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Abstract

Themodel based systems engineering (MBSE) approach describes a system using con-

sistent views to provide a holistic model as complete as possible.MBSEmethodologies

endwith the physical architecture of the system, but a physical model is clearly incom-

plete without the study of its associated physical laws and phenomena related to the

whole system or its parts. However, the computational demands could be excessive

even for modest projects. Dimensional analysis (DA) is common in fluid dynamics and

chemical engineering, but its application to systems engineering is still limited. We

describe an engineeringmethodological process, which incorporates DA as a powerful

tool to understand the physical constraints of the system without the burden of com-

plex analytical or numerical calculations.Adetailedexampledescribingamicroantenna

is presented showing the benefits of this approach. The selected example describes a

problem rarely covered in modern expositions of DA in order to show the wide benefit

of these techniques. The information provided by this analysis is very useful to select

the best physically realizable architectures, testing design, and conduct trade-off stud-

ies. The complexity of modern systems and systems of systems demands new testing

procedures in order to comply with increasingly demanding requirements and regu-

lations. This can be accomplished through research in new DA methods. Finally, this

article serves as a fairly comprehensive guide to the use of DA in the context of MBSE,

detailing its strengths, limitations, and controversial issues.

KEYWORDS

dimensional analysis, MBSE, physical constraints

1 INTRODUCTION

Systems engineering as a branch of engineering is a holistic and

multidisciplinary approach for the design, realization, technical man-

agement, operations, and retirement of a system, where a system

is defined as the combination of elements that function together to

produce the capability required tomeet a need.1

Nowadays the paradigm applicable in systems engineering is model

based systems engineering (MBSE) where the model or abstract
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representation of the system is considered as the single source of truth

instead of a collection of documents and diagrams as it was the current

situation in traditional systems engineering.

To develop systems using MBSE, we have to consider three

main aspects: a methodological process, methods or best practices

associated to the MBSE process, and engineering tools supporting

standard notations to represent the systemmodel and its views.

Here we use integrated systems engineering and pipelines of

processes in object oriented architectures (ISE&PPOOA),2 as the
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F IGURE 1 Requirements and design loops in the SE process

methodology for the development of systems which the main deliv-

erables are those related to the concept of operations, requirements,

and architecture. So the system model developed with ISE&PPOOA

has three main dimensions: the mission, the system, and the software.

For each of these dimensions some views of the systemmodel are pro-

posed. Particularly for the system dimension of the model two views

with their corresponding diagrams are required. One is the behavioral

view of the system representing its functions, interfaces, and the func-

tional flows. Theother is the structural viewof the system representing

its hierarchies of building blocks and how these building blocks inter-

act using interfaces represented as ports and connectors in SysML

notation.3

The ISE&PPOOA MBSE process has its foundations on a systems

engineering principle borrowed from building architecture, as stated

by architect Louis Sullivan4: “Form follows function,” that means that

we create the solution physical architecture considering the allocation

of the functions to be provided by the system to the physical building

blocks that implement them, see design loop of Figure 1. This allocation

of functions to physical blocks is applied in document-centric tradi-

tional systems engineering and in some current MBSE methodologies

as well.

The main outcome of the above process is a physical architecture

that allocates the functions obtained by previous functional analysis.

This approach needs some additional guidelines describing the con-

straints that apply to thephysical buildingblocksof the system. Inmany

cases, these constraints are due to complex physical phenomena in a

real world context. In these cases, where the equations describing such

phenomenaarenot clearly knownor areprohibitively complex, reason-

ing based on general principles, like the physical laws of mass, energy,

and momentum conservation, are applicable. However, in many situ-

ations, even the application of general conservation laws is not clear

or provides little information. This is common in fast evolving fields

which force the engineers to research new technologies even without

a complete theoretical framework. A classical example would be radio

engineering in the first half of the 20th century and a modern example

could be quantum computing, without forgetting the extremely impor-

tant but unsolved problem of turbulence in fluid and plasma dynamics,

where DA particularly shines. MBSE can offer only themodeling of the

main functional and physical interfaces. Engineers can identify all or

many physical magnitudes related to the system, but the mathemati-

cal equations and boundary conditions constraining it and how to solve

them is not provided by systems engineeringmethods and tools.MBSE

notations such as SysML standard provide the way to consider these

equations for the physical blocks of the system. SysML provides con-

straint blocks and parametric diagrams for modeling the mathematical

equations but nomethod is supported to obtain these equations.

Here we propose an approach that uses dimensional analysis (DA)

for the exploration of the mathematical equations, scaling properties,

and orders of magnitude of the physical phenomena related either to

the system or its parts. We use the inputs and outputs identified in the

functional interfaces described in the functional architecture as inputs

of the DA process. The approach is summarized here and described

withmore detail in the following sections.

This approach is not new, because DA has a long history of appli-

cations from the times of Rayleigh5 to the present, but the steps of a

systematic and smooth integration withMBSE has not been described,

as far as we know. In a more general context, DA can be considered

the first and most abstract step in the new research area of System-

level Modeling,6 which uses advanced mathematical techniques and

physical analogies in order to reduce the complexity of the physical

description of systems, while preserving their most important features

and behavior. This mathematical reduction of the system complexity is
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MARTÍNEZ-ROJAS AND FERNÁNDEZ-SÁNCHEZ 73

not trivial at all and known methods are only useful as far as the phys-

ical equations and the relevant boundary conditions are completely

known. In this regard, DA is as useful or more than ever.

In order to properly use DA in a systems context, we must select

the variables that define the physical phenomena associated with the

lowest level of the system functional hierarchy, making the following

decisions:

- If analytical solutions exist, use the variables of these solutions.

- If analytical solutions are not possible, but a complete mathemati-

cal description of the problem exists in form of equations, use the

variables of the equations.

- If a complete mathematical model is not known, but partial results

exist, use these variables and complete them using experimental

data.

- If even a partial model is not known, use physical analogies, mathe-

matical exploratory techniques, and functional interfaces in order to

formulate an approximate model. DA as an exploratory tool can be

improved in a number of ways. For example, directional and angular

information in vector or matrix quantities can be used to refine the

equations in greater detail.7,8 Unfortunately, this technique, which

increases the number of dimensions with spatial information and

permits exploring further the form of the equations terms is only

valid in linear systems.

After identifying the physical dimensions and measurement units

of the model variables, a dimensional matrix is produced which con-

tains the exponents of every physical dimension (length, mass, time,

electrical current, temperature, etc.) for each physical or chemical sys-

tem variable. Finally, this matrix is reduced using the Buckingham Pi

theorem. See, for example, Barenblatt9 for a mathematical discussion

and complete proof and Lemons10 for a very good explanation with

examples. In essence, this theorem permits the reduction of the model

variables as much as the difference between the number of initial vari-

ables and the number of fundamental physical dimensions involved.

The new variables are dimensionless and reflect the underlying scaling

properties of the system. Thus, themathematical model of the physical

phenomena is redefined using the obtained dimensionless quantities

in a way such that essential properties of the studied system are now

obvious. One apparent limitation of DA is that the selection of dimen-

sionless quantities is not unique. However, the clever exploration of

several dimensionless combinations can provide important physical

insights. The correct selection of the best dimensionless numbers is an

art in itself, because many combinations are possible, and demand a

deep knowledge of the problem. Fortunately, in fluidmechanics, chem-

istry and thermodynamics, many dimensionless numbers are already

known and their application is fairly evident. In a fundamental sense,

the equations obtained bymeans of DA correspond to the long term or

stationary behavior of the system, providing important clues about the

limiting system properties.

Usually, DA is not able to reduce the system complexity to the point

that all equations are explicit. This is not as bad as it seems, because

this result implies that complex system behaviors are expected, like

intermediate asymptotics in theBarenblatt sense.11 In such cases, very

interesting emergent properties can happen, like fractal structures,

self-organization, chaos, and irreversibility. Bejan offers an alternative

perspective which permits the unification of the mathematical view of

Barenblatt with the modern thermodynamic approach based on the

profound and powerful constructal theory,12 which deserves to be

muchmoreknown in the systemsengineering community. For example,

constructal theory, combinedwithDA, hasbeenused toexplainpattern

formationandnatural design in several natural systems, including living

beings, arguably themost complex.13,14 But the theory is not restricted

to natural phenomena and its possible applications to engineering are

manifold.15–17 Thus, in order to reduce the uncertainty of physical

models, the problem should be simplified using reasonable hypotheses,

based on fundamental laws and theories, experimental results, analo-

gies, or numerical simulations. However, all these approaches should

be guided by the previous DA study.

The main benefits of this DA approach are described later illustrat-

ing it with an example of application of a microantenna for wireless

power transfer to a robotic device inside the human body.

The paper is organized into four sections beyond this introduction.

Section 2 describes briefly the system architecture views proposed by

ISE&PPOOA. Section 3 describes the physical and mathematical foun-

dations of DA. Section 4 explains the DA process main steps. Section 5

describes the application of the DA process to the transfer of energy

to a miniature wireless micro-robotic system for micro-surgery and in

vivo interventions. We follow up with a section of lessons learned and

conclusions.

2 SYSTEM ARCHITECTURE VIEWS IN
ISE&PPOOA

The ISE&PPOOA MBSE methodology proposes two views of the

architecture of the modeled system. These views are the functional

architecture and the physical architecture. Below, we will describe

briefly each of them. A detailed description can be found in the

references.2

The functional architecture represents using diverse SysML dia-

grams and tables the system functions, understanding a function as

a transformation to be performed by the system that receives mass,

energy, or signals and generates new ones or transforms them.

The functional architecture (Figure 2) represents the functional

hierarchy using a SysML block definition diagram. The N2 chart is a

table used as an interface description where the main functional inter-

faces are identified. A textual description of the system functions is

provided as well. The functional hierarchy is complementedwith activ-

ity diagrams for the main system functional flows to represent the

system behavior.

The physical architecture or architecture of the solution (Figure 3)

is represented by the systemdecomposition into subsystems and parts

using a SysML block definition diagram. This diagram is complemented

with SysML internal block diagrams representing the system physical

blocks with either logical or physical connectors for each subsystem

identified, and activity and state diagrams for behavioral description

as needed. A tabular description of the system parts may be provided
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74 MARTÍNEZ-ROJAS AND FERNÁNDEZ-SÁNCHEZ

F IGURE 2 Functional architecture diagrams and tables

F IGURE 3 Physical architecture diagrams and table
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MARTÍNEZ-ROJAS AND FERNÁNDEZ-SÁNCHEZ 75

as well. Functional allocation may be represented either in tabular

form or at the system blocks, allocation by definition, or as partitions

in the activity diagrams, allocation by usage, represented using SysML

notation.

Besides the functional and physical blocks used in the system archi-

tecture described above, the SysML constraint block encapsulates a

constraint on the properties of a physical block of the system. So

constraint blocks are used to represent the equations, equalities, and

correlations related here to the physical phenomena associated to the

system or one of its parts. Engineers can compose complex constraint

blocks from existing constraint blocks on a block definition diagram.

These diagrams are used to define constraint blocks in a similar way to

which they are used to define the physical blocks of the system.

3 FOUNDATIONS OF DA

DA is a mathematically simple, but very powerful technique, to study

the complexity of a physical or chemical process. It is rooted in an

obvious, but deep principle: the laws of Physics cannot depend on

the units or system of measurement. An important consequence is:

the laws of Physics do not depend on the scale of the magnitudes

which describe a phenomenon when DA provides a complete solu-

tion of it. Thus, the only really meaningful quantities in Physics are

dimensionless numbers. In fact, even “dimensional” quantities are

measured as quotients of numbers with respect a standard and every

physical dimension can be made dimensionless by a suitable choice

with respect to other dimensions. Thus, the choice of base dimen-

sions is not unique and many different systems of units are possible,

making their definition a matter of convention, as can be easily seen

in the recent redefinition of the kilogram.18 All physical laws can be

put in dimensionless form and in certain natural systems of units

important physical constants are not only dimensionless but even

equal to 1. For some deep conceptual problems associated with the

definition of physical dimensions, see, for example.19,20 DA is related

with such important concepts as dimensional homogeneity of equa-

tions, symmetry, scaling, asymptotics, renormalization groups, and

geometric algebra.

One of the first things every physicist or engineer learns is that

both sides of a physical equation must have the same dimensions.

This is called “dimensional homogeneity” and seems a very easy task

to perform, but, actually, when complex partial differential equa-

tions and tensors are involved, or even more advanced mathematical

formulations are used, it can be a very complex task.

Symmetry is the conceptual core of contemporary Physics and per-

haps it’s most abstract foundation. Some prominent physicists think

that, in the end, Physics can be reduced to “the study of symmetry.”21

Symmetry is a kind of invariance under amathematical transformation

like translation, rotation, reflection, or scaling. As we have said, DA is

derived from a scaling symmetry.

Asymptotic analysis is the study of the limiting behavior of a math-

ematical, computational, or physical model. This limiting behavior

depends not only on the governing equations, but also on the initial

and boundary conditions.When a systemevolves to the pointwhere its

statedoesnot changeanymore,wehave the static or stationary asymp-

totic limit of the system. If the system is completely dependent on the

initial and boundary conditions during the first instants of its evolution,

we have another asymptotic limit, the exact opposite of the first one.

However, generally, themost interestingbehavior is precisely the inter-

mediate one, when the system still evolves, but it does not “remember”

its initial and boundary conditions.11 This reflects the scaling behavior

of the system under study. This intermediate asymptotic behavior per-

mits a panoramic view of the most important properties of the system,

without being lost in the details, “to see the forest and not the trees.”

Obviously, this approach has an enormous interest from the point of

view of systems engineering, because this is just the perspective which

is searched for. Most times, the intermediate asymptotic regime can-

not be found by DA alone, because the system exhibits more complex

scaling features, but DA is always the first step to analyze it, providing

crucial clues about the complexity of its behavior.

Very related with the concept of intermediate asymptotics are

renormalization groups. A detailed study can be seen in the work of

Goldenfeld et al.22 Renormalization group techniques allow the study

of a physical system at different scales, so that they are intimately

related with scaling symmetry, DA, and self-similarity.

Geometric algebra (GA) is a very general approach to the formula-

tion of mathematical physics also related to DA. An excellent source

to learn GA is the work of Doran et al.23 It represents one of the most

ambitious unification approaches to the concepts of Vector Analysis,

Algebra, andGeometry, allowing an intermediate perspective between

purely synthetic (axiomatic geometry) and purely analytic (coordinate

based geometry) formulations trying to preserve the advantages of

both approaches.

Sometimes, a clever combination of the election of variables of a

problem, its simplification hypotheses, and DA is enough to obtain the

complete mathematical dependence of the solution of the problem,

except some undefined constants of the order of unity in most cases.

The aim of physical theories is, in fact, to refine the value of these

constants and to provide a conceptual framework to understand the

mathematical formulation.

The most important result in DA is the Buckingham Pi theorem,

which says11: every physical equation with a certain number n of

physical variables, can be rewritten in terms of a set of p = n − k

dimensionless parameters π1, π2, . . . , πp constructed from the original

variables, where k is the number of physical dimensions involved. This

means that a physical problem, or any other which can be expressed

as a physical one, can reduce its dimensional complexity as much as

the number of the base quantities used to formulate the problem.

If the resulting number p = 1, then the dimensionless quantity can

be equated to a constant and the complete functional dependence

among the original variables can be obtained, even if the equations

of the problem are not known. However, most times the problem is

underdetermined after DA is applied and a full solution is not pos-

sible. Sometimes the number of dimensions can be increased using

spatial information, as previously commented, but this demands a care-

ful study of the possible nonlinearities of the system. Also alternative

formulations of the problem can result in more variables that seem

to increase the knowledge of the system and reduce the uncertainty
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of the equations. However, such reformulations, if possible, demand a

very cautious approach and great expertise in the use of DA.

As a famous example of the insights provided by DA and the sub-

tleties of its application, which permits the discovering of deep results,

we will summarize the Rayleigh problem explained in detail in Sedov

(pp. 41–43).24 Rayleigh used DA to attack the Boussinesq problem

of heat transfer from a body to a fluid flowing around it. He chose

length, time, temperature, heat, and mass as fundamental dimensions,

and the heat emitted by the body, the characteristic length of the body,

the velocity of the fluid far from the body, the temperature gradient

between the fluid and the body, the specific heat of the fluid, and the

coefficient of heat conduction of the fluid as variables.

He obtained a very compact mathematical dependence giving the

heat emitted by the body as a function of only one dimensionless num-

ber and the product of the rest of variables. However, this formulation

raised questions from other physicists, notably Riabouchinsky, who

objected that if temperature was interpreted as a mechanical vari-

able explained by kinetic theory, a less informative result was obtained.

This constituted a perplexing paradox.Howamore fundamentalmicro-

scopical explanation of Nature could give less information than a

phenomenological (macroscopic) one? There are very deep issues at

stake here.

Being brief, the solution involves an intelligent reflection about the

reducibility (scaling behavior) of macroscopic phenomena to micro-

scopic ones: “the whole is greater than the sum of its parts,” which

is the main statement of Systems Thinking. If viscosity of the fluid is

ignored, then heat transfer and kinetic energy can be decoupled and

this information can be used to simplify the problem, obtaining the sim-

pler Rayleigh equation. But, if viscosity is important, Riabouchinsky is

right and we must be content with a more complex, less informative

result.

Even with all its limitations, DA is so powerful, that it is one of the

few tools which allows us to explore uncharted territory in Physics,

Biology, and many other branches of Science. An extreme example is

this, at present there is not a successful theory of Quantum Gravity,

but DA arguments provide us important results and constraints about

its formulation via Planck Units25 and Black Hole Thermodynamics.26

DA is at the core of many important concepts in Physics, Mathemat-

ics, and other branches of Science. The most abstract formulation of

DA is via toric ideals,27 but we need not such powerful and abstract

formulations for systems analysis in general. This approach is cited

only as an example of the profound implications of DA in the study

of systems complexity paralleled by recent developments in the math-

ematical foundations of systems engineering derived from Category

Theory.28,29 In this way DA can be seen as an elementary application

of the theory of Lie groups and invariants, when the group is the scale

group defined by multiplication, reinforcing the unifying role of DA in

Mathematical Physics via de concept of scaling.

There are many classical and recent general references of the

application of DA and scaling to Physics, Mechanical Engineering,

Chemical Engineering, and Thermodynamics. The most relevant and

available are listed in Table 1 by area of application, although some

cover several areas, so that this is not an exclusive classification and

TABLE 1 Summary of literature about dimensional analysis by
domain of application

Dimensional analysis

application domain Reference

Astrophysics and cosmology Dolan26

Kurth30

Wesson25

Chemical engineering Dobre andMarcano31

Herschbach et al.32

Worstell33

Zlokarnik34

Control engineering Balaguer35

Brennan36

Differential equations Alhama et al.37

Petter Langtangen and Pedersen38

Sánchez Pérez et al.39

Experimental design,

similitude, andmodeling

Albrecht et al.40

Kline41

Kuneš42

Samarskii andMikhailov43

Szücs44

Westine et al.45

Fluidmechanics Islam46

Sposito47

Yarin48

Food processes Delaplace et al.49

Historical Macagno5

Mathematical foundations Atherton27

Curtis et al.50

Siano7,8

Mechanics Hutter and Jöhnk51

Sedov24

Tan52

Mechatronics Ewing53

Sell and Christophe54

Physical foundations and

general description

Anderson21

Bhaskar andNigam55

Bridgman56

Gattus and Karamitsos20

Gibbings57

Goldreich et al.58

Ipsen59

Lemons10

Simon et al.60

Szirtes61

Weisskopf62

Zohuri63,64

Production processes Miragliotta65

Scaling, asymptotic analysis,

and renormalization

Badii66

Barenblatt9

Barenblatt et al.11

Batterman67

Cercignani and Sattinger68

Goldenfeld22

Henriksen69

Lesne and Laguës70
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MARTÍNEZ-ROJAS AND FERNÁNDEZ-SÁNCHEZ 77

F IGURE 4 Main steps of ISE&PPOOA+DA study of a physical or chemical process

it is intended only as a general guide. Of course, many more books,

articles, and handbooks have more or less detailed descriptions of

DA, but we have to restrict our literature survey here to the most

directly related DA monographs for brevity sake. However, the use

of DA in Systems Engineering is much more limited and practically

reduced to control engineering35,36 and mechatronics.53,54 This is

surprising, because from a conceptual point of view, Systems Engineer-

ing can be understood essentially as the applied study of the scaling

behavior of manmade systems. The main aim of this paper is to fill

this gap.

4 PHASES OF DA IN THE CONTEXT OF
SYSTEMS ENGINEERING

The main advantage of DA in Systems Engineering is to reduce the

complexity of the model, to gain information about the behavior of

the system, and to find the mathematical functions connecting the

variables which physically constraint either the system or its parts,

represented as blocks in SysML notation.

We can see in Figure 4 the main steps of the application of DA to

Systems Engineering extending the ISE&PPOOA system architecting

process.

1. Select the process variables. Select the variables that define the phys-

ical or chemical problem associated with the lowest level of the

functional architecture, making the following decisions:

- If analytical solutions exist, use the variables of these solutions.

- If analytical solutions are not possible, but a completemathemat-

ical descriptionof theproblemexists in formof equations, use the

variables of the equations.

- If a complete mathematical model is not known, but partial

results exist, use these variables and complete the others using

experimental data.

- If a partial model is not known, use physical and mathematical

intuition and experience in order to formulate an approximate

model.

This is the most difficult step of all, coupled with the appropriate

simplifying hypothesis (step 8). A very detailed recent example

can be studied in thework of Alhama et al.37 Wewill solve later a
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78 MARTÍNEZ-ROJAS AND FERNÁNDEZ-SÁNCHEZ

new problem outside the traditional areas to show the power of

DAwith a system perspective.

a) Input: List of all variables and parameters involved in the

physical or chemical process.

b) Output: List of relevant variables and parameters.

Complete automation of this step would be desirable, but it is not

possible at present with the existing artificial intelligence algorithms.

Human ingenuity is necessary to reduce systems complexity and use

the best approximations. In fact, Physics has been proven to be unde-

cidable from a mathematical point of view, so computers can help to

deal with complexity, but only partially.71,72

2. Evaluate the use of either oriented or angular dimensions. Some dimen-

sions can be oriented, because they describe spatial information.

For example, length can be described in 3D space as three carte-

sian orientations: Lx, Ly, Lz. Study the possibility of using oriented

or angular dimensions to simplify the model further. However, this

step can be very subtle. For example, nonlinear equations like

Navier–Stokes do not allow DA operations with oriented quan-

tities, because nonlinearity destroys their direct comparison, but

their linearized approximations could use them. This points to the

important fact that fully developed nonlinear systems, like tur-

bulence, cannot be described in an asymptotic, stationary limit.

Another problem is the disputed status of angular quantities as

“dimensionless.” Many experts think, both from a conceptual and

practical point of view, that angular quantities have some kind of

“dimension.”19,73,74 Thebest formulationof this technique is Siano’s

Orientational Analysis.7,8

a) Input: Selected variables.

b) Output: Oriented variables (if possible and necessary).

3. Identify physical dimensions and measurement units of the variables.

Write all physical dimensions and measurement units of the model

variables. Measurement units are not needed for DA, but they are

very important from the practical point of view. Infamous disasters

due to mismatching of measurement units in both hardware and

software are well known. For example, the loss of theMars Climate

Orbiter.75

a) Input: Oriented variables (if possible and necessary).

b) Output: Physical dimensions andmeasurement units.

4. Create the dimensional matrix. Write the dimensional matrix using

the exponents of the physical dimensions for every variable as

matrix data. In fact, there are two general methods to perform

DA: the matrix based reduction and the Rayleigh method. Both are

equivalent and equally powerful. The Rayleigh method is very intu-

itive and simple, as can be seen, for example, in Lemons.10 However,

most recent publications use the matrix based approach, because

it seems more abstract in the context of linear algebra, which is

used to prove the BuckinghamPi theorem. In order to be consistent

with the literature, the matrix based approach is followed here, but

this does not imply any preference. Actually, the venerable Rayleigh

algorithm is more direct in most cases.

a) Input: Variables and their physical dimensions.

b) Output: Dimensional matrix.

5. Reduce the dimensional matrix. Reduce it using the Buckingham Pi

theorem and diagonalization techniques. A very powerful method

is explained in Atherton et al.,27 but in practice intuition and expe-

rience are used to obtain the most informative and physically

meaningful dimensionless numbers. Many of them are already tab-

ulated in areas like Fluid Dynamics or Chemical Engineering. Try

to check first if some of these dimensionless numbers suit your

problem.

a) Input: Dimensional matrix.

b) Output: Number of reduced variables.

6. Redefine the process model using dimensionless quantities. Once the

relevant dimensionless numbers have been obtained, the problem

is reformulated in terms of these new quantities. Nondimension-

alization of the differential equations that describe the system

physics is a very important step in any mathematical simulation

or modeling effort.37 Nondimensional quantities allow to estimate

the order of magnitude of each term in the equations, which

is an essential step for order reduction, simplification, numerical

approximations, linearization, and asymptotic approaches. Many

nondimensional quantities in fluid mechanics, chemical engineer-

ing, and thermodynamics are so important that they have special

names, usually their discover’s name, like the Reynolds number, for

example.

a) Input: Dimensional variables.

b) Output: Dimensionless quantities.

7. Establish the functional dependence between dimensionless quantities.

Calculate the mathematical functional dependence between the

relevant dimensionless numbers as accurately as possible. If DA is

enough to solve the problem, go to step 9. If not, go to step 8. If

even new simplifying hypothesis are not able to solve the problem,

then try more complex mathematical techniques like intermedi-

ate asymptotics, nondimensionalization of the governing equations

searching for symmetries and conserved quantities and approaches

based on Lie groups. However, some of these techniques are math-

ematically very advanced and too difficult for a seamless systems

engineering application, so that a physicist ormathematician should

be consulted if necessary. Even if these methods are not consid-

ered in its full potential for anengineeringproject, someexploration

should be beneficial before numerical simulation is used. Many

previously “untractable” problems, even for themostpowerful com-

puting resources, are now feasible thanks to discoveries based

on these advanced techniques. The previously cited research in

the recent area of systems-level modeling is very related to this

approach.6 If these mathematical studies are not successful, then

try to obtain relevant information through experiments or numeri-

cal simulations. Even if powerful computing resources are available,

DA should always used first as a checking reference, estimating

the order of magnitude of the variables as constraints. A direct

numerical simulation is not always the better approach, thus tra-

ditional best practices should always complement the numerical

efforts.

a) Input: Dimensionless quantities.

b) Output: Mathematical dependence of the selected dimensional

variables.
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MARTÍNEZ-ROJAS AND FERNÁNDEZ-SÁNCHEZ 79

8. Simplify themodel of the process. Reduce theuncertaintyof themodel

simplifying the problem with reasonable hypotheses and previous

knowledge or using experimental results, other analog models and

numerical simulations. This is one of the most difficult steps in the

whole study of the problem. Even if the problem is well known

and constrained, systems of interest are usually so complex that

simplifying hypothesis are unavoidable. Here, human ingenuity and

experience are irreplaceable.

9. Update physical architecture of the solution. Enhance the physical

architecture of the system adding the obtained constraint blocks

and using the results from DA and the order of magnitude estima-

tions of the approximatemodels.

TodayDA is less popular than years ago, when computational power

was lower, and it is generally restricted to fluid dynamics and related

fields, where it has passed the test of time with flying colors due to

the complexity of the phenomena and the lack of a definitive theory of

turbulence, one of the hardest problems in Physics. The same concern

is openly discussed by the relatively few DA experts that continue to

publish today,whoattribute this progressive oblivion to the conceptual

difficulty of its application and its lack of appeal in a digital environ-

ment. In this sense, the apparent ease of the mathematics involved in

most elementary descriptions of DA is very deceptive. See, for exam-

ple, the opinions of Alhama,37 Klein,76 or even Terence Tao,77 one of

the best mathematicians in the world.

5 EXAMPLE OF A REAL ISE&PPOOA + DA
APPLICATION

As a real application of the previously described method, we will use

it to design a patch microantenna for microwave energy harvesting

inside the human body. The main goal is to power a remote millime-

ter sizedmedical device inside an artery.78 The design of micromedical

devices are at the forefront of MEMS (micro-electro-mechanical sys-

tems) technology and demand a systems engineering approach from

thebeginning. So, this analysis represents anexcellent exampleof a real

complex research project.

Several energy sources are possible. Near infrared radiation, ultra-

sounds and microwaves are the most common options. A trade-off

analysis of these alternatives can be seen in our recent work.79 For

the present example, we have selected the microwave energy option

because it hasnot amechanical origin likemostpublishedDAexamples.

For the sake of brevity, the following figures represent the SysML

diagrams that represent partially the functional and physical break-

downs of the system. Figure 5 represents a SysML BDD diagram

showing the main functions of the system. For the purpose of DA we

are interested in representing the children functions of F3. These chil-

dren functions are represented as well using a SysML BDD shown in

Figure 6. Figure 7 is a BDD diagram representing the physical break-

downwhere themain subsystemsare identified. Figure8 is thephysical

breakdownof themainparts of the Internal Power andCommunication

subsystem. These diagrams represent only hierarchies. A description

of the interactions between the system parts is also a project deliver-

able and the SysML IBD is used for that purpose, but it is shown in the

references.80

We complement the above diagrams with a N2 chart for defining

the functional interfaces between the F3 children functions. The N2

chart for the functional architecture can be seen in Table 2. N2 chart

is a powerful schematic view of the interfaces.

Table 3 represents the allocation table of the F3 children func-

tions and the Internal Power and Communication subsystem parts. As

described in theSysML literature there are twokindsof allocation: allo-

cation by definition, used here, and allocation by usage. The allocation

table is a goodway to check if all functions are allocated to the solution

building blocks and all the solution building blocks implement some of

the functions identified in the functional architecture.

Theoutputs of the lowest level functions, identifiedby systemsengi-

neers, are the inputs of the DA in order to check if these outputs are

constrained by physical laws. In our case, the output of the F3.1 func-

tion is the electric energy delivered by the antenna. DA shows that this

must be embodied as electric current and voltage, constrained by the

mathematical dependence between electric current and the incident

electric field and the antenna parameters.

We select a circular patch antenna as a first physical approximation

to the functional problem to be analyzed by DA. In order to solve this

problem, we follow the previously described steps.

1. Select the process variables.

Input: List of all variables and parameters involved in the pro-

cess.

Output: List of relevant variables and parameters.

- Input: List of all variables, before any simplification.

- Radiation pattern: E (electric field, generally expressed in polar

coordinates).

- Gain:G

- Frequency: f

- Electric current: I

Geometric parameters of the patch antenna:

- Antenna radius: r

- Substrate thickness: zsub
- Superstrate thickness: zsup
- Conductor thickness: zc
- Ground plane thickness: zm
- Conductor conductivity: sc
- Substrate conductivity: ssub
- Superstrate conductivity: ssup
- Substrate permittivity: εsub
- Superstrate permittivity: εsup
- Position of the feed point: x, y

- Output: List of relevant variables (this can be defined later as a

refinement in step 8, “Simplify themodel of the process”).

* Radiation pattern: E (electric field in polar coordinates)

* Electric current: I

* Antenna radius: r
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80 MARTÍNEZ-ROJAS AND FERNÁNDEZ-SÁNCHEZ

TABLE 2 F3 functional N2

Microwave

energy Internal heat

Microwave

energy

F3.1. Receive

remote power

signal inside the

patient’s body.

Electric

energy

Electromagnetic

energy

F3.2.

Generate

internal

power.

Electric energy Electromagnetic

energy

F3.3. Regulate

internal system

power

consumption

and

distribution.

Electromagnetic

energy

Electric

energy

Electric

energy,

control data

(current and

voltage

values)

F3.4. Dissipate

heat produced

by internal

electronics and

electrical

devices.

Radiated heat

Heat F3.5. Minimize

direct transfer

of energy to

other internal

subsystems.

Heat F3.6. Minimize

coupling

between

internal

subsystems.

Stored electric

energy

Heat F3.7. Store

energy

inside the

internal

system.

TABLE 3 Allocation table

Internal

µwave
antenna

Internal

µwave
demodula-

tor

Internal

rectifier

Internal

voltage

converter

Internal

power

controller

Internal

thermal

manager

Internal

isolating

encapsula-

tion

Internal

electrical

ground

plates

Internal

Faraday

cages

Internal

battery

F3.1. X X

F3.2. X X

F3.3. X

F3.4. X

F3.5. X X X

F3.6. X X X

F3.7. X
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MARTÍNEZ-ROJAS AND FERNÁNDEZ-SÁNCHEZ 81

F IGURE 5 BDD of the functional architecture

F IGURE 6 Detailed BDD of the F3 subfunctions

* Substrate thickness: zsub

* Substrate permittivity: εsub

- Simplifying hypotheses, in order to make the problem tractable

without losing the essential system behavior:

* There are no superstrate.

* Conductor thickness is negligible.

* Ground plane thickness is negligible.

* Conductor is perfect (its conductivity is infinite).

* The substrate is a perfect dielectric (its conductivity is

negligible).

* The feed point is fixed (it does not count as variable).
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82 MARTÍNEZ-ROJAS AND FERNÁNDEZ-SÁNCHEZ

F IGURE 7 BDD of the physical arquitecture

F IGURE 8 Detailed BDD of the internal power and communication subsystem

2. Evaluate the use of either oriented or angular dimensions.

Input: Selected variables.

Output: Oriented variables (if possible and necessary).

- List of oriented variables: None, because the selected variables are

unidimensional (radius, thickness). The rest are not orientable. The

electric field could be oriented, because it is a vector quantity, but

in this case this is not advantageous for a DA approach, so only its

scalar magnitude is considered.

3. Identify physical dimensions and measurement units of the vari-

ables.

Input: Oriented variables (if possible and necessary).

Output: Physical dimensions andmeasurement units.

- Radiation pattern: M L T−3 I−1 (V m−1, it is the radiated

electric field)

- Frequency: T−1 (Hz)

- Electric current: I (A)

- Antenna radius: L (m)

- Substrate thickness: L (m)

- Substrate permittivity: M−1 L−3 T4 I2 (F m−1)

4. Create the dimensional matrix. The dimensional matrix con-

tains the same information as the previous list but in a more

mathematically rigorous form, as previously explained. If the

matrix approach is not desired, the Rayleigh algorithm could

be used.

Input: Variables and their physical dimensions.

Output: Dimensional matrix (Table 4).

5. Reduce the dimensional matrix.

Input: Dimensional matrix.

Output: Number of reduced variables.
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MARTÍNEZ-ROJAS AND FERNÁNDEZ-SÁNCHEZ 83

TABLE 4 Dimensional matrix

M L T I

E 1 1 −3 −1

f 0 0 −1 0

I 0 0 0 1

r 0 1 0 0

zsub 0 1 0 0

εsub −1 −3 4 2

We use the Buckingham Pi theorem in order to reduce the matrix

and find the dimensionless numbers which best describe the problem.

As we have commented, this step cannot be completely automated,

because there are several possible dimensionless numbers from differ-

ent initial variable combinations. In other areas, like fluid mechanics,

many useful numbers already exist that can be used for certain classes

of problems, but this is not always the case. Actually, we have selected

a problem from another physical domain to better illustrate this fact. In

this case:

p = NV – ND = 6 – 4 = 2. The problem can be reduced to two

dimensionless numbers.

6. Redefine the processmodel using dimensionless quantities. Dimen-

sionless quantities should maximize the physical information (intu-

ition) about the system, constituting so the foundation of later

approximations and numerical work.

Input: Dimensional variables.

Output: Dimensionless quantities.

Π1 =
𝜀sub r zsub f E

I
(1)

Π2 =
r

zsub
(2)

We verify that both numbers are dimensionless:

Π1 :
(
MLT−3 I−1

)
(M−1 L−3 T4 I2) L L I−1 T−1 = M0 L0 T0 I0 = 1

Π2 : L∕L = 1

7. Establish functional dependence between dimensionless quanti-

ties.

Input: Dimensionless quantities.

Output: Mathematical dependence of the selected dimensional

variables.

The solution to the simplified patch antenna problem will be a

function of the form:

F (Π1,Π2) = 0 ⇒ F
(
𝜀sub r zsub f E

I
,

r
zsub

)
= 0 (3)

As an implicit function, it can bewritten also as:

𝜀sub r zsub f E
I

= F
(

r
zsub

)
(4)

In this form, we can easily study the relationship between the elec-

tric field and the current.We should arrange the terms of the resulting

DA equation in the form that allows us to isolate our variables of inter-

est. We are interested in the mathematical dependence of the electric

current, because we want to use the antenna for microwave energy

harvesting:

I = 𝜀sub r zsub f E F
(

r
zsub

)
(5)

In this case, the mathematical dependence is almost complete and

further reasonable simplifications cannot be made, so that the DA

process is finished.

We can also estimate the order of magnitude of the variables of the

solution as attributes of the physical blocks representing the system

parts.

Input: Functional dependenceof thedimensional variables and their

estimated values in the prescribed measurement system (SI

system).

Output: Order of magnitude of the solution.

Estimation of the electrical current in aMEMS antenna:

- Antenna conductor radius: 1 mm= 10−3 m

- Substrate thickness: 1 mm= 10−3 m

- Substrate permittivity: 100 ε0= 100 ⋅ 8,85 ⋅ 10−12 F/m≈ 10−9 F/m

- Electric field frequency: 1 GHz= 109 Hz

- Electric field safety limit (1 GHz= 103 MHz): 15.60 f(MHz)0.25 ≈ 10 ⋅

103/4 ≈ 102 V/m

- The unknown function F(
r

zsub
) is of the order of 1.

- Electric current ≈ I = 𝜀sub r zsub f E F(
r

zsub
) ≈ (10−9 F/m)(10−3 m)

(10−3 m)(109 Hz)(102 V/m)(1)≈ 10−4 A.

This result is compatible with experimental values found in the

literature for similar microantennas.81

The previous SEmodel is updatedwith the constraint blocks related

to the microwave antenna, represented in Figure 9. They may be

used as inputs for SysML parametric diagrams or simulation tools.

The functional architecture offers more information than DA uses

for a macroscopic (thermodynamic) vision of the system interfaces.

Such thermodynamic study would represent the next level of system

analysis after DA and order of magnitude estimation.

6 CONCLUSIONS

The MBSE approach describes the system using consistent views to

provide a holistic model as complete as possible, including all rel-

evant information from the stakeholder’s perspective. Most MBSE
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84 MARTÍNEZ-ROJAS AND FERNÁNDEZ-SÁNCHEZ

F IGURE 9 Constraint blocks related to themicrowave antenna

methodologies end with the physical architecture of the system, but a

physical model is clearly incompletewithout the study of its associated

physical laws and phenomena related to the whole system or its parts.

However, a detailed simulation of the whole system is not the main job

of a systems engineer and the computational demandswould be exces-

sive even for modest projects. Actually, most complex systems can-

not be completely or accurately simulated. Thus, critical interactions

affecting their performance would be ignoredwith deleterious effects.

The ISE&PPOOA + DA pragmatic methodological process goes a

step further incorporating DA as a powerful instrument to understand

the physical constraints of the system without the burden of complex

analytical or numerical calculations. Even in the case that DA alone

cannot provide a complete solution, it is invaluable as a best practice

and it is required for the design of experimental tests and the studies

of scaling behavior. Most tests are based on or constrained by analo-

gies and similitude arguments which demand a careful DA study. The

prototypical example is the design of experiments in wind tunnels. The

practical application of the process explained in this paper forces the

systems engineer to think in physical phenomena terms and to under-

stand the system conceptually in depth. This information is critical

to select the best physically realizable architectures. The simplifica-

tion steps involved in the proposed process provide important insights

about the interactions among system parts and suggest possible cost

savings in later detailed numerical simulations, testing, and the final

product realization.

We give a detailed example of the application of ISE&PPOOA +

DA to the design of a MEMS microwave antenna to power remotely a

millimeter size endoscopic capsule inside the human body. Even a sim-

ple antenna with all its parameters considered would demand a costly

simulation to know if the harvested energy is enough to power the

medical device. However, DA reveals that many of these parameters

could be irrelevant and even allows an order of magnitude estimation,

which is enough for a systems engineer for trade-off studies to com-

pare the expected performance with other alternatives. Finally, from a

theoretical point of view, DA can be seen as the unifying link between

the functional and physical architectures, allowing a smooth transition

from the lowest level of the functional hierarchy, described as phys-

ical interactions, unit operations and transport phenomena, and the

corresponding elements of the physical architecture.

In a world increasingly dominated by digital computing, many scien-

tists and engineers could think that DA is a thing of the past, when very

limited computing resources demanded careful thinking of problems

and their simplifications. In order to avoid repeating the same argu-

ments, a compelling defense of DA can be read in Astarita.82 Another

possible criticism of DA is its lack of relevance for software projects or

cyberphysical systems. However, this criticism is unfounded, because

DA is far deeper than its application to physical magnitudes, as it

has been previously explained. DA is at the core of scaling and simil-

itude theories, from pure mathematics and theoretical physics to

experimental testing of prototypes or complete systems. Reliable test-

ing cannot be designed and performed without a previous complete

study of similitude. Most modern systems are so large and complex

that their direct testing is impossible, impractical, damaging, or pro-

hibitively expensive. Therefore, reduced models must be used and DA
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MARTÍNEZ-ROJAS AND FERNÁNDEZ-SÁNCHEZ 85

must be applied. In fact, even systems level engineering disciplines

like Electromagnetic Compatibility, especially in an aerospace context,

where the use of DA has been almost inexistent, recently has made a

strong case for more research in DA related to testing design of com-

plete systems, as can be seen in page 7 of the Handbook of Aerospace

Electromagnetic Compatibility83:

“Ultimately, the ability to extend laboratory-scale

results to realistic networks will likely require a variant

of dimensional analysis theory.”

DA is more relevant to software engineering than a superficial view

suggests. From a conceptual perspective, there are intriguing and pro-

found connections betweenDAand Type Theory in bothMathematical

Logic and Computer Science, to the point that a unification seems pos-

sible in a more comprehensive framework. This is a promising avenue

for future research. Thus, DA, through its parallelisms with compu-

tational type systems, can be seen also as a checking procedure for

the correctness of the system physical behavior in the same way that

type systems are used for the study of correctness and meaning of

computer programs. Through Type Theory, DA would also be related

with Category Theory, the most powerful and abstract mathematical

theory at present, but this is a topic for future studies. However, it

should be remarked that DA describes the functions relating physical

variables (scaling-preserving functions), while Category Theory stud-

ies functions between mathematical structures (structure-preserving

functions). The importance of exploring this analogy is evident, to the

point that if Category Theory is an alternative axiomatic foundation

of Mathematics, DA could be seen as a starting point for a rigorous

foundation of Physics and Systems Science.

Finally, this work can be useful as a quick and fairly comprehen-

sive reference of DA and order of magnitude calculations for the

interested systems engineer in a more general way than is generally

described in the literature, more focused in specific applications, like

fluid mechanics.

DATA AVAILABILITY STATEMENT

Due to the nature of this paper, no data have been produced. No

experiments or numerical simulations have been performed.
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