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Abstract. For complex projective smooth surface X, let M be the coarse moduli scheme of rank-

two stable sheaves with �xed Chern classes. Grasping the birational structure of M , for example its

Kodaira dimension, is a fundamental problem. However, in the case where κ(X) > 0, the study of

this problem has not necessarily been active in recent years. In this article we survey the study of

this problem, especially for the case where κ(X) = 1 and c1 = 0. We will also survey some research

on the structure of singularities of M , and a minimal model program of M . While explaining

motivations, we raise several unsolved problems.
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1 Overview of singularities and Kodaira dimension of moduli of sheaves on elliptic surfaces

with c1 = 0

For a complex projective smooth surface X and an ample line bundle H on it, there is the coarse

moduli scheme M = MH(v) of rank-two H-stable sheaves with �xed Chern classes v = (2, c1, c2), and

the coarse moduli scheme M̄ = M̄H(v) of S-equivalence classes of rank-two H-semistable sheaves with

�xed Chern classes v by [4].

Problem 1.1. ([16, Question.1.1]) How is the birational structure of M , for example its Kodaira dimen-

sion κ(M)?

This problem has been actively studied when κ(X) = −∞, 0. When κ(X) = 2, J. Li's work [11] is well

known. [5, Section 11] is an excellent summary for the birational structure of M .

In this section, we consider the case where κ(X) = 1 and X is a minimal surface. In this case, X is

an elliptic surface, that is, there is a �bration morphism π : X → C to a curve C such that its general

�bers are elliptic. We denote the number of multiple �bers of π by Λ(X), d = χ(OX), and the �ber class

of π by f ∈ Num(X). For v = (2, c1, c2), we suppose that H is v-suitable ([3, De�nition 3.1.]). Roughly

speaking, a v-suitable ample line bundle H is not separated from f by any wall of type v ([3, De�nition

2.1.]) in the nef cone of X. When c1 · f is odd, Friedman's work is well known ([3, Theorem 3.14], [17]).
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It states that MH(v) is birationally equivalent to a symmetric product of the Jacobian surface Je+1(X)

when X is simply connected elliptic surface with at most two multiple �bers.

From here we further assume that c1 = 0. The reasons for the major di�erences between these two

cases are as follows. In this case C = P1, and we have the generic �ber Xη over η = Spec k(P1). Let E

be an H-stable sheaf on X. It induces a vector bundle Eη on Xη. Thanks to the suitability of H, Eη is

stable if c1 · f is odd. On the other hand, Eη is semi-stable but not stable if c1 = 0.

Here, we recall a few words. Let V be a projective normal variety such that KV is Q-Cartier. The

K-dimension κ(K,V ) is de�ned to be

max{dimΦ|mKV | : V 99K |mKV |
∣∣ m ∈ N,mKV is Cartier and h0(mKV ) ̸= 0}.

The Kodaira dimension κ(V ) is κ(KṼ , Ṽ ), where Ṽ is a smooth complete variety birationally equivalent

to V . κ(V ) is a birational invariant. If V has only canonical singularities, then κ(K,V ) and κ(V ) are

equal. For the de�nition of canonical singularities, refer to [6, Def. 6.2.4.] for example.

Now we denote MH((2, 0, c2)) =M(c2) =M . Friedman showed the following.

Theorem 1.2. ([2, Sect. 7]) Suppose X is generic and c2 > max(2(1+ pg), 2pg(X)+ (2/3)Λ(X)). Then

there is such a dense open set M0 of M(c2) as follows. M0 is contained in the good locus Mgd of M(c2)

de�ned by

Mgd =
{
[E] ∈M(c2)

∣∣ ext2(E,E)0 = 0
}
.

There is a morphism ψ : M0 → P2c2−2pg−1 such that the general �ber of ψ is isomorphic to Pic0(C),

where C is some curve.

The map ψ in Theorem 1.2 and the prulicanonical maps of M(c2) are pretty similar:

Proposition 1.3. ([16, Cor.3.5.]) ψ and the pluricanonical map Φ : M(c2) 99K PN are coincident up

to a quasi-�nite map. In particular, dim(ψ) = 2c2 − 2pg − 1 = {dimM + 1}/2 equals the K-dimension

κ(K, M̄(c2)).

Thus, we can know the Kodaira dimension κ(M(c2)) if M(c2) is projective (for example, when c2 is

odd) and if M(c2) admits only canonical singularities.

Problem 1.4. Are all singularities of M(c2) canonical or not?

Here we recall a classical and fundamental fact in the deformation theory of sheaves from [10]. If

E is a singular point of M(c2), then for b = dimHom(E,E(KX))◦ ̸= 0 and D = dimExt1(E,E) −
dimHom(E,E(KX))◦, which is the expected dimension of M(c2), we have

O∧
M,E ≃ C[[t1, · · · , tD+b]]/(F1, . . . , Fb), (1)

where Fi is a power series starting from degree-two terms.

Any sheaf E in M(c2) induces a rank-two vector bundle Eη with degree 0 on the generic �ber Xη,

where η = Spec(k(P1)). From [2, Fact 2.11.], this can be classi�ed into three cases:

Case I : Eη has no sub line bundle with �ber degree 0.

Case II : Eη has a sub line bundle with �ber degree 0, but Eη is not decomposable.

Case III : Eη is decomposable into line bundles with �ber degree 0.

In Case I, we have the following theorem. In the proof, we use a su�cient condition for singularities to

be canonical [16, Theorem 4.1.].

Theorem 1.5. ([16, Thm. 1.3.]) Suppose that E is a singular point of M(c2) applying to Case I. If

7(d+ 2)/4 ≥ Λ(X) or 2 ≥ Λ(X), then the following holds:

14 Kimiko YAMADA



(1) Let G be any nonzero C-linear combination of F1, · · ·Fb in (1) and we indicate G as

G = t21 + · · ·+ t2R +O(3), (2)

where O(3) are terms whose degrees are more than 2, and R is an integer depending on G. Then

R ≥ 2b+ 1.

(2) E is a canonical singularity of M(c2).

Moreover, there actually exist singularities meeting these conditions on M(c2) if c2 ≫ 0.

As a result, we can know κ(M(c2)) in some situation where the structure of X is rather simple:

Theorem 1.6. ([16, Thm. 1.6.]) We suppose that every �ber of X → P1 is irreducible. Also we suppose

that X has just two multiple �bers with multiplicities m1 = 2 and m2 = m ≥ 3, and d = χ(OX) = 1.

Then all singularities of M apply to Case I. As a result, all singularities of M are always canonical

singularities from Theorem 1.5. Thus the Kodaira dimension κ(M) equals to κ(K,M) = 2c2 − 2pg − 1 =

(dimM(c2) + 1)/2 from Proposition 1.3.

On the other hand, there are cases where it is not possible to know whether M(c2) has only canonical

singularities or not only from the evaluation of the second-order terms in the de�ning equation:

Theorem 1.7. ([16, Thm.1.4.]) There is an example of an elliptic surface X satisfying the following.

For every obstructed sheaf E in M(c2), (M(c2), E) is always a hypersurface singularity, and so

O∧
M,E ≃ C[[t1, · · · , tD+1]]/(F ), (3)

where F = t21 + · · · + t2R + O(3). There actually exist locally-free obstructed stable sheaves of Case

II satisfying R = 1 in (2) for every c2 ≫ 0. In this case, we cannot judge if (M,E) is a canonical

singularity or not only from the second-order terms in the de�ning equation from [6, Example 7.4.2.,

Proposition 5.3.12.].

2 Problems to be solved in the future �Singularities and Kodaira dimension�

Ongoingly, we suppose that κ(X) = 1 and c1 = 0 in this section. We posed the problem of �nding the

Kodaira dimension of M in Problem 1.1. The Kodaira dimension of M was obtained by Theorem 1.6

because we were able to show by Theorem 1.5 that all singularities of M are canonical. In this case, the

problem was settled by the evaluation of the second-order terms in the de�ning equation of the moduli

scheme. On the other hand, from Theorem 1.7, it may not be known from the second-order terms alone

whether the singularity of M is canonical or not. Therefore the following problem can be raised.

Problem 2.1. Let E be a singularity of the moduli space of stable sheaves on surfaces. Suppose that

we can not judge whether it is a canonical singularity or not only from the second-order terms in the

de�ning equation. Is there a way to evaluate third order or higher terms in a de�ning equation? By using

this method, can we judge it is a canonical singularity or not?

We can examine the degree-two part of the de�ning equation of the moduli space from linear map

between Ext-modules of sheaves ([10]. cf. [16, Fact 2.2.]). However, examining terms of third order or

higher would be more di�cult than that. Some related keywords include Massey product ([10]) and DG

algebra RHom•(E,E) (See e.g. [1], [7, p.3]).

In building a theory using moduli spaces, one may successfully avoid facing singularities at the front.

Thereby it seems worth considering not only Problem 2.1, but also the following problem.

Problem 2.2. Can we �nd a way to evaluate the Kodaira dimension κ(M) without necessarily facing

singularities of M?
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As for this direction, there is a work by J. Li [11]. In this paper, it is shown that M is of general type

when the base surface X is of general type, pg(X) ̸= 0, c2 ≫ 0 and dim(M) is an even number. Can we

come up with some anwer for Problem 2.2 in the above-mentioned case where κ(X) = 1 and c1 = 0?

3 Problems to be solved in the future �Minimal model program�

Next, for a normal projective variety V such that KV is Q-Cartier and the singularities of V are

log-terminal, the minimal model program (MMP) of V is proposed and researched. (For the de�nition

of log-terminal singularities, refer to [6, De�nition 5.2.7.]. We remark that canonical singularities are

log-terminal.) Let us describe a very rough idea of what the MMP of V is. If the Kodaira dimension

κ(V ) is positive, we can contract an extremal ray of V to get a small contraction or �ip. After performing

these birational transformations �nite times, we obtain a minimal model V ′ of V , that is, KV ′ becomes

nef, and all singularities of V ′ are log-terminal. For a detailed explanation, see for example [9] and [12],

where Flowchart 3-1-15 is very useful.

De�nition 3.1. Let f :W → Y be a birational proper morphism such that KW is Q-Cartier and −KW

is f -ample, the codimension of the exceptional set Ex(f) of f is more than 1, and the relative Picard

number of f is 1. We say a birational proper morphism f+ : W+ → Y is a �ip of f if (1) KW+
is

Q-Cartier, (2) KW+ is f+-ample, (3) the codimension of the exceptional set Ex(f+) is more than 1, and

(4) the relative Picard number of f+ is 1.

From here, we suppose that κ(X) > 0 and that X is a minimal surface, and consider the moduli of

stable sheaves. In this case, KX is contained in the closure of the ample cone Amp(X) in Num(X)⊗ R.
We have the following theorem on the birational structure of the moduli scheme M(H) of H-stable

sheaves of type v, and the moduli scheme M̄(H) of S-equilavence classes of H-semistable sheaves of type

v.

Theorem 3.2 ([14], [15]). Suppose c2 is su�ciently large.

(1) Let H and H ′ be ample line bundles on X devided by just one v-wall W . Assume that KX does not

lie in W , and that KX and H ′ lie in the same side with respect to W . For a ∈ (0, 1), we can de�ne

a-stability of sheaves on X using H and H ′, and there is a moduli scheme M(a) of a-stable sheaves

of type v, and a moduli scheme M̄(a) of S-equivalence classes of a-semistable sheaves of type v. The

wall-crossing problem of a-stability induces the sequences of �ips in the sence of De�nition 3.1

M(H) =M(a0) 99KM(a1) 99K · · · 99KM(aN−1) 99KM(aN ) =M(H ′), and

M̄(H) = M̄(a0) 99K M̄(a1) 99K · · · 99K M̄(aN−1) 99K M̄(aN ) = M̄(H ′)

in a moduli-theoretic way.

(2) When H varies in Amp(X) and gets closer to KX , after crossing �nitely many v-walls, it reaches an

ample line bundle H̃ such that no v-wall devides KX and H̃. Then the canonical class KM̄(H̃) of M̄(H̃)

becomes nef.

Thus one can regard this natural process described in a moduli-theoretic way as an analogy of the

minimal model program of M(H). However it is unknown whether M(H̃) admits only log-terminal

singularities in general. Thereby we should notice that we need to verify that all singularities of M(H̃)

are log-terminal, in order to say that this sequence is a genuine MMP ofM(H). Here Problem 1.4 appears

again. From Theorem 3.2, we can raise the following problem.

Problem 3.3. We pick an ample line bundle H on X and move it closer to KX , then we obtain an

analogy of MMP of M(H) by Theorem 3.2.

(1) Can we investigate how M(H) is improved by this moduli-theoretic sequence of �ips? Especially, the
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case where M(H) admits only log-terminal singularities is more desirable, because the above-mentioned

birational maps give the genuine MMP in this case. Also it is more desirable that the structure of the

starting point M(H) is easy to understand.

(2) It can be interesting if one starts H near KX and gradually moves H away from KX , and one observes

�ips occuring from wall-crossing as in Theorem 3.2.

Remark 3.4. We remark that �ips in Theorem 3.2 are also Thaddeus �ips, that are birational transfor-

mations appearing from the variation of GIT quotients and linearizations ([13]). Also, we remark that

Thaddeus �ips are not necessarily �ips in the sense of De�nition 3.1 in general.
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