The Journal of Systems & Software 170 (2020) 110744

The Journal of Systems & Software

Contents lists available at ScienceDirect

SOFTWARE

journal homepage: www.elsevier.com/locate/jss

A complex network analy

(CRAN) package ecosystem

sis of the Comprehensive R Archive Network #

Check for
updates

Marcal Mora-Cantallops *, Salvador Sanchez-Alonso, Elena Garcia-Barriocanal

Universidad de Alcald, Spain

ARTICLE INFO

ABSTRACT

Article history:

Received 8 June 2020
Accepted 13 July 2020
Available online 18 July 2020

Keywords:

CRAN

Complex network analysis
Package ecosystems

R

Free and open source software package ecosystems have existed for a long time and are among
the most sophisticated human-made systems. One of the oldest and most popular software package
ecosystems is CRAN, the repository of packages of the statistical language R, which is also one of
the most popular environments for statistical computing nowadays. CRAN stores a large number
of packages that are updated regularly and depend on a number of other packages in a complex
graph of relations; such graph is empirically studied from the perspective of complex network
analysis (CNA) in the current article, showing how network theory and measures proposed by
previous work can help profiling the ecosystem and detecting strengths, good practices and potential
risks in three perspectives: macroscopic properties of the ecosystem (structure and complexity of
the network), microscopic properties of individual packages (represented as nodes), and modular
properties (community detection). Results show how complex network analysis tools can be used

to assess a package ecosystem and, in particular, that of CRAN.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The surge in open source software (OSS) development has
resulted in abundant available software packages that, in each
particular software ecosystem, can be used by developers as
building blocks for new projects, reducing development costs and
time (Mohagheghi and Conradi, 2007) and which can contribute
with a positive and significant value-added return (Nagle, 2019).
In a recent report, the European Commission report estimated
that using free/libre and open source software (FLOSS) saves
the European economy roughly €114 billion per year directly
and up to €399 billion per year overall (Harutyunyan, 2020).
But, on the other hand, such third-party libraries introduce both
direct dependencies and transitive dependencies that need to be
kept updated to prevent vulnerabilities and bug propagation that
might endanger the whole ecosystem (Cox et al., 2015). Although
developers can have a clear vision of the direct dependencies
they add to their packages, transitive dependencies might be less
clear as they are not included by them, becoming hidden one or
multiple levels below the direct dependency. Even the common
action of updating packages entails risks, as changes might break
existing functionalities on other packages (Raemaekers et al.,
2014).

* Corresponding author.
E-mail addresses: marcal.mora@uah.es (M. Mora-Cantallops),
salvador.sanchez@uah.es (S. Sanchez-Alonso), elena.garciab@uah.es
(E. Garcia-Barriocanal).

https://doi.org/10.1016/j.jss.2020.110744
0164-1212/© 2020 Elsevier Inc. All rights reserved.

One of the oldest and most popular software package ecosys-
tems is CRAN, the repository of packages of the statistical lan-
guage R. The R programming language is widely used among
statisticians and data miners for developing statistical and data
analysis libraries, while also being one of the most popular lan-
guages among data scientists thanks to its flexibility and ex-
pansion capabilities, as R can be extended through user-created
packages. As of March 2020, it ranks 11th in the TIOBE index
(https://[www.tiobe.com/tiobe-index/), a measure of popularity of
general purpose programming languages. The Comprehensive R
Archive Network (CRAN) (https://cran.r-project.org/) is a network
of web servers around the world where R source code, R manuals,
documentation, and contributed packages can be found, and it
can be considered as the official repository, containing the largest
collection of available R packages. At the end of 2019, it hosted a
total of 15.368 packages.

As is common in these environments, developers of many
software applications or packages rely on using other OSS pack-
ages; such dependencies manifest in different forms. In some
cases, packages or applications might need the source code of
another package or class to compile correctly. In other cases, such
as CRAN, source-code dependencies do not exist; binary-level
library sharing is required for many package to function properly.
Such dependencies might be shared among many projects and
repositories, although in CRAN this is limited to its own repos-
itory except for a few and specific packages that are stored in
Bioconductor. A package management system serves the purpose

https://doi.org/10.1016/j.jss.2020.110744
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110744&domain=pdf
mailto:marcal.mora@uah.es
mailto:salvador.sanchez@uah.es
mailto:elena.garciab@uah.es
https://www.tiobe.com/tiobe-index/
https://cran.r-project.org/
https://doi.org/10.1016/j.jss.2020.110744

2 M. Mora-Cantallops, S. Sdnchez-Alonso and E. Garcia-Barriocanal / The Journal of Systems & Software 170 (2020) 110744

of managing such dependencies, which is important for both
functioning and maintenance (e.g., automated updating) of soft-
ware packages. German et al. (2013) conducted an exploratory
empirical study on the evolution of the R software ecosystem, and
showed how R was “a flourishing ecosystem of user-contributed
packages” that was growing and contained a “strong set of core
packages”. Among their observations, they found packages to be
typically well-maintained.

Open-source software ecosystems such as CRAN could be con-
sidered as very complex networks of artifacts, due to the in-
crease in collaborative development under the open source soft-
ware paradigm in the last two decades. This enables us to study
software package ecosystems from the perspective of complex
network analysis (CNA) to analyze its structural, individual and
modular characteristics, but also to detect potential risks and
vulnerabilities in the network formed by such packages.

Overall, the current analysis aims to demonstrate how com-
plex network analysis techniques can be applied to a OSS package
ecosystems (such as CRAN) after building its dependency net-
work, and how the results reflect its scale-free and small-world
behavior, the potential vulnerability of some of its packages and
the modular structure that is hidden behind the dependency
network.

The remainder of this article is structured as follows. Section 2
discusses related work. Section 3 includes details on the data
source and the network construction. Section 4 addresses the
results of the complex network analysis on CRAN. Section 5 adds
perspective to the results, linking them to the related work and
discussing this work’s contributions. Section 6 concludes, with an
additional mention to threats to validity and future lines of work
in Section 7.

2. Background

The networks formed by real-world systems in many disci-
plines (e.g. sociology, biology or computer science, among many
others) have been proven to exhibit complex network properties,
such as being scale-free (Barabasi, 2009), following a power law
distribution and obeying the small world principles (Watts and
Strogatz, 1998). In the past decade, the growth in the body of
the literature studying complex networks is remarkable in a wide
variety of fields. Some examples include politics (Halberstam and
Knight, 2016; Mora-Cantallops et al., 2019), medicine (Rubinov
and Sporns, 2010), economics (Cerina et al., 2015), trade net-
works (Kasakawa et al., 2016), transport (Feng et al., 2017), or
even online gaming (Mora-Cantallops and Sicilia, 2018). Software
systems, represent another important subset of systems that can
benefit from complex network analysis (Myers, 2003).

Earlier work has revealed that class dependency graphs of in-
dividual open source software systems exhibit complex network
characteristics, not only in their scale-free degree distributions
and the existence of small-world phenomena, but also in their
community structure, as Subelj and Bajec (2011) empirically con-
firmed in their study of several networks constructed from Java
and various third party libraries. To do so, they built class de-
pendency networks, where nodes represent software classes and
edges represent dependencies among them. Pan et al. (2011)
used complex network theory as a tool to analyze the evolution
of object-oriented software from a multi-granularity perspec-
tive. Besides other relevant findings, they also highlighted how
complex network techniques provided “a different dimension
to our understanding of software evolution and also are very
useful for the design and development of object-oriented soft-
ware systems”. In the same line of work, Chong and Lee (2015)
enhanced this technique by assigning weights to the edges of the
network “to denote the strength of communicational cohesion

between a pair of related software components”, all in order to
capture its structural characteristics and to enable a maintain-
ability and reliability analysis. They found that this technique
made pattern identification easier and that it was also possible
to identify software components that violated common software
design principles. This idea of using complex network analysis
(via dependency graphs) was also applied by Zimmermann and
Nagappan (2008) to evaluate Windows Server 2003; their models
improved the performance of models build only by complexity
metrics (without network metrics) by ten points and were able
to identify twice as many critical binaries. Li et al. (2018) recently
noted how “traditional software reliability evaluation approaches
lack the analysis inter-component interactions of component-
based software systems” and proposed a reliability evaluation
model for such systems based on complex network analysis.

This software systems approach has been extended to soft-
ware package networks over the last decade. Zheng et al. (2008),
for example, recognized how “understanding the structure of
software systems can provide useful insights into software en-
gineering efforts and can potentially help the development of
complex system models applicable to other domains”. To prove
their hypothesis, they empirically analyzed the package ecosys-
tem of the Gentoo Linux distribution, modeling software pack-
ages as nodes and their dependencies as nodes, and developed
two growth models for the network. In their future work, they
stated that to “study a number of open-source software systems
beyond Gentoo Linux [...] could lead to fruitful research contri-
butions”. One of such contributions, by Fortuna et al. (2011),
compiled all packages and dependencies/conflicts from the De-
bian/GNU operating system per each major stable release and
discussed the parallelisms between its evolution and dynamics
over the first 10 releases with that of ecological webs of in-
teracting species, demonstrating the interdisciplinary nature of
the CNA toolset. Abate et al. (2009) introduced novel notions on
dependencies and sensitivity (related to how critical a component
is); the main applications for these metrics were “tools for qual-
ity assurance in large component ecosystems and upgrade risk
evaluation” that they applied to the Debian package ecosystem;
among other findings, they found Debian to be “a small world”.

Cataldo et al. (2014), in the editorial of a topical issue de-
voted to the complex network perspective on software engi-
neering, stated that network-based methods can be utilized to
study research questions relevant to empirical software engineer-
ing. Zheng et al. (2008) wrote, a few years prior, that the reasons
behind the lack of CNA studies on software engineering were
“the difficulties with data collection and the lack of applicable
models”. Cataldo et al. (2014) recognized that, with more massive
data sets from platforms such as SourceForge or GitHub (to which
many other repositories could also be added), it would mark “the
beginning of a fruitful field of research”.

R and CRAN have also been the objects of research by a few
studies from the perspective of their packages. Decan et al. (2016)
made use of the dependency network to compute dependen-
cies in their study and comparison of three different ecosys-
tems (R’s CRAN archive network, Python’s PyPI distribution, and
JavaScript's NPM package manager), but did not follow a complex
network analysis perspective. In the future work of a later article,
however, Decan et al. (2019) hinted at the how dependency net-
works of open source packaging ecosystems also reveal complex
network behavior and that “it would be worthwhile to study [...]
the complex network properties of ecosystem package depen-
dency network”. It is also worth adding, although this perspective
will not be used in the current article, that complex (and social)
network analysis can also be useful to assess the contributor
networks and communities that take part in the ecosystem, as
modeled by Korkmaz et al. (2018).

M. Mora-Cantallops, S. Sdnchez-Alonso and E. Garcia-Barriocanal / The Journal of Systems & Software 170 (2020) 110744 3

SN

Ve \ PN

[pbapply/ xtable

N NP4
TN TN VRN
parallel) [stats| | utils |
N4 N4 N4

N

I pbapply \ xtable
N_ \

o %
TN TN VRN
(parallel) (stats| | utils
N4 N4 N4

Fig. 1. Dependency graph of the ‘A3’ package (left) compared to its transitive closure (right).

This work, thus, attempts to understand whether CNA can be
applied to analyze a software ecosystem such as CRAN, pointing
at additional analytical tools and opening new possibilities for
developers and software engineers in general when assessing
package dependency networks, their structure or their quality.

3. Materials and methods
3.1. Data extraction

The extraction was executed using R and the “pkgsearch”
package (Csardi and Salmon, 2019), which uses the ‘R-hub’ search
server (see https://r-pkg.org) and the CRAN metadata database to
provide detailed information about CRAN packages. The extracted
metadata per package includes the following key elements among
others:

e Descriptive features, such as name of the package, descrip-
tion or version.

e Author(s).

e Imports: dependencies that are required for the package to
work.

e Suggests: packages that can be used by the package but that
are not required.

e Depends: currently states the version of R required by the
package, but it is relevant as before R 2.14.0 this field con-
tained the dependencies to other packages (therefore, it was
equivalent to imports).

e Date/Publication: time stamp with the date of publication of
the particular version of the package.

The extraction results in a total of 15.368 unique packages
as of the 31st of December 2019. 148 additional external pack-
ages come from dependencies that are stored in another related
repository, Bioconductor (an open source and open development
software project for the analysis and comprehension of genomic
data). Thus, a total 15.516 packages are considered.

Although the extraction using the “pkgsearch” package covers
most of the features needed for the following analysis, data was
manually cross-checked to ensure the reliability of the package
and the obtained information was complemented with the infor-
mation directly scraped from the CRAN web repository at https:
|[cran.r-project.org. The number of packages obtained using this
method is exactly the same and the results were positive, so we
can depart from the assumption that the information obtained
from “pkgsearch” is reliable.

3.2. Network construction

Inspired by the same principles as previous works on class
dependency networks (Subelj and Bajec, 2011, 2012; Chong and
Lee, 2015) and following the approach used in similar research on
package ecosystems or open-source software systems, the CRAN

Table 1

Properties of the CRAN package dependency network.
Network Nodes (N) Edges (E) Avg. Degree (k)
Full CRAN (FC) 15516 66594 8.584
Giant Component (GC) 13838 66574 9.622
Transitive Closure (TC) 13838 381998 55.210
TC except base packages (TCNB) 12686 274449 43.26

network will be represented by the packages as nodes and their
dependencies as edges (Zheng et al,, 2008; Kikas et al.,, 2017).
Note that prior to the rollout of namespaces in R 2.14.0, the meta-
data field “Depends” was the only way to reflect dependencies
on another package. After that, developers are expected to use
the field “Imports” instead; to both account for older and newer
packages, and possible inappropriate labeling in the metadata,
both fields are combined to obtain the complete dependencies.

Formally, CRAN can be considered to be a set of packages
P = Py, P,,.... The package dependency network is, thus, a
directed graph DG(N, E) with nodes N and edges E where node i
corresponds to package P; and directed links (i, j) € E represent
a dependency between packages P; and P;; P; imports or depends
on P;. The average number of edges directed towards the network
nodes is their average in-degree (k™), while the average number
of edges leaving them become their average out-degree (k°“t).
The average degree in the network, therefore, can be represented
as k = ki" + k. Note how ki corresponds to the number of
classes that use (import or depend on) P;, while k?”t corresponds
to the number of other packages that are required for P; in order
to function.

The full CRAN network, constructed using packages as nodes
and direct dependencies as edges, is not connected. A number of
packages can be found in the periphery of the network that are
either standalone (with no dependencies) or depend on a handful
of other peripheral packages. Following the approach in previous
works, such disconnected packages are discarded by reducing the
CRAN network to its largest connected component (also known
as the giant component). Additionally, to reflect the transitive
dependencies (the recursive dependencies of dependent pack-
ages) in the network, the transitive closure of the network is
considered.

Definition 3.1. Transitive closure. The transitive closure of G =
(N, E) is a graph G+ = (N, E+) such that for all i, j in N there is
an edge (i, j) in E+ if and only if there is a path from i toj in G.

An example of such transformation is represented in Fig. 1,
where the ego network of the package ‘A3’ (Fortmann-Roe, 2015)
(the first in alphabetical order in CRAN) is used for reference.

Finally, there are two special sets of packages to be considered:

e Base packages that are included with the R distribution.
This list is formed by a total of 14 packages, namely: ‘base’,

https://r-pkg.org
https://cran.r-project.org
https://cran.r-project.org
https://cran.r-project.org

4 M. Mora-Cantallops, S. Sdnchez-Alonso and E. Garcia-Barriocanal / The Journal of Systems & Software 170 (2020) 110744

102 10°

101 4

p(X), p(X=x)
o
Q

-
=)
|

10-7 4

102 103 104
Degree

(b)

p(X), p(X=x)
soe R
o o o
RS

-
=)
|

T
10?

T
10%

Degree

Fig. 2. Probability density function (p(X), blue, corresponding to the lower lines in each sub-graph) and complementary cumulative distribution function (p(X > x),
red, corresponding to the upper lines in each sub-graph) of degrees in (a) Giant Component (GC); (b) Transitive Closure (TC); (c) TC except base packages (TCNB).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

‘compiler’, ‘datasets’, ‘grDevices’, ‘graphics’, ‘grid’, ‘methods’,
‘parallel’, ‘splines’, ‘stats’, ‘stats4’, ‘tcltk’, ‘tools’ and ‘utils’.

e CRAN-recommended add-on packages, included in all binary
distributions of R. These are a total of 15 packages: ‘KernS-
mooth’, ‘MASS’, ‘Matrix’, ‘boot’, ‘class’, ‘cluster’, ‘codetools’,
‘foreign’, ‘lattice’, ‘mgcv’, ‘nlme’, ‘nnet’, ‘rpart’, ‘spatial’ and
‘survival'.

As this set of 29 packages is highly relevant and close to
the core (there is no binary distribution of R without them),
a disproportional large number of packages depend on them.
Although this is indeed relevant to assess the modular structure
of the network, for instance, it can distort the analysis of the
vulnerabilities. Base packages could hardly be considered third-
party risks to the R package ecosystem when they are inseparable
from the R base distribution. Therefore, the transitive closure net-
work without these two sets of packages will also be considered
for a complete analysis and to obtain insights beyond the core
packages of R.

Table 1 shows the properties of the CRAN package dependency
network in the four iterations (full network, giant component,
transitive closure and transitive closure without base packages)
considered above. The latter three will also be compared to their
equivalent Erdos-Renyi random graphs (Erdés and Rényi, 1960),
where a link is placed between a certain pair of nodes with
probability k/(n—1), where k = 2e/n for a given number of nodes
(n) and edges (e).

4. Analysis and results

In this section, the CRAN package dependency network will
be analyzed in three dimensions in order to show how complex
network analysis can be applied to package ecosystems while
benefiting developers, maintainers and contributors. These three
dimensions result in the following research questions:

Table 2

Network statistics for the CRAN package dependency network.
Network y C Crr 1 Igr D ng
Giant Comp. (GC) 1931 0.21 0.0006 3.10 4.47 0.0003 789
Trans. Closure (TC) 2769 031 0.0040 221 279 0.0020 5.6

TC except base (TCNB) 2.613 0.26 0.0034 294 2860 0.0017 15.5

1. (RQ1) In regard to its structure and complexity, does the
CRAN package dependency network exhibit scale-free and
small-world behaviors?

2. (RQ2) Concerning the individual packages in the ecosys-
tem, what are the most vulnerable?

3. (RQ3) Is the CRAN package dependency network modular?
Is it possible to infer an underlying structure using the
relationships between packages?

Each subsequent subsection aims to answer one of these re-
search questions.

4.1. RQI1: Structure and complexity

Degree distribution experienced by simple random graphs is
either binomial or Poisson when the size of the graph is large (Al-
bert and Barabasi, 2002). However, many real-world networks
have been found to follow different patterns. For instance, many
networks’ degree distribution follows the power-law property,
while others’ exhibits non-power-law features such as exponen-
tial cutoffs (Amaral et al., 2000). Software networks have been
found to follow a power-law degree distribution (Potanin et al.,
2005; Subelj and Bajec, 2012):

pk"’k7V (1)

with py as the probability of a certain degree k and y as the
scale-free exponent, with y > 1. The power-law relationship
can be directly observed in a log-log plot with an straight line

M. Mora-Cantallops, S. Sdnchez-Alonso and E. Garcia-Barriocanal / The Journal of Systems & Software 170 (2020) 110744 5

100 4
10—1 4
A 1072
<
a
10—3 4
—— Degree !
-—- In-Degree :
10744 ... Out-Degree
10° 10! 102 103 104

Degree

Fig. 3. Comparison between the degree, in-degree (reverse dependencies) and
out-degree (dependencies) distributions. It can be seen how the out-degree
distribution (green, dotted) is heavily truncated versus the in-degree (red,
dashed) distribution.

of slope —y (Alstott and Bullmore, 2014). The values for y in
each network can be found in Table 2 and their corresponding
log-log diagrams in Fig. 2, where the complementary cumulative
distribution function is also added for reference. All three net-
works exhibit power-law degree distributions, in line with the
hypothesis of their scale-free property. In scale-free networks,
the probability of two nodes being linked is not a constant as in
random graphs; instead, it depends on the number of links that a
node already has. In other words, the more popular a node is, the
more likely it is to increase its number of links when new nodes
are added. In the case of the CRAN ecosystem (and the depen-
dency networks that are being analyzed here), this implies that
packages with a high number of reverse dependencies (meaning
high in-degree) are more likely to become dependencies of newly
developed packages too, a phenomenon that is noticeable, for
example, looking at the base packages.

Nevertheless, this power-law probability distribution would
then be expected only in the in-degree distribution, as it repre-
sents the number of other packages that require a given pack-
age to function. In-degree distribution, thus, is analogue to the
degree of package reusability. Besides, out-degree distribution
takes another approach; as it represents the number of pack-
ages required for a given package to work, it reflects software
complexity. The ideal software project should exhibit scale-free
behavior on in-degree (high reusability) and a highly truncated
out-degree distribution (avoiding high complexity in a single
package dependencies) (Subelj and Bajec, 2012). In the case of
CRAN, these distributions are represented in Fig. 3, showing how
both properties are fairly obeyed by its distribution.

However, while high reusability decreases the probability of
fault propagation through the system, it also increases its vul-
nerability in case of a bug in any of the highly reused packages,
as even a very small fraction of faulty nodes can already ren-
der the entire system inoperable. Both packages with high in-
degree and out-degree need to be particularly monitored and
carefully maintained; the details per node will be analyzed in sub
Section 4.2.

On the other hand, small-world (Watts and Strogatz, 1998)
behavior usually refers to high clustering (C) and a short average
distance (I) between the nodes. Clustering measures transitivity
in the network; for unweighted graphs, the clustering of a node
u is the fraction of possible triangles through that node that exist.
It can also be understood as the probability of any two neighbors
of a given network being also linked. From their definition, small-
world graphs should exhibit C > Cg and | ~ I, where both

Cgr and g are the respective properties for an equivalent Erdos-
Renyi random graph. All these figures for the CRAN networks can
be found in Table 2 and, from them, it can be derived that the
ecosystem also behaves as a small-world network, which is desir-
able in well designed software projects (Subelj and Bajec, 2012),
as it indicates a good relationship between packages that share
similar functions (measured by C) while avoiding a balkanization
of the ecosystem (where parts become independent and unaware
of each other) (measured by I). It should be noted, though, that
these measures only make sense with the dependency graph
converted to undirected (Kohring, 2009); the opposite would
actually imply that there would be cyclic dependencies among
packages, which are undesired.

Network densities (D), which are the ratio between the actual
number of edges and those of a complete graph, were also com-
puted for all three networks in Table 2; as expected for real-world
and software networks (Zheng et al., 2008), the CRAN network is
sparse in general.

Therefore, in answer to the first research question, the CRAN
package dependency network adheres to a power-law, which
follows the principles of the scale-free networks, while also re-
flecting a small-world behavior.

4.2. RQ2: Individual packages (nodes)

As developers work with previous packages to develop newer
ones, quality, maintenance and trustworthiness of the existing
packages is key for the stability of the ecosystem. These proper-
ties, however, are not particularly visible and they are not under
the developer’s control, either. A famous incident happened in
2016 when a single JavaScript package, called left-pad (https:
//github.com/stevemao/left-pad/issues/4) was removed from the
central JavaScript package repository npm. This removal caused
issues not only for the projects that depended on it, but also for
those that depended transitively on the package. In the case of
CRAN, previous work has shown that up to 41% of the errors in
CRAN packages were caused by incompatible changes in one of
its dependencies (direct or transitive) (Claes et al., 2014). Thus,
issues or bugs with packages propagate through any number of
levels of dependency, not only on direct ones. It is therefore
possible to measure the vulnerability (v) of the ecosystem to
an issue of a given package as the fraction of packages in the
whole ecosystem that would be impacted by the propagation of
that issue through its dependencies. Such information could be
incorporated in measuring package importance with regards to
vulnerability in an ecosystem, as a high vulnerability score should
alert developers and maintainers to ensure a fast response to bugs
ans issues, as they could both raise a chain reaction and raise the
interest of any attacker interested in finding an opportunity to
exploit the project (Kikas et al., 2017).

To find the most critical nodes in regards to vulnerability,
one can make use of the centrality metrics, whose main pur-
pose is measuring nodes influence. Many centrality measures
are available, and each one defines “relevancy” differently. For
instance, nodes with high betweenness centrality influence the
flow around a system, while closeness centrality aims to measure
how well placed a node is in the network. Degree centrality, even
though it could be considered as the simplest measure of node
connectivity, is also the most appropriate metric to find very
connected or popular nodes that, in case of failure, would impact
a larger number of other nodes (or packages). In the present case,
the normalized degree centrality (DC;) will be computed for each
package in the network as

ki

DG = (2)
n—1

https://github.com/stevemao/left-pad/issues/4
https://github.com/stevemao/left-pad/issues/4
https://github.com/stevemao/left-pad/issues/4

6 M. Mora-Cantallops, S. Sdnchez-Alonso and E. Garcia-Barriocanal / The Journal of Systems & Software 170 (2020) 110744

Table 3
Top 20 influential nodes in CRAN.

All packages (TC)

Excluding base packages (TCNB)

Package DD D DG; v(%) Package DD D DG; v(%)
methods 2876 11298 .8165 81.7 Rcpp 1786 7333 5781 578
utils 2436 11197 8092 809 magrittr 930 5754 4536 454
stats 3953 10607 .7666 76.7 glue 175 5271 4155 416
grDevices 1210 9302 6723 67.2 digest 215 5163 .4070 40.7
graphics 1962 8923 .6449 64.5 R6 262 5075 4000 40.0
Rcpp 1786 7333 5301 53.0 rlang 612 5005 .3946 395
grid 440 6930 .5008 50.0 pkgconfig 7 4776 3765 37.7
lattice 400 6728 4861 48.6 crayon 172 4702 3707 37.1
tools 261 6113 4418 442 assertthat 205 4628 .3648 365
magrittr 930 5754 4158 41.6 stringi 177 4623 3644 364
Matrix 874 5628 4072 81.6 backports 29 4599 3626 363
glue 175 5271 3810 38.1 ellipsis 12 4493 3543 354
MASS 1461 5242 3788 379 vctrs 14 4452 3514 35.1
digest 215 5163 3731 373 zeallot 6 4457 3514 35.1
R6 262 5075 .3667 36.7 cli 78 4436 .3500 35.0
rlang 612 5005 3617 36.2 fansi 5 4437 3498 35.0
pkgconfig 7 4776 3451 345 pillar 19 4353 3431 343
crayon 172 4702 3398 340 utf8 5 4357 3434 343
assertthat 205 4628 3344 334 tibble 673 4339 3420 342
stringi 177 4623 3340 334 stringr 841 4293 3384 338

Table 4
Packages with out-degree larger than 200 in CRAN.

All packages (TC)

Package Imports Transitive Inverse v (%)
smartdata 24 251 1.81
ggstatsplot 27 229 1.65
psychNET 23 206 1.49
KNNShiny 9 205 1.48
STAT 9 203 1.47
CLUSTShiny 8 201 1.45

with k; being the degree of node i, n the total number of nodes in
the network and DC; € [0, 1]. We can, thus, assimilate the degree
centrality for a node i to the fraction of nodes it is connected to
(independently of the direction of the link). For each node, both
the degree centrality DC and the corresponding v is represented
in Table 3, combined with their direct dependencies (DD) and
transitive dependencies (TD). The table contains the top 20 influ-
ential nodes for both the TC and TCNB cases, as it can be noticed
that in the TC case base packages take most of the slots. For
the TCNB case, there are a total of 20 packages that, if exposed,
would individually impact more than 30% of the whole network
through their dependencies. In this list, it is worth highlighting
how a number of packages have quite limited numbers of direct
dependencies but their transitive ones are up to three orders of
magnitude larger. On the other hand, if the base packages are
included, one can realize how issues in ‘methods’, ‘utils’ or ‘stats’
would basically take the whole ecosystem down.

Packages with out-degree larger than 200 (so, packages that
are transitively dependent on more than 200 other packages) can
also be found in Table 4. Again, this table shows how packages
can show a limited number of imports but are indirectly (and
probably, unknowingly) importing hundreds of transitive depen-
dencies. The smartdata (Cordon et al., 2019) package, for instance,
might import a total of 24 packages (a large number already) but
it ends up depending on 251 packages, ten times more than that,
which means an inverse vulnerability (proportion of packages in
the ecosystem that could break it) of 1.8%. Extra care should be
put in development of packages that either have high vulnera-
bility or relatively large inverse one; developer efforts seem to
reflect this tendency, as an statistically relevant relationship (p-
value ~ 0) is found between the centrality of a package and the
number of times it has been updated over time.

Controllability of complex networks (Liu et al,, 2011) is an-
other concept that could be useful to understand and characterize
software package ecosystems. For scale-free networks with expo-
nent y and average degree (k) we can use the following equation
to compute the fraction of nodes that would be required to
“control” the system (known as driver nodes).

ng 1 1
e |5 (155 w]

The results are shown in the last column of Table 2. Note that,
although the giant component network (GC) requires almost 79
packages to be controlled, it is misleading; once the transitive
relationships are considered the number is notably lower. In sum-
mary, when the base packages are included, six packages would
suffice to take control of the whole network; 16 in case these are
not considered. This is consistent with the vulnerabilities found
in Table 3.

With regards to the second research question, thus, the
present analysis of the packages available in CRAN using CNA
quickly reveals how a few packages could expose the whole
ecosystem in case of failure, bug or malicious attack.

(3)

4.3. RQ3: Modules

The links between packages in dependency networks are a
product of the underlying patterns and structures. It could be
expected, for instance, that packages that have similar functions
are aggregated into package communities of relatively densely
connected nodes. Finding a clear package community structure
would mean that the software package ecosystem is highly mod-
ular (meaning that functions are basically independent from each
other), while under-structured or disorganized projects would
have a quasi-random structure.

In general, one of the many challenges proposed in the field
of complex network analysis consists of community detection,
and multiple community detection algorithms have been de-
scribed (Gadek et al., 2018). One of the most popular and widely
used algorithm is the Louvain method (Blondel et al., 2008),
which maximizes a modularity score for each community. For
reference, the modularity of a partition is a scalar value between
—1 and 1 that measures the density of links inside communities
as compared to links between communities (Newman, 2006).

The Louvain algorithm is thus applied to the dependency net-
work; the number of communities that emerge is stable at 17 and

M. Mora-Cantallops, S. Sdnchez-Alonso and E. Garcia-Barriocanal / The Journal of Systems & Software 170 (2020) 110744 7

Table 5
Summary of package communities found in the CRAN ecosystem, from largest to smallest (containing over 1% of packages).

% Sample pkgs Critical pkgs Keywords in description Summary
mvtnorm stats Analysis

26.7 nlme utils Methods Popular packages for general statistical analysis.
Ime4 graphics Regression
jsonlite dplyr API

19.9 tibble magrittr Tables Packages for managing and tidying data.
tidyr stringr Dataset
cluster parallel Selection

119 nnet Matrix Regression Classification, regression and clustering models.
caret foreach Classification
rgdal sp Spatial

6.94 fields lattice Raster Classes and methods for spatial data.
maptools raster Map
ggplot2 ggplot2 ggplot2

6.68 colorspace grid Plot Visualization tools and data arrangement.
reshape2 plyr Tools
Repp Repp C++

6.35 rstan coda Bayesian Integration languages into R, plus Bayesian and MCMC models.
rjags Rdpack MCMC
gsl methods Methods

590 rrcov robustbase Distribution Tools allowing to analyze data with robust methods.
leaps stats4 Multivariate
rjson XML Text

288 tm RCurl Web Text mining applications plus web/java/json interfaces.
nlp rjava Java
expm ape Phylogenetic

258 ade4 gtools Species Analysis of ecological/biological data in environmental sciences.
seqinr vegan Trait
tseries Z00 Time

2,55 timeData xts Series Time series analysis and computational finance.
timeSeries forecast Financial
Biobase matrixStats Gene

2.18 limma R.utils Genomic Bioconductor (bioinformatics) subcommunity.
Biostrings future RNA
tkrplot rgl GUI

2,12 tcltk2 tcltk Graphical Tools for both interactive GUI and (3D) graphics.
gWidgets Remdr 3D
sna igraph Network analysis

142 ergm network Graph Tools for Social/Complex Network Analysis
intergraph GGally Clustering

the resulting graph is shown in Fig. 4, where the most relevant
nodes (in regards to their in-degree) are labeled, obtaining a mod-
ularity of 0.4. The summary of the 13 communities that contain
more than 1% of the total packages can also be found in Table 5,
which reflects the portion of the total packages that each package
community represents, three sample relevant packages (avoiding
base packages that might distort the results) and three critical
packages (understood as the ones with highest in-degree-highest
vulnerabilities).

To infer a meaning for each partition, natural language pro-
cessing techniques were used; all the available textual descrip-
tions for the packages in each set is aggregated and analyzed
using spaCy (https://spacy.io/), a Python library. After remov-
ing the common standard stopwords, the 30 top unique words
found in the package’s descriptions were annotated manually
by three independent annotators, one with statistical and two
with computer science background, that also analyzed each of
the top packages in each package community, initially agreeing
in 11 out of the 13 groups (84.6%). The remaining two were
discussed afterwards and a final agreement was reached with the
identification found in Table 5, which produces a small summary
of the structural reasons hidden behind the clustering produced
by the algorithm.

Among them, the largest package community contains slightly
over one quarter of the total packages in the ecosystem (26.7%)
and could be considered the functional core of the R package

ecosystem, with the most popular packages for general statis-
tical analysis. The rest of the communities are, overall, more
specific of particular functionalities, disciplines or environments.
Functionally, for instance, the second largest package community
is formed by a large number of packages that are devoted to
managing and cleaning data (such as the tidyverse set) while
the fifth largest group (6.68%) is formed by ggplot2 (Wickham,
2016) and the visualization ecosystem (including all the “gg”
family) around this highly relevant package. In regards to disci-
plines, a few package communities are found that, for example,
are focused in social/complex network analysis (1.42%) or time
series analysis (2.55%). With the environmental perspective, there
are at least two communities that are focused in environmental
sciences, distinguished by whether their common packages are in
the CRAN (2.58%) or in the Bioconductor (2.18%) repository.

Thus, and in response to the third research question, the
modular analysis (using the community detection approach in the
network of packages) reveals how this approach can detect and
highlight the functional or environmental modules in a software
package ecosystem such as CRAN.

5. Discussion
In this article, we empirically studied the CRAN software pack-

age ecosystem through complex network analysis tools, a method
common in other fields but not as widely adopted for software

https://spacy.io/

8 M. Mora-Cantallops, S. Sdnchez-Alonso and E. Garcia-Barriocanal / The Journal of Systems & Software 170 (2020) 110744

Fig. 4. Package communities obtained using Louvain’s method for detecting
community structure based on modularity. A total of 17 package communities
are identified.

engineering. Using the metadata from CRAN, the network of
packages was built and its properties have been analyzed.

Structure and complexity. Previous research already pointed
out at the power-law (or near power-law) nature of dependency
networks, although most of them was based in classes instead
of packages (Subelj and Bajec, 2012). In the case of CRAN, the
degree distribution adheres to a power-law, both in degree and
in in-degree, implying that packages with a high number of re-
verse dependencies tend to have a higher probability of receiving
further incoming links, following the principles of the scale-free
networks. Additionally, the small-world behavior was tested for
the CRAN case, noticing how the actual clustering of the network
is orders of magnitude higher than the simulated clustering for a
random network with the same characteristics. Average shortest
patch between packages, on the other hand, is in the same order
of the average shortest path in a random graph, which combined
with the previous results in clustering determines that the behav-
ior of the CRAN package dependency network is in line with what
is expected from a small-world network in software engineering:
good relationship between packages that share similar functions
while avoiding creating separate components far from each other.
The small-world result for software package ecosystems has also
been found, for instance, in the Debian repository (Abate et al.,
2009).

Packages. Our analysis of the packages available in CRAN
(represented by the nodes of our network) reveals how a few
packages could expose the whole ecosystem in case of failure,
bug or malicious attack. When taking base packages into account,
some of them (e.g. ‘methods’, ‘utils’ or ‘stats’) could affect around
80% of the packages in the repository if an update went wrong,
as their transitive reverse dependencies are huge. However, it
could be understood that base packages sit at the core of R and,
therefore, the base packages and R could be considered as one.
Additionally, it could be assumed that such base packages are
both taken with more care and updated less often, so they might
be less prone to a fault. In a deeper analysis, we found a total of
20 packages (besides the core 29 base packages) whose removal

could impact more than 30% of the other packages, which is
a higher figure than found in other systems (Subelj and Bajec,
2012). Some of them might seem harmless when only direct
dependencies are considered, with less than 10 of them, but
once transitive dependencies are considered, the potential impact
could render the ecosystem unusable. In summary, we showed
how CRAN has a few central packages (and a few highly imported
ones) that are critical; high vulnerabilities, as shown in other
ecosystems, should alert developers but, specially, maintainers,
to keep a close look on potential bugs or security issues and
their fixes for these packages, as being able to control a few
of them would effectively give control over the (Kikas et al.,
2017). Moreover, from the opposite perspective, packages with
large number of dependencies should also be monitored as their
potential to fail is multiple times larger.

CRAN has strict policies on maintainers and contributions
(https://cran.r-project.org/web/packages/policies.html). Among
other policies, CRAN runs a periodic check on compatibility among
packages; should any package fail the test, its maintainers would
be notified and asked to resolve the issue before the following
major R release, at the risk of having their package archived
otherwise. CRAN also forces dependencies to be kept within
itself or Bioconductor (to avoid external dependencies). Addi-
tionally, back-compatibility versions of current packages is not
allowed, and any changes to CRAN packages that could cause
significant disruption to other packages must be agreed with the
CRAN maintainers before releasing it. These policies have a direct
impact in mitigating most of the risks highlighted previously,
although it is at the cost of the CRAN’s maintainers efforts;
developing tools based in CNA metrics could contribute towards
minimizing CRAN volunteers lost time.

Modules. We also explored the structure of the CRAN package
network from the perspective of community structure or mod-
ularity, running the Louvain algorithm and adding insights on
the meaning of the resulting communities using NLP techniques
on the available descriptions of packages. The main contribution
here is to show how the dependency network obtained from
CRAN reveals a significant package community structure and how
such structure can be explained using the functionality or other
relevant contextual aspects of the clustered packages. This is,
thus, the proof of another property that is true for other networks
as for software networks; hidden structure in software can be
brought to surface using community detection algorithms (Subelj
and Bajec, 2011). In the case of CRAN, communities appear to be
relatively balanced and, besides a core set of packages that cover
the statistical analysis tools R is known for, there are multiple
communities of packages devoted to common tasks (such as data
wrangling) or to particular disciplines (such as bioinformatics). A
modular approach has been shown to enhance functionality and
evolvability (Fortuna et al., 2011). This results help drawing a map
of CRAN, which, as a large software ecosystem, represents one of
the most complex human made systems.

6. Conclusion

Our analysis of the CRAN software package ecosystem from
the perspective of complex network analysis shows how CRAN
follows a scale-free and small-world behavior, as found previ-
ously in other OSS package ecosystems, and that relates to good
practices of software engineering. CRAN, however, presents a
large number of packages that are critical for the correct function
of the ecosystem and that, in case of any bug or issue, it could
render the whole system unusable. CRAN’s policies, in any case,
are in place to prevent such event from happening, but it is some-
thing that has a maintenance cost. Finally, we also shown how the
CRAN package network presents a significant modular structure,

https://cran.r-project.org/web/packages/policies.html

M. Mora-Cantallops, S. Sdnchez-Alonso and E. Garcia-Barriocanal / The Journal of Systems & Software 170 (2020) 110744 9

which is also a positive aspect of software engineering and en-
hances its functionality and evolvability, allowing such complex
product of many contributors to go further into the future. Our
findings show how package networks such as CRAN could benefit
from complex network analysis as a tool to assess many aspects
of software engineering, such as quality assurance or update risk
evaluation. In particular, it is also worth highlighting how making
dependency relationships more visible in package networks could
help developers visualize the relevance of some packages and
the critical value of others, so they could for example balance
the number of dependencies or inverse dependencies, or aim
to group together existing functionalities in order to reduce the
number of critical packages to be maintained. In summary, CNA
provides insights into relationships between components in pack-
age ecosystems that may be useful for a number of stakeholders,
including core development teams, project managers and con-
tributors (both individuals and organizations) who might want
to understand how to contribute to the ecosystem in a way that
best fits their audiences and interests.

7. Threats to validity and future work

The current work is limited, however, as package versions are
not considered. CRAN'’s policies periodically checks compatibility
among packages so only the packages need to be considered. The
generalization of the results found previously would need to add
package versioning (and, therefore, vulnerability per version) as
an additional layer. In the same line, it would be interesting to
extend the CNA analysis to study how the CRAN network has
changed over time and how the maintainers’ mitigation activities
have developed over time in response to changes in the networks
of dependencies.

Another limitation is the use of manual analysis in Section 4.3,
where NLP techniques were combined with manual annotation
to infer a meaning for the clustering produced by the algorithm.
Although the use of three independent reviewers mitigates the
impact partially, it is acknowledged that experts from other fields
(e.g. bioinformatics) might identify further nuances that were not
captured in our analysis.

These findings show how CNA can be a valuable tool to study
package ecosystems from the perspective of their dependency
networks. Future work should follow at least three lines of re-
search. First of all, the relationship between the CNA metrics
of the packages and their quality metrics (e.g. open issues, user
downloads, number of developers, binary sizes, among others)
should be explored deeper. On one hand, to provide specific tools
that developers could use to be aware of the most balanced
approach for their packages, whether it is a leaner package with
fewer dependencies or a more “feature-full” package directed to
a particular audience, and to distinguish between those packages
that are safe or those that should be avoided. On the other
hand, the awareness of the developers should also be studied:
what is their approach in regards to dependencies? Do they use
any quantitative approaches when deciding on the dependencies
they are going to include in their software? Second, the anal-
ysis could be extended with additional measures and network
metrics, that could also be further combined with techniques
from other disciplines such as NLP. Finally, CRAN is a popular
ecosystem, but there are many more that could either be analyzed
individually or compared from a complex network perspective to
bring additional and potentially valuable findings to the field.

Declaration of competing interest
The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

Abate, P., Di Cosmo, R., Boender,]., Zacchiroli, S., 2009. Strong dependencies
between software components. In: 2009 3rd International Symposium on
Empirical Software Engineering and Measurement. IEEE, pp. 89-99.

Albert, R., Barabasi, A.-L., 2002. Statistical mechanics of complex networks. Rev.
Modern Phys. 74 (1), 47.

Alstott, J., Bullmore, D.P.,, 2014. Powerlaw: a Python package for analysis of
heavy-tailed distributions. PLoS One 9 (1).

Amaral, LAN., Scala, A., Barthelemy, M., Stanley, H.E., 2000. Classes of
small-world networks. Proc. Natl. Acad. Sci. 97 (21), 11149-11152.

Barabasi, A.-L., 2009. Scale-free networks: a decade and beyond. Science 325
(5939), 412-413.

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E., 2008. Fast unfolding
of communities in large networks. J. Stat. Mech.: Theory Exp. 2008 (10),
P10008.

Cataldo, M., Scholtes, 1., Valetto, G., 2014. A complex networks perspective on
collaborative software engineering. Adv. Complex Syst. 17 (07n08), 1430001.

Cerina, F., Zhu, Z., Chessa, A., Riccaboni, M., 2015. World input-output network.
PLoS One 10 (7).

Chong, CY., Lee, S.P.,, 2015. Analyzing maintainability and reliability of object-
oriented software using weighted complex network.]. Syst. Softw. 110,
28-53.

Claes, M., Mens, T., Grosjean, P., 2014. On the maintainability of CRAN packages.
In: 2014 Software Evolution Week-IEEE Conference on Software Main-
tenance, Reengineering, and Reverse Engineering. CSMR-WCRE, IEEE, pp.
308-312.

Cordén, I, Luengo,]., Garcia, S., Herrera, F., Charte, F.,, 2019. Smartdata: Data
preprocessing to achieve smart data in R. Neurocomputing URL: https:
//doi.org/10.1016/j.neucom.2019.06.006.

Cox, J., Bouwers, E., Van Eekelen, M., Visser, J., 2015. Measuring dependency
freshness in software systems. In: 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 2. IEEE, pp. 109-118.

Csardi, G., Salmon, M., 2019. Pkgsearch: Search and query CRAN R packages. URL:
https://CRAN.R-project.org/package=pkgsearch. R package version 3.0.1.
Decan, A., Mens, T., Claes, M., 2016. On the topology of package dependency
networks: A comparison of three programming language ecosystems. In:
Proceedings of the 10th European Conference on Software Architecture

Workshops, pp. 1-4.

Decan, A., Mens, T., Grosjean, P., 2019. An empirical comparison of dependency
network evolution in seven software packaging ecosystems. Empir. Softw.
Eng. 24 (1), 381-416.

Erdés, P., Rényi, A., 1960. On the evolution of random graphs. Publ. Math. Inst.
Hung. Acad. Sci. 5 (1), 17-60.

Feng,]., Li, X., Mao, B., Xu, Q., Bai, Y., 2017. Weighted complex network analysis
of the Beijing subway system: Train and passenger flows. Physica A 474,
213-223.

Fortmann-Roe, S., 2015. Consistent and clear reporting of results from diverse
modeling techniques: The A3 method. . Stat. Softw. 66 (7), 1-23, URL:
http://[www jstatsoft.org/v66/i07/.

Fortuna, M.A., Bonachela, J.A., Levin, S.A., 2011. Evolution of a modular software
network. Proc. Natl. Acad. Sci. 108 (50), 19985-19989.

Gadek, G., Pauchet, A., Malandain, N., Vercouter, L., Khelif, K., Brunessaux, S.,
Grilheéres, B., 2018. Topological and topical characterisation of twitter user
communities. Data Technol. Appl.

German, D.M., Adams, B., Hassan, A.E., 2013. The evolution of the R software
ecosystem. In: 2013 17th European Conference on Software Maintenance
and Reengineering. IEEE, pp. 243-252.

Halberstam, Y., Knight, B., 2016. Homophily, group size, and the diffusion of
political information in social networks: Evidence from Twitter.]J. Public
Econ. 143, 73-88.

Harutyunyan, N., 2020. Managing your open source supply chain-why and how?.
Computer 53, 77-81. http://dx.doi.org/10.1109/MC.2020.2983530.

Kasakawa, S., Yamanishi, T., Takahashi, T., Ueno, K., Kikuchi, M., Nishimura, H.,
2016. Approaches of phase lag index to EEG signals in Alzheimer’s disease
from complex network analysis. In: Innovation in Medicine and Healthcare
2015. Springer, pp. 459-468.

Kikas, R., Gousios, G., Dumas, M. Pfahl, D., 2017. Structure and evolution
of package dependency networks. In: 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories. MSR, IEEE, pp. 102-112.

Kohring, G., 2009. Complex dependencies in large software systems. Adv.
Complex Syst. 12 (06), 565-581.

Korkmaz, G., Kelling, C., Robbins, C., Keller, S.A., 2018. Modeling the impact of R
packages using dependency and contributor networks. In: 2018 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining. ASONAM, IEEE, pp. 511-514.

Li, K., Yu, M., Liu, L, Zhai,], Liu, W., 2018. A novel reliability analysis approach
for component-based software based on the complex network theory. Softw.
Test. Verif. Reliab. 28 (6), e1674.

Liu, Y.-Y., Slotine,].-J., Barabasi, A.-L., 2011. Controllability of complex networks.
Nature 473 (7346), 167-173.

http://refhub.elsevier.com/S0164-1212(20)30170-9/sb1
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb1
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb1
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb1
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb1
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb2
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb2
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb2
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb3
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb3
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb3
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb4
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb4
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb4
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb5
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb5
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb5
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb6
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb6
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb6
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb6
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb6
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb7
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb7
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb7
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb8
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb8
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb8
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb9
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb9
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb9
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb9
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb9
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb10
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb10
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb10
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb10
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb10
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb10
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb10
https://doi.org/10.1016/j.neucom.2019.06.006
https://doi.org/10.1016/j.neucom.2019.06.006
https://doi.org/10.1016/j.neucom.2019.06.006
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb12
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb12
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb12
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb12
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb12
https://CRAN.R-project.org/package=pkgsearch
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb15
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb15
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb15
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb15
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb15
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb16
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb16
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb16
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb17
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb17
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb17
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb17
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb17
http://www.jstatsoft.org/v66/i07/
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb19
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb19
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb19
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb20
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb20
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb20
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb20
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb20
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb21
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb21
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb21
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb21
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb21
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb22
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb22
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb22
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb22
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb22
http://dx.doi.org/10.1109/MC.2020.2983530
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb24
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb24
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb24
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb24
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb24
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb24
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb24
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb25
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb25
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb25
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb25
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb25
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb26
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb26
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb26
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb27
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb27
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb27
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb27
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb27
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb27
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb27
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb28
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb28
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb28
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb28
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb28
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb29
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb29
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb29

10 M. Mora-Cantallops, S. Sdnchez-Alonso and E. Garcia-Barriocanal / The Journal of Systems & Software 170 (2020) 110744

Mohagheghi, P., Conradi, R., 2007. Quality, productivity and economic benefits
of software reuse: a review of industrial studies. Empir. Softw. Eng. 12 (5),
471-516.

Mora-Cantallops, M., Sanchez-Alonso, S., Visvizi, A., 2019. The influence of
external political events on social networks: The case of the Brexit Twitter
Network.]. Ambient Intell. Human. Comput. 1-13.

Mora-Cantallops, M., Sicilia, M.-A., 2018. Player-centric networks in League of
Legends. Social Networks 55, 149-159.

Myers, C.R., 2003. Software systems as complex networks: Structure, function,
and evolvability of software collaboration graphs. Phys. Rev. E 68 (4), 046116.

Nagle, F., 2019. Open source software and firm productivity. Manage. Sci. 65,
1191-1215.

Newman, M.E.,, 2006. Modularity and community structure in networks. Proc.
Natl. Acad. Sci. 103 (23), 8577-8582.

Pan, W, Li, B, Ma, Y., Liu,], 2011. Multi-granularity evolution analysis of
software using complex network theory.]. Syst. Sci. Complex. 24 (6),
1068-1082.

Potanin, A., Noble,]., Frean, M., Biddle, R., 2005. Scale-free geometry in OO
programs. Commun. ACM 48 (5), 99-103.

Raemaekers, S., Van Deursen, A., Visser, J., 2014. Semantic versioning versus
breaking changes: A study of the maven repository. In: 2014 IEEE 14th In-
ternational Working Conference on Source Code Analysis and Manipulation.
IEEE, pp. 215-224.

Rubinov, M., Sporns, 0., 2010. Complex network measures of brain connectivity:
uses and interpretations. Neuroimage 52 (3), 1059-1069.

Subelj, L., Bajec, M., 2011. Community structure of complex software systems:
Analysis and applications. Physica A 390 (16), 2968-2975.

Subelj, L., Bajec, M., 2012. Software systems through complex networks science:
Review, analysis and applications. In: Proceedings of the First International
Workshop on Software Mining, pp. 9-16.

Watts, DJ., Strogatz, S.H., 1998. Collective dynamics of ‘small-world’ networks.
Nature 393 (6684), 440.

Wickham, H., 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York, URL: https://ggplot2.tidyverse.org.

Zheng, X., Zeng, D., Li, H., Wang, F., 2008. Analyzing open-source software
systems as complex networks. Physica A 387 (24), 6190-6200.

Zimmermann, T., Nagappan, N., 2008. Predicting defects using network analysis
on dependency graphs. In: Proceedings of the 30th International Conference
on Software Engineering, pp. 531-540.

http://refhub.elsevier.com/S0164-1212(20)30170-9/sb30
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb30
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb30
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb30
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb30
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb31
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb31
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb31
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb31
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb31
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb32
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb32
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb32
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb33
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb33
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb33
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb34
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb34
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb34
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb35
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb35
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb35
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb36
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb36
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb36
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb36
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb36
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb37
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb37
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb37
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb38
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb38
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb38
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb38
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb38
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb38
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb38
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb39
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb39
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb39
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb40
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb40
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb40
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb42
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb42
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb42
https://ggplot2.tidyverse.org
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb44
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb44
http://refhub.elsevier.com/S0164-1212(20)30170-9/sb44

	A complex network analysis of the Comprehensive R Archive Network (CRAN) package ecosystem
	Introduction
	Background
	Materials and methods
	Data extraction
	Network construction

	Analysis and results
	RQ1: Structure and complexity
	RQ2: Individual packages (nodes)
	RQ3: Modules

	Discussion
	Conclusion
	Threats to validity and future work
	Declaration of competing interest
	References

