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Abstract: Real-time monitoring of the economy is based on activity indicators that show regular
patterns such as trends, seasonality and business cycles. However, parametric and non-parametric
methods for signal extraction produce revisions at the end of the sample, and the arrival of new data
makes it difficult to assess the state of the economy. In this paper, we compare two signal extraction
procedures: Circulant Singular Spectral Analysis, CiSSA, a non-parametric technique in which we
can extract components associated with desired frequencies, and a parametric method based on
ARIMA modelling. Through a set of simulations, we show that the magnitude of the revisions
produced by CiSSA converges to zero quicker, and it is smaller than that of the alternative procedure.

Keywords: ARIMA; business cycle; CiSSA; revision

1. Introduction

Real-time monitoring of the economy is key to assess the state of the business cycle [1].
Unfortunately, business cycle signals are subject to revisions, and this might condition
the real-time decisions taken by economic policy authorities [2]. This has motivated the
central banks’ interest in revisions, for instance, as shown by the Bank of England [3], the
European Central Bank [4] or the Federal Reserve [5].

The literature on data revision is related to the analysis of real-time data [1,6,7].
As [8] points out, institutions are reluctant to enact large data revisions, and therefore
analysts value signal extraction methods that necessitate few revisions. There are two
causes for revising the estimates of the extracted signals: to adjust to the new information
incorporated in “old”, already published data (of periods s < t), or to update the estimates
of the unobserved signal due to the appearance of new data in the following periods, s > t.
The first cause of data revisions has been widely analyzed in the literature, for instance,
in [7,9,10] or earlier references such as [11–14]. The second cause for updating the extracted
signals has been analyzed in [15], and Refs. [8,16] make partial comparisons of different
alternatives. We add to this literature by analyzing how posterior published data affect
the estimated signals by comparing two procedures: a parametric ARIMA-model-based
approach widely used by statistical offices (Tramo-Seats, see for instance [17]) and a non-
parametric procedure based on Singular Spectrum Analysis, SSA, recently introduced
in [18]. Though revisions are inherent to any moment in time, they are crucial when there is
a business cycle turning point or abrupt changes in the data generation process [19,20], like
the ones currently witnessed due to COVID-19. It is at these times when non-parametric
signal extraction procedures become very valuable and provide a more robust signal.

Circulant Singular Spectrum Analysis, CiSSA, is a non-parametric procedure that
allows one to automatically decompose any economic time series into trend, seasonal and
business cycle components [18]. CiSSA relies on traditional Singular Spectrum Analysis,
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SSA, a non-parametric procedure based on subspace algorithms [21]. Its applications
cover many time series problems like signal extraction, forecasting, and missing value
imputation, among others [22–24]. SSA performs the singular value decomposition of the
so-called trajectory matrix, which is built by putting together lagged pieces of the original
time series. Basic SSA was introduced by [25,26]. A theoretical variation based on Toeplitz
matrices for stationary time series was developed in [27]. A diagonal averaging procedure
needed to reconstruct the time series in the final step is proposed by [28]. Very recently, [18]
introduces CiSSA, linking the eigen decomposition to the frequency of the extracted signals
and proving the asymptotic equivalence of the three variants (Basic, Toeplitz and Circulant
SSA). SSA is widely applied across fields like biometrics, climatology, energy and volcanic
activity, among others [29–32]. Applications in economics cover the analysis of business
cycles, volatility estimation and forecasting [10,33,34].

Signals estimated with alternative versions of SSA are also affected by revisions at
the end of the sample when including new information. However, the literature on data
revisions with SSA is scarce. In fact, since the origin of SSA [25,26], 25 years elapsed before
the appearance of the first study on SSA revisions [9]. Initial studies focused on published
data revisions, considering the successive waves of data publications (vintages) as different
time series in a multivariate framework, a methodology that had been introduced by [35].
In [10,36] the focus is on revisions caused by the recalculation of the extracted signal when
additional data appear in the following periods. The revisions for US GDP obtained by SSA
are compared with those calculated by some univariate filters in [10] and in a multivariate
setup for US IP in [36]. Both papers compare the initial estimate with the final one, based
on the quasi-real estimate given in [15].

In this paper, we study the evolution of the revisions, period by period, until reaching
the final estimate, with the objective of analyzing the impact of any economic event on the
posterior estimation of the business cycle. Since there are no observed data on the business
cycle, in a first step we perform a set of simulations of linear and non-linear models and
compare the revisions of CiSSA with those of a parametric approach, such as ARIMA-
model-based, AMB, methods. In the second step, we check how revisions affect future
forecasts of measured or observed time series when using unobserved component models.
We introduce an alternative concept of final estimation, following [37] to avoid distortions,
because, according to the one used by [15], the time elapsed from the first estimate of the
underlying component to the so-called final one is not the same for all available data in a
particular time. We conclude that the business cycle estimates made with ARIMA models
suffer greater revisions than those made with Circulant SSA.

This paper contributes to the existing literature on the effect of data revisions in signal
extraction in several aspects: first, we show that CiSSA signal estimations at the end of the
sample are asymptotically unbiased as new data arrive; second, we characterize the magni-
tude of data revisions with CiSSA; third, we provide a comparison of the relative performance
with an AMB parametric signal extraction procedure. We do so through simulations in a
linear and non-linear setup and, finally, through a data set in a real-time application.

The rest of the paper is organized as follows. In Section 2, we describe the different
approaches to estimate the business cycle and compare revisions. In Section 3, we carry
out our simulation study to compare the revisions made with non-parametric SSA versus
parametric, based on ARIMA models. We complement the analysis with an application to
real data. Finally, in Section 4, we conclude.

2. Methodology

In this section we describe the two alternative procedures, non-parametric and para-
metric, that we use to estimate the business cycle: Circulant SSA and an ARIMA-model-
based decomposition. As is seen in the literature [10], the trend-cycle component is formed
by all the oscillatory fluctuations of a period greater than one year and a half. There are
two alternatives to estimate the business cycle: to directly estimate it or, alternatively, to
consider the first differences of a joint trend-cycle component. Given that AMB procedures
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are not able to differentiate the trend from the cycle [38], we follow the second path. Thus,
the business cycle estimate ĉt is given by

ĉt = yt − yt−1

where yt is the trend-cycle component. In what follows, we describe both approaches.

2.1. Circulant Singular Spectrum Analysis

CiSSA is an algorithm that decomposes the original time series into the sum of a
set of oscillatory components at known frequencies. Its main advantage is that users can
group the extracted components according to their needs because those components are
precisely identified by frequency. CiSSA can be applied to stationary and non-stationary
time series, as Theorem 2 in [18] states. However, for simplicity in presenting the method,
let us assume that {xt} is a zero mean stationary time series of length T, given in the
vector x = (x1, · · · , xT)

′, and let L be a positive integer, called window length, such that
L < T/2. The four steps of any SSA signal extraction procedure adapted to Circulant SSA,
as described in [18], are as follows:

• Step 1: Build the trajectory matrix.

From the original time series, we obtain the L× N trajectory matrix X, given by L time
series of length N = T − L + 1 as

X = (x1|· · ·|xN) =


x1 x2 · · · xN
x2 x3 · · · xN+1
...

...
...

...
xL xL+1 · · · xT


where xj = (xj, · · · , xj+L−1)

′ is the vector of dimension L and origin at time j. The matrix
X is Hankel, and both by columns and by rows we have subseries of the original time
series {xt}.
• Step 2: Decomposition.

We project the trajectory matrix over the space spanned by a set of eigenvectors to
obtain the unobserved components. To do so, first we build the circulant matrix, SC, from
the sample second moments:

sm =
1

T −m

T−m

∑
t=1

xtxt−m , m = 0, 1, · · · , L− 1 .

The elements of the first row in SC, α = (α0, α1, · · · , αL−1), are defined as

αm =
L−m

L
sm +

m
L

sL−m , m = 0, 1, · · · , L− 1

The eigenvalues of SC are given by diag(λ1, · · · , λL) = U∗SCU, where U is the
Fourier unit matrix and A∗ denotes the conjugate transpose of A. The k-column of U is
the eigenvector associated to the eigenvalue λk, given by uk = L−1/2(uk,1, · · · , uk,L)

′ with

uk,j = exp
(
−i2π(j− 1) k−1

L

)
. Additional details are specified in [18]. The eigenvalues λk

are estimations of the spectral density of the time series xt for the frequency ωk = k−1
L ,

k = 1, · · · , L, since

λk ' f̂
(

k− 1
L

)
=

∞

∑
m=−∞

sm exp
(

i2πm
k− 1

L

)
Therefore, there is a direct relationship between the eigenvalue λk and the frequency

ωk =
k−1

L .
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In this way we can decompose the trajectory matrix X as sum of the elementary
matrices Xk of rank 1, that is,

X =
L

∑
k=1

Xk =
L

∑
k=1

uku∗k X

• Step 3: Grouping.

The spectral density function is symmetric, therefore, λk = λL+2−k, and the corre-
sponding eigenvectors are complex conjugates, uk = uL+2−k; that is, the elementary matri-
ces Xk and XL+2−k are associated with the same frequency, and we group them together
in the elementary pairs of frequencies Bk = {k, L + 2− k} for k = 2, · · · , G, with B1 = {1}
and B L

2 +1 =
{

L
2 + 1

}
if L is even, where G =

⌊
L+1

2

⌋
, with b·c being the integer part.

We compute the elementary matrices by frequencies,

XBk = Xk + XL+2−k
= uku∗k X + uL+2−ku∗L+2−kX
=
(
uku∗k + uku∗k

)
X

= 2
(
RukR′uk

+ IukI ′uk

)
X

whereRuk = real(uk) and Iuk = imag(uk), so both Xk and XBk are real.
We link the different elementary groups by frequencies Bk to an unobserved compo-

nent (trend, cycle, . . . ) according to the goal of our analysis. The matrix associated with a
desired unobserved component Ij is the sum of the matrices associated with all frequencies
that defined that component XIj = XBk1 + · · ·+ XBkp . Finally, the trajectory matrix can be
recovered as X = XB1 + · · ·+ XBG . The contribution of a particular elementary group by
frequency Bk is given by 2λk/∑ λk for k = 2, · · · , G and λ1/∑ λk for k = 1.

• Step 4: Reconstruction.

In this step, we have to transform the matrices XIj =
(

x(j)
ik

)
, computed in the previous

steps, in time series of length T, x̃(j) = (x̃(j)
1 , · · · , x̃(j)

T )
′
. We call this series reconstructed

series, and it is given by diagonal averaging as

x̃(j)
t =



1
t

t
∑

i=1
x(j)

i,t−i+1 1 ≤ t < L

1
L

L
∑

i=1
x(j)

i,t−i+1 L ≤ t ≤ N

1
T−t+1

L
∑

i=t−T+L
x(j)

i,t−i+1 N < t ≤ T

A block diagram presenting the several stages of the calculations in CiSSA is presented
in Figure 1. As it can be seen, the only parameter to apply CiSSA is the window length L.
To select this value, there is one general rule, L < T/2, because otherwise the trajectory
matrices with window length L and N = T − L + 1 are equivalent. Other rules can be
found in the literature: on the one hand, L ≤ T/3 to have enough observations to estimate
the sample second moments [28]; in addition, it has to be large enough to describe a trend
with a complex structure and to preclude producing components with mixed-frequencies,
and it should be a multiple of the seasonal periodicity and of the period of any oscillatory
component that is necessary for extraction [21].
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Figure 1. Block diagram presenting the several stages of CiSSA.

2.2. ARIMA-Model-Based Procedure

Assume now that the non-stationary time series xt has d and D regular and seasonal
unit roots, respectively. Let s be the seasonal period and B the backwards operator such
that Bhxt = xt−h. Then, as it is well known, the seasonal multiplicative ARIMA model is
given by

φp(B)ΦP(B)∇d∇D
s xt = θq(B)ΘQ(B)at

or equivalently,

xt =
θq(B)ΘQ(B)

φp(B)ΦP(B)∇d∇D
s

at = ψ(B)at (1)

where φp(B) = 1 − φ1B − . . . − φpBp is the autoregressive polynomial of the regular
part of order p, ΦP(Bs) = 1−Φ1Bs − . . .−ΦPBsP is the autoregressive polynomial of the
seasonal part of order P, ∇d = (1− B)d and ∇D

s = (1− Bs)D are the regular and seasonal
differences, respectively, θq(B) = 1− θ1B− . . .− θqBq is the moving average polynomial
of the regular part of order q, ΘQ(Bs) = 1−Θ1Bs − . . .−ΘQBsQ is the moving average
polynomial of the seasonal part of order Q, and at is white noise with variance σ2

a.
Given the ARIMA model for the original time series, a signal extraction decomposition

of the time series in trend-cycle, seasonal and irregular components is proposed in [39] by
deriving the corresponding ARIMA models for the components. Their Minimum Mean
Square Error (MMSE) estimators are given by the application of Wiener–Kolmogorov filters
to the original time series. In the case of the trend-cycle component (Y), the filter is given by

WK(B, F) =
ψY(B)ψY(F)
ψ(B)ψ(F)

where F = B−1 is the forward operator,ψ(B) is given in (1) andψY(B) is the corresponding
derived ARIMA model for the trend-cycle component. Wiener–Kolmogorov filters are
symmetric and centered. These filters were derived by Kolmogorov [40] and Wiener [41]
for stationary time series. Furthermore, it is shown that they are valid for the nonstationary
case in [42].

2.3. Revisions

We focus on the end-of-sample revisions due to the signal re-estimations caused by
the release of new data. First, we need to understand the nature of the revisions. In
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CiSSA, which is non-parametric, the revision is due to the introduction of new data in the
reconstruction stage, while in the ARIMA-based-model procedure, the source of revisions
relies both on new parameter estimations and on the update of the forecasts needed to
apply the Wiener–Kolmogorov filters.

In what follows, we formalize the process of data revisions. Given data up to time
t of the time series, {xt}, the initial or concurrent estimate of the business cycle, ct, for
that period is denoted by ĉt|t. As new data are available at time t + 1, t + 2, . . . , we can
re-compute the estimation of ct and denote it as ĉt|t+1, ĉt|t+2, · · · . We end up with the
procedure after K periods, ĉt = ĉt|t+K, when no more revisions are given. The set formed
by the so-called initial, subsequent, and final estimates is the estimation path of the desired
component at period t.

The number of periods K is by nature different to CiSSA and AMB approaches. On
the one hand, in CiSSA, given a window of length L, the eigenvectors are fixed, so that
the projections of the original series for the final period do not change when new data is
published in later periods. However, for the final period, the data reconstructed by the
diagonal average varies until at least L− 1 new subsequent data are published. Therefore,
CiSSA revisions will stop at most after K = L − 1 periods. On the other hand, AMB
revisions could last forever, due to parameter re-estimation, though, in practice, it is
observed that they usually end between two and five years [37]. To fix a common horizon
for both methodologies, and given that L in CiSSA must be such that L < T/2, we consider
the same value K = L in both cases.

The difference between a preliminary estimate of the cycle and its final estimate mea-
sures the revision that the real-time estimate undergoes. The revision is the measurement
error of a preliminary estimate, that is,

rt|t+j = ĉt|t+j − ĉt

Considering these for j = 0, 1, . . . , K− 1, we have the evolution of the revisions from
the initial to the final estimation of the cycle.

Notice that the first period for which we have the complete estimation path is
t0 = 2L + 1 and the last one is t1 = T−K = T− L+ 1. In this way, we have P = T− 3L+ 1
preliminary estimates j periods after the initial estimate, j = 0, 1, . . . , K− 1.

Figure 2 illustrates the calculation scheme of the preliminary estimates or revisions
with T = 16 and L = 4. For each period, preliminary estimates are available based on the
last published period. The dark gray diagonal contains P = T − 3L + 1 = 5 concurrent
estimates; in each diagonal of lighter gray color there are the estimates after j periods;
finally, the dashed diagonal shows the final estimates.

The definition of the final estimate used refers to the period from which the estimation
of a component does not undergo any more revisions [37], as opposed to the final estimate
of [15], which refers to the last available estimate.

Revisions for a time series {xt} of length T are obtained by means of a recursive
procedure from time t0 until the end of the sample. First, we take the series up to time t0
and estimate the cycle, getting the initial estimate for time t0, ĉt0|t0

; we add a new data point
from one more period, t0 + 1, and estimate the cycle, getting the initial estimate for time
t0 + 1 and the first preliminary estimation for t0, ĉt0|t0+1; we add one more data point, t0 + 2,
and we estimate the cycle, obtaining the initial estimate for the observation at t0 + 2, the first
preliminary estimate for t0 + 1 and the second preliminary estimate for t0, ĉt0|t0+2; similarly,
we add periods successively until we reach the last available observation. Therefore, for a
given j, we have a sample of size P = t1 − t0 + 1 of preliminary estimations j periods after

the initial estimate generated by the set of revisions
{

rt|t+j

}t1

t=t0
for j = 0, 1, . . . , K− 1.
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The magnitude of the revisions after j periods is measured by their standard deviation,
σ
(

rt|t+j

)
. Consequently, the magnitude of the revisions of the business cycle given by the

CiSSA and AMB methodologies can be compared by the ratio of their standard deviations,

RMRj =
σ
(

rCiSSA
t|t+j

)
σ
(

rAMB
t|t+j

) , j = 0, 1, . . . , K− 1, (2)

where rCiSSA
t|t+j and rAMB

t|t+j are the revisions after j periods generated by the CiSSA and AMB
methods, respectively. If for a given j, RMRj is less than 1, then the revisions with CiSSA
will be smaller than those of the AMB method in the preliminary estimation after j periods
of the initial estimation.
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3. Simulations

In this section we check the relative accuracy of the non-parametric, CiSSA, and
parametric, AMB, methodologies by means of evaluating the magnitude of the revisions
through simulations. However, as revisions are calculated as the differences to a final
estimation, we previously check that (1) the final point estimation of the cycle is unbiased,
E
(

ĉt|t+K

)
= ct, and (2) the preliminary point estimations converge to the final estimation.

Simulations are run for linear and non-linear structural models.

3.1. Simulated Models

First, we consider the following linear structural model for a time series {xt}:

xt = µt + ct + γt + εt

where µt is the trend, ct the cycle, γt are the seasonal components, and εt is the error term.
We assume that the trend follows an integrated random walk as in [43], defined by

µt = µt−1 + νt−1

νt = νt−1 + ξt−1 ξt ∼ N
(

0,σ2
ξ

) (3)

The models for the cycle and seasonal components follow [44]. The cycle is the first
series in a bivariate VAR(1) model, given by
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(
ct
c̃t

)
= ρc

(
cos(2πωc) sin(2πωc)
− sin(2πωc) cos(2πωc)

)(
ct−1
c̃t−1

)
+

(
ζt
ζ̃t

)
,
(
ζt
ζ̃t

)
∼ N

(
0,σ2

ζI2

)
, (4)

where the frequencyωc ∈ [0, 1] and the period is 1/ωc. The seasonal component of period
s is given by

γt =
bs/2c

∑
j=1

(
ηj,t cos

(
2πωγj t

)
+ η̃j,t sin

(
2πωγj t

))
, ωγj =

j
s

, j = 1, · · · , bs/2c , (5)

where the coefficients ηj,t y η̃j,t are random walks with noise variances equal to σ2
ς for all

the frequencies ωγj . Finally, the error term εt is a white noise process N
(
0,σ2

ε

)
. All the

components are independent of one another. We set ρc = 1 so the trend and the seasonal
and cycle components have a unit root. We consider monthly time series with s = 12, and
the cycle period is equal to 1/ωc = 48 months.

The non-linear model considered is the one proposed in [44] for UK travelers, given by

xt = µt + ct + exp(a0 + a1µt)γt + εt

where the trend µt, the cycle ct and the seasonal component γt are specified as in
Equations (3), (4) and (5), respectively. The constant a0 scales the seasonal effect, and the
constant a1 determines the sign and the size of the variation when there is a positive change
in the trend. The amplitude of the seasonal component is modulated by the combination of
a0 + a1µt.

3.2. Simulation Results

We perform 1000 simulations for the previous linear and non-linear models with both
approaches. All the calculations are run in Matlab (R2021a) (the Matlab functions to run
TRAMO-SEATS and CiSSA can be found at https://es.mathworks.com/matlabcentral/
fileexchange/50466-ts-function-tramo-seats-under-matlab?s_tid=srchtitle (accessed on
21 May 2021) and https://es.mathworks.com/matlabcentral/fileexchange/84094-cissa-
circulant-ssa-under-matlab?s_tid=srchtitle (accessed on 21 May 2021), respectively). For
CiSSA, we set two window sizes, L = 96 and L = 192, proportional to the periodicity of the
simulated cycle. To implement the AMB procedure, we chose the automated, widely used
Tramo-Seats, TS, [45]. The length for the simulated series is T = 3L + P− 1, where P is the
number of available observations of rt|t+j for a given j. To be consistent with the maximum
length allowed by Tramo-Seats, T = 600, we take P = 100 for L = 96 and P = 25 with
L = 192 (notice that these two values for L are multiples of the simulated seasonality and
cycle and are smaller than T/3, following the criteria for selecting L given at the end of
Section 2.1). The maximum duration of the revision process is K = L− 1, for both methods,
provided that L is greater than five years. The strong separability guaranteed by CiSSA
and the generalization of Gray’s theorem [46], given in [18], justify the use of CiSSA with a
non-stationary time series.

In CiSSA, the estimation of the trend-cycle component includes all the oscillations
with periodicity greater than 18 months. Given the relationship between frequencies,
ωk = (k− 1)/L, and elementary components, we keep all frequencies that yield cycles
of periodicity greater than 1/ωk = 18 months. Therefore, we estimate the trend-cycle
component for L = 96 as the sum of the first six elementary components by frequency
(ω1 = 0, ω2 = 1/96, ω3 = 1/48, ω4 = 1/32, ω5 = 1/24 and ω6 = 5/96, corresponding
to infinite, 96, 48, 32, 24 and 19.2 months, respectively) and, in a similar way, for L = 192,
as the sum of the first 11 ones. The estimation of the AMB trend-cycle component is made
in an automatic way, correcting for additive and transitory outliers.

Before we compare the accuracy of CiSSA and the AMB method, we need to check
that both of them meet two conditions. First, the final point estimation of the cycle at time t
is unbiased, E

(
ĉt|t+K

)
= ct. And second, the preliminary point estimations of the cycle

https://es.mathworks.com/matlabcentral/fileexchange/50466-ts-function-tramo-seats-under-matlab?s_tid=srchtitle
https://es.mathworks.com/matlabcentral/fileexchange/50466-ts-function-tramo-seats-under-matlab?s_tid=srchtitle
https://es.mathworks.com/matlabcentral/fileexchange/84094-cissa-circulant-ssa-under-matlab?s_tid=srchtitle
https://es.mathworks.com/matlabcentral/fileexchange/84094-cissa-circulant-ssa-under-matlab?s_tid=srchtitle
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converge to that unbiased final point estimation. Given P observations of rt|t+j in each
simulation, we define the distance

DFEj =

(
1
P

2L+P

∑
t=2L+1

r2
t|t+j

) 1
2

, j = 0, 1, . . . , K− 1

Then, it must hold that E
(

DFEj
)
→ 0 when j→ K . We observe that if the first

condition holds, then the distance DFEj is the root mean square error of ĉt|t+j.
Table 1 shows the percentiles of the distribution of the mean error in the final estima-

tion of the cycle for the linear and non-linear models obtained by CiSSA, with window
lengths L = 96 and L = 192, and AMB methods. The central value of the distribution of the
mean error is zero for both procedures, CiSSA and AMB, both in the linear and non-linear
models for any window length. As a consequence, the final estimations are unbiased, both
with CiSSA and AMB methods, and results are robust to the selection of L. Nevertheless,
the AMB approach exhibits higher dispersion than CiSSA in the final cycle estimations.
Both the interquartile range and the range between percentiles 95 and 5 are greater for the
AMB method than for CiSSA, between 34 and 61% wider in the first case and between
46 and 65% in the second one.

Table 1. Percentiles of the mean error distribution of the final cycle estimation, in the simulations of
the linear and non-linear models, estimated with CiSSA and AMB methods for L = 96 and L = 192.

Percentiles

5 25 50 75 95

Linear
L = 96

CiSSA −0.00049 −0.00022 0.00000 0.00021 0.00052
AMB −0.00076 −0.00028 0.00002 0.00032 0.00088

L = 192
CiSSA −0.00182 −0.00086 −0.00007 0.00079 0.00185
AMB −0.00270 −0.00111 −0.00003 0.00110 0.00298

Non-linear
L = 96

CiSSA −0.00052 −0.00019 0.00000 0.00020 0.00050
AMB −0.00085 −0.00033 −0.00001 0.00030 0.00083

L = 192
CiSSA −0.00197 −0.00079 −0.00001 0.00082 0.00197
AMB −0.00283 −0.00106 −0.00001 0.00116 0.00293

Figures 3 and 4 show the medians of the distribution of the distances DFEj for the
linear and non-linear simulations, obtained by CiSSA with window lengths L = 96 and
L = 192 and by AMB methods. First, we can observe that, in all the situations, the medians
converge to zero, both with CiSSA and AMB procedures. Therefore, both methods verify
the second condition. However, we must highlight that the DFEj medians for CiSSA are
smaller than those for AMB methodology in all the preliminary estimations and that they
converge to zero faster with CiSSA than with AMB method. The fact that, in terms of the
median, the distance DFEj is around 60% smaller in the CiSSA than in the AMB procedure
for the initial estimation is very relevant for the real-time forecasts of the economic cycle.

Through simulations, we can obtain the distribution of the ratio given in Equation (2)
to compare the magnitude of the revisions in the economic cycle between CiSSA and AMB
procedures. Therefore, we can compute the probability

Pj = Pr
(

RMRj < 1
)

, j = 0, 1, . . . , K− 1
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For a given j, if Pj > 0.5, we can say that CiSSA has greater probability to suffer
fewer revisions than the AMB method in the preliminary estimation j periods after the
initial estimation. If Pj > 0.5 ∀j ≥ 0, then the CiSSA methodology provides a more stable
estimation path, with fewer revisions than AMB methodology.

Figures 5 and 6 show the probabilities that the ratio RMRj is less than one, for the
linear and non-linear model simulation, in the cycle revisions obtained by CiSSA and
AMB with window lengths L = 96 and L = 192. All the graphs show that the probability
is greater than 0.5 in every situation and for any horizon. It can be highlighted that the
probability for the initial revision is equal or greater than 0.90 in all cases. Therefore, CiSSA
generates cycle estimations that are accurate and suffer fewer revisions than those of the
AMB procedure.

Notice that the relevance of the higher accuracy in the preliminary estimations results
in a reduction of the uncertainty when forecasting in real time the economic cycle.
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3.3. Empirical Application

Having analyzed the path of revisions of the underlying components of a time series
through a set of simulations, in this subsection we check this issue with real data and
evaluate the magnitude of the revisions in the estimated cycle component with the CiSSA
and AMB methods for the Industrial Production (IP) index in France, Germany, Italy, Spain,
United Kingdom and United States. IP data are extracted from the International Monetary
Fund database, and the time span covers January 1970 to December 2019; therefore, T = 600.
For CiSSA, we choose L = 96 and P = T − 3L + 1 = 313. For Tramo-Seats estimation
of the trend-cycle, we consider the automatic modelling with outlier correction. We take
K = L− 1 = 95.

Figure 7 shows the evolution of RMRj for different values of j for the six countries
analyzed. As it can be seen, the ratio for j = 0 in all countries is smaller than one, indicating
that the real-time first estimation shows fewer revisions with CiSSA than with the AMB
method. CiSSA shows less revision, except in Italy for three values of j. In fact, the average
ratio is between 0.21 and 0.38. This means that the average magnitude of the revision is
70% smaller with CiSSA than the with the AMB method.
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Figure 7. Ratio RMRj , j = 0, 1, · · · , K measuring the standard deviation of the revisions after
j periods for IP with CiSSA (L = 96).

To gain further insight in the evaluation of the revisions, Figure 8 shows the evolution
of the cycle estimations for January 2008, a moment just before the crisis, along time for the
different IP countries. The revision period is very tricky as it comprises two crises: the Great
Recession starting in 2008 and the subsequent sovereign debt crisis in Europe in 2012–2015.
These two unstable periods have very different effects on the revisions, depending on the
method, as we see in the different countries. In general, the AMB approach seems more
unstable, since revisions fluctuate more (see, for instance, the AMB graph for Italy, with
spikes all over the revision path). In France, the effect of the 2008 crisis is very strong in
the initial revisions, although the final data are about the same for both procedures. In the
case of Germany, the graph shows that the AMB procedure heavily revises downwards
the estimation of the data point for January 2008 after the introduction of the European
sovereign debt crisis, starting in 2012.

The main conclusion is that CiSSA is more robust, and stability in the estimation is
reached after two years, while AMB approach needs four years. After this stabilization
period, the AMB method still continues to show some erratic behavior, while CiSSA
remains more stable.
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4. Conclusions

From the point of view of policy makers, there are two characteristics that the extracted
signals need to fulfill: timeliness and stability. Timeliness is required to give early policy
responses, and stability is desirable to ensure the robustness of real-time decisions. Unfor-
tunately, the earlier the estimation, the more likely that it will need revisions. Therefore,
analysts and institutions need to reduce the uncertainty due to revisions when making
decisions in real time. In this paper, we compare how two different signal extraction
procedures behave with regard to revisions.

In order to address the previous concerns regarding signal extraction procedures for
policy makers, we compare Circulant SSA, a non-parametric technique, with the widely
used AMB parametric method, through a simulation study and an empirical analysis with
real data.

From the simulation study, we conclude that the final estimates of the cycle at time t
are unbiased in both procedures. Moreover, we also see that both procedures converge,
although the speed of convergence of CiSSA to its final estimate is faster. Additionaly, we
find that CiSSA has a greater probability of smaller revisions than the AMB method. This
would make CiSSA more appealing to policymakers, since more robust policy decisions
could be made in shorter time. Moreover, the most important estimate for the analysis in
real time, that is, the initial estimate, is closer to the final estimate with CiSSA than with the
alternative parametric procedure. Therefore, the reaction of the analysts in real time would
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be more similar to the one they would have had with the final estimate. Furthermore,
the distribution of revisions with CiSSA shows less dispersion. As a consequence, the
estimation path in the CiSSA framework is more stable than that of the AMB procedure.
Therefore, CiSSA generates more reliable assessments of the business cycle in real time
since they usually depend on the concurrent and first preliminary estimates. Consequently,
decision-making with CiSSA is carried out with less uncertainty.

The assessment of the magnitude of the revisions was also analyzed with real data.
Industrial Production is a monthly indicator, widely used to monitor the state of the
economy, and is considered as one of the early warnings to detect turning points in the
business cycle. The analysis in real time corroborates the overall result of the simulations.
Moreover, it is useful to understand the nature of the revisions in a very special moment of
time, January 2008, just before the Great Recession started. CiSSA provides a more robust
assessment of the state of the economy in real time as its first estimation converges quicker
to the last and with a more stable estimation path than the AMB alternative.

Finally, monitoring of the estimation path allows a continuous evaluation of economic
policies and allows for determination of whether it is necessary to modify them in order to
achieve medium- and long-term goals.
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Abbreviations

AMB ARIMA-model-based
ARIMA AutoRegressive Integrated Moving Average
CiSSA Circulant Singular Spectrum Analysis
GDP Gross Domestic Product
MMSE Minimum Mean Square Error
IP Industrial Production
SSA Singular Spectrum Analysis
TS Programs TRAMO-SEATS
VAR Vector AutoRegression

Symbols

{xt} or xt Time series
T Length of time series
L Window length
N Number of columns of the trajectory matrix
xj = (xj, · · · , xj+L−1)

′ Vector of length L and origin at time j obtained from xt
X = (x1|· · ·|xN) Trajectory matrix with columns xj

https://data.imf.org
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sm m-th sample second moment
SC Circulant matrix built with the sample second moments
λk k-th eigenvalue of the matrix SC
uk k-th eigenvector of the matrix SC, k-column of matrix U
U The Fourier unit matrix
ωk = k−1

L Frequency in cycles per unit time
Xk k-th elementary matrix of rank 1
Bk k-th elementary pairs of frequencies
XBk Elementary matrix by frequency associated with the pair Bk
Ij j-th group de pairs Bk linked to an unobserved component
XIj Matrix associated with the group Ij

x̃(j)
t Reconstructed/estimated series of an unobserved component

ct Business cycle at period t
ĉt|t+j Preliminary estimate of ct when data are available at time t + j
rt|t+j Revision of the estimate of ct at time t + j
K = L− 1 Number of periods when there are no more revisions
P = T − 3L + 1 Number of preliminary estimates after j periods

σ
(

rt|t+j

)
Standard deviation of the revisions after j periods

RMRj Ratio of σ
(

rt|t+j

)
calculated by CiSSA and AMB methods

E
(

ĉt|t+K

)
Mean of the final estimate of ct

DFEj Root mean square error of ĉt|t+j

Pj = Pr
(

RMRj < 1
)

Probability that the RMRj ratio is less than one
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