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1 Introduction

As it can be read in Section 2.5 of [4] the Kronecker product structure arises in
several application areas, including signal and image processing, photogram-
metry, and multidimensional approximation. In particular, it appears in a
natural way in least squares surface fitting of multivariate data on a rectan-
gular grid. When more flexibility is allowed on the point distribution, as seen
for the interpolation case in [24], a generalized Kronecker product structure
arises.

Least squares problems involving the Kronecker product structure are an-
alyzed in [3,4,10,11,15,26].

Another important field in which Kronecker product arises is Tikhonov
regularization for bidimensional problems, as seen in Section 6 of [16]. As in
our work, one important issue in that paper is to take advantage of the block
structure of the Kronecker product to avoid working with the large matrix
A⊗B.

In this work we present a new method for solving bivariate least squares
problems whose coefficient matrices have generalized Kronecker product struc-
ture. Our approach is inspired by our work on solving bivariate Lagrange
polynomial interpolation problems by using the Bernstein basis [24]. In that
paper, the solution of the interpolation problem is obtained by solving a lin-
ear system whose coefficient matrix is the generalized Kronecker product of
Bernstein-Vandermonde matrices. In [27] a generalized Kronecker product of
matrices has already appeared (in fact, the authors start from a left Kronecker
product) and some of its applications in the area of signal processing have been
analyzed (see also [28]). A generalized Kronecker product has also been con-
sidered in [13] (in fact, in that paper submatrices of matrices with generalized
Kronecker product structure are used), and an algorithm for solving linear
systems with that structure has been presented in [25].

All the least squares problems involving generalized Kronecker products we
consider will have unique solution, and we will compute it with the help of the
Moore-Penrose inverse or a reflexive minimum norm g-inverse of the coefficient
matrix. As we will show, these Moore-Penrose inverses and minimum norm
g-inverses are block matrices and the exploitation of their structure will be
crucial for obtaining a fast algorithm for solving these least squares problems.

The case in which the coefficient matrix of the least squares problem has
(standard) Kronecker product structure is analyzed as a particular case of the
least squares problems we are considering. Algorithms for solving least squares
problems involving Kronecker products can be found in [10,11].

As we will show, a situation in which the solution of a least squares prob-
lem with generalized Kronecker product structure appears naturally is when
solving a bivariate polynomial regression problem when the bivariate tensor
product monomial basis or the bivariate tensor product Bernstein basis are
considered. If the nodes and the basis polynomials are adequately ordered,
the coefficient matrix of the associated least squares problem will be in the
first case the generalized Kronecker product of Vandermonde matrices and in
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the second one, the generalized Kronecker product of Bernstein-Vandermonde
matrices (see [19,21] for a description of Bernstein-Vandermonde matrices).
Since Bernstein-Vandermonde matrices are better conditioned than Vander-
monde matrices [7,20], considering the tensor product Bernstein basis is more
convenient for solving the regression problem accurately. The implementation
in Matlab of a fast and accurate algorithm for solving the bivariate regression
problem when the tensor product Bernstein basis is considered is included. In
this algorithm not only the generalized Kronecker product structure of the
coefficient matrix corresponding to the least squares problem is exploited, but
also the structure of the Bernstein-Vandermonde matrices and their total pos-
itivity, which is a consequence of the selected ordering of the nodes and the
basis [19].

The rest of the paper is organized as follows. The general least squares
problem we are interested in solving is analyzed in Section 2. Section 3 is
devoted to a particular case which, as we will show in Section 4, appears
naturally when bivariate polynomial regression problems are considered. An
algorithm for solving the bivariate polynomial regression problem when the
bivariate tensor product Bernstein basis is used is given in Section 4. In Section
5 numerical experiments illustrating the good properties of our approach are
included. Finally, Section 6 presents the conclusions.

2 Least squares problems with generalized Kronecker product
structure

From now on, let A ∈ R
m×p be a matrix with m ≥ p and rank(A) = p, and

let Bi ∈ R
n×q (i = 1, . . . ,m) be matrices with n ≥ q and rank(Bi) = q. We

consider the linear system

(A⊗Bi)x = b,

where A⊗Bi is the generalized Kronecker product of the matrices A and Bi.

Definition 1 Let M be a matrix of size m × p and let Ni (i = 1, . . . ,m) be
matrices of size n× q. The generalized Kronecker product of M and Ni is the
matrix of size mn× pq, denoted by M ⊗Ni, defined by the mp blocks of size
n× q as

(mklNk),

with M = (mkl). When Ni = N (i = 1, . . . ,m) we have M ⊗ Ni = M ⊗ N ,
the standard Kronecker product of M and N .

Our aim in this section is to solve the system (A ⊗ Bi)x = b in the least
squares sense, by taking advantage of the Kronecker product structure of some
of the generalized inverses of its coefficient matrix A ⊗ Bi. We start by pre-
senting the following definition [1,2]:
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Definition 2 The Moore-Penrose inverse of the matrix M ∈ R
m×p, usually

denoted by M †, is the unique matrix G ∈ R
p×m satisfying the four Penrose

conditions:

(1) MGM = M, (2) GMG = G, (3) (MG)T = MG, (4) (GM)T = GM,

where NT is the transpose of the matrix N .

A matrix G ∈ R
p×m satisfying (1) is called a generalized inverse or g-

inverse of M .

A matrix G ∈ R
p×m satisfying (1) and (2) is called a reflexive g-inverse of

M .

A matrix G ∈ R
p×m satisfying (1) and (3) is called a least squares g-inverse

of M .

A matrix G ∈ R
p×m satisfying (1) and (4) is called a minimum norm

g-inverse of M .

The next definition will be very useful along this work.

Definition 3 Let M be a matrix of size m × p and let Nj (j = 1, . . . , p) be
matrices of size n × q. The generalized Kronecker product by columns of M
and Nj is the matrix of size mn× pq, denoted by M ⊗cNj, defined by the mp

blocks of size n× q as

(mklNl),

with M = (mkl). When Nj = N (j = 1, . . . , p) we have M ⊗c Nj = M ⊗N ,
the standard Kronecker product of M and N .

The next theorem will be important in the solution of the problem consid-
ered in this section in the specific situation in which b belongs to the column
space of A⊗Bi, denoted by R(A ⊗Bi).

Theorem 1 Let A ∈ R
m×p be a matrix with m ≥ p and rank(A) = p, and

let Bi ∈ R
n×q (i = 1, . . . ,m) be matrices with n ≥ q and rank(Bi) = q. The

matrix

G = A† ⊗c B
†
i

is a reflexive minimum norm g-inverse of the matrix A⊗Bi.

Proof Since it is easily seen that (A† ⊗c B
†
i )(A ⊗ Bi) = Ipq , the Penrose

conditions (1), (2) and (4) are proved straightforward. The Penrose condition
(3) is not satisfied in this case.

The following small example illustrates this situation.
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Example 1 Let us consider the matrices

A =

(

1
2

)

, B1 =

(

3
4

)

, B2 =

(

5
6

)

and M = A⊗ Bi =









3
4
10
12









.

The matrix
G = A† ⊗c B

†
i =

(

3
125

4
125

2
61

12
305

)

is not M †, since it does not satisfy the Penrose condition (3):

MG =





















9
125

12
125

6
61

36
305

12
125

16
125

8
61

48
305

6
25

8
25

20
61

24
61

36
125

48
125

24
61

144
305





















6= (MG)T

Conditions (1), (2) and (4) are guaranteed by Theorem 1.

Remark 1 The fact that (A† ⊗cB
†
i )(A⊗Bi) is the identity matrix of order pq

is a consequence of A†A = Ip and B
†
iBi = Iq, which only can happen when

rank(A) = p and rank(B) = q. Therefore, the proof of Theorem 1 cannot
be extended to the case where A or Bi have not full rank. Indeed, without
the full rank restriction A† ⊗cB

†
i is not necessarily a reflexive minimum norm

g-inverse of the matrix A ⊗ Bi, as can be seen by considering the following
matrices:

A =





1 2
1 2
1 2



 , B1 =





1 1
1 1
1 1



 , B2 =





1 2
1 2
1 2



 , B3 =





3 3
3 3
3 3



 .

Now, let us observe here that, although A† ⊗c B
†
i does not satisfy the

Penrose condition (3) for A⊗Bi, and in consequence x = (A†⊗cB
†
i )b is not a

least squares solution of the linear system (A⊗Bi)x = b, A†⊗cB
†
i is a minimum

norm g-inverse of A⊗Bi (see Theorem 1) and therefore, when b ∈ R(A⊗Bi),

x = (A† ⊗c B
†
i )b is the solution with minimum norm of (A ⊗ Bi)x = b (see,

for example, Section 4.2 in [1]).
In the situation we are considering, i.e. when A and Bi (i = 1, . . . ,m) have

full rank, the equation (A† ⊗c B
†
i )(A ⊗ Bi) = Ipq is satisfied, and therefore

A⊗Bi has full rank. Consequently, the least squares problem we are interested
in solving has unique solution, and when b ∈ R(A⊗Bi) it is the solution with

minimum norm x = (A† ⊗c B
†
i )b. Let us show how to compute it by taking

advantage of the generalized Kronecker product structure of A† ⊗c B
†
i .
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x = (A† ⊗c B
†
i )b =











α11B
†
1 α12B

†
2 · · · α1mB†

m

α21B
†
1 α22B

†
2 · · · α2mB†

m

...
...

. . .
...

αp1B
†
1 αp2B

†
2 · · · αpmB†

m





















b(1)

b(2)

...
b(m)











=

=











α11B
†
1b

(1) + α12B
†
2b

(2) + · · ·+ α1mB†
mb(m)

α21B
†
1b

(1) + α22B
†
2b

(2) + · · ·+ α2mB†
mb(m)

...

αp1B
†
1b

(1) + αp2B
†
2b

(2) + · · ·+ αpmB†
mb(m)











,

where A† = (αkl)1≤k<p;1<l≤m, b = (b1, b2, . . . , bmn)
T and b(i) =

= (b(i−1)·n+1, b(i−1)·n+2, . . . , bi·n)
T for i = 1, . . . ,m.

The computation of B†
i b

(i) is equivalent to solve the least squares problem

Biy = b(i). Denoting by y(i) = (y
(i)
1 , y

(i)
2 , . . . , y

(i)
q )T the solution of this least

squares problem, we obtain

x =











α11y
(1) + α12y

(2) + · · ·+ α1my(m)

α21y
(1) + α22y

(2) + · · ·+ α2my(m)

...
αp1y

(1) + αp2y
(2) + · · ·+ αpmy(m)











=

=



























































α11













y
(1)
1

y
(1)
2
...

y
(1)
q













+ α12













y
(2)
1

y
(2)
2
...

y
(2)
q













+ · · ·+ α1m













y
(m)
1

y
(m)
2
...

y
(m)
q













α21













y
(1)
1

y
(1)
2
...

y
(1)
q













+ α22













y
(2)
1

y
(2)
2
...

y
(2)
q













+ · · ·+ α2m













y
(m)
1

y
(m)
2
...

y
(m)
q













...

αp1













y
(1)
1

y
(1)
2
...

y
(1)
q













+ αp2













y
(2)
1

y
(2)
2
...

y
(2)
q













+ · · ·+ αpm













y
(m)
1

y
(m)
2
...

y
(m)
q







































































.

Taking into account that

A†













y
(1)
j

y
(2)
j

...

y
(m)
j













=











α11 α12 · · · α1m

α21 α22 · · · α2m

...
...

. . .
...

αp1 αp2 · · · αpm























y
(1)
j

y
(2)
j

...

y
(m)
j













,
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for j = 1, . . . , q, and that this computation is equivalent to find the solution
of the least squares problem

Az = y(j), where y(j) =













y
(1)
j

y
(2)
j

...

y
(m)
j













,

the computation of x ends by solving these q least squares problems, all of
them with the same coefficient matrix A.

In this way, the algorithm for solving (A⊗Bi)x = b (b ∈ R(A⊗Bi)) is the
one presented in Algorithm 1.

Algorithm 1

Input: The matrices A ∈ R
m×p, Bi ∈ R

n×q (i = 1, . . . , m) and the matrix F ∈ R
m×n

containing the data vector b sorted by rows.
Output: A matrix X ∈ R

p×q containing the unique solution x of the least squares problem
sorted by rows.

1: Solve the m least squares problems Biy = F i, where F i is the i-th row of the matrix
F . The unique solution y of the i-th least squares problem is stored in the i-th row of a
matrix we call M ∈ R

m×q .
2: Solve the q least squares problems Az = Mj , where Mj is the j-th column of the matrix

M . The unique solution z of the j-th least squares problem is stored in the j-th column
of a matrix called X ∈ R

p×q. X is the output of the algorithm.

Looking at the algorithm is enough to observe that the solution of the
bivariate least squares problem (A⊗Bi)x = b, with b ∈ R(A⊗Bi), is reduced
to solving only m univariate least squares problems Biy = F i, and then q

univariate least squares problems Az = M j with the same coefficient matrix
A. The matrix A ⊗ Bi ∈ R

mn×pq is not constructed, which means additional
savings in computational cost.

As all the univariate least squares problems we want to solve have unique
solution (A and Bi have full rank), the method based on the QR decomposition
is adequate for solving them [3,4]. In the specific case in which A and Bi

(i = 1, . . . ,m) are structured matrices, special algorithms that take advantage
of the structure of A and Bi can be used for improving the QR method to
solve the univariate problems [18,20,22,23].

We consider now the particular case of the least squares problem (A ⊗
Bi)x = b in which Bi = B (i = 1, . . . ,m).

Taking into account that (A⊗B)† = A†⊗B† (see, for instance, [2–4]), and
proceeding in a similar way as we did to solve (A⊗Bi)x = b (b ∈ R(A⊗Bi)),
we obtain Algorithm 2 for solving the least squares problem (A⊗B)x = b, A
and B being matrices with full column rank.

In this particular situation, the solution of the bivariate least squares prob-
lem (A ⊗ B)x = b is reduced to solving only m univariate least squares
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Algorithm 2

Input: The matrices A ∈ R
m×p, B ∈ R

n×q and the matrix F ∈ R
m×n containing the data

vector b sorted by rows.
Output: A matrix X ∈ R

p×q containing the unique solution x of the least squares problem
sorted by rows.

1: Solve the m least squares problems By = F i, where F i is the i-th row of the matrix F .
The solution y of the i-th least squares problem is stored in the i-th row of a matrix we
call M ∈ R

m×q .
2: Solve the q least squares problems Az = Mj , where Mj is the j-th column of the matrix

M . The solution z of the j-th least squares problem is stored in the j-th column of a
matrix called X ∈ R

p×q. X is the output of the algorithm.

problems By = F i with the same coefficient matrix B, and then q uni-
variate least squares problems Az = M j with the same coefficient matrix
A. Since A and B have full rank, it is convenient to solve each univariate
least squares problem by using the QR method [3,4]. Taking into account
that the computation of the QR factorization of a matrix N ∈ R

m×p when
the Q matrix is computed requires 4m2p − 2p2m + 2

3p
3 arithmetic opera-

tions [14], and that the QR factorization of the matrices A and B only have
to be computed once, the computational complexity of our algorithm is of
O
(

p2
(

q−2m+ 2
3p

)

+q2
(

m−2n+ 2
3q
)

+4(m2p+n2q)+2mq(n+p)
)

arithmetic
operations.

Let us point out here that the cost of solving this least squares problem by
using the QR algorithm without exploiting the generalized Kronecker prod-
uct structure of the mn × pq matrix A ⊗ B is much greater. This cost is of
O(4(mn)2pq−2(pq)2mn+ 2

3 (pq)
3) arithmetic operations, since it is dominated

by the cost of computing the QR factorization of A⊗B (Q is required).

A different method for solving the least squares problem (A ⊗ B)x = b

can be found in [10]. Although it is also based on the QR factorization of
the matrices A and B, this approach reduces the solution of the least squares
problem to solving a block diagonal system with upper triangular diagonal
blocks. A modified parallel implementation of the algorithm included in [10]
is presented in [11]. Its computational complexity is of O

(

p2
(

q − 2m+ 2
3p

)

+

q2
(

p − 2n + 2
3q
)

+ 4(m2p + n2q) + 2mq(n + p)
)

, and therefore similar to the
complexity of our approach.

Let us observe here that our algorithm is also easily paralellizable. Once
the QR factorization of B is computed, the other steps of the algorithm for
solving the m least squares problems By = F i can be computed simultane-
ously [20]. The same happens to the solution of the q least squares problems
Az = M j : once the QR factorization of A is computed, the other steps of the
algorithm for solving these least squares problems can be computed simulta-
neously. This high degree of intrinsic parallelism is a common feature of all
algorithms presented in this work.
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3 The particular case in which A is square and nonsingular

In this section we consider the least squares problem

(A⊗Bi)x = b,

but in the particular situation in which A is a nonsingular square matrix of
order m. The matrices Bi are of size n× q with n ≥ q and rank(Bi) = q.

As we will show in Section 4, this specific situation will be very interesting
from the point of view of the applications. The following theorem will be crucial
for its solution:

Theorem 2 Let A ∈ R
m×m nonsingular, and let Bi ∈ R

n×q (i = 1, . . . ,m)
with n ≥ q and rank(Bi) = q. Then

(A⊗ Bi)
† = A† ⊗c B

†
i .

Proof From Theorem 1 we obtain that A†⊗cB
†
i satisfies the Penrose conditions

(1), (2) and (4) for the matrix A⊗Bi.
Now we prove the Penrose condition (3) is also satisfied in this case. As A

is non nonsingular, A† = A−1. Consequently (A ⊗ Bi)(A
† ⊗c B

†
i ) is a block

diagonal matrix with symmetric diagonal blocks BiB
†
i , and therefore sym-

metric. So, A† ⊗c B
†
i satisfies the four Penrose conditions for A ⊗ Bi, and in

consequence (A⊗Bi)
† = A† ⊗c B

†
i .

Taking Theorem 2 into account, the unique solution of (A⊗Bi)x = b when

A is a nonsingular matrix can be expressed as x = (A† ⊗c B
†
i )b.

Proceeding as we did in Section 2 for computing x = (A† ⊗c B
†
i )b, but

now taking into account that A is a nonsingular square matrix, we obtain
Algorithm 3 for computing the unique solution x = (A† ⊗c B

†
i )b of the least

squares problem considered in this section.

Algorithm 3

Input: The matrices A ∈ R
m×m, Bi ∈ R

n×q (i = 1, . . . , m) and the matrix F ∈ R
m×n,

containing the data vector b sorted by rows.
Output: A matrix X ∈ R

m×q containing the unique solution x of the least squares problem
sorted by rows.

1: Solve the m least squares problems Biy = F i, where F i is the i-th row of the matrix F .
The solution y of the i-th least squares problem is stored in the i-th row of a matrix we
call M ∈ R

m×q .
2: Solve the q linear systems Az = Mj , where Mj is the j-th column of the matrix M .

The unique solution z of the j-th linear system is stored in the j-th column of a matrix
called X ∈ R

m×q . X is the output of the algorithm.

As we will see in Section 4, in the particular case in which A and Bi

(i = 1, . . . ,m) are structured matrices, special algorithms that take advantage
of the structure of these matrices can be used for solving the corresponding
univariate linear systems and least squares problems.
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4 Application to bivariate polynomial regression

In this section we will show how the solution of a bivariate regression problem
can be reduced to the solution of a least squares problem of the type consid-
ered in the previous section, in which the matrices A and Bi will be certain
structured matrices.

Our starting point is our work on bivariate interpolation in [24], which can
be seen as a particular case of our bivariate polynomial regression problem.
Throughout that paper, when the considered interpolation space is Πmn(s, t),
the space of polynomials of degree less than or equal to m in s and less than
or equal to n in t, the interpolation nodes are located along lines s = si
(i = 0, . . . ,m) and denoted by {(si, tij)|i = 0, . . . ,m; j = 0, . . . , n}. A remark
explaining that the situation in which the interpolation nodes are located along
lines t = tj is completely analogous is also included in that paper.

Following [24], a natural selection for the nodes involved in the computation
of the regression polynomial P (s, t) ∈ Πm,q(s, t) is along lines s = si (i =
0, . . . ,m), where si 6= sj for i 6= j. Proceeding in this way, given the nodes
{(si, tij)|i = 0, . . . ,m; j = 0, . . . , n} ∈ (0, 1)× (0, 1), where tij 6= tik for j 6= k,
and fij ∈ R (i = 0, . . . ,m; j = 0, . . . , n) we are interested in computing the
polynomial

P (s, t) =
∑

(i,j)∈I

cijs
itj ∈ Πm,q(s, t), q ≤ n

(where I is the index set I = {(i, j)| i = 0, . . . ,m; j = 0, . . . , q}) which is a
least squares polynomial fit for those data, i.e, which minimizes the sums of
the squares of the deviations from the data:

∑

(i,j)∈I∗

|fij − P (si, tij)|
2,

where I∗ = {(i, j)| i = 0, . . . ,m; j = 0, . . . , n}.
If we consider in the polynomial space Πm,q(s, t) the tensor product mono-

mial basis

{sitj |i = 0, . . . ,m; j = 0, . . . , q} =
= {1, t, . . . , tq, s, st, . . . , stq, . . . , sm, smt, . . . , smtq}

with this specific ordering, and the nodes with the corresponding ordering

{(si, tij)| i = 0, . . . ,m; j = 0, . . . , n} =
= {(s0, t00), (s0, t01), . . . , (s0, t0n),
(s1, t10), (s1, t11), . . . , (s1, t1n), . . . , (sm, tm0), (sm, tm1), . . . , (sm, tmn)}

then, the computation of the coefficients cij (i = 0, . . . ,m; j = 0, . . . , q) of
P (s, t) is equivalent to solve, in the least squares sense, the overdetermined
linear system

(Vs ⊗ Vi)c = f,
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where Vs and Vi (i = 0, . . . ,m) are the Vandermonde matrices

Vs =











1 s0 s20 · · · sm0
1 s1 s21 · · · sm1
...

...
...

. . .
...

1 sm s2m · · · smm











, Vi =











1 ti0 t2i0 · · · t
q
i0

1 ti1 t2i1 · · · t
q
i1

...
...

...
. . .

...
1 tin t2in · · · tqin











.

It must be observed that in this situation the matrix Vs is a nonsingular
square matrix and the matrices Vi are rectangular matrices with full rank.
Consequently Vs ⊗ Vi (with size (m + 1)(n + 1) × (m + 1)(q + 1)) has full
rank and, since Vs is a square matrix, the unique solution of the least squares
problem can be obtained by using Algorithm 3.

In the specific situation in which q = n, the linear system (Vs ⊗ Vi)c = f

(now with a square coefficient matrix) has a unique solution and it is the
linear system corresponding to a bivariate interpolation problem in the tensor
product monomial basis. The analysis of this interpolation problem and the
one in which the tensor product monomial basis is replaced by the tensor
product Bernstein basis has been developed in [24].

Let us also point out here that when {si}0≤i≤m and {tij}0≤j≤n (i =
0, . . . ,m) are sorted in increasing order, i.e., 0 < s0 < s1 < . . . < sm < 1
and 0 < ti0 < ti1 < . . . < tin < 1, the Vandermonde matrices Vs and Vi are
strictly totally positive. Taking advantage of this fact, Algorithm 3 can be im-
proved by solving the univariate problems by using the accurate and efficient
algorithms for totally positive matrices in the package TNTool of P. Koev [17].

Now we consider the same polynomial regression problem as before, but
now taking in the polynomial space Πm,q(s, t) the tensor product Bernstein
basis instead of the tensor product monomial basis.

Definition 4 The Bernstein basis of the space Πn(t) of the polynomials of
degree less than or equal to n on the interval [0, 1] is:

Bn =
{

β
(n)
i (t) =

(

n

i

)

(1− t)n−iti, i = 0, . . . , n
}

.

The regression polynomial P (s, t) we are interested in computing is ex-
pressed in the tensor product Bernstein basis as

P (s, t) =
∑

(i,j)∈I

dijβ
(m)
i (s)β

(q)
j (t)

and our aim now is computing its coefficients dij (i = 0, . . . ,m; j = 0, . . . , q).
If we consider the tensor product Bernstein basis

{β
(m,q)
ij

| i = 0, . . . ,m; j = 0, . . . , q} = {β
(m)
i

(s)β
(q)
j

(t)| i = 0, . . . ,m; j = 0, . . . , q} =

= {β
(m,q)
00 , β

(m,q)
01 , . . . , β

(m,q)
0q , β

(m,q)
10 , β

(m,q)
11 , . . . , β

(m,q)
1q , . . . , β

(m,q)
m0 , β

(m,q)
m1 , . . . , β

(m,q)
mq }
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with this precise ordering, and the nodes sorted as before, then the compu-
tation of the dij is equivalent to solve, in the least squares sense, the overde-
termined linear system

(Ws ⊗Wi)d = f, (4.1)

where Ws and Wi (i = 0, . . . ,m) are the Bernstein-Vandermonde matrices

Ws =











(

m
0

)

(1− s0)
m

(

m
1

)

s0(1− s0)
m−1 · · ·

(

m
m

)

sm0
(

m

0

)

(1− s1)
m

(

m

1

)

s1(1− s1)
m−1 · · ·

(

m

m

)

sm1
...

...
. . .

...
(

m
0

)

(1− sm)m
(

m
1

)

sm(1− sm)m−1 · · ·
(

m
m

)

smm











, (4.2)

Wi =











(

q

0

)

(1− ti0)
q
(

q

1

)

ti0(1− ti0)
q−1 · · ·

(

q

q

)

t
q
i0

(

q
0

)

(1− ti1)
q
(

q
1

)

ti1(1− ti1)
q−1 · · ·

(

q
q

)

t
q
i1

...
...

. . .
...

(

q

0

)

(1− tin)
q
(

q

1

)

tin(1− tin)
q−1 · · ·

(

q

q

)

t
q
in











. (4.3)

As the Bernstein-Vandermonde square matrix Ws is nonsingular and the rect-
angular Bernstein-Vandermonde matrices Wi have full rank [19], the matrix
Ws⊗Wi (with size (m+1)(n+1)×(m+1)(q+1)) has full rank and the unique
solution of the least squares problem can be obtained by using Algorithm 3.

Let us observe that when {si}0≤i≤m and {tij}0≤j≤n (i = 0, . . . ,m) are
sorted in increasing order, i.e., 0 < s0 < s1 < . . . < sm < 1 and 0 < ti0 <

ti1 < . . . < tin < 1, the Bernstein-Vandermonde matrices Ws and Wi are
strictly totally positive [19].

The relationship between solving the regression problem we have consid-
ered when the monomial basis is used and when the Bernstein basis is used is
analyzed in the following theorem. Before the theorem statement we introduce
the following proposition, necessary for its proof.

Proposition 1 Let A ∈ R
m×m, C ∈ R

m×m, D ∈ R
q×p and Bi ∈ R

n×q

(where i = 1, . . . ,m and n ≥ q) be matrices with full rank. Then

(A⊗Bi)(C ⊗D) = AC ⊗BiD

Proof

(A⊗Bi)(C⊗D) =











a11B1 a12B1 · · · a1mB1

a21B2 a22B2 · · · a2mB2

...
...

. . .
...

am1Bm am2Bm · · · ammBm





















c11D c12D · · · c1mD

c21D c22D · · · c2mD
...

...
. . .

...
cm1D cm2D · · · cmmD











.

Multiplying the matrices in the right hand side by blocks we obtain that
the ij block of (A⊗Bi)(C ⊗D) is

ai1Bic1jD+ai2Bic2jD+. . .+aimBicmjD = (ai1c1j+ai2c2j+. . .+aimcmj)BiD,

i.e., the ij block of AC ⊗BiD. Therefore (A⊗Bi)(C ⊗D) = AC ⊗BiD.
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Theorem 3 Let G = Vs ⊗ Vi (i = 1, . . . ,m) be the coefficient matrix of the
linear system corresponding to the polynomial regression problem when the
monomial basis is considered, and let N = Ws⊗Wi (i = 1, . . . ,m) be the coef-
ficient matrix of the linear system corresponding to the polynomial regression
problem when the Bernstein basis is considered. Then

N = GH and c = Hd,

where H = Ms ⊗Mt with Ms being the lower triangular matrix corresponding
to the change of basis from the Bernstein basis to the monomial basis in Πm(s)
and Mt being the lower triangular matrix corresponding to the change of basis
form the Bernstein basis to the monomial basis in Πq(t).

Proof We start by proving N = GH by using Proposition 1:

N = Ws ⊗Wi = VsMs ⊗ ViMt = (Vs ⊗ Vi)(Ms ⊗Mt) = GH.

In consequence, taking into account that c = G†f and d = N †f , the second
equality is proved as follows:

N = GH ⇒ N † = (GH)† = H†G† ⇒

(Ws ⊗Wi)
† = (Ms ⊗Mt)

†(Vs ⊗ Vi)
† = (Ms ⊗Mt)

−1(Vs ⊗ Vi)
† ⇒

(Ms ⊗Mt)(Ws ⊗Wi)
† = (Vs ⊗ Vi)

† ⇒

(Ms ⊗Mt)(Ws ⊗Wi)
†f = (Vs ⊗ Vi)

†f ⇒ HN †f = G†f ⇒ Hd = c.

It is important to observe that, although Theorem 3 gives a matricial re-
lationship between the regression polynomial in the Bernstein basis and the
corresponding regression polynomial in the monomial basis, which can be used
both for theoretical purposes and for computing in exact arithmetic, when
computing in floating point arithmetic it is convenient to avoid basis conver-
sion, since there is a potentially severe loss of accuracy in that basis conversion
(see [8,9]).

Along this section we have considered the nodes {(si, tij)} in (0, 1)× (0, 1),
and in this specific situation we have seen that each bivariate polynomial
regression problem can always be solved by using the bivariate tensor product
Bernstein basis. The extension of this result to the general situation in which
the nodes {(si, tij)} ∈ [a, b]× [c, d] can be obtained by proceeding in the same
way as in our work on bivariate interpolation in [24]. An example illustrating
how to proceed in this case is included in Section 5.

Now we present an algorithm for solving the least squares problem cor-
responding to the bivariate regression problem in the bivariate tensor prod-
uct Bernstein basis. Given the nodes {(si, tij)|i = 0, . . . ,m; j = 0, . . . , n} ∈
(0, 1) × (0, 1) and the data {fij |i = 0, . . . ,m; j = 0, . . . , n}, the algorithm
solves the overdetermined linear system (Ws ⊗Wi)d = f in the least squares
sense (see (4.1), (4.2) and (4.3)). From now on we consider {si} and {tij}
(i = 0, . . . ,m) sorted in increasing order, so that the Bernstein-Vandermonde
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matrices involved in the solution of the regression problem will be strictly
totally positive.

The algorithm presented here is based on Algorithm 3. As in this case the
coefficient matrices of the least squares problems involved in the Step 1 of
this algorithm are strictly totally positive Bernstein-Vandermonde matrices,
we will solve them following [20]. We include here the implementation in Mat-
lab of the corresponding algorithm which we have called TNLSB. It solves the
least squares problem Ax = b where A ∈ R

n×q is a strictly totally positive
Bernstein-Vandermonde matrix and B ∈ R

n×q is the matrix containing the
bidiagonal decomposition of A [20], as follows:

Algorithm 4
1: function z=TNLSB(B,b)
2: [n,q]=size(B);
3: [Q,C]=TNQR(B);
4: C2=C(1:q,:);
5: Q1=Q(:,1:q);
6: d=Q1’*b’;
7: z=TNSolve(C2,d);

The command TNQR computes the QR decomposition of a totally positive
matrix A starting from its bidiagonal decomposition [18]. TNSolve solves the
linear system Ax = b, where A strictly totally positive, starting from the bidi-
agonal decomposition of A and using backward substitution. The implemen-
tation in Matlab of TNQR and TNSolve is available in the package for doing
accurate computations with totally positive matrices TNTool of P. Koev [17].

The computational cost of TNLSB is dominated by the computational cost
of computing the QR factorization by TNQR, and consecuently it is of O(n2q)
arithmetic operations [20].

As for Step 2 of Algorithm 3, we will solve the Bernstein-Vandermonde
linear systems involved in this step following [19].

So, let S be the 1 × (m + 1) matrix with {si}0≤i≤m sorted as follows
0 < s0 < s1 < . . . < sm < 1. Let T be the (m + 1) × (n + 1) matrix
containing {tij}0≤i≤m;0≤j≤n in such a way that its (i, j) entry is ti−1,j−1 and
0 < ti0 < ti1 < . . . < tin < 1 for i = 0, . . . ,m. Let F be the (m+ 1)× (n+ 1)
matrix with the data {fij} sorted by rows, i.e., fi−1,j−1 is the (i, j) entry of
F . And let q = degt(P (s, t)), where P (s, t) is the regression polynomial we are
interested in computing. Algorithm 5 returns a matrixD of size (m+1)×(q+1)
with the coefficients of the regression polynomial P (s, t) sorted by rows, that
is, the (i, j) entry of D is di−1,j−1, the coefficient of P (s, t) corresponding to

β
(m)
i−1β

(q)
j−1 .

The command TNBDBVR computes the bidiagonal decomposition of a strictly
totally positive rectangular Bernstein-Vandermonde matrix [21]. Its implemen-
tation in Matlab can be obtained from [17].
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Algorithm 5
1: function D=LSKronGBVBD(S,T,F,q);
2: [m1,n1]=size(F);
3: M=zeros(m1,q+1);
4: D=zeros(m1,q+1);
5: for i=1:m1
6: Bt=TNBDBVR(T(i,:),q+1)
7: M(i,:)=TNLSB(Bt, F(i,:))’
8: end

9: Bs=TNBDBV(S);
10: for j=1:q+1
11: D(:,j)=TNSolve(Bs, M(:,j));
12: end

13: D;

The computational cost of Algorithm 5 is of order O(mn2q) arithmetic op-
erations, since the cost of solving each one of least squares problems involved
in the process is of order O(n2q) arithmetic operations and the cost of solv-
ing each Bernstein-Vandermonde linear system of order m is of order O(m2)
arithmetic operations.

As for the accuracy, the computation of the bidiagonal decomposition of
the Bernstein-Vandermonde matrices by means of TNBDBVR is performed with
high relative accuracy [21]. The computation of the QR factorization of a
Bernstein-Vandermonde matrix by using TNQR is also performed accurately
[18]. The high relative accuracy when TNSolve is used is only guaranteed when
the data vector of the Bernstein-Vandermonde linear system has alternating
sign pattern.

Finally, let us point out here that although an analogous algorithm can be
developed for solving the bivariate regression problem when the tensor product
monomial basis is used, the matrices involved in the process would be Van-
dermonde matrices instead of Bernstein-Vandermonde matrices. The fact that
Bernstein-Vandermonde matrices are better conditioned than Vandermonde
matrices [7] shows the convenience of solving the regression problem in the
tensor product Bernstein basis instead of using the tensor product monomial
basis.

Remark 2 As indicated in the proof of Theorem 2, if C is the coefficient matrix
of the linear system corresponding to the polynomial regression problem (with
the monomial basis or the Bernstein basis), then CC† is a block diagonal
matrix. Now we observe that CC† is the corresponding projection matrix P

(the hat matrix of statistics [22]). In addition, the diagonal blocks of CC† are

(in the notation of Theorem 3) ViV
†
i or WiW

†
i .

Consequently, the projection p = Pf and the residual vector e = f −p can
be computed very efficiently in this way.
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5 Numerical examples

Two numerical examples illustrating the accuracy of the algorithm for com-
puting a regression polynomial in the tensor product Bernstein basis presented
in the previous section (Algorithm 5) are included. In the first one the nodes
belong to the interval (0, 1)× (0, 1), while in the second the nodes are Padua
points [5,6], and therefore they belong to [−1, 1]× [−1, 1].

Padua points are particularly well suited in this work because they are
located along vertical lines, but not on a rectangular grid. This fact implies
that the coefficient matrix of the linear system corresponding to the regression
problem has a generalized Kronecker product structure, but not a Kronecker
product structure.

Example 2 Let us consider the nodes

{(si, tij), i = 0, . . . , 25; j = 0, . . . , 35},

where si, tij ∈ (0, 1) are given by

{si}0≤i≤25 = { 1
50 ,

3
100 ,

37
1000 ,

3
50 ,

1
10 ,

3
20 ,

1
5 ,

13
50 ,

3
10 ,

9
25 ,

2
5 ,

43
100 ,

1
2 ,

27
50 ,

3
5 ,

31
50 ,

16
25 ,

71
100 ,

3
4 ,

17
20 ,

22
25 ,

9
10 ,

23
25 ,

19
20 ,

24
25 ,

99
100},

{tij}0≤j≤35 = { 21
1000 ,

27
1000 ,

1
20 ,

81
1000 ,

9
100 ,

3
25 ,

27
200 ,

4
25 ,

19
100 ,

1
5 ,

11
50 ,

6
25 ,

7
25 ,

3
10 ,

33
100 ,

37
100 ,

39
100 ,

2
5 ,

9
20 ,

47
100 ,

1
2 ,

13
25 ,

3
5 ,

16
25 ,

27
40 ,

7
10 ,

73
100 ,

77
100 ,

79
100 ,

41
50 ,

17
20 ,

7
8 ,

23
25 ,

47
50 ,

193
200 ,

99
100}

in the case of i even, and

{tij}0≤j≤35 = { 1
100 ,

3
100 ,

1
25 ,

2
25 ,

1
10 ,

3
20 ,

17
100 ,

21
100 ,

23
100 ,

13
50 ,

29
100 ,

31
100 ,

8
25 ,

73
200 ,

41
100 ,

43
100 ,

23
50 ,

19
40 ,

51
100 ,

53
100 ,

14
25 ,

57
100 ,

61
100 ,

63
100 ,

33
50 ,

17
25 ,

71
100 ,

3
4 ,

39
50 ,

4
5 ,

83
100 ,

43
50 ,

87
100 ,

91
100 ,

93
100 ,

49
50}

in the case of i odd.

Given the data

{fij = f(si, tij), i = 0, . . . , 25; j = 0, . . . , 35},

where
f(s, t) = 10(s+ t) sin(100(s+ t)),

we compute the coefficients of the regression polynomial in the bivariate tensor
product Bernstein basis P (s, t) ∈ Π25,q(s, t), for q = 15, 17, 19, 21, 23, 25, 27, 29,
in Maple with 50-digit arithmetic, and use them for comparing the accuracy
of the results obtained in Matlab by means of:

(1) Algorithm 5.
(2) The command A\f of Matlab.
(3) The command pinv of Matlab.
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The maximum relative errors obtained when using the approaches (1), (2)
and (3) to compute the coefficients of P (s, t) are included in Table 1. The
spectral condition number κ2 of the coefficient matrices corresponding to the
considered regression problems are also presented in Table 1. These condition
numbers are computed by using the standard Matlab command cond and
therefore it is likely that they are not accurate due to the severe ill conditioning
of the matrices. Since we are only interested in showing that the matrices are ill
conditioned, but not in computing their spectral condition numbers accurately,
the results shown in Table 1 are good enough for our purpose. In order to
compute these spectral condition numbers accurately, special algorithms that
take into account the structure of the coefficient matrices must be used [21].

q κ2(A) Algorithm 5 A\f pinv

15 3.9e+13 1.4e-14 9.2e-03 1.3e+01
17 1.8e+14 1.5e-14 5.0e+00 1.9e+00
19 9.4e+14 3.8e-14 1.4e+00 1.5e+00
21 5.3e+15 5.0e-15 1.1e+00 1.3e+00
23 2.3e+16 6.9e-15 1.6e+00 1.0e+00
25 3.4e+16 5.4e-15 1.1e+00 1.1e+00
27 6.2e+16 1.2e-14 1.0e+00 1.0e+00
29 9.1e+16 3.4e-15 1.0e+00 1.0e+00

Table 1: Relative errors in Example 2

The results presented in Table 1 show that our algorithm computes the
coefficients of the regression polynomial accurately for every value of q. The
results obtained when using the other two methods are not accurate at all.

Example 3 In this example the nodes

{(xi, yij), i = 0, . . . , 20; j = 0, . . . , 10},

are the Padua points [5,6] for N = 20, that is,

xi = cos
(

(20−i)π
20

)

, with i = 0, . . . , 20,

yij =















cos
(

(21−2j)π
21

)

, i even, j = 0, . . . , 10,

cos
(

(20−2j)π
21

)

, i odd, j = 0, . . . , 10,

and therefore (xi, yij) ∈ [−1, 1]× [−1, 1].
Let us observe here that the Padua points are properly ordered so that the

Bernstein-Vandermonde matrices involved in the process are strictly totally
positive.

Proceeding as in [24], two changes of variables are performed,

s =
1

20
(9x+ 10), t =

1

20
(9y + 10),
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taking the Padua points in [-1,1]×[-1,1] to (0,1)×(0,1).

Given the data

{fij = f(xi, yij), i = 0, . . . , 20; j = 0, . . . , 10},

where

f(x, y) = 3
4e

−
(9x−2)2+(9y−2)2

4 + 3
4e

−
(9x+1)2

49
−

9y+1
10 + 1

2e
−

(9x−7)2+(9y−3)2)
4

− 1
5e

−(9x−4)2−(9y−7)2

is the Franke test function presented in [12], we compute the coefficients
of the regression polynomial in the bivariate tensor product Bernstein basis
R(s, t) ∈ Π20,q(s, t), for q = 5, 6, 7, 8, 9, in Maple with 50 digit arithmetic, and
use them for comparing the accuracy of the results obtained in Matlab by
Algorithm 5 and the results obtained by using the commands A\f and pinv

of Matlab. The maximum relative errors in the computed coefficients, as well
as the spectral condition numbers κ2 of the coefficient matrices corresponding
to the considered regression problems are shown in Table 2.

q κ2(A) Algorithm 5 A\f pinv

5 9.7e+07 1.3e-11 1.4e-06 1.1e-06
6 2.1e+08 1.2e-12 6.8e-07 1.1e-06
7 4.6e+08 6.9e-12 1.8e-06 5.2e-07
8 1.0e+09 5.0e-12 1.7e-06 5.0e-07
9 2.2e+09 1.1e-13 6.5e-08 8.2e-08

Table 2: Relative errors in Example 3

6 Conclusions and final remarks

In this work we have presented a fast and accurate method for solving bivari-
ate least squares problems involving generalized Kronecker product structure
(A⊗Bi)x = b. The good properties of our approach are a consequence of the
generalized Kronecker product structure (by columns) of the Moore-Penrose
inverse of the coefficient matrix. In addition to the Moore-Penrose inverse, in
the general case where A is not square the reflexive minimum norm g-inverse
of the coefficient matrix arises naturally when considering the generalized Kro-
necker product.

The application to the important problem of computing the bivariate re-
gression polynomial when a bivariate tensor product basis is taken is also
developed, and it is shown that in this case it is natural to consider that A

is a square matrix. In this case the projection matrix has a block diagonal
structure.
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When the bivariate tensor product Bernstein basis is considered, the coef-
ficient matrix A⊗Bi of the least squares problem corresponding to the regres-
sion problem is the generalized Kronecker product of Bernstein-Vandermonde
matrices. Such matrices do not have to be constructed since our algorithm
only works with the nodes and the data, which means an additional saving of
computational costs.

Finally, let us observe that our algorithm is easily paralellizable. All the
univariate least squares problems in Step 1 can be solved simultaneously, and
the same happens to the univariate least squares problems in Step 2.
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