing, fuzzy logic, evolutionary algorithms,
discrete choice modeling, traffic simulation, vehicle routing, traffic weighted multi-maps.

I. INTRODUCTION
The efficiency and impact of routing software applications
(routing apps) in Intelligent Transportation Systems (ITS) to
mitigate traffic congestion depend not only on the quality
of the routing solutions proposed to the drivers but also on
their adoption rate [1]–[3]. This adoption rate depends on
individual factors, public policies and regulation, and social
influence [4], [5].

There is a considerable amount of route choice, and traf-
fic information management proposals focused on conges-
tion mitigation and travel-time improvement using static or
dynamic methods [6]. From a macroscopic perspective, they
try to reach the right balance on Wardrop’s principles of User
Equilibrium (UE) and System Optimal (SO) [7], [8]. These
proposals consider that most users are free to decide the route
theywould take for their trips, using a subjective evaluation of
objective data and status information such as travel time fore-
cast, network traffic status, previous routing choices, social
information, and other individual parameters. Multi-criteria
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and imprecise traveler behavior is usually approached with
Utility theory (UT), Prospect Theory (PT), and Regret Theory
(RT), together with Discrete Choice Methods (DCM) and
Fuzzy Methods (FM) [9], [10].

In an environment with multiple routing apps available
which are not usually interoperable and interfere between
them [11], [12], drivers first need to decide which app to
use [13]. User experience, perception and trust, and social
influence are key concerns [14], [15].

Discrete choice methods with multinomial logit mod-
els (MLM) have been widely applied to route choice
problems [1], [16] as they consider mutually exclusive
alternatives. Individual trip routing decisions are taken after
considering and comparing the utilities of every routing
strategy. The utility evaluation is a subjective process that
considers the available (fuzzy) knowledge of the considered
parameters. It can be processed and weighted employing
fuzzy (behavioral) rules.

The effectiveness of traffic routing applications depends
on their user adoption rate (adherence). This ITS adher-
ence must be considered as a time-dependent process [12],
[17]. Successive trip planning iterations have different ITS
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adherences as user experiences evolve. ITS adherence has a
double impact on total travel time (TTS) and congestion: even
with low adoption levels, the whole network gets improved
as the most used routes receive less traffic assignment, and
thus non-adopters are also positively impacted. Nevertheless,
SO-oriented ITS have a well-known issue that needs to be
addressed: a fraction of the drivers may be penalized on
behalf of themajority improvement. This effect is called route
unfairness (RU), which has been studied by [18]–[20].

Fuzzy modeling of the route choice problem has been
described in [21] and [22], and later works have devel-
oped and enriched this approach as in [23] that proposed
a multi-criteria framework for route generation, evaluation,
and selection. These models propose calibrated fuzzy sets for
traffic variables and fuzzy rules to make routing decisions.
They require that the drivers have imprecise knowledge of
the status of the network to make their decisions, and from a
global perspective, UE and SO cannot be guaranteed.

User utility functions defined as fuzzy methods have been
used to model decision-making processes as shown in [24]
and [25]. These approaches have also been applied to the
transportation problem in [26] where a multi-criteria route
choice model for driver utility is proposed. Risk-averse
decisions are also taken into account in the route choice
fuzzy models as described in [27]–[29]. Risk-aversion and
user’s perceived utility are in the basis of Prospect Theory
which has also been applied to route choice under uncertain
information [30], [31].

Other fuzzy-based proposals have also been applied as
a heuristic approach to the Traffic Assignment Problem
(TAP) [32], proving a macroscopic routing perspective. This
fuzzy macroscopic approach has been exposed by [33] con-
sidering fuzzy costs for the traffic network links and applying
the model to the TAP. Fuzzy cost sets can be biased to
avoid the Independence from Irrelevant Alternatives (IIA)
from the Logit based models. In the same way, user inertia
in decision making is a well-known effect that needs to be
considered as resistance to change [34]. Hassan et al. [35]
have recently proposed a two-level approach for modeling
transit-path travel strategies and route choice in transit paths,
where fuzzy sets are used to calibrate a discrete choice model.

Our work proposes a method to estimate and simulate ITS
adoption by modeling driver’s behavior under multi-criteria
and uncertainty. It is used to study how SO-oriented ITS
approaches behave over time in terms of global adoption
considering individual fuzzy decision criteria.Will the drivers
use the system considering their fuzzy utility criteria? Will
the ITS adherence converge to stable values that fulfill the
global SO objectives? It uses a two-level approach similar
to [35] that combines fuzzy rules and discrete choice methods
to model ITS adoption dynamics considering their utilities.
Multiple concurrent ITS usagemay converge to a system opti-
mum, evolving towards a stationary global adoption status.

The main contributions of this paper include:
1) A driver experience evaluation model that describes

the utility of using different routing strategies, based

on a fuzzy parameter model and rule-set behavior
evaluation.

2) An individual trip routing decision model based on the
subjective utility set using a multinomial logit model
and considering the inherent resistance to change.

3) A study of the traffic system evolution in time, consid-
ering the adherence to a concrete smart routing appli-
cation (Traffic Multi-Map Routing, TWM), and the
convergence and stability of the system optimum for
global travel time.

4) Simulation study on temporal system dynamics, vali-
dating how SO-oriented principles can be evaluated in
ITS and smart apps for congestion mitigation.

The routing strategy developed with the Traffic Weighted
Multi-Maps (TWM) routing system has been previously
introduced in [36] and [37], and it essentially relies on the
design, distribution, and adoption of complementary net-
work views that decouple the physical road network layout
from the logical perspective of the network usage. These
views are created by applying different weights to the links
between connected roads or street junctions. It induces the
routing applications to select different minimum-cost routes
depending on the received map. It can be thought as if
traffic were colored depending on the received map. The
application of TWM to complex traffic scenarios may lead to
significant improvements in terms of global travel time, con-
gestion mitigation, emissions reduction, incident avoidance,
per fleet routing, time-based routing, and others. One of the
main benefits of TWM is the ability to be easily integrated
with existing traffic control frameworks as a traffic map
server.

In [38] it is discussed how to create optimal TWMdistribu-
tions depending on the network topology, the planned traffic
demand, and various optimization criteria. These optimal
TWM distributions can be generated by heuristic optimiza-
tion algorithms where multiple criteria can be applied to
reduce complexity, and leading to pseudo optimal solutions.
This optimal TWM provides static traffic assignment sce-
narios very close to the system optimum (SO) in terms of
total travel time (TTS), though other optimality criteria may
also be added in TWM calculus. Other similar works have
appeared later, presenting a similar idea with randomized
maps applied to different traffic networks [39].

In our work, we consider a dynamic traffic assignment
with daily stable traffic demands (flows). The utility model
assumes that every driver takes individual routing deci-
sions (planning) before starting a trip by considering the
following aspects:

1) Social awareness of TWM: knowledge of the existence
of the TWM app.

2) Qualified user of TWM: considering if the driver has
ever used the system (registered user).

3) Comparison against the optimal travel time that would
be achieved when a free-flow scenario is considered.

4) Current network status information and travel time
forecast for the next trip.
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5) Previous driving experiences using TWM: positive or
negative compared to the congested or non-congested
situation.

6) TTS improvement or worsening in the latest driving
experience, considering TWM usage or not.

These aspects are modeled as fuzzy rules generating prob-
ability distributions that estimate the utility of using TWM.
This utility model feeds the final decision-making process
that makes the routing decision. This process is implemented
with a Multinomial Logit Model (MLM) taken from discrete
choice theory. Specifically, in this work, the selection process
is focused on choosing between the route generated by the
shortest-path algorithm and the route provided by TWM.
MLM has been widely used to model human behavior in
route selection models [1] and other areas such as economics
or evacuation scenarios [40]–[42]. The main advantages of
the proposed model are its generality, versatility, open and
flexible character, its ability to be adapted to empirical values
obtained from direct feedback from users, and that it can be
easily simulated.

Simulation experiments are conducted in synthetic and real
urban traffic networks under congestion conditions. Synthetic
traffic networks allow a fast model development isolating the
utility model assumptions and policies from the real network
constraints. The real urban traffic network is then used for
empirical validation and traffic prediction. The experiments
allow us to measure:
• How the TWM adherence evolves, and how long it takes
its convergence.

• Which are the most valuable fuzzy rules and their rele-
vance in time.

• How social awareness affects ITS adoption.
The rest of the paper is organized as follows. Section II
describes the user utility model, the multiple ITS evaluation
rules for route choice, and their application to the optimal
traffic multi-maps (TWM) routing mechanism. Section III
describes the experimental use cases and results, and finally,
Section IV points out conclusions and future research lines.

II. MODELING THE UTILITY OF ROUTING APPS
Given a certain number of traffic routing policies or applica-
tions {Rn} available, drivers need to choose between them at
the planning time of the trip to decide which route to take.
This choice can be expressed as a combination of beliefs
(including the available information), obligations, intentions,
and desires, in the so-called BOID model, described in the
classical intelligent agent approaches [43], which can be
extended to a BOID+S model if it is expected that social
media may have a relevant impact on user adherence. In our
approach, each driver takes a strategical routing decision
combining a fuzzy logicmodel with a discrete choicemethod.
The sequence of steps involved are:

1) Collect the necessary observations for the accounted
variables.

2) Fuzzy evaluation of these variables using fuzzy mem-
bership functions.

3) Application a fuzzy behavior rule-set to obtain the
utility values for the considered routing strategies {Rn},
showing how useful would be any of the available
choices when the driver’s decision is taken. A global
rule-set wrapping function is used to aggregate the
utility value obtained from all the rules together with
their relevance (weight).

4) A discrete choice model is then applied to obtain the
usage probability of the routing strategies {Rn}. A pre-
vious linear scaling is required to adapt utilities to the
probability ranges.

5) A stochastic decision is then taken, where the driver
selects which routing strategies {Rn} to use.

6) Differentiation between decision making and execu-
tion is then applied, as users experience resistance to
change. It is modeled using a stochastic process.

7) Select the appropriate routing method Ri for the next
trip.

This section covers the utility model and its application to the
TWM routing strategy.

A. FUZZY UTILITY MODEL
A routing strategy, method, or application {Rn} is supposed
to provide a particular utility value

[
U k
n
]
=
[
U k
1 ,U

k
2 . . .U

k
n
]

to the driver k at a specific time ([Un] from now on), which
considers the experience gained by the driver in previous
trips. Discarding those vehicles that have fixed routes such as
regular urban buses, it is reasonable to consider that drivers
use at least one routing policy when planning a trip. Thus,
we define the standard trivial routing method R0 that consid-
ers the minimum cost route under free-flow conditions, ignor-
ing or not knowing the traffic status. Its utility is represented
by U (no ITS usage).

Utility values [Un] are independently evaluated consider-
ing BOID+S components represented by the variables [Xi].
They can be implemented as fuzzy variables, which can be
multi-valued with the value sets

[
cij
]
, which numerically rep-

resent themembership to the fuzzy categories
[
Cij
]
specific to

each variable. The values
[
cij
]
are obtained through fuzzy-set

evaluation functions
[
mij
]
(1):

Xi→ xi ≈
[
cij
]
, cij→ mij(xi) (1)

For instance, let us consider the driving factor XFF−ITTS ≈
‘‘Individual Last-Trip to Free-Flow Travel time Similar-
ity’’ (X1), which measures the ratio between the individual
free-flow travel time (best possible travel time using
the minimum cost route) and the previous travel time
experience. It may be evaluated by the fuzzy categories
[C11,C12,C13] ≈{ ‘‘optimum’’, ‘‘acceptable’’, ‘‘bad’’ }
depending on the ratio value obtained for a given vehicle
at a specific time. Every fuzzy category has its member-
ship function [m11,m12,m13], so from the fuzzy perspec-
tive, any X1 value x1 is evaluated by the evaluating tuple
[m11(x1),m12(x1),m13(x1)], for example: x1 = 0.8915 ≈
[0.99, 0.23, 0.01].

90172 VOLUME 9, 2021



A. Paricio, M. A. Lopez-Carmona: Modeling Driving Experience in Smart Traffic Routing Scenarios

TABLE 1. TWM adoption rule R3.

In the same way, the utility variable set [Un] is also
described by fuzzy variables which also are multi-valued
value sets

[
unj
]

that represent the membership to the
fuzzy categories

[
UCij

]
using fuzzy-set evaluation functions[

umij
]
(2):

Un→ un ≈
[
unj
]
, unj→ umnj(Un) (2)

Following the previous example, the utility of using TWM,
UTWM , may be modeled as {‘‘high’’,’’mid’’, ‘‘low’’, ‘‘very
low’’} and also U may be modeled as {‘‘great’’,’’normal’’,
‘‘small’’} (they do not need to map to the same categories).

Driver behavior is modeled by evaluation rules {Rr }that
estimate the utility values [Un] considering the driver and
context variables [xi] and their fuzzy categories

[
Cij
]
. Rule

evaluation is done by the rule processing method F (3). The
BOID+S model is implemented by multiple rules, each one
returning its own evaluation set [ui]r , so it is necessary to pro-
vide unique evaluation values to a rule-set wrapping method
Q (4), considering the returned utilities and the corresponding
rule weights wi:

Rr : [un]r → F([xi]) (3)

[ui] → Q([[un]r ,wr ]), ∀Rr (4)

For instance, using our behavior fuzzy rules we can easily
define the rule described in Table 1.

Fuzzy engines offer multiple evaluation strategies that
could be used depending on the problem to be solved. We use
an additive resolution model, considering that utility is usu-
ally an additive process. The fuzzy utility model returns
normalized values in the [0,1] range that needs to be lin-
early scaled before the probability calculus for traffic routing
method Ri, generating

[
u∗i
]
.

B. DISCRETE CHOICE MODEL
Once the utility values have been obtained, a discrete choice
model based on random utility theory is applied [1], [44], [45]
under the following assumptions:

1) Individuals belong to a homogeneous population in
terms of objectives (mainly reduce travel time), use
perfect information about the traffic status and previous
experiences, and make rational decisions (based on
behavior rules).

2) There is a predefined set of routing {Rn} ITS alter-
natives expressed by value attributes

[
cij
]
k for every

individual. Individuals need to make choices consider-
ing these valued attributes.

3) Utility perceived by each driver k over each routing
alternative is expressed by the expression (5,6) that
combines the systematic evaluation of the attributes and
an εkn observational error.

ukn = vkn + ε
k
n (5)

vkn =
∑

βij ∗ xkij (6)

4) The travelers select the maximum utility alternative
when vkn−v

k
m ≥ ε

k
m−ε

k
n and then the probability P(u

k
n)

of choosing the alternative n is described by (7):

P(ukn) = Prob
{
εkn ≤ ε

k
m + (vkn − v

k
m),∀Um

}
(7)

When the observational errors εkn are independent and
identically distributed (IID), theWeibull/Gumbel distribution
can be used (ExtremeVale Type I), and theMultinomial Logit
Model (MLM) can be applied [46]. It provides a simplified
expression to calculate the probabilities P(uki ) that a driver
will use a traffic routing method Ri at a time (8):

P(uki ) =
exp(uki )∑
k exp(u

k
k )

(8)

Calibration of logic models with fuzzy reasoning mecha-
nisms applied to transportation scenarios is discussed in [47]
and [48]. More recently, [35] describes a dual fuzzy-logit
model calibrated with user data.

In this paper, we use MLM to model the routing method
choice of a driver at time t , which is then achieved using the
probability distribution

[
P(ukn)

]
for a stochastic experiment

that returns the usage of a specific routing method or app Rt
k .

Resistance to change is modeled independently of the routing
method choice model. This final decision-making process
decideswhether to applyRt

k or stay using the previous routing
method Rt−1

k .

C. USER EXPERIENCE PARAMETERS
The BOID+S model is a fuzzy model described by the
fuzzy input variables [Xi], the fuzzy output utilities [Un],
the fuzzy reasoning rules {Rr } together with their weights,
the rule evaluation policies [F ,Q] and the user resistance to
change Y .
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The fuzzy input variables [Xi] considered are:
• Individual Last-Trip to Free-Flow Travel Time Similar-
ity (X tFF−TTS ): represents how close has been the previ-
ous travel time to the ideal free-flow minimum value.
It is measured by the ratio (9) between the individual
free-flow travel time (best possible travel time using
the minimum cost route) and the previous travel time
experience (TT tk ). It is described by the categories (10).

X tFF−TTS =
TT FFk
TT tk

(9)

CFF−TTS ∈ {“Optimum”, “Acceptable”, “Bad”} (10)

• Individual Last-Trip Travel Time Experience (X tLT−TT ):
represents the most influencing short-term experience,
comparing the two latest experiences and checks if the
latest decisionwasworthy. It compares the latest tripTT tk
improvement over the previous one TT t−1k . Improve-
ment (11) is effective when its value is over a certain
subjective threshold δ. XLT−TT categories are described
in (12).

XLT−TT =
(
TT tk < TT t−1k ∗ (1− δ)

)
(11)

CLT−TT ∈ {“Yes”, “No”} (12)

• Individual Awareness of ITS Rk (X tRU−K ): reflects if a
user actively knows about the routing method Rk . This
knowledge can be measured by the vehicle’s registration
status in the routing application or by the individual
memory flag recording if it has been ever used. It is
described by the categories described in (13).

CRU−K ∈ {“NoUser”, “PotencialUser”, “ActiveUser”}

(13)

• Individual Mean Travel Time Experience using ITS Rk
(X tMTT−K ): reflecting the mid-term individual percep-
tion about Rk usage. It is measured as the ratio of trips
that improved their travel time using Rk in the latest m
executions (14). It is described by the categories (15).

X tMTT−K =

∑
i

X iLT−TT

m
, i ∈ [t − m, t] (14)

CMTT−K ∈ {“Improved”, “Neutral”, “Worsened”} (15)

• Last-Trip Has Used ITS Rk (X tLTU−K ): expresses if an
ITS routing mechanism has been used in the previous
trip. Previous trip experience is critical, and the routing
method that has been used needs to be evaluated to make
the next decision. It is measured as a yes/no option for
the Rk routing methods (16).

CRU−K ∈ {“Yes”, “No”} (16)

• ITS Rk Social Influence (X tSOC ): reflecting the influence
of the driver’s community over the individual decision.

FIGURE 1. Strict distribution of driver resistance to change,
Ybin → 0.75 ∗ binary (0.6).

FIGURE 2. Normal distribution of driver resistance to change,
Ynorm → 0.75 ∗ norm(0.6, 0.1).

This parameter aggregates all the social influencing fac-
tors. It can be initially approached as the adoption ratio
of the routing method in the global population (17):
percentage of drivers using Rk , where N is the number
of drivers. It is described by the categories (18).

X tSOC =

∑
X tLTU−K
N

(17)

CSOC ∈ {“Low”, “Mid”, “High”} (18)

The fuzzy output variables are the utility values [Un]
obtained from the fuzzy rules evaluation. They are evaluated
by the fuzzy engine (4), and are described by the categories
[CU ] (19):

CU ∈ {“Low”, “Mid”, “High”} (19)

Besides the fuzzy variables, the Individual Resistance to
Change (XRC ) is also considered. It reflects the personal atti-
tude to maintain the previous routing method decision taken.
Resistance to change is modeled over the vehicle population,
assigning a certain probability for XRC to every vehicle with a
pmax maximum probability. Several probability distributions
may be used. Our work is focused on:
• The strictly receptive model where the driver simply
accepts or rejects the routing decision to be taken with
probability Ybin : pmax ,m → pmax ∗ binary(m) where
binary(m) is a [0, 1] experiment for the m percentage
of vehicles. Figure 2 illustrates the probability values
distribution for XRC where only 60% of the vehicles may
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TABLE 2. Weight categories for the fuzzy rules.

have a XRC probability of 0.75. Values are randomly
assigned to the vehicles.

• The normal resistance mode, where ability to adopt
changes is modeled with a normal distribution Ynorm :
pmax ,m, d → pmax ∗ norm(m, d), where norm(m, d) is
the normal random distribution with mean m and stan-
dard deviation d . Figure 2 shows the XRC histogram for
the whole population with pmax = 0.75, norm(0.6, 0.1).

If the resulting decision at the trip planning stage is a change
of routing criteria, then a probabilistic experiment is executed
with the individual XRC probability to decide whether to
change or not. The flexibility of our BOID+S model allows
easy definition of new parameters. We are mainly focused on
travel-time related factors, but other parameters may be added
directly, such as:
• Trip length, comparingRk use or not, both in short-term
and mid-term experiences.

• Congested areas traversal, in percentage ratio of total trip
length.

• Freeways usage.

D. USER EXPERIENCE RULES
For the sake of conciseness and understanding, we will limit
ourselves to describing the rules that affect the existence
of a single routing methodRTWM . All the fuzzy rules are
evaluated at every driver decision-making iteration, whose
relative impact is weighted as shown in Table 2. The rules are
shown in Table 3, which are grouped by their similar behavior
into the following rule-sets:

1) TWM non-users behavior (rules 1-5): when the driver
is not a TWM user, depending how valuable is the
last-trip experience compared to the free-flow driving
conditions, and the social acceptance of TWM, the util-
ity of using TWM (UTWM ) or not using it (U ) will vary.
The TWM utility condition the new-adopters policy.

2) TWM users behavior considering short-term experi-
ence (rules 6-15): when the driver is a TWM user
(registered user or has ever used it), last-trip expe-
rience conditions if it was worthy TWM usage or
not, considering if the travel time has improved or
not. Social acceptance of TWM is less important
here. This rule-set controls if the driver keeps using
TWMor rejects using depending the traffic experiences
when adoption is increasing and congestion conditions
evolve.

3) TWM users behavior considering mid and long term
experience (rules 16-19): when the driver is a TWM
user, mid and long term experience using TWM is
valuable to represent driver’s confidence to the rout-
ing method. Regardless of what has happened on the

driver’s last trip, he learns from other previous expe-
riences. These rules limit as well oscillations in the
decision process.

The traffic routing adoption model is very open and new rules
can be easily added referring to the existing fuzzy variables
or to new add-ons.

E. OPTIMAL TWM ROUTING OVERVIEW
Traffic Weighted Multi-Maps (TWM) is a routing technique
based on the usage and distribution of complementary views
(maps) of the traffic network to create alternative paths for
the planned trips. It was introduced in [36] and [37], where
its application was applied to global travel times, individual
mean travel time, and congestion reduction.

TWM decouples the physical topology of the traffic net-
work from the logical usage view of the network (map),
assuming that it is based on traffic logical rules, constraints,
and recommendations. TWM is based on the generation of
a set of static link weights that the drivers use to calculate
route costs. TWM provides differentiated views (maps) to the
vehicles with specific link weights, inducing them to select
scattered routes. TWM maps are selectively distributed to
the traffic groups through standard traffic services. It assures
backward compatibility with other traffic routing services,
as their core is always based on a network map. TWM is
compatible with centralized and distributed traffic routing
mechanisms.

Use cases studied so far with TWM are congestion mitiga-
tion, per fleet differential routing, real-time incident manage-
ment [36], and more recently, optimal traffic assignment [38].
This latest work demonstrates that it is possible to apply opti-
mization algorithms to generate TWM map-sets that provide
quasi-optimum traffic assignment when the traffic demand is
estimated in advance and a certain usage ratio (adherence) is
considered.

Explored TWM optimization mechanisms are based on
evolutionary algorithms, where link weights in the traf-
fic maps are distributed to achieve minimum global travel
time (TTS) for a given demand. TWM optimization uses
static traffic assignment models, using volume-delay func-
tions (VDF) [49]. VDF provides a macroscopic approxima-
tion of the travel time and traffic flows.

The most commonly used VDF function is (20) defined
by the Bureau of Public Research [50] that describes link
travel times as a function of the free-flow travel time tt0, link
capacity qmax and link usage q.

tti = (tto + α ∗ (
q

qmax
)β ) (20)

Considering the k-shortest paths (KSP) for the traffic
flows, it can be defined traffic routing areas containing the
KSP nodes and all the link-connected nodes at a distance
d from them. This algorithm is called Extended Flow-Path
Optimal TWM (EFP-TWM) [38]. Optimal TWM designed
for these routing areas has lower complexity since they use
a much smaller volume of links to optimize, focusing on the
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TABLE 3. TWM adoption rules.

most relevant links. EFP-TWM distributions provide traffic
assignment distributions very close to the system optimum at
a reasonable computing cost.

F. USING THE FUZZY UTILITY MODEL
WITH TWM ROUTING
The effectiveness of the optimal TWM distributions depends
mainly on the driver’s adherence to TWM usage. Neverthe-
less, adherence evolves depending on several factors, espe-
cially when previous experiences are taken into account,
including social TWM awareness. For system optimum traf-
fic assignment, some of the vehicleswill inevitably be harmed
for the benefit of the majority. This is called the route unfair-
ness effect [18]–[20]. So, TWM usage will have promoter
and detractor driver profiles, considering these drivers that
improved or worsened their planned trips. Despite having
received a TWM routing recommendation, some drivers may
decide not to change their routing strategies due to behavioral
inertia or a biased utility perception [13], [34].

TWM adherence can be studied considering repetitive traf-
fic flows such as regular daily trips, considering the peak
hour. This simplification of the problem is acceptable as there
could be time-framed TWM sets distributed to the vehicles.
So, for the sake of conciseness and simplicity, we will con-
sider repetitive traffic flows during the peak hour and study
the dynamics of driver adherence concerning the global travel
time.

Our utility model provides two main variables
[
UTWM ,U

]
,

representing the utility of using TWM routing or not using it,
thus using the standard method R0 (21).

[Un] =
[
UTWM ,U

]
(21)

According to the MLM expression described in (8) for the
probability of TWM usage, we obtain (22)

P(UTWM )→
exp(UTWM )

exp(UTWM )+ exp(U )
(22)
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FIGURE 3. [Xi ] evaluation functions for TWM.

The evaluation functions for the [Xi] to [Ci] categories are
shown in Figure 3, usingmainlyGaussian distributions to rep-
resent user behavior. The specific values for the parameters
of the functions are taken from the extensive experiments that
have been developed in the study, though they may be taken
from real data usage or user surveys.

[
UTWM ,U

]
evaluation

functions are shown in Figure 4.

III. EXPERIMENTS
Deploying new ITS applications in a massive scope is a com-
plex task that requires intensive research, testing, investment,
and marketing effort. To validate the effectiveness of new ITS
systems, existing traffic simulation software plays a pivotal
role by enabling simulating diverse traffic demand and driver
behavior conditions, including the simulation of advanced
ITS applications.

In our work, two different simulation scenarios are studied:
1) A synthetic reference traffic network, where traffic

demand generates congested links and nodes. Synthetic
scenarios allow a fast model development isolating the
utility model assumptions and policies from the real
network constraints.

2) A real urban traffic network is fed with a synthetic traf-
fic demand to reproduce congestion conditions, used to
validate results.

A. SIMULATION ENVIRONMENT
The experimental results are evaluated in Matlab R2020b
(update 5) [51] together with some python 3.7 scripts to pro-
cess map formats. TheMatlab environment uses the Simulink
package and the Matlab Fuzzy Logic Toolbox [52] which is
used to model the driver’s fuzzy utility model. Optimization
of TWMmaps is achieved by means of the Matlab’s package

FIGURE 4.
[
UTWM , U

]
evaluation functions.

for Genetic Algorithm processing [53]. The whole simulation
runs in a Window10 hosted Intel iCore7 quad-core architec-
ture with 16Gb RAM.
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B. EXPERIMENTAL SETUP
Experiments are focused on how ITS adoption evolves,
attending to the BOID+S model for the driving experi-
ence. We consider a specific traffic demand formed by
the origin-destination flows that are repeated every day.
These flows correspond to a congested time frame where
drivers are looking for routing alternatives to reduce travel
time.

The experiments model the evolution of the first D days,
starting from an empty adoption distribution and consider-
ing a specific resistance to change, following a probabilistic
distribution. A time frame of D = 50 labor days is consid-
ered, though real experiences could differ in time extension
depending on concrete circumstances.

Every day, drivers take the routing decision consider-
ing the BOID+S model, and, at the end of the trip,
they register how was the driving experience consider-
ing the observed parameters. In the same way, the traffic
authority takes daily snapshots on global traffic parameters:
global adherence to TWM, total travel time, and others.
The authority may take some action to influence TWM
adherence.

At the beginning of the simulation period, an optimized
TWM map is generated. It uses the traffic network and the
traffic demand forecast, which is known in advance. With
the TWM generation process, a TWM distribution policy
for every vehicle is selected among the available policy set:
pure random assignment, random per flow, sequential per
flow, or some other. Our experiments use the pure random
assignment policy for simplicity.

To be able to make consistent comparisons between sim-
ulation scenarios the homogeneous parameter sets are con-
sidered. Optimal TWM map sets are based on a TWM-3-2-2
schema [38]: 3 weighted network maps in the TWM, two
shortest-paths based on the free-flow minimal cost paths, and
consideration of 2-distance radius from the KSP paths. The
shortest paths are obtained based on Dijkstra’s algorithmwith
the implementation proposed by Yen [54].

For the optimum TWM generation, a static traffic assign-
ment criteria is used, using the volume-delay function (VDF)
(20) using α = 0, 15 and β = 4. Link capacities are adapted
from [55] and [56].

The genetic algorithm (GA) that computes the optimal
TWM map uses 50 individuals and 500 evolutionary gener-
ations, bounding maximum and minimum weight variation
between [−50% of the original weights. Details of the GA
can be found in [38].

We used two different user resistance to changemodels: the
binary mode Ybin and the normal mode Ynorm with pmax =
0.5. These are shown in Figures 5 and 6. Different values
pmax ∈ [0, 1) values are considered for the maximum proba-
bility amplitude in the normal distribution. Value 0 provides
the zero resistance to change.

The simulations consider that the drivers have a mid-term
memory of the last 10 executions.

FIGURE 5. Strict distribution of driver resistance to change,
Ybin → 0.5 ∗ binary (0.5).

FIGURE 6. Normal distribution of driver resistance to change,
Ynorm → 0.5 ∗ norm(0.5, 0.1).

TABLE 4. GRID64: O/D matrix.

C. SYSTEM DYNAMICS IN THE GRID64
SYNTHETIC NETWORK
The synthetic scenario selected for experimental simulation is
the GRID64 described in [38], where the different algorithms
and criteria for obtaining an optimal TWM distribution are
detailed for a particular traffic demand. We refer to this work
for the calculation details.

GRID64 is a rectangular grid-shaped network defined by
8 × 8 nodes [Nxy] connected by bi-directional links. It con-
tains 64 nodes and 224 bidirectional links whose weights are
randomly assigned in the [4, 12] range (uniform) (Figure 7).
Traffic demand is formed by 6 traffic flows T = [f1, f2 . . . f6]
connecting 3 traffic origins and 2 traffic sinks. Total traffic
payload contains 4.500 vehicles (Table 4). An initial adoption
rate of 0.1% of TWM adherence is assumed.

1) TWM ADOPTION EVOLUTION
For this experiment the Extended Flow-Path for TWM algo-
rithm has been used [38], using a 3 maps structure with
3 shortest-paths, and a distance radius d = 2 for the KSP
routing area (EFP-KSP-3-2-2). Optimal TWM distribution is
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FIGURE 7. GRID64: traffic network and demand flows.

FIGURE 8. GRID64: Evolution of TWM adherence with
Ynorm(0.5, 0.5, 0.1).

generated with the Matlab Genetic Algorithm package using
an evolutionary population of 50 members and 500 genera-
tions. TWM creation process converges quickly providing an
optimal TWM distribution.

Figure 8 shows the adherence using rcnorm(0.5, 0.5, 0.1).
As we can see, travel time differences during congestion sce-
narios force the drivers to look for alternative routingmethods
(TWM in this case), which is initially almost unknown. The
drivers that start using it find that the travel time experience
with the new routes is much better than the travel time with
the shortest path under current traffic conditions. This usage
reinforces TWM usage for the future, and they keep on
using it.

Regardless of how TWM adherence behaves, it is interest-
ing to observe in Figure 9 that TTS gets stationary, close to
the system optimum, despite the changes of decision that the
vehicles are taking. For the selected simulation, at period 15,
TTS stabilizes.

The Fuzzy Utility Rules popularity is shown in Figure 10.
Rule 6 states that those vehicles using TWM and obtaining
a good result in travel time will keep on using this routing
method. In the same situation, rule 15 states that those vehi-
cles that are qualified TWM users, and on the last day did not
use it obtaining poor results, will retake TWM usage.

It is interesting to deep dive into the early adoption phase,
where the most used rules are 3, 4, and 6. Rule 3 states that

FIGURE 9. GRID64: Evolution of TTS Ynorm(0.5, 0.5, 0.1).

FIGURE 10. GRID64: popularity of BOID+S rules.

FIGURE 11. GRID64: popularity of BOID+S rules in early times.

under low TWM popularity, non-TWM users will not use the
new routingmethod. Rule 4 states that when TWMpopularity
raises, drivers will slightly tend to use it. Of course, as has
been already pointed, rule 6 states that if TWM provides
reasonable solutions, drivers will keep on using it.

After an initial period of early adopters (up to day 15),
the drivers’ community observes that TWM adoption is rel-
evant, and new drivers are attracted by this new method,
quickly reaching 65% usage. At this point, many users are
selecting the same alternative routes, so some of them return
to the original routing strategy. Figure 12 shows how the
fuzzy rules are fired for a concrete individual.

Figure 13 outlines how TWM usage decisions affect the
individual travel times, where the impact of changing the
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FIGURE 12. GRID64: Individual fuzzy decision sequence.

FIGURE 13. GRID64: Travel time evolution related to TWM usage.

FIGURE 14. GRID64: Drivers resistance to change.

routing decision is exposed. Drivers that start using TWMand
decide to change their decision suffer a travel time penalty
that forces them to roll back their decision.

Considering the user resistance to change (Figure 14), we
can observe that the distribution of drivers that should have
changed the routing strategy is divided into the distribution
of drivers accepting changes (blue) and drivers deciding not
to change their actual routing strategy.

Figure 15 represents the number of vehicles that have
changed their routing decision during the whole simulation,
where we can see how previous decisions and their impact on
travel experience make them change and adapt their subse-
quent decision to a subjectively better scenario.

It can be observed in Figures 16 and 17 that the system has
a strong tendency to converge towards stable values, besides
the effect of user resistance to change. Several probabilities

FIGURE 15. GRID64: Number of vehicles changing routing strategy.

FIGURE 16. GRID64: TWM adherence evolution at different pmax values
Ynorm(pmax , 0.5, 0.1) .

FIGURE 17. GRID64: global travel time evolution at different pmax values
Ynorm(pmax , 0.5, 0.1).

of change are used, ranging from 0 to 0.9. Interestingly, when
drivers are prone to accept changes, they use alternate traffic
methods depending on the concrete traffic conditions. After
several peak adoption oscillations, TWM adoption converges
towards a system optimum status.

D. SYSTEM DYNAMICS IN A REAL TRAFFIC NETWORK
A real traffic network scenario is shown in Figure 18 describ-
ing the new district of Las Tablas in the north of Madrid,
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FIGURE 18. Madrid-Las Tablas traffic network and Google maps view.

FIGURE 19. Las tablas main traffic flows.

Spain. This district, with more than 24,300 hectares, occupies
almost half of the municipal term of Madrid. Added to this
particularity, its 30,000 inhabitants make it, by demographic
weight, the city’s third district. It also contains large business
and financial centers that cause significant inbound and out-
bound traffic during business hours. The district is bounded
by large expressways to the north, south, and east, while to
the west, it is blocked by railways.

A synthetic traffic demand of 15,000 vehicles is created
for the experiment, crossing the network and creating con-
gested areas. They are grouped in 30 flows of 500 vehicles
and are represented in Figure 19. The traffic network con-
tains 971 nodes and 1583 links. The GA that creates the
optimal TWM for the traffic demand selects a sub-network
of 420 nodes and 691 links when an EFP-KSP-3-2-2 strat-
egy is considered (3 traffic maps, 2 shortest paths, and
2 node-distance for alternative routing area). It takes 160
evolutionary generations to converge. An initial adoption rate
of 0.1% of TWM adherence is assumed.

1) TWM ADOPTION EVOLUTION
Figure 20 shows how TWM adherence evolves depending
on the resistance to change selected for the vehicle popu-
lation, while Figure 21 shows global travel time evolution.

FIGURE 20. Madrid las tablas: TWM adherence evolution at different
pmax values Ynorm(pmax , 0.5, 0.1).

FIGURE 21. Madrid las tablas: global travel time (TTS) evolution at
different pmax values Ynorm(pmax , 0.5, 0.1).

FIGURE 22. Madrid las tablas: popularity of BOID+S rules.

TWM adherence evolves to a quasi-constant value that varies
considerably depending on the propensity to change of the
population. Nevertheless, it can be observed that global travel
time optimization is quickly achieved, and what is most
interesting, it hardly depends on the resistance to change. It is
enough that a small of the population adopts TWM to obtain
a highly significant value of TTS for the majority.
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FIGURE 23. Madrid las tablas: popularity of BOID+S rules in early times.

FIGURE 24. Madrid las tablas: behavior of individuals 3241 and 5000.

Figure 22 show BOID+S rules popularity for the whole
simulation, while Figure 23 shows the same concept during
the seven first TWM deployment days. Results are consistent
with those obtained in the synthetic scenario: those drivers
adopting TWM and experiencing a significant improvement
in their travel timewill keep using it. Early adoption is limited
by the knowledge of the drivers about TWM.

If we analyze individual behavior, Figure 24 shows two
different behaviors for individuals 3241 and 5000. The first
individual habitually uses a route with good travel times (rule
1 is elicited). Eventually, this individual becomes a TWM
user (rule 6) and gets a new route, but the experience is
not so good as the previous, so this driver uses the standard
non-TWM routing mechanism (rule 11). On the other hand,
individual 5000 suffers congestion regularly, so this driver
quickly starts using TWM (rule 6) and keeps on using it
as a preferred strategy. Sometimes, the route gets affected
by others’ decisions and tries back to the standard routing
strategy (rule 11), but returns quickly to TWM when it is
noticed that it provides better routes (rule 6).

IV. CONCLUSION AND FUTURE WORK
Our study proposes a flexible framework for modeling and
evaluating driving experience in Intelligent Transportation

Systems (ITS). When a traffic population is offered a set
of traffic routing applications, drivers individually use their
subjectively better app to select the recommended route. The
paper considers driver behavior as a set of beliefs, obligations,
intentions, desires, and social influences (BOID+S), evalu-
ated through multi-valued fuzzy criteria.

Individuals evaluate the fuzzy utility of each routing strat-
egy for each trip. So, when these fuzzy subjective utilities are
available, then a discrete choice over the routing alternatives
can be applied. A Multinomial Logit Model (MLM) is suit-
able to estimate the probabilities of making routing decisions.

This behavioral routing decision model poses a reasonable
concern about the convergence and stability over time of the
ITS strategies that are considered. If they propose subjec-
tively good routing alternatives, such app adoption would
increase in time and lead to a system optimum.

The adoption rate (adherence) to ITS in the traffic pop-
ulation determines the effectiveness of their algorithms.
However, this adherence evolves, where the decisions
made by the rest of the population constantly change the
decision-making processes.

Our paper applies the ITS evaluation model to the Traf-
fic Multi-Map Routing with optimal link weights (TWM)
described in [38], using a concrete set of travel-time related
parameters and fuzzy rules.

TWM adherence convergence, stability, and global travel
times obtained are studied over two different network
scenarios:
• A reference synthetic grid-based network that enables
detailed analysis of the BOID+S model.

• A real urban traffic network where the same TWM
strategy is applied.

The experimental results are consistent between them, show-
ing that optimal TWM usage provides a good traffic solution
that significantly impacts the global travel time of the traffic
network from the system optimum perspective. Traffic net-
work performance evolves based on individual decisions that
lead to a constant TWM adoption rate.

Macroscopic convergence of TWM adoption is based on
the microscopic individual behavior model. Individuals make
their own decisions considering their circumstances that are
modeled by fuzzy rules.

The main advantages of the proposed analysis model are
its generality, its versatility, its open and flexible character,
its ability to be adapted to empirical values obtained from
direct feedback from users, and that the results can be easily
simulated:
• It can be applied to any traffic routing strategy, not
only to traffic-weighted multi-maps. Moreover, multiple
traffic routing strategies can be used and compared at the
same time based on user experiences.

• The user utility model is very flexible, where mul-
tiple utility objectives can be added and managed
efficiently. The fuzzy utility modeling approach decou-
ples value categories from the numerical evaluation
functions.
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• The user behavior model is open, where new variables,
as user considerations, can be added andmanaged easily.
As well, its fuzzy modeling provides a natural way
to express behaviors decoupled from their numerical
expressions.

• User decisions are modeled as weighted fuzzy rules that
can also be easily edited and managed, adding generic
behaviors and specific constraints when required.

It is worth noting that using fuzzy rules in conjunction with
discrete choice methods (in this case, using a multinomial
logit model) may be easily linked to field analysis based
on user experience surveys or application feedback methods.
The users can directly inform the user utility variables and
expectations on the routing methods. This study is left for
future field research work, together with the analysis of other
user impact variables such as trip distances, tolls, electric
recharge stations, and other factors.
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