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Abstract7

This paper presents a novel methodology to filter pulses coming from particle detectors. It is based on8

variable-in-time convolutions in which one of the operands is the input pulse and the other is a vector that9

changes with every convolution step. This is equivalent to multiply every incoming pulse by a filtering10

matrix. The coefficients of this matrix are computed by applying a Singular Value Decomposition (SVD)11

factorization over a set of training pulses. A detailed explanation of this SVD-filtering methodology, a noise12

filtering analysis, simulations and filtering of pulses coming from a neutron monitor were carried out to13

verify its feasibility.14
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1. Introduction16

The indirect or direct interaction of particles with the appropriate particle detector produces a charge17

build up or if accelerated, pulses of current. These pulses are converted to voltage by means of trans-18

impendance amplifiers and fed into subsequent processing stages. These voltage pulses carry useful infor-19

mation about the incident particles such as type, energy or angle of impact [1]. These outgoing pulses are20

always mixed with noise, limiting the accuracy of the measurement.21

In particle detection systems the dominating noise is generated both in the detector and in the detector22

readout electronics, specially in the analog front-end. The readout electronics is typically implemented with23

discrete analog components (resistors, diodes, field-effect transistors, etc.) and by hence affected by parasitic24

effects. This noise causes the masking of information present in the signal.25

Part of the noise is the result of fundamental physical processes and quantities such as the discrete nature26

of electric charge and therefore it cannot be avoided [1]. However, its effects can be reduced by using proper27
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noise filtering strategies. A key to successful noise filtering is to accurately model the noise that appears in28

the system. This noise model enables the design of filters that maximize the Signal-to-Noise Ratio (SNR).29

Filtering of detector pulses is crucial in most nuclear pulse processing applications. A generic pulse30

filter attenuates or even removes a certain frequency interval of frequency components from a pulse. These31

frequency components are typically noise though there are situations in which a filter is used to remove some32

part of the pulse as well.33

With the development of integrated circuits, digital electronics has also been used for particle detectors,34

even replacing the use of analog electronics in some detection stages such as shaping. The use of digital35

electronics provides many advantages, for instance, the inclusion of several stages in a single integrated36

circuit, lower volume and consumption or reconfigurability when implemented in Field Programmable Gate37

Arrays (FPGAs). However, this change could increase the complexity of particle detector backends and38

increase the number of noise sources that appear due to the new elements added such as Analog to Digital39

Converters (ADC) [2].40

The two digital systems commonly used in particle detection systems are filters and pulse shapers. There41

are two types of digital filters, Finite Impulse Response (FIR) and Infinite Impulse Response (IIR). The FIR42

filtering of any pulse can be analyzed from the perspective of the convolution of a vector, which represents43

the filter. In this paper, the convolution is replaced by a multiplication matrix which is denominated44

filtering matrix. As exposed in Section 2, the multiplication by a filtering matrix is equivalent to making a45

convolution in which one of the elements is the input pulse and the other is a value that changes with every46

convolution step. To achieve an optimal filtering it is necessary to find out the matrix entries that optimize47

the SNR.48

Singular Value Decomposition (SVD) is a non-parametric factorization of real (or complex) matrices.49

SVD is explained in more detail in Section 3. It has been already used in areas related to particle spectroscopy50

such as histogram creation [3] and pulse unfolding [4]. In [3] SVD is also used for filtering but, unlike51

the proposed method of this article, it obtains all the SVD values of the pulses at the same time (an52

autofiltering) without distinguishing between training pulses and real pulses. It has also been used to unfold53

entire histograms [5, 6]. In this work, the elements of the filtering matrix are obtained using the method54

explained in Section 4. This method is suitable for real-time implementation using either hardware or55

software. Finally, a filtering noise analysis is explained in Section 5 and the results of applying this method56

on pulses are explained in Section 6.57

2. Convolution as a matrix multiplication58

As stated in Section 1, the result of filtering a digital input pulse x = x[n] with a Finite Response Filter59

(FIR) in time-domain can be represented by a convolution. This operation, in turn, can be represented60

2



as a matrix multiplication whose impulse response m = m[n] is a Toeplitz matrix [7] (i.e. its descending61

diagonals from left to right are constant). For example, the convolution of x and m can be rewritten as62

y = m ∗ x = Mx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1 0 . . . 0 0

M2 M1 . . .
...

...

M3 M2 . . . 0 0
... M3 . . . M1 0

Ml−1

... . . . M2 M1

Ml Ml−1

. . .
... M2

0 Ml . . . Ml−2

...

0 0 . . . Ml−1 Ml−2

...
...

... Ml Ml−1

0 0 0 . . . Ml

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

...

xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

For instance, let define the following normalized low-pass FIR filter whose impulse response in the z-

domain is

m(z) =
1

3

(
1 + z−1 + z−2

)
(2)

Consequently, the associated matrix to filter a pulse of length l = 6 is

M =
1

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

In the case that M was not a Toeplitz matrix but a generic matrix, M will actually be a variable-in-time63

convolution. It implies that the convolution coefficients (i.e. the filter) are changing for every x element,64

which is useful to improve the filtering results. In this paper, a novel procedure to obtain an efficient M65

against noise using SVD decomposition is proposed. Thi method is explained in Sections 3 and 4.66

3. Singular Value Decomposition67

The SVD algorithm is a non-parametric (also called blind) factorization of real (or complex) matrices.68

Additional information about SVD and its implementation can be found in [7]. In this paper, only real69

numbers are used. Whether we apply SVD to an arbitrary matrix X ∈ R
l×n, we obtain70
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X = USV� (4)

where, for n < l, U ∈ R
n×n, S ∈ R

n×n and V� ∈ R
n×l.71

In this decomposition, U is an orthogonal matrix (i.e. whose transpose U� is also its inverse U−1),72

S is the diagonal matrix of eigenvectors and V (which is also orthogonal) contains the eigenvectors of the73

decomposition (that is a basis for X).74

In contrast to other blind factorization methods such as Non-Negative Matrix Factorization (NNMF)75

or Sparse Component Analysis (SCA), the use of SVD has the advantage that the obtained eigenvalues76

are ordered in relation to their significance [7] with respect to X. These eigenvalues provide a basis of n77

dimensions. According to [3] the most significant dimensions considered are the signal and the lowest noise78

and therefore they can be removed.79

This filter mitigates any type of noise including white, brownian or 1/f following the same procedure80

described above.81

The variability of the pulses, both in height and shape, is learned by the filter in the same way than a82

neural network. In fact, the SVD method is equivalent to using an autoencoder neural network with a linear83

hidden unit [8]. The difference is that the main components of SVD are represented on an orthogonal basis84

while those of the neural network do not have to be necessary orthogonal.85

4. Procedure86

It is known that the value of a vector (actually a tensor) can be expressed in terms of a basis and its87

components and that it is independent from the chosen reference system. Keeping this in mind, the main88

idea of this algorithm is to calculate an alternative basis (of reduced dimensions) using training pulses and fit89

the incoming pulses in it using a change of basis (multiplying by V). As a result of the fitting of the incoming90

pulses in the alternative basis a series of components have to be obtained. Afterwards, these components91

are transformed to the original basis again (by multiplying by V−1) in order to obtain the filtered incoming92

pulses.93

For this purpose, let Xt be a set of n different training pulses of length equal to l clock cycles (dimensions)94

each, Xt ∈ R
n×l. These pulses can be obtained from a real detector or can be generated automatically95

without noise (the difference in results is explained in Section 6). In order to obtain V, when n < l, the96

value of Xt is factorized using SVD (4)97

Xt = USV� = HtV
� (5)

where Ht ∈ R
n×n are the components of the training pulses and V ∈ R

l×n are their basis. Ht is not98

used for this algorithm. If n > l, V it must be replaced by U and vice versa. However, in this work, it is99
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assumed that a sufficient number of samples is taken from the pulses to filter them correctly compared to100

the number of training pulses and therefore n < l.101

On the other hand, a number of k digital pulses coming from detectors of length l each are embedded102

into a matrix X. These pulses contain noise that can be reduced if they are analyzed according to the103

previously obtained basis V. Thus, whenever a new pulse (k = 1) or a set of new k pulses are detected,104

their components are obtained by applying H = US on Eq. (4). It yields105

H = V�X (6)

where H ∈ R
n×k are the components of the test pulses according to the V basis.106

In order to clear up the pulse, the first s eigenvectors of the diagonal matrix S are chosen and the others107

are set to zero. Since US = H, this is equivalent to keep the first s rows of H and set the others to zero.108

The result of this operation is represented by Hs ∈ R
n×k matrix109

Hs =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H11 H12 . . . H1k

H21 H22 . . . H2k

...
...

. . .
...

Hs1 Hs2 . . . Hsk

0 0 . . . 0
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

Finally, to obtain the filtered pulse Y110

Y = VHs (8)

where Y ∈ R
l×k.111

Logically, Hn = H and implies that Y = VV�X as explained in Section 5.3.112

Distinguishing between training and real pulses implies a significant improvement of the results. To sum113

up, a scheme of the filtering performed in this section is shown in Fig. 1. Note that with this filtering114

scheme, both a single pulse (case k = 1) or a set of k pulses in parallel can be filtered. In the next section,115

the efficiency of this filtering approach against noise is analyzed.116

5. Noise filtering analysis117

The objective of this analysis is to calculate how the SVD-filtering improves the SNR compared to other118

FIR filters. As stated in Section 2, these FIR filters are modeled as Toeplitz matrices. The noise filtering119

study is carried out in time-domain in a similar way to [9–11] for analog shaping. In these works, the120

assumption that an average number of delta functions (white noise) and step functions (brownian noise) are121
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Xt
(l × n)

Ht
(n × n)

V X
(l × n) (l × k)

H
(n × k)

H
(n × k)

Y
(l × k)

s

Figure 1: Diagram of the SVD-filtering.

produced in the input circuit by the noise sources is made. Both indices are inversely proportional to the122

SNR. In accordance with [11], white and brownian noise are represented by Fv and Fi respectively and they123

are equal to:124

Fi =
1

S2

∫ ∞

0

W 2(t) dt (9)

Fv =
1

S2

∫ ∞

0

(
dW

dt

)2

dt (10)

where S is the signal amplitude (in case of filters, it is assumed that S = 1 because it is not need it to125

amplify the signal, just to filter it). W (t) represents the residual effect of a single unit noise element. W (t)126

can be determined analytically because the filter is known. For time-invariant pulse shaping, W (t) is the127

system’s impulse response for a short input pulse with the peak output signal normalized to unity. For128

time-variant systems (e.g. gated integrators), W (t) can be also calculated with the method described in [9].129

The impact of more general noise types such as those outlined in [12] are beyond of the scope of this paper.130

Eq. (9, 10) are applicable to both analog and digital shapers taking into account that integrals and131

derivatives must be changed to summations and subtractions in the digital shapers also the residual effect132

must be discretized133

Fi =
1

S2

∞∑
n=0

(W [n])2Δt (11)

Fv =
1

S2

∞∑
n=0

(
W [n]−W [n− 1]

Δt

)2

Δt (12)
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where Δt is the clock period of the discrete filter.134

In the same way that the cited works and in order to quantify how the SVD-filtering improves the SNR135

compared to more traditional FIR filters, these two last formulas were adapted to replace W [n] by M.136

5.1. Response to white noise137

As it is pointed out by [9], a unit of white noise (also called delta noise in the cited reference) can be138

modeled as a discrete Dirac delta function. In discrete signal processing, this function can be represented by139

δ = (1 0 0 . . .)
�
. However, when an unit of white noise modifies a pulse, it can happen along all the pulse140

duration. For this reason, let us also define δi as δ delayed i cycles, where i can take any discrete value from141

0 to the length of the pulse l. The impact of white noise in the pulse measurement is the mean value of all142

of these probabilities. Therefore143

Fv =
1

l

l∑
i=0

k∑
j=0

(Mij δi)
2

(13)

where Mij are the entries of M.144

This equation can be simplified as

Fv =
1

l

l∑
i=0

k∑
j=0

(Mij)
2

(14)

Lets compare this last equation with (12) using the FIR filter defined in (2). Using (12) and normalizing

S = 1 and Δt = 1 the white noise index is obtained as

Fv = 3

(
1

3

)2

=
1

3

On the other hand, using Eq. (14) with the matrix (2) associated to the example filter for input signals

of length l = 6, the same result is obtained:

Fv =
1

6

5∑
i=0

5∑
j=0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
32

0 0 0 0 0

1
32

1
32

0 0 0 0

1
32

1
32

1
32

0 0 0

0 1
32

1
32

1
32

0 0

0 0 1
32

1
32

1
32

0

0 0 0 1
32

1
32

1
32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1

3

5.2. Response to brownian noise145

As pointed out by [9], an unit of brownian noise (also called step noise in the cited reference) can be146

modeled as a step signal.147

Thus, this function can be modeled simply as u = (1 1 1 1 . . .)�. Thereby, to calculate Fi, we have to148

divide the effect of filters on brownian noise by l in the same way than Fv149
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Fi =
l∑

i=0

⎛
⎝ k∑

j=0

Mij

⎞
⎠

2

(15)

Note that, unlike white noise and assuming that the number of events multiplied by the length of the pulse150

is small compared to the total past time, we can consider that all brownian noise pulse turned up before the151

pulse is captured. For this reason, delaying u has no sense because it gives the same result and therefore no152

mean is worked out for this equation.153

Following the previous example, lets compare this last equation with (11) using the FIR filter defined in

(2). If we feed this filter with u, the output pulse is (1
2

2
3
1 1 1 1). Using (11) and normalizing S = 1 and

Δt = 1. The brownian noise index is obtained

Fi =
1

22
+

2

22
+ 1 + 1 + 1 + 1 = 4.556

On the other hand, using Eq. (15) with the matrix (2) associated to the example filter for input signals

of length l = 6, we obtain the same result

Fi =
l∑

i=0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

1

1

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

= 4.556

Using (14, 15) it is observed that, as explained in [9], the effect of white noise is inversely proportional154

to the length of the pulse l whereas brownian noise is proportional to l.155

Unfortunately, when s < n the filtering operation is not linear, there is not a matrix M from which to156

calculate Fi nor Fv but they have to be calculated in three steps (6, 7, 8). Next section, is focused on the157

analysis of the case when s = n (that is Hs = Hn, which is the only case where the filtering operation is158

linear, to calculate the noise indexes (see Section 6.1) and then calculate the effect on noise of varying s.159

5.3. Particular case for H = Hn160

As stated in Section 4, when all the eigenvalues are taken to filter the signal, that is H = Hn, Eq. (8)

is rearranged as

Y = VV�X (16)

The key to analyze the impact of noise is to find out what represents VV�. It is known that V is an161

orthogonal matrix i.e. V� = V−1 but it is also known that V is not (always) symmetric. Therefore, it can162

be concluded that V� is the Moore-Penrose pseudoinverse [13, 14] of the orthogonal matrix V.163
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Pseudoinverse matrices have specific properties depending of their dimension. Let define IL = V�V and

IR = VV� where, as stated in (5), V ∈ R
l×n. Then,

IL = I ⇔ n < l (17)

IR = I ⇔ n > l (18)

IL = IR = I ⇔ n = l (19)

where I is the identity matrix.164

Then, according to Eq. (16), when n > l, VV� = I and the system does not filter at all. This is also165

applicable when s < n, i.e. following the steps (6, 7, 8).166

From all of this it can be concluded that SVD-filtering only works when n > l because, otherwise, in Eq.167

(4), U ∈ R
n×l, S ∈ R

l×l and V� ∈ R
l×l. Therefore, V is orthogonal and symmetric and VV� = V�V = I.168

In conclusion, the constraint n < l is mandatory for the filter to work.169

A property of IR and IL is that IR
2 = IR and IL

2 = IL hence the same output is obtained whether we170

apply the filter once or several times in cascade. This is also applicable when we filter X is filtered when171

s < n.172

In the case of white noise, when H = Hs, M value of Eq. (14) is replaced by VV�. Elaborating this173

equation, it yields174

Fv =
1

l

∑
entries

V�V (20)

where entries are every entry of the matrix V�V.175

According to (17), when n < l, which is mandatory as stated before, V�V = I, this identity matrix has

dimensions n× n. Therefore,

Fv =
n

l
(21)

In case of brownian noise, when H = Hn, Eq. (15) leads up to176

Fi =
1

l

∑
entries

VV� (22)

In this case, the product VV� ∈ R
l×l.177

With these two indexes it can be concluded that, since n < l, Fi is greater than Fv. In addition, in the178

same way that common filters and shapers [9, 12], the effect of white noise is inversely proportional to the179

length of the pulse l whereas brownian noise is proportional to l. In the next section, these assumptions are180

verified.181
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6. Results182

A set of simulations and tests to check the SVD-filtering in a real environment has been performed with183

the aim of checking that it works efficiently.184

The SVD-filter is designed to work on adquisition chains at the output of the preamplifier or at the185

output of the shaping stage because at this point there is still noise left: in Section 6.1, it was placed at186

the output of the shaping stage to highlight the shape of the shaper, especially how flat is the output of187

the trapezoidal shaper (although its height varies). This flatness can help to the pulse height analyzer to188

measure the height of the pulse. In Section 6.2, it was placed at the output of the preamplifier, which is a189

more realistic scenario.190

6.1. Results with simulated pulses and noise191

In this test, a set of triangular, trapezoidal and cusp-like pulses of random heights and without noise were192

created (X∗). Then, white, brownian and 1/f noises were added to these pulses to yield X. These pulses193

were filtered using the SVD-filtering method to verify how the SNR was improved. The detection chain194

scheme was detector→shaper→filter, consequently X are the pulses at the output of the shaper. Despite195

that the brownian noise is generated mainly at the detector, we suppose that both noise types are generated196

before the filtering for comparison purposes.197

Two examples of filtering using SVD-filtering are shown in Figure 2 and 3. The length of all the pulses of198

these two figures are l = 100 and the number of learning pulses were n = 3. For all cases, H was transformed199

to H1. However, for this concrete experiment, similar results were obtained with both H and H1.200

The noise indexes Fv and Fi defined on (21) and (22), respectively are listed on Table 1. In this Table,201

the noise indexes for a generic low-pass filter were also added for comparison purposes. The transfer function202

of this filter in the z-domain is203

h(z) =
1

5

(
1 + z−1 + z−2 + z−3 + z−4

)
(23)

For this filter, the filtering matrix is not an orthogonal matrix but a Toeplitz matrix, as explained in204

Section 2. Therefore, to calculate the noise indexes, Eq. (14, 15) had to be used instead of (21, 22).205

Table 1: Noise indexes value for the tests shapers and for a generic FIR low-pass filter for s = k.

Shaper Fv Fi

Triangular 0.030 0.748

Trapezoidal 0.030 0.840

Cusp-like 0.030 0.694

Low-pass 0.196 0.972
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Figure 2: Example of white noise filtering for a triangular, trapezoidal and cusp-like pulse. The green pulse is the original one

without noise X
∗ whose amplitude is equal to 1, the blue pulse is the input with noise X and the red pulse is the filtered one

Y. The panels below show a detailed view of the peak of the above panels.

When s < n, Fv remains constant but Fi changes. These changes are illustrated in Figure 4. It can seen206

that Fi oscillates around the values given in Table 1 because Fi is proportional to the squared area of the207

pulse.208

It can observed that Fv is lowered to a constant value n/l, which is independent of the pulse shape, as209

predicted in (21), whereas Fi indicates that the brownian noise is harder to filter using this method. The210

low-pass filter gives worse results in both indexes than the other filters.211

These two indexes support the assessment that the SVD-filtering filters noise in a more efficient way than212

FIR filters. However, when the pulses from the particle detector are processed using Pulse Height Analysis213

(PHA), a more realistic way to obtain the system resolution is to measure the relative error Δ of each pulse214

x contained in X, defined as215

Δ = mean

(
|max (x) −max (x∗)|

max(x∗)

)
(24)

where mean stands for the mean value of every pulse contained in X. In the case of trapezoidal shaping, the216

maximum value of the pulse is the mean value of its plateau. To calculate this mean value, the number of217

filtered pulses were k = 200. Using this method instead of the one explained in Section 5 we obtain similar218
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Figure 3: Example of brownian noise filtering for a triangular, trapezoidal and cusp-like pulse. The green pulse is the original

one without noise X
∗ whose amplitude is equal to 1, the blue pulse is the input with noise X and the red pulse is the filtered

one Y. The panels below show a detailed view of the peak of the above panels.

0 20 40 60 80 100
0.65

0.7

0.75

0.8

0.85

0.9

s

F

Trapezoidal

Triangular

Cusp-like

i

Figure 4: Fi vs s for trapezoidal (upper line), triangular, and cusp-like (lower line) for l = 100.

results. They are shown in Figure 5, 6 and 7 for white, 1/f and brownian noise, respectively. The straight219

lines indicate pulses with l = 100 whereas the dotted lines indicate pulses with l = 10. The V matrices were220

calculated using n = 1, n = 10 and n = 100 training pulses (in red, green and blue, respectively). These221

figures also includes the low-pass filtering (depicted in black for comparison) defined in Eq. (23).222

The blue (n = 100) dotted (l = 10) line does not appear in these figures because n is greater than l and,223

according to VV� = I it is not possible. The black dotted line is not depicted in any figure because the224
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filter of (23) lowers the height of the pulses with length (l = 10). In fact, the error value defined in (24) is225

approximately one order of magnitude higher than the others.226

Figure 5: Level of white noise (in arbitrary units) vs. relative error (in percentage) for triangular, trapezoidal and cusp-like

pulses.

Figure 6: Level of 1/f noise (in arbitrary units) vs. relative error (in percentage) for triangular, trapezoidal and cusp-like

pulses.

Figure 7: Level of brownian noise (in arbitrary units) vs. relative error (in percentage) for triangular, trapezoidal and cusp-like

pulses.
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These figures confirm that the pulse length is inversely proportional to the white noise effect, proportional227

to the brownian noise effect and independent from the 1/f noise effect, in accordance with Section 5 and228

[9, 11, 12]. Likewise, it can be seen that brownian noise has more impact on the SVD-filtering than white229

noise, which were predicted by Eq. (21, 22).230

It can be seen that this method filters the noise efficiently. In fact, when a high noise level is present,231

the key issue is to establish a correct threshold algorithm such as the one presented in [15, 16].232

6.2. Results with pulses from a neutron monitor233

Finally, a test to check the proposed filtering was performed. The main objective of this test was to234

obtain similar results to those obtained in the experiments done without SVD filtering.235

This test was performed in the Castilla-La Mancha Neutron Monitor (CaLMa) located in Guadalajara,236

Spain. This instrument consists of 15 proportional gas counter tubes. More information about features,237

setup and results of this instrument can be found in [17]. In both the cited experiment and the present test,238

an LND206 tube connected to a Canberra ACHNA98 preamplifier was used.239

The raw data fed out from the preamplifier was digitized using a Data Acquisition system (DAQ) at240

sampling period of Ts = 20 ns and storing it in a PC. Pulses stored in a text file can be used multiple times241

without recapturing new data. In addition, it ensures that possible changes in the obtained results during242

the test are exclusively due to digital pulse processing. The total raw data length was of 46105 pulses ×243

1002 samples per pulse (i.e. l = 1002) captured during over 5 hours (from 10:20 UTC to 15:23 UTC on244

November, 16th 2018). To separate the input pulses, a trigger threshold of 1 V without any previous digital245

filtering was used.246

A difference with the previous test is that the training pulses are obtained from the same source than the247

test pulses. Thus, a conclusion obtained from this is that the more noise the training signal has, the more248

pulses are required to reduce the noise, the larger is V, and therefore more computing time is necessary249

when processing a pulse. For this reason, a trade-off between learning pulses and computation time was250

carried out and finally n = 100 and s = 10 were used. In Figure 9, the output of one pulse processed with251

the SVD-filter compared to raw pulses and a low-pass FIR filter are shown. Note from this figure that252

the low-pass filtering can remove the high frequency components which prevents the peak from reaching its253

maximum. Therefore, altering the histogram.254

In Figure 9, the output of six pulses processed with the same SVD-filter are shown. We can see that,255

regardless of the shape of the pulses, the pulses are correctly filtered.256

Since Eq. (24) cannot be used to evaluate the obtained results, because the value of X∗ is not known,257

the filter quality was measured using the Full Width at Half Maximum (FWHM) which is defined as the258

width of the distribution at a level that is just half the maximum value of the peak divided by the location259

of the peak maximum [1].260
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Figure 8: Example of pulse filtering. The blue pulse is the original unfiltered, the red pulse is the same pulse filtered with

a low-pass filter such as (23) with order 10, the green pulse is the pulse filtered with the SVD method setting s = 10. The

bottom panel shows a detailed view of the one above.
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Figure 9: Example of pulse filtering on the neutron monitor. Left: Pulses from the neutron monitor without filtering. Right:

Pulses filtered with the SVD-filter.

In Figure 10, an example of histogram is shown. To evaluate the results, in all the tests the FWHM261

of the pulse height histograms were similar for three cases: (a) pulses unfiltered; (b) pulses filtered with262
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a low-pass filter whose response function in z-domain is (23); (c) filtered pulse using SVD-filtering. The263

obtained FWHM was 0.0370, 0.0340 and 0.0375, respectively. We can observe that the FWHM obtained264

with SVD-filtering is slightly lower than that of unprocessed pulses. On the contrary, as it was advanced,265

the low-pass filter reduces the height of the pulse, lowering its FWHM.266
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Figure 10: Histogram obtained using different filtering methods. The blue pulse is the original one unfiltered, the red pulse

is the same pulse filtered with a low-pass filter of order 10, the green pulse is the pulse filtered with the SVD method setting

s = 800. The panel below show a detailed view of the peaks.

Additional experiments showed that as s decreases, the filtered pulses (Fig. 9) are smoother. However,267

a decrease in the FWHM value begins to be noticed. Thus, it can be concluded that a good filtering not268

always implies a significant reduction of the FWHM. Moreover, for this concrete experiment, oscillations on269

the FWHM were detected for small variations of either s and l.270

To finish, it has been seen from the observations that this method does not work properly with pile-up271

pulses. This fact has been addressed also in previous works such as [3].272

7. Conclusions and future work273

A novel filtering technique has been presented in this article. This technique is a time-variant convolution274

calculated using matrices. These matrices are obtained from SVD and provides a filtering quality that often275

improves that of traditional filters. This method filters noise as traditional filters do, that is, the length of276
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the pulse is proportional to the brownian noise and inversely proportional to the white noise. Despite being277

less susceptible to white noise, it is more susceptible to brownian noise. Simulation and tests with pulses278

coming from a neutron monitor were performed to evaluate its performance. The constraint of this method279

is that the number of pulses to calculate the V used to filter pulses must be lower that the length in cycles of280

a single pulse. Besides, when the pulses used to calculate V are noisy, additional training pulses are needed,281

increasing the computation time. Noise indexes measurement supports the assessment that the SVD-filtering282

filters noise in more an efficient way than FIR filters. Furthermore, practical tests demonstrate that lowering283

the value of s (number of eigenvalues) improves the FWHM. With all this, this method is relatively easy to284

implement (just matrix multiplication and a threshold mechanism are necessary) and therefore suitable for285

particle detection spectroscopy.286

As future work, alternative linear and non-linear techniques will be implemented to substitute the SVD287

factorization method used to find out the basis.288
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