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Lyapunov Self-triggered Controller for Nonlinear Trajectory Tracking of
Unicycle-type Robot
Carlos Santos* � , Felipe Espinosa, Enrique Santiso, and David Gualda

Abstract: This paper focuses on the design and implementation of an aperiodic control of nonholonomic robots
tracking nonlinear trajectories. The main objective of our controller is to reduce the number of updates while pre-
serving control performance guarantees. To solve the problem in a more efficient way, we design two aperiodic
control solutions, one to reach a target point and a second to track a predefined nonlinear trajectory. Unlike most pre-
vious work, our triggering condition only updates the controller when the time derivative of the Lyapunov function
becomes non-negative, without taking into account the measurement error. Multiple simulated results with different
initial conditions are included, showing how our control solution significantly reduces the need for communication
in comparison with periodic and other aperiodic strategies while preserving a desired tracking performance. To
validate the proposal experimental tests of each control technique with a P3-DX robot remotely controlled through
an IEEE 802.11g wireless network are also carried out.

Keywords: Lyapunov-based controller, nonlinear trajectory-tracking, self-triggered, semiglobal practical stability.

1. INTRODUCTION

With the proliferation of Network Control Systems
(NCS), greater functionality is expected because control
loops no longer have at their disposal dedicated compu-
tational and communication resources [1]. In these sys-
tems, the performance depends not only on the designed
control algorithm but also on resources scheduling in the
shared network. This has motivated an increasing interest
in techniques that avoid periodic implementations in favor
of strategies based on the idea of sampling only when the
system needs attention. These techniques employ infor-
mation about the state of the system to update the control
signal only when a certain condition is violated.

Two of the most well-known techniques are event-
triggered (ETC) [1–6] and self-triggered control (STC)
[7–11]. Self-triggered control is proactive, it predicts
when the system will need to be updated. Thus, the con-
troller determines the next update time from the last mea-
surement. In contrast, ETC is reactive, the current state
of the plant is constantly monitored in order to decide
when the control must be updated. The basics of these
controllers are introduced in [12] and a comparative study
in [13].

The nonlinear aperiodic control is field with a great
popularity in recent times, representative works of this in-

novative control technique are [10–12, 14, 15]. In [10] a
STC that guarantees practical stability of a perturbed non-
linear system is presented. In [11] a STC for nonlinear
systems perturbed by norm-bounded parameter uncertain-
ties and disturbances is described. In [14], authors show
that with a properly designed prediction horizon, the fea-
sibility and stability of the proposed self-triggered model
predictive control (MPC) algorithm can be guaranteed if
the disturbance is bounded in a small enough area. In [15],
authors present an ETC in which the triggering condition
is checked in the control law itself instead of using a Lya-
punov function, this reduces the complexity of computing
the event. In [12] multiple works of ETC and STC applied
to nonlinear systems are presented. However, unlike these
previous works, this paper presents a triggering technique
that is not based directly on the measurement error but on
the function of Lypaunov, thus achieving greater times be-
tween samples without degrading the performance.

Previous works concerning event-based control of non-
holonomic robots tracking nonlinear trajectories are [2,
4, 8, 9, 16]. In [2], an event-triggered nonlinear feedback
law is designed and tested using a Khepera III robot and
an IEEE 802.11g wireless network. However, communi-
cation between the robot and the remote center requires
periodic updating to check the event triggering condition.
In [8], a model predictive control framework combined
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with a self-triggered mechanism for constrained uncertain
systems is designed to control a simulated nonholonomic
robot, but it needs continuous communication between the
controller and the robot. In [16] a self-triggered MPC con-
troller strategy for unicycle-type robots with coupled input
constraint and bounded disturbances is presented. Stabil-
ity is guaranteed by means of a Lyapunov function. How-
ever, only simulation results are presented due to the com-
plexity of modelling and computing in a real application.
In [9], adaptive self-triggered linear control is applied for
trajectory tracking with a P3-DX robot; however, only the
stability of the velocity control loop is guaranteed and the
necessary velocity references are generated with the aid of
a Mamdani fuzzy control solution.

The main contributions of the present paper are:

1) Design and implementation of a novel self-triggered
Lyapunov-based control for nonlinear systems that
guarantees practical stability. This triggering condition
achieves a dual stability approach, when the Lyapunov
function is greater than a predefined threshold, asymp-
totic stability is guaranteed and after that, the system is
bounded on the given Lyapunov threshold level.

2) Comparison of our triggering mechanism with another
one based on the measurement error [10] and with a
periodic implementation. This way we remark the im-
provement achieved in the relation between number of
updates and control performance.

3) Evaluation of our triggering mechanisms for approach-
ing and nonlinear trajectory tracking in a real-life sce-
nario where a P3-DX robot is remotely controlled
through an IEEE 802.11g wireless network.

The rest of the paper is organized as follows: Section 2
presents the application problem: the trajectory tracking
of a nonholonomic robot. Section 3 revisits the nonlinear
aperiodic control problem. Section 4 describes our nonlin-
ear event-triggered strategy. Section 5 validates our pro-
posal with simulation results. In Section 6, we describe
the experimental scenario and present the results. Finally,
Section 7 summarizes the contributions of this paper.

2. MOTIVATION

A common problem concerning the remote guidance of
vehicles is the design of control laws to reach and fol-
low a time-parameterized reference. This problem is es-
pecially challenging when considering nonlinear trajec-
tories and nonholonomic vehicles [17]. This is the case
of differential-drive robots, which only possess two actu-
ation variables (linear velocity and angular velocity) for
locomotion control, whereas the pose of the mobile unit is
characterized by three degrees of freedom.

Fig. 1. Main variables describing the dynamics of the tra-
jectory tracking stage, where a virtual robot rep-
resents the reference pose: d is the distance error
calculated from the robot point to the virtual refer-
ence point, α is the orientation error with respect to
the target point, eθ is the orientation error between
the desired orientation to follow the trajectory (θr)
and the current orientation of the robot (θc).

2.1. Robot model
Fig. 1 shows the main elements involved in the trajec-

tory tracking problem. A virtual robot tracking the trajec-
tory perfectly under test conditions serves as the reference
(xr,yr,θr) to be followed by the real robot (xc,yc,θc).

The kinematic equations of the robots [18] are:

ẋp(t) = vp(t) cos(θp(t)), ẏp(t) = vp(t) sin(θp(t)),

θ̇p(t) = wp, p ∈ {c,r}, (1)

where vp is the linear velocity, wp is the angular velocity,
the subindex p means both current or reference variable.

The distance error d and the orientation error α with
respect to the target point [18] are given by:

d(t) =
√

(xr(t)− xc(t))2 +(yr(t)− yc(t))2,

α(t) = atan2(yr(t)− yc(t),xr(t)− xc(t))−θc(t). (2)

where atan2(y,x) returns the four-quadrant inverse tangent
(tan−1) of y and x, which must be real.

Prior works of aperiodic control [2, 8] used Cartesian
coordinates. However, when the robot is localized with a
set of Cartesian coordinates, according to the limitations
indicated by Brockett’s result [19], the target pose can-
not be reached asymptotically through smooth and time-
invariant feedback control laws. For this reason, we decide
to use polar coordinates. Because this coordinate system
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makes it possible to represent the problem in a simpler
way and in this form to design a control strategy that al-
lows smooth stabilization [20].

Taking into account the kinematic model (1) in polar
coordinates [20], the distance and orientation errors result
in:

ḋ(t) =−vc(t) cos(α(t))+ vr(t)cos(α(t)− eθ (t)),

α̇(t) =−wc(t)+ vc(t)
sin(α(t))

d(t)

− vr(t)
sin(α(t)− eθ (t))

d(t)
,

ėθ (t) = wr(t)−wc(t); eθ (t) := θr(t)−θc(t). (3)

Remark 1: The polar coordinate transformation is
only valid for non-zero values of the distance error d, as
for d = 0, the angle α is not defined [21]. This singular
point leads to a discontinuity in the control law. To avoid
this, if d = 0 (i.e. the target is reached); we define α = 0.

2.2. Problem statement
The problem studied in this paper is the path-following

performance of a robot linked to a remote controller via
a wireless channel. In the first stage, the robot has to ap-
proach the starting point of the path (target point); then,
the remote controller switches to a control law to track the
trajectory. In the approach stage, the objective is to reduce
the distance error to the target point up to a given thresh-
old. In the tracking stage, the distance and orientation er-
rors are assessed taking as reference the movement of a
virtual robot tracking the known trajectory perfectly. The
network to communicate the robot and the remote cen-
ter is assumed to be shared with other control tasks. For
this reason, the main objective of this work is to reduce
the wireless channel’s load. The main contribution is the
use of a novel triggering condition based only on the Lya-
punov function and its time derivative, without taking into
account the measurement error. With this less conservative
triggering condition we enlarge the inter-execution times
compared to previous aperiodical strategies based on mea-
surement error [4, 10, 22, 23].

3. NONLINEAR APERIODIC CONTROL

In this section, we present the fundamentals of nonlin-
ear aperiodic control solutions.

Notation: The Euclidean norm of vector ||v|| is indi-
cated by v ∈Rn. Given a signal s : R+→ Rn, it is denoted
with ||s||L∞,k

:= supt≥tk ||s(t)||. A function is said to be of
class C0(Dx) if it is continuous over Dx, and it is said to
be Cl(Dx), l > 0 if its derivatives are of class Cl−1(Dx). A
continuous function γ : [0,a[→ +∞,a > 0 is said to be of
class K if it is strictly increasing and γ(0) = 0. The Lips-
chitz constant of a function f is represented by L f .

Now, the problem formulation of aperiodic control ap-
plied to nonlinear systems is introduced. Consider an au-
tonomous nonlinear control system:

ξ̇ (t) = f (ξ (t),u(t)), (4)

where ξ (t)∈Dx⊂Rnx and u(t)∈Du⊂Rnu , both domains
containing the origin.

Assumption 1: There exists a differentiable state feed-
back law K : Dx →Du such that the origin of the closed-
loop continuous system

ξ̇ (t) = f (ξ (t),K(ξ (t))) (5)

is the unique locally asymptotically stable equilibrium
point in Dx.

From Assumption 1, converse theorems [24, 25] ensure
the existence of a Lyapunov function V (ξ (t)) for the sys-
tem (5) such that:

γ(||ξ (t)||)≤V (ξ (t))≤ γ̄(||ξ (t)||),

V̇ (ξ (t)) =
∂V (ξ (t))

∂ξ
f (ξ (t),K(ξ (t)))

≤−γ1(||ξ (t)||),∥∥∥∥∂V (ξ (t))
∂ξ

∥∥∥∥≤ γ2(||ξ (t)||), (6)

with γ , γ̄ , γ1, γ2 are K-class functions.

Assumption 2: Assume that:

1) The function f ∈Cl(Dξ ×Du), with l ≥ 3.
2) The functions γ , γ1 ∈ K in (6) are such that γ−1, γ1

are Lipschitz continuous on the working compact set
(Dξ ). The Lipschitz constants on Dξ of functions γ−1

and γ1 are represented by Lγ−1 and Lγ1 respectively.

The control signal is implemented in a zero-order hold
(ZOH) fashion, that is, the controller is recomputed at
times tk with fresh measurements, and the control input
is kept constant until a new measurement is received, i.e.:

u(t) = K(ξ (tk)), t ∈ [tk, tk+1[, k ∈ N. (7)

With this implementation, the sampled-data system dy-
namics are given by:

ξ̇ (t) = f (ξ (t),K(ξ (tk))), t ∈ [tk, tk+1[, k ∈ N. (8)

4. LYAPUNOV BASED SELF-TRIGGERED
CONTROL PROPOSAL

In this section, a self-triggering condition assuming that
the full state information is available at the measurement
instants is proposed. The triggering condition is based on
the Lyapunov function that describes the stability of the
closed loop system with the sample and hold implementa-
tion and its time derivative.
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Fig. 2. Graphical description of the proposed self-
triggering condition (9). When the Lyapunov func-
tion is greater than V0, every time the derivative of
the Lyapunov function is non negative the system is
updated. When the system converges to the invari-
ant set defined by V0, the system is updated when
the Lyapunov function hits the threshold V0.

Theorem 1: Suppose that Assumptions 1 and 2 hold
for Dξ and ξ (t0) ∈ Dξ . If the control signal is updated
according to the following triggering condition

tk+1=min{t> tk|(V̇ (ξ (t))≥0∧V (ξ (t))≥V0)}, (9)

the system (8) converges asymptotically to the bounded
set DV0 , where DV0 = {ξ (t)|V (ξ (t))<V0}.

Fig. 2 illustrates the triggering mechanism based on the
Lyapunov function.

Proof: By Theorem 3.2 of [26] the triggering condition
(9) enforces semiglobal practical stability of the system
(8), as long no Zeno executions are presented.

In order to show that the proposed triggering condi-
tion does not introduce Zeno executions, Theorem 4.1 of
[10] is employed to show that a strictly positive minimum
dwell-time between triggering controller updates. In [10],
the error function g(t) is defined as:

g(t) := f (ξ (t),K(ξ (tk)))− f (ξ (t),K(ξ (t))),

t ∈ [tk, tk+1[, k ∈ N, (10)

and the dynamics of the sample-data system (8) is rewrit-
ten as:

ξ̇ (t)= f (ξ (t),K(ξ (t)))+g(t), t ∈ [tk, tk+1[, k ∈ N.
(11)

The following sampling rule:

tk+1 = min{t > tk | ||g(t))||> eV0}, (12)

is proposed by [10]. It ensures semiglobal practical sta-
bility of the closed-loop system for any eV0 > 0 and guar-
antees a positive minimum dwell-time if Assumptions 1

and 2 hold for any (arbitrarily large) compact set Dξ and
ξ (t0) ∈ Dξ .

It can be shown that condition (9) presents equal or
greater inter-execution times than (12) for some selection
of eV0 > 0, then by virtue of Theorem 4.1 of [10], the de-
sired result is obtained: the existence of a strictly positive
minimum dwell-time, and thus no Zeno execution is pos-
sible. Observe that:

V̇ (ξ (t)) =
∂V (ξ (t))

∂ξ
f (ξ (t),K(ξ (tk)))

=
∂V (ξ (t))

∂ξ
f (ξ (t),K(ξ (t)))

+
∂V (ξ (t))

∂ξ
( f (ξ (t),K(ξ (tk)))

− f (ξ (t),K(ξ (t))))

≤− γ1(||ξ (t)||)+ γ2(||ξ (t)||)||g(t)||, (13)

which together with (12) implies:

V̇ (ξ (t))≤−γ1(||ξ (t)||)+ γ2(||ξ (t)||L∞,k)eV0 . (14)

Thus, (12) enforces the following implication:

V̇ (ξ (t))<0 ∀t, if ||ξ (t)||>γ
−1
1 (γ2(||ξ (t)||L∞,k)eV0).

(15)

Inspecting the triggering condition (9) it is observed that
it only demands new updates if:

V̇ (ξ (t))≥ 0 ∧ V (ξ (t))>V0, (16)

thus from (6) it is proven that (9) forces updates when:

V̇ (ξ (t))≥ 0 ∧ ||ξ (t))|| ≥ γ
−1(V0). (17)

Select now an eV0 such that:

γ
−1
1 (γ2(||ξ (t)||L∞,k)eV0)≤ γ

−1(V0). (18)

Such an eV0 > 0 always exists as long as ||ξ (t)||L∞,k is up-
per bounded, from the properties ofK∞ functions and V0 >
0. Note that ||ξ (t)||L∞,k is upper bounded as V (ξ (0))< ∞

and thus due to (9) V (ξ (t)) < ∞ for all positive times,
which by (6) implies the required boundedness.

Finally, by virtue of (18) it is proven that when (17)
takes place the triggering condition from (12) is certainly
violated. �

Remark 2: To find a dwell-time, Theorem 4.1 of
[10] is used because the triggering condition (9) presents
no lower inter-execution times than (12) outside of the
bounded set defined by DV0 . This is due to the triggering
condition (9) that depends directly on the Lyapunov time
derivative and not on the absolute value of the measure-
ment error as (12).
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4.1. Controller for reaching a target point
This is a special case of the problem described in Fig. 1,

in which, vr(t) = 0, wr(t) = 0 and θr(t) ∈ [−π,π] [18].
Considering the kinematic model described in (2) and

(3) and a fixed target point, the evolution of the distance
and orientation errors in polar coordinates, are defined as:

ḋ(t) =−vc(t) cos(α(t)),

α̇(t) =−wc(t)+ vc(t)
sin(α(t))

d(t)
. (19)

The designed controllers are based on Lyapunov func-
tions. The following control laws are applied:

vc(t) = Kv1 cos(α(t))d(t), (20)

wc(t) = Kw1α(t)+Kv1 cos(α(t))sin(α(t)), (21)

where Kv1 > 0 and Kw1 > 0 are the approaching control
gains, and the following equation is a Lyapunov function
for the closed-loop system (19):

V (t) =
1
2

λd(t)2 +
1
2

α(t)2, (22)

where λ is an adjustment factor greater than 0.
The time derivative V̇ along (19) is given by:

V̇ =−dvc cos(α)+α(−wc + vc
sin(α)

d
), (23)

which leads to the following expression ensuring a nega-
tive value for the V̇ function:

V̇ =−Kv1d2 cos2(α)−Kw1α
2 < 0. (24)

4.2. Controller for nonlinear trajectory tracking
In this section the controller applied to track the non-

linear trajectory is described. As prescribed in [20], the
following linear and angular control laws are applied to
(3):

vc(t) = Kv2d(t)cos(α(t))+ vr(t)cos(eθ (t)), (25)

wc(t) = θ̇md(t)+ vmd(t)(Kw2(vls(t)sin(α(t))

+ vr(t)sin(eθ (t)))+d(t)sin(α(t))), (26)

where θmd is the modified desired heading angle:

θmd(t) :=atan2
(

Kv2d(t)sin(α(t)− eθ (t))
vr(t)+Kv2d(t)cos(α(t)− eθ (t))

)
+θr(t), (27)

and vmd is the modified desired linear velocity:

vmd(t)

:=
√

vr(t)2+(Kv2d(t))2+2vr(t)Kv2d(t)cos(α(t)−eθ(t)),
(28)

being Kv2 > 0 and Kw2 > 0 the tracking gains associated
with the linear and angular velocities. The following equa-
tion is a Lyapunov function for the resulting closed-loop
system:

V (t) =
1
2

d(t)2 +1− cos(θmd(t)−θc(t)) (29)

is a Lyapunov function for the system (3). The time deriva-
tive of V is:

V̇ =−Kv2d2−Kw2(Kv2d sin(α)+ vr sin(eθ ))
2 < 0.

(30)

Remark 3: When the STC computes the next update
instant tk+1, all reference velocities, vr(t) and wr(t), are as-
sumed to be piecewise constant between the current time
tk and the next update time tk+1. However, if a change in
reference signals is detected the next update instant tk+1 is
recalculated.

5. SIMULATION RESULTS

In this section different simulation results are presented.
First, the control technique to reach a point is tested. Next,
the trajectory tracking simulation results are shown.

In order to validate the proposal, a comparison is pre-
sented with different control implementations: a continu-
ous strategy, two periodic implementations, and three ETC
with the triggering condition described in (12) but differ-
ent thresholds.

5.1. Reaching a point
Fig. 3 describes the kinematic model of a differen-

tial wheeled robot, with the control parameters λ = 0.01,
Kv1 = 0.1, Kw1 = 0.1 and V0 = 10−2. The robot is ini-
tially positioned with the opposite orientation required to
reach the target. The initial location (O) is (xc,yc,θc) =
(−10,0,π) and the target (D) is at the coordinate origin
with θr ∈ [−π,π] (see Fig. 3).

Fig. 4 compares the Lyapunov functions applying both
the self-triggered strategy and the continuous time strat-
egy. Note that in this case, the aperiodic one achieves a
better performance, reaching the equilibrium point faster
than the continuous strategy. The discrete update instants
are also shown, and as can be seen, the system reaches the
equilibrium point after only four updates.

A statistical study is also carried out to better charac-
terize the validation procedure. The study consists of 100
simulations of each implementation. A random combina-
tion for initial pose conditions has been chosen. Table 1
summarizes the average and the standard deviation of per-
formance and updates of each control technique. For the
case under study, our STC solution provides the best re-
sults with the lowest update and performance average val-
ues. The results for STC (12) are also presented, in order
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Fig. 3. Example of nonlinear trajectory generated by the
reaching a point strategy; the robotic unit departs
from the original pose O to reach the destination
point D.
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Fig. 4. Comparison of Lyapunov functions for the contin-
uous control strategy (blue line), the STC strategy
(red line) and the update times (green color).

Table 1. Comparison of the average (AVG) and the stan-
dard deviation (STD) values of update number
(Upd) and RMS value of distance after 100 sim-
ulation results concerning the different control
strategies for reaching a point, including the trig-
gering conditions (12) and (9).

AVG
Upd

STD
Upd

AVG
dRMS (m)

STD
dRMS (m)

Continuous - - 73.33 46.16
Periodic

Ts= 100 ms
800 0 73.04 45.97

Periodic Ts= 1 s 80 0 70.48 44.35
STC (12)

eV0 = 0.005
48.15 11.93 70.98 45.12

STC (12)
eV0 = 0.25

11.57 1.80 64.94 41.76

STC (12)
eV0 = 1

8.59 1.3 71.35 43.89

Our proposal
STC (9)

2.5 0.52 58.55 40.31

to find the best result for this technique different threshold
values (eV0 ) are simulated and the best three are presented.
This technique achieves also better results than the peri-
odic implementation.

5.2. Trajectory tracking
A simulation example based on the previously men-

tioned robot kinematic model is presented, with control

parameters Kv2 = 0.8, Kw2 = 0.1 and V0 = 10−2. The ini-
tial robot location (OR) is (xc,yc,θc) = (0.1,3,− π

2 ) and
the initial trajectory point (OT ) is (xr,yr,θr) = (0,2,π).
The nonlinear trajectory is shown in Fig. 5. The robotic
unit starts from the origin OR and stops at the destina-
tion point D. The designed control shows how the self-
triggered controller greatly reduces the number of changes
in the control signals remotely applied to the robot, while
also achieving a good performance.

Using the aperiodic technique presented in Section 4,
the controller needs 65 updates for proper trajectory track-
ing over 80 seconds of simulation. The analysis of the Lya-
punov functions presented in Fig. 6 shows that our self-
triggered controller achieves a better performance than the
continuous.

As in the previous section, a statistical study is carried
out to better characterize the validation procedure, includ-
ing 100 simulations of each implementation. A random
combination of initial pose conditions has been chosen.
Table 2 summarizes the average and the standard deviation
of performance and updates of each control technique. It
can be observed that the better results are achieved with
the STCs, the aperiodic controllers present a good balance
between the number of updates and the performance. In
this particular case our controller obtains the best aver-
age performance and the STC with the triggering condi-
tion (12) the lowest number of updates when the threshold
is eV0 = 0.25.

0 5 10 15
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-2

0

2

4

y
 [
m

]

Trajectory

O
RO

T

D

O
RO

T

D

Reference

STC

Fig. 5. The nonlinear trajectory tracking of the robotic
unit implementing the designed STC. The robot
starts from the initial location OR and follows the
trajectory from the origin OT to the destination
point D.

Fig. 6. Comparison of continuous and STC Lyapunov
functions, as well as the aperiodic update times.
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Table 2. Comparison of the average (AVG) and the stan-
dard deviation (STD) values of update number
(Upd) and RMS value of distance after 100 sim-
ulation results concerning the different control
strategies for trajectory tracking, including the
triggering conditions (12) and (9).

AVG
Upd

STD
Upd

AVG
dRMS (m)

STD
dRMS (m)

Continuous - - 4.08 1.65
Periodic

Ts= 100 ms
800 0 4.14 1.68

Periodic Ts=1s 80 0 4.91 1.82
STC (12)

eV0 = 0.005
114.52 10.37 3.99 1.78

STC (12)
eV0 = 0.05

49.63 5.48 3.94 2.03

STC (12)
eV0 = 0.25

45.03 14.59 5.98 2.90

Our proposal
STC (9)

81.64 24.38 2.81 2.06

6. EXPERIMENTAL RESULTS

The tests were performed using a Pioneer P3DX robot
with additional electronics such as it is described in
[27]. A mini PC (Model number NUC5i3RYH) with In-
tel Core i3 processor and 4 GB of RAM implemented
the remote centre. The remote centre and the robot were
running Ubuntu 12.04 as their operating system. The
wireless router chosen for this application is the Buf-
falo WHR-HP-G54, which is in compliance with stan-
dards IEEE802.11b/.11g, some specifications and param-
eter configuration are: 11 frequency channels, transmis-
sion rate of 125 Mbps, WPA-PSK and 128 bits WPE and
4 LAN ports. The client device chosen to connect to the
router is the WLI-TX4-G54HP. Fig. 7 shows the complete
experimental platform described in this section.

P3-DX robot state-space model is detailed in [9, 28].
Among the practical aspects to be considered are: robot

Fig. 7. Complete experimental platform: remote center
(mini PC NUC5i3RYH), robot (Pioneer P3-DX)
and wireless router (WHR-HP-G4).

dynamics [29] and network channel delay [28]. A quickly
enough periodic velocity servosystem is locally imple-
mented in the robot, thus the robot dynamics can be ne-
glected. In addition, we use the network delay compensa-
tion presented in [28] to compensate the robot’s reaction
time and the variable network delays.

An error in the prediction due to uncertainties of the
real system is also assumed but this is the reason a trig-
gering condition that guarantees practical stability instead
asymptotic or exponential stability is chosen.

Fig. 8 shows the structure of the implemented approach
and tracking self-triggered control. The remote PC and the
P3-DX are nodes of the same wireless network. The PC
carries out two main tasks: updating the velocity vector
(vc(tk),wc(tk)) to track the desired trajectory, and comput-
ing the next sampling instant (tk+1). Meanwhile, the self-
triggered scheduler is responsible for deciding when the
system state vector is updated and when the control action
is applied. It is clear that the higher the inter-executions
interval, the lower the load on the wireless channel.

The Lyapunov-based controller switches between the
approach and tracking control alternatives. On the one
hand, when the robot is farther than a meter from the de-
sired trajectory, the main objective is to converge to the
path, and for this the target-reaching strategy (Section 4.1)
is selected. On the other hand, when the robot is closer
than a meter from the path, the trajectory-tracking strat-
egy (Section 4.2) is applied. This allows the designer to
focus each controller on the specific objective by defining

Fig. 8. Detail of the general architecture, where a desktop
computer remotely controls a P3-DX robot. The
PC and the robot are connected through the wifi
network of the test environment.
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Fig. 9. Experimental validation of the aperiodic remote
control for nonlinear trajectory tracking. The robot
starts from the initial position OR in LAB1, reaches
the initial trajectory point OT and follows (blue
line) the eight-shaped path (red line) in the cor-
ridor, to the destination point D. Top picture: 2D
trajectories, reference and registered ones. Bottom
picture: time response of x and y coordinates reg-
istered along the route.

the triggering function to achieve a good trade-off between
performance and number of updates.

As an example, an eight-shaped trajectory has been
generated and implemented in the laboratory area of the
Engineering School at the University of Alcala. The robot
departs from the initial position OR in LAB1, and follows
a circular route that starts at OT and finishes at D, the start
time of the trajectory is considered when the controller
switches to the tracking control strategy. Fig. 9 illustrates
the 2D reference and trajectory tracking resulting of the
experimental test as well as the time response of x and y
coordinates along the route. As can be seen, the first part is
associated with the target-reaching problem, and the sec-
ond with the trajectory tracking problem.

Fig. 10 shows the temporal evolution of linear and an-
gular velocities: those calculated by the Lyapunov-based
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Fig. 10. Comparison of linear (top side) and angular (bot-
tom side) velocities: reference (red color), control
(blue) and measured by odometry (green).
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and inter-executions times (green) where the con-
trol action is updated.

controller (vc,wc), the references (vr,wr) provided by the
trajectory generator, and the ones registered locally by the
robot.

Fig. 11 allows to evaluate the temporal evolution of the
distance error (Equation 2) and the inter-execution times.
Over the 72 seconds of the experiment, the P3-DX reached
the destination point D with only 35 updates of the control
law and the same number of bidirectional accesses to the
wireless channel.

To validate the proposal, the same experimental test are
also carried out with the different control implementations
presented in Section 5: three periodic implementations,
and three STC with the triggering condition described in
(12) but different threshold. Table 3 presents the perfor-
mance results and updates of each control technique, a de-
tailed analysis of the results obtained in the approach to
the trajectory phase and in the trajectory tracking strategy
are also presented. It can be observed that the better re-
sults are achieved with the STCs. In this particular case
our controller obtains the best average performance and
the lowest number of updates. The switch time indicates
how long it takes to reach the OT point with up to 1m
distance error. In this case, it can be appreciated how our
controller manages to do it in less time, with the best per-
formance and with a single sample.
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Table 3. Comparison of update number and RMS value of
distance concerning the different control strate-
gies for reaching a point and trajectory tracking,
including the triggering conditions (12) and (9).

Periodic
Ts= 1 ms

Periodic
Ts= 100 ms

Periodic
Ts= 1 s

Our proposal
STC (9)

Updates 81894 818 81 36
dRMS (m) 28.930 28.775 27.602 18.244

Switch time 18.694 18.60 17.75 8.722
Updates

approaching
18694 186 17 1

dRMS (m)
approaching

27.713 27.579 26.370 16.4971

Updates
tracking

63200 632 64 35

dRMS (m)
tracking

1.217 1.196 1.232 1.746

STC (12)
eV0=0.005

STC (12)
eV0 = 0.25

STC (12)
eV0 = 1

Our proposal
STC (9)

Updates 144 147 42 36
dRMS (m) 28.352 26.112 23.202 18.244

Switch time 17.83 16.01 13.72 8.722
Updates

approaching
21 7 3 1

dRMS (m)
approaching

26.634 24.418 21.312 16.4971

Updates
tracking

123 40 39 35

dRMS (m)
tracking

1.718 1.694 1.897 1.746

7. CONCLUSIONS

A novel aperiodic nonlinear trajectory tracking con-
troller for nonholonomic mobile robots is presented. To
take advantage of different controllers, the solution in-
cludes two stages: approaching the trajectory from an
arbitrary initial pose, and trajectory tracking to a des-
tination, assuming a unicycle kinematic model. A spe-
cific aperiodic Lyapunov-based control solution is de-
signed, that guarantees semiglobal practical stability and
avoids Zeno executions. In order to achieve longer inter-
execution times than previous works on aperiodic control,
we design a triggering condition build from a system Lya-
punov function. The main advantage of our self-triggered
control is that we maintain the control signal unless the
time derivative of the Lyapunov function becomes non-
negative. This ensures that updates only take place when
they are necessary. A comparison with different periodic
and aperiodic alternatives has been tested. Validation by
simulation and experimentation with a real robot confirms
that our aperiodic solution leads to good target approach
and trajectory tracking performance with a significant re-
duction in the number of control updates, and therefore a
substantial reduction in wireless channel load.
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