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Abstract: In recent years, the characteristic basis function method has been developed as an efficient approach for the solution
of large electromagnetic radiation or scattering problems. According to this technique, the currents over the scenario under
analysis are defined using a set of pre-computed characteristic basis functions, associated with a number of blocks into which
the geometry is partitioned. This involves some computational advantages due to the reduction of the number of unknowns
compared to conventional approaches. However, additional pre-processing time is introduced due to the computation of the
CBFs and the reduced coupling matrix. A novel strategy is presented in this study in order to accelerate the generation of the
reduced matrix, based on the application of the multilevel fast multipole algorithm.

1 Introduction
There is a growing interest in the analysis of electrically large
objects applying rigorous techniques at the present time,
substituting in some cases conventional asymptotic approaches
such as the geometrical theory of diffraction (GTD) [1], physical
optics (PO) [2] or their combination [3–6]. Due to the size of the
problems, high-frequency methods were, in past years the only
option for the analysis of medium or large problems due to their
relaxed computational requirements. However, the application
range of full-wave analysis methods has been greatly extended due
to the parallelisation of electromagnetic algorithms, the new
capabilities of modern hardware architectures and the development
of novel efficient numerical techniques.

The method of moments (MoM) [7] has been extensively
applied to the electromagnetic analysis of geometries with arbitrary
shapes defined by perfectly electric conductor (PEC) surfaces or
containing thin layers of dielectric material. It is a reference for the
development of new approaches in order to address problems
related to scattering or radiation involving arbitrary 3D geometries.
The MoM generates a system of linear equations whose solution
represents the values of the current associated with each one of the
basis functions. The geometry needs to be discretised into
subpatches with a size typically around λ/10 to obtain accurate
results.

The main restriction of the MoM is the size of its matrix when
the electrical size of the scenario increases, and this is caused
because of the quadratic relationship between the number of the
subpatches in the discretisation process and the frequency of the
problem, producing computationally large problems even for
moderately sized geometries, which leads to restrictive CPU time
and memory requirements.

Several techniques have appeared in order to overcome this
issue, whose goal is to render full-wave simulations affordable for
larger geometries. One group of these approaches, which have
become very popular in recent years, is the fast multipole method
[8] (FMM) and, its multilevel version, the multi-level fast
multipole algorithm (MLFMA) [9]. The computational complexity,
in this case, is decreased from O(N2) to O(N3/2) and to O(NlogN),
respectively, because the matrix–vector products are computed
efficiently in the solution process, and only the near-field terms of
the coupling matrix are required to be stored.

There are numerical approaches that benefit from an
improvement of the efficiency using strategies based on the

reduction of the number of unknowns. These techniques divide the
geometry into blocks or domains, and define a group of macro-
basis functions on each of the blocks. The synthetic function
expansion (SFX) technique [10], as well as the characteristic basis
function method [11–14] (CBFM), are examples of approaches
based on this strategy.

The CBFM represents the current on the surface of the objects
using high-level basis functions rather than the subdomain-type
functions related to the traditional MoM (rooftops, Rao–Wilton–
Glisson functions, etc.). The high-level basis functions are called
characteristic basis functions (CBFs) defined on the blocks as
aggregations of low-level functions. The main goal of the CBFM is
the reduction of the total number of unknowns considering the
physics of the problem and the geometrical properties of the
objects. This reduction, in turn, decreases the size of the coupling
matrix, known as a reduced matrix in the CBFM and, as a
consequence, direct solvers can be applied for moderately sized
problems. However, iterative solvers are still required for the
solution of electrically large problems, since the size of the reduced
matrix can preclude using direct solvers in this case. The
generalised minimal residue method [15] (GMRES) and the bi-
conjugated stabilised gradient method [16] (BiCGStab) are
iterative solvers with the proved performance that have been
applied in the present work.

Some efficient approaches have been recently developed to
relax the computational requirements of the CBFM when analysing
electrically large or very large objects. The authors described in
[17] a technique to increase the efficiency of the iterative solution
process for radar cross-section (RCS) applications, based on the
elimination of unknowns associated with non-significant
contributions. The CBFM is combined with the adaptive cross
approximation approach in [18], based on the compression of rank-
deficient coupling submatrices containing interactions between
distant functions. A study of the efficiency resulting from applying
different block sizes is presented in [19]. A fast algorithm for the
generation of macro basis functions exploiting the geometrical
redundancy of antenna arrays is explained in [20]. An approach for
the direct solution of scattering problems using the CBFM can be
seen in [21].

The CBFM and MLFMA can be combined in order to obtain
improved efficiency [22], replacing the subdomain basis functions
by CBFs and considering the computation and storage of only the
functions related to surrounding blocks. The rest of the interactions
is accounted for in the iterative solution process, improving the
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memory requirements and CPU time with respect to MoM or
MoM-MLFMA. In this work, we present a more efficient
procedure for the computation of these terms.

Due to the rapid increase in the performance of modern multi-
core computing systems, the parallelisation of existing numerical
techniques has been widely adopted [23–25], which makes
scalability a fundamental factor when developing new simulation
algorithms. The examples shown in this work make use of a
parallel implementation of the presented algorithm in order to
address realistic scenarios.

The remaining part of this paper is organised as follows: we
present a review of the MoM and a description of the MLFMA in
Section 2, pointing out their main advantages. In Section 3, the
CBFM is introduced, and its combination with the MLFMA is
described in Section 4. Next, the proposed technique is outlined in
Section 5. Experimental results are shown in Section 6 and, finally,
Section 7 contains the main conclusions derived from this work.

2 Description of MLFMA–MoM
The MoM [7] transforms the integro-differential equations that
define the physics of the problem into linear equation (1). It
requires the discretisation of the geometry and the definition of a
set of basis and testing functions to represent the unknowns
imposing the appropriate boundary conditions. The MoM requires
the computation of the coupling matrix [Z], the impressed voltage
vector [V] associated to the external excitations and the induced
current vector [J] containing the coefficients to be determined:

V = Z J (1)

The conventional MoM requires the solution of (1) using the full
coupling matrix [Z]. For electrically moderate or large scenarios,
however, the direct solution of this system can consume a
considerable amount of CPU-time and memory. Some techniques,
such as the multilevel fast multipole algorithm, compensate this

limitation by storing only the coupling matrix terms that involve
interactions between geometrically close functions, and compute
the rest in the solution process. The geometry is compartmentalised
into several cubes or regions that are subsequently grouped,
generating higher-order regions in a hierarchical structure. Each
cube at the first level includes several basis functions, and only the
coupling terms with elements included in the same or neighbouring
cubes are computed using the rigorous formulation and stored in
the coupling matrix. The MLFMA considers the far-field
interactions via efficient matrix–vector products in the iterative
solution process.

The benefits of this MLFMA–MoM combination have been
reported in a considerable number of publications [8, 9].

3 CBFM
In the application of the CBFM, a relatively small number of CBFs
represent the unknown currents on the scenario. In a pre-processing
stage, a division of the geometry into blocks is performed, each one
of them supporting several CBFs. Each CBF is defined only within
its associated block, whose size is generally similar or larger than a
wavelength, and therefore they are also referred to as macro basis
functions (MBFs). The reduced matrix computed in the CBFM is
much smaller than the coupling matrix of the conventional MoM.
Fig. 1a shows the relation between the number of unknowns of the
MoM and the CBFs as the frequency increases, considering a plane
plate with a side length of 1 m. As shown in Fig. 1a, the number of
unknowns is significantly reduced for electrically larger scenarios
in the CBFM.

It is possible to use different approaches for the generation of
the CBFs, depending on both the accuracy and the geometrical
shape of the object. It is common to use the currents induced on the
surface by the plane wave spectrum (PWS) to define the CBFs.
The PWS is a group of plane waves surrounding the surface and
illuminating it from several directions separated by the angular
steps Δθ and Δφ, and for both θ- and φ-polarisations. We have
found that angular increments of Δθ = Δφ = 10° maintain good
accuracy for 3D arbitrary cases when dealing with block sizes
smaller than 4λ, while a separation of 5° between adjacent plane
waves is adequate for larger blocks. After calculating the induced
currents, these vectors are orthogonalised (applying, for instance
the singular value decomposition, SVD) and a relatively small
number of associated CBFs are retained by establishing a threshold
γ with respect to the largest singular value. As a consequence, there
is a reduction of the total number of CBFs by eliminating the
redundancy from the original set of vectors provided.

The solution of a system of linear equations is required to
determine the weights of the CBFs that represent the currents. This
matrix equation reads

ZR ⋅ JR = VR (2)

where [ZR] denotes the reduced matrix, containing the coupling
terms between CBFs, [JR] is the vector containing the coefficients
of the current associated with each CBF and [VR] represents the
impressed voltage due to the external excitations.

4 MLFMA–CBFM
Even considering the reduced number of degrees of freedom
provided by the CBFM, it is not uncommon to address problems
large enough to require an exceedingly large amount of memory
for the storage of the reduced matrix. This constraint can be
mitigated by storing only the terms related to close blocks and
considering the rest via the MLFMA using an iterative solver [8, 9,
17, 22].

There are several computational benefits derived from the use
of the MLFMA–CBFM approach with respect to the conventional
MoM or the previously presented MLFMA–MoM. A considerable
amount of memory is dedicated to storing the aggregation and
disaggregation terms and the reduced matrix. The reduction of the
number of unknowns given by the CBFM results in less
aggregation and disaggregation terms as well as a smaller coupling

Fig. 1  Comparison of the number of unknowns
(a) Between the MoM and the CBFM, (b) Applying the CBFM with different block
sizes
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matrix. An additional benefit is related to the CPU time required
for the analysis, due to several factors. The reduction of the number
of unknowns provides a smaller equation system and decreases the
time per iteration. The orthonormalisation of the CBFs generated
with the SVD generally ensures an improvement of the condition
number. In addition, due to the application of the MLFMA [9], the
computation of the matrix–vector products required by iterative
solvers is very efficient.

5 Electromagnetic kernel of the proposed
technique
The reduction of the number of unknowns provided by the CBFM,
as described in previous sections, improves the memory
requirements and CPU time. This reduction is related to the block
size, as shown in Fig. 1b. A 32-wavelength right-dihedron is
analysed using the MoM and the CBFM for different block sizes,
visualising the resulting number of unknowns. The total number of
unknowns using the MoM has been 413,770.

As a consequence of the reduction of the number of unknowns,
the CPU-time required by the system solution is also decreased as
the block size is increased. Fig. 2a shows the CPU-time spent in
the iterative process when analysing the dihedron test case with the
MLFMA–CBFM and considering different block sizes, and
compared to the MLFMA–MoM combination. 

Analysing the results shown in Fig. 2a we can conclude that it
is desirable to use large block sizes in the MLFMA–CBFM, and it
results more convenient when the iterative solution process has a
significant weight in the total CPU time as, for example in the
analysis of ill-conditioned problems, or for monostatic RCS
applications, where several excitations need to be considered. In
these cases, it can be very beneficial to optimise the CPU-time per
iteration, making the use of large-sized blocks highly convenient.

The drawback of using large block sizes is the increased pre-
processing time required for the computation of the macro-basis
functions and, especially, for the calculation of the reduced matrix
[ZR]. We propose a technique for the efficient computation of the
reduced matrix terms using the MLFMA, allowing to take
advantage of the CPU-time reduction shown in Fig. 2a, while
avoiding any computational burden in the calculation of the
reduced matrix due to the use of large blocks.

Analysing the reduced matrix, we can note that there is a block
structure in [ZR] because each sub-matrix [ZR]ij contains the
coupling terms between CBFs that are located in blocks i and j.
The reduced matrix can be expressed as follows:

ZR =

ZR
1, 1 ZR

1, 2 ⋯ ZR
1, K

ZR
2, 1 ZR

2, 2 ⋯ ZR
2, K

⋮ ⋮ ⋱ ⋮
ZR

K, 1 ZR
K, 2 ⋯ ZR

K, K

(3)

where [ZR]i,j represents the sub-matrix embodying the coupling
terms between CBFs that belong to blocks i and j. [ZR]i,j can be
written as:

ZR
i, j =

L(J j, 1), W1
i L(J j, 2), W1

i ⋯ L(J j, Mi), W1
i

L(J j, 1), W2
i L(J j, 2), W2

i ⋯ L(J j, Mi), W2
i

⋮ ⋮ ⋱ ⋮
L(J j, 1), WMi

i L(J j, 2), WMi
i ⋯ L(J j, Mi), WMi

i

(4)

where L(J j, L), WK
i  is the inner product of the lth CBF on block j

and the kth CBF on the block i. These functions are represented as
aggregations of subdomain-type functions

Ji, k(u, v) = ∑
n = 1

Ni

αi, k(n)Tn(u, v) (5)

Wk
i(u, v) = ∑

n = 1

Ni

αi, k(n)Rn(u, v) (6)

where Tn(u, v) and Rn(u, v) denote the nth basis and testing
functions on the block i. In this work, generalised rooftops and
razor-blades have been selected as basis and testing functions and
αi, k(n) represents the coefficient of the CBF-k in block i, referred to
as the middle point of the nth basis function. The reduced matrix
elements can be computed from the low-level inner products as
follows:

L(J j, n), Wn′
i = ∑

k = 1

Nn′

∑
l = 1

Nn

αj, n(l)αi, n′
∗ (k) Tl(u, v), Rk(u′, v′) (7)

Considering the low-level MoM matrix definition for element Zk,l,
expression (15) can be written as follows:

L(J j, n), Wn′
i = ∑

k = 1

Nn′

∑
l = 1

Nn

αj, n(l)αi, n′
∗ (k)Zk, l (8)

As shown in (8), in the conventional CBFM, the coupling terms of
the reduced matrix associated with blocks i and j is generated using
the low-level coupling terms of the conventional MoM impedance
matrix belonging to the subdomains contained in the blocks in

Fig. 2  CPU-Time required
(a) In the solution process, (b) In the calculation of the reduced matrix using the
MLFMA–CBFM and the proposed technique
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which these CBFs are defined. If we make use of large block sizes
in the CBFM, the number of low-level coupling terms can become
exceedingly large, affecting the CPU time spent in the computation
of the reduced matrix. In other words, the time required for the
computation of the coupling term between a pair of CBFS depends
on the low-level impedance matrix. Fig. 2b shows the CPU-time
spent in the calculation of the reduced matrix with the MLFMA–
CBFM and considering different block sizes.

In this work, we have made use of curved rooftops as basis
functions and curved razor-blade functions as testing functions
[26], but similar conclusions can be extracted for other types of
low-level basis or testing functions. According to the scheme used
for the definition of the low-level functions in this work, any
subdomain is composed by two patches S1 and S2, and each term
of the [Z] matrix, zij, is calculated as follows:

zi j = zi j
ind + zi j

cap (9)

where

zi j
ind = ∫

ra

rb jωμ0

4π ∫S j1
G(r, r′)J j

S j1(r′)dS′ + jωμ0

4π ∫S j2
G(r, r′

)J j
S j2(r′)dS′ dl,

(10)

and

zi j
cap = PS j1(rb) − PS j1(ra) − PS j2(rb) − PS j2(ra) , (11a)

In the previous expression, PS j1(rb) is calculated from:

PS j1(rb) = −1
j4πωε0

∫S j1

G(rb, r′)
AS j1

dS′ (11b)

Equations (10) and (11b) include G(r, r′), known as the free-space
Green's function, and obtained from

G(r, r′) = e− jk r − r′

r − r′ (12)

These equations also include the J j
S j1 term, which represents the

current density on patch Sj1 belonging to subdomain-j, and AS j1
represents its area. The terms r′ and r denote the position vectors
for points on the patches where subdomain-j and subdomain-i are
defined, respectively. Finally, and associated with subdomain-i, ra
and rb are the end-points of its razor-blade. A more detailed
description of the procedure followed to produce these expressions
can be seen in [26].

In order to overcome the burden that can arise from the
computation of the reduced matrix with the MLFMA–CBFM when
handling large blocks, the MLFMA–MoM technique can be
internally applied in order to render the reduced matrix
coefficients. For this purpose, we propose the computation of the
Zji term in (8), as shown in (13). This coefficient, considered for
distant elements i and j and applying the electric field integral
equation (EFIE), is given by the following equation:

zji = ∫ Vm j
AGGEFIE(k^)τmm′(k

^, rmm′)Vm′i
DISEFIE(k^)d2k

^
(13)

where Vm j
AGGEFIE(k^) is the aggregation term of subdomain-j to the

middle point of cube-m and is computed as follows:

Vm j
AGGEFIE(k^) = ∫

u
∫

v
e− jk^ ⋅ rjm(I − k

^
k
^)T j(u, v)du dv (14)

where rj, m is the vector that connects the integration point to the
centre point of cube-m, and T j(u, v) is the basis function of the
source element j.

The expression for the computation of the disaggregation term
is

Vm′i
DISEFIE(k^) = ∫

u
∫

v
e jk^ ⋅ rjm′(I − k

^
k
^)Ri(u, v)du dv (15)

where Ri(u, v) is the testing function of the destination element-i.
Analogously, for the case of the magnetic field integral equation

(MFIE), we can define the coupling terms as

zji = ∫ Vm j
AGGMFIE(k^)τmm′(k

^, rmm′)Vm′i
DISMFIE(k^)d2k

^
(16)

where

Vm j
AGGMFIE(k^) = ∫ ∫ e− jk^ ⋅ rjmT j(u, v)du dv (17)

and

Vm′i
DISMFIE(k^) = − k

^ × ∫
u
∫

v
e jk^ ⋅ rjm′Ri(u, v) × n^ du dv (18)

Note that Vm j
AGG(k^) and Vm j

DIS(k^) only have θ and φ components
(Vm′i

AGG(k^) = Vθm′i
AGGθ

^ + Vφm′i
AGGφ^ ). For the computation of terms of the

reduced matrix in the application of the CFIE, we combine
expressions (13) and (16) weighted by the CFIE definition
parameter.

Finally, the translation term between points m and m′ is given
by the following equation:

τmm′(k
^, rmm′) = jk

4π ∑
l = 0

L
jl(2l + 1)hl

(1)(krmm′)Pl(r^mm′ ⋅ k
^) (19)

where Pl(x) is a Legendre polynomial and hl
(1)(x) represents the

spherical Hankel function of the first kind. The integral in (13) can
be truncated to a set of Nk points instead of all the directions of the
unit sphere with a non-significant error. A full explanation of the
appropriate number of points to be considered in this truncation is
given in [9].

As mentioned earlier, the use of the MLFMA–CBFM involves
the computation of the reduced matrix applying (8) for the
calculation of the coupling terms between CBFs i and j, and the use
of the low-level impedance matrix Zl,k is required. Based on the
unit theorem, we propose the use of (13) associated with the
MLFMA instead of the conventional MoM coupling terms shown
in (9). Therefore, the coupling term between CBFs i and j can be
written (see (20)) . In order to obtain the coupling between CBFs i
and j, it is possible to aggregate all the coefficients αi, k(l) of CBF-i,
associated with the low-basis function l, to the centre of its
MLFMA cube m. This process can be applied for all the cubes in
which CBF-i is defined. Next, the previous contributions are
translated to the centre of the cubes in which CBF-j is extended
and, finally, the multipole terms are disaggregated over the
subdomains that define CBF-j. This procedure presents
computational advantages with respect to the conventional MoM
computation, although it cannot be applied for geometrically close
subdomains. The existing literature recommends avoiding this
algorithm for coupling terms of subdomain functions separated by
a distance lower than a quarter of the wavelength [9]. The
conventional MoM computation is applied for these subdomains,
following (9).

For the ease of implementation, it is convenient to
compartmentalise the scenario into first-level groups of a quarter of
the wavelength, and then defines the CBFM block size
encompassing a complete number of cubes. In order to increase the
efficiency of this technique, a block size equal to a power of two
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with respect to the cube size is recommended, due to the nature of
the MLFMA algorithm.

The main advantage of the use of the MLFMA compared to the
MoM is the reduction of the complexity from N2 to Nlog(N) [9],
leading to a reduction of the time and memory required for the
analysis. Fig. 2b shows the comparison of the CPU-time spent in
the calculation of the reduced matrix of 32λ right-dihedron test
case when applying the MLFMA–CBFM approach and the

technique proposed in this paper. The CPU-time is reduced, and the
ratio of the reduction is greater as the size of the block increases,
which allows the use of large blocks in order to obtain a more
efficient iterative process.

As mentioned in Section 1, nowadays, the scalability and the
ease in developing parallel versions of new numerical approaches
play a very important role in the field. It is very valuable to obtain
a technique that can be adapted to the requirements of the
parallelisation paradigms for the sake of efficiency. The presented
technique has a good agreement with the most popular standards of
parallelisation models considering both shared and distributed
memory architectures. The computer used to develop this approach
contains two Intel Xeon I5 processors, each of them containing
eight computation cores, and with 128 GB of RAM.

The monostatic RCS for the dihedron test case has been
computed using the presented technique, and the result obtained is
compared with that returned by the MoM–MLFMA and the
MLFMA–CBFM techniques in Fig. 3 for the θ-polarisation and the
cut φ=0° with θ ranging from 0° to 180° in steps of 1°. 

As shown in Fig. 3, the proposed approach presents a good
accuracy compared to the MLFMA–MoM and MLFMA–CBFM
techniques. Some small differences can be appreciated between
them, which can be attributed to factors such as truncation errors
associated to the definition of the MLFMA (number of Nk points,
numerical evaluation of the Legendre polynomial and spherical
Hankel functions, etc.) as well as the generation of the CBFs
(angular separation of plane waves, threshold values for the
truncation of the number of CBFs, nature of the approach for the
computation of the currents induced by plane waves, etc.). More
details regarding these parameters are given in [9, 14].

In order to quantify the error of the proposed method, the
following expression has been considered:

Errorapproach = ∑
i = 1

N RCSiMLFMA − MoM − RCSiapproach
RCSMLFMA − MoM

(21)

where N is the number of observation directions, and
RCSiMLFMA − MoM and RCSiapproach represent the RCS values for the
ith direction when applying the MLFMA–MoM and the proposed
approach, respectively. For this particular simulation, this error
value has been 0.0326.

6 Results
First, we have considered the computation of the bistatic RCS at
the frequency of 20 GHz of a sphere with a radius of 0.5 m. The
analytical results are compared to those obtained with the proposed
approach for the H- and E-planes, and they are shown in Fig. 4. 
The plane wave impinges with an angle of φ = 0° and θ = 180° and
a θ-cut at the φ = 0° observation plane has been considered. The
total number of subdomain basis functions has been 5112,144 and
this number has been reduced to only 134,532 CBFs using the
proposed technique. The CFIE with a residual error of 0.7 × 10−3

has been applied in order to obtain an accurate solution. The
simulation has required 132 min for the reduced matrix
computation and consuming 19 GB of RAM, while the MLFMA–
CBFM spent about 824 min for the same analysis. This simulation
has been performed using the parallelised version of the approach
with 16 processors, and the block size considered has been 8λ.

The error obtained with the proposed technique using (21) has
been 0.01753, considering the analytical values as the reference.

L(J j, n), Wn′
i = ∑

k = 1

Nn′

∑
l = 1

Nn

αj, n(l)αi, n′
∗ (k)Zk, l

= ∑
k = 1

Nn′

∑
l = 1

Nn

αj, n(l)αi, n′
∗ (k)∫ Vm j

AGG(k^)τmm′(k
^, rmm′) ⋅ Vm′i

DIS(k^)d2k
^

= ∫ d2k
^ ⋅ ∑

l = 1

Nn

αj, n(l)Vm j
AGG(k^)τmm′(k

^, rmm′) ∑
k = 1

Nn′

αi, n′
∗ (k)Vm′i

DIS(k^)

(20)

Fig. 3  Monostatic RCS of the 32λ right-dihedron
 

Fig. 4  Bistatic RCS of a sphere
(a) H-plane, (b) E-plane
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Table 1 shows the numerical comparison between the techniques
applied for the solution of the problem. 

The next test case is the computation of the monostatic RCS of
the Cobra geometry, described in Fig. 5a, at a frequency of 17 
GHz. The EFIE has been applied in the analysis, considering the θ-
polarisation for the observation directions given by φ = 0° and
θ=0°–180°. The results obtained with the proposed technique have
been compared to those given by the MLFMA–MoM and with
measurements, as illustrated in Fig. 5b. Using the MLFMA–MoM,
we have obtained 139,448 unknowns, while this number has been
reduced to 17,632, applying the proposed technique with a block
size of 8λ. The analysis has been performed using 16 processors
with the parallelised version of both techniques.

A good agreement is shown between both methods and the
measurements. The CPU-time and memory required for the

analysis of this scenario are shown in Table 2. An error of 0.0756
has been obtained applying (21) and considering the measurement
values as the reference.

The next geometry considered is the airplane model shown in
Fig. 6a considering a frequency of 1450 MHz, which has produced
694,142 unknowns when applying the MLFMA–MoM. 

The monostatic RCS has been calculated applying the EFIE
formulation, and the results have been compared using the
MLFMA–MoM and the proposed technique. Fig. 6b shows the
RCS for the θ-polarisation and the observation cut given by
φ=180° with a variation in θ from 0° to 180° in steps of 1°. A
numerical comparison between these techniques with 8 CPU-cores
and a block size of 4λ is shown in Table 3. The error obtained
applying (21) has been 0.06854 for this case.

Fig. 7a presents a new test case considering a different airplane
model. The monostatic RCS has been computed at 1750 MHz.
Fig. 7b shows the RCS results obtained for the θ-polarisation and
the angular cut φ=180° where θ ranges from 0° to 180° in 1° steps.
The EFIE formulation has been applied in this simulation. As in
the previous cases, a good agreement is observed between the
MLFMA–MoM and the proposed approach, obtaining an error of
0.05942 when applying (21).

The last test case is shown in Fig. 8a. This is a large object
composed of 257 curved NURBS surfaces, and once again, the
EFIE formulation has been applied for the analysis. The monostatic

Table 1 Computational analysis of the sphere case
Number of
unknowns

CPU-time
for pre-
process,

min

CPU-time
for iteration,

s

Memory,
Gb

MLFMA–
CBFM

134,532 824 57 32

proposed
technique

134,532 132 57 19

 

Fig. 5  Cobra cavity test case
(a) Geometry, (b) Monostatic RCS at 17 GHz

 

Table 2 Computational analysis of the Cobra test case
Number of
unknowns

CPU-time
for pre-

process,
min

CPU-time
for iteration,

s

Memory,
Gb

MLFMA–
MoM

139,448 183 36 6,4

MLFMA–
CBFM

17,632 214 13 1,7

proposed
technique

17,632 37 13 0,93

 

Fig. 6  Test case at 1450 MHz
(a) Geometry of the airplane, (b) Monostatic RCS
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RCS has been computed for the θ-polarisation and for the angular
observation cut given by φ = 90° with θ between 0° and 180° in
steps of 1° at a frequency of 625 MHz. The results obtained with
the approach presented in this paper have been compared with
MLFMA–MoM, as shown in Fig. 8b, where good agreement can
also be observed. The error obtained in this case when applying
(21) has been 0.08246.

7 Conclusions
We have proposed a method for the application of the MLFMA–
CBFM approach overcoming some important limitations regarding
the CPU-time required for the reduced matrix computation for
large block sizes. The proposed approach has been validated in
terms of accuracy while offering remarkable computational
improvements derived from the increment of the block size. The
conventional MLFMA–CBFM has been adapted to be able to
handle large scenarios, by reducing the memory footprint and the
CPU time requirements when computing the CBFM coupling
matrix.
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