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ABSTRACT In conventional networks, there was a tight bond between the control plane and the data plane.
The introduction of Software-Defined Networking (SDN) separated these planes, and provided additional
features and tools to solve some of the problems of traditional network (i.e., latency, consistency, efficiency).
SDN is a flexible networking paradigm that boosts network control, programmability and automation.
It proffers many benefits in many areas, including routing. More specifically, for efficiently organizing,
managing and optimizing routing in networks, some intelligence is required, and SDN offers the possibility
to easily integrate it. To this purpose, many researchers implemented different machine learning (ML)
techniques to enhance SDN routing applications. This article surveys the use of ML techniques for routing
optimization in SDN based on three core categories (i.e. supervised learning, unsupervised learning, and
reinforcement learning). The main contributions of this survey are threefold. Firstly, it presents detailed
summary tables related to these studies and their comparison is also discussed, including a summary of the
best works according to our analysis. Secondly, it summarizes the main findings, best works and missing
aspects, and it includes a quick guideline to choose the best ML technique in this field (based on available
resources and objectives). Finally, it provides specific future research directions divided into six sections
to conclude the survey. Our conclusion is that there is a huge trend to use intelligence-based routing in
programmable networks, particularly during the last three years, but a lot of effort is still required to achieve
comprehensive comparisons and synergies of approaches, meaningful evaluations based on open datasets
and topologies, and detailed practical implementations (following recent standards) that could be adopted
by industry. In summary, future efforts should be focused on reproducible research rather than on new isolated
ideas. Otherwise, most of these applications will be barely implemented in practice.

INDEX TERMS Software-defined networking, machine learning, routing, optimization, survey.

I. INTRODUCTION
Until few years ago, most company networks followed a
traditional approach. In particular, legacy networking devices
obeyed an architecture based on a tight bond between con-
trol and data planes [1], translated into a vendor lock-in,
in which networks became complex and difficult to maintain
and manage, particularly as they rapidly grew. When soft-
ware is tightly bundled with hardware, interfaces are seller-
specific. Manufacturers write the code, leading to long delays
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in introducing the latest features and functions, i.e., networks
are quite static and not flexible enough, which obstructs
new business projects and applications. Software-Defined
Networking (SDN) overcomes these issues by exchanging
the control logic from devices to a central place (the SDN
controller), in which networking decisions and overall func-
tionality is developed based on common programming lan-
guages. Afterwards, the exchange of control logic is usually
implemented by the OpenFlow protocol [2]. Fig. 1 illustrates
the architecture of SDN, in which the data plane (forwarding
functions) and control plane (network control) are decoupled.
This opens a new wide range of possibilities.
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FIGURE 1. An overview of the SDN architecture [201].

The SDN paradigm can be leveraged for multiple func-
tions, such as traffic engineering, network virtualization,
and load balancing, according to the network administrator
needs [3]. It is helpful for new business projects and provides
the facility of flexibility and virtualization. In particular, SDN
has rapidly grown together with the Network Functions Vir-
tualisation (NFV) [4] concept. They combined forces to boost
emergent networking applications, including 5G, in which
SDN serves as a network resource manager and reinforces
network orchestration. Nevertheless, traditional routing algo-
rithms are not good or suitable for SDN because their con-
vergence and response are slow, and they follow a distributed
approach, like the OSPF algorithm.
On the other hand, the concept of Artificial Intelligence

(AI) was introduced by John McCarthy in 1956 [5]. In the
field of computer science, AI is also known as Machine Intel-
ligence. Machine Learning (ML) is a category of AI based
upon the natural intelligence that can learn from data, make
decisions, identify patterns and perform different actions with
less human intervention. The devices based on ML perceive
the real environment and apply actions according to their
needs or requirements to maximize the opportunity to achieve
their goal successfully. ML can potentially be used to solve
many problems in networking, including design, implemen-
tation, performance and verification.
Nowadays the use of ML techniques is increasing. It is

considered that these techniques are better as compared to
traditional algorithms, particularly for the processing and
analysis of large volumes of data. In the area of networking,
researchers are paying their attention to the usage of these
techniques. For example, the Knowledge plane concept was
first coined in 2003 by Clark et al. [6] and introduced the
primitive view of ML techniques in networking. Different
ML techniques are employed in SDN to achieve synergistic
effects and to overcome individual limitations.
Additionally, in the specific field of SDN, ML has

been leveraged in different applications, including traffic
engineering [7], [8], resource management [9], [10], intrusion

detection systems [11], [12] and for other security pur-
poses [13], [14]. For instance, Mijumbi et al. [15] leverage it
for adjusted virtual network and managed resources in virtu-
alized network by using control plane, or Akyildiz et al. [16],
which introduce the state of art for traffic-engineering in
SDN/OpenFlow networks.
As a consequence, in SDN, the role of ML has recently

boosted due to its multiple applications. The architectural
logic of SDN harmonizes better with ML algorithms than
with traditional algorithms. In particular, many research
results combine ML techniques with SDN for routing opti-
mization. Furthermore, ML is seen as key technology trend
for 6G and beyond [17].

A. CONTRIBUTIONS OF THE SURVEY
In this paper, we survey different approaches of ML tech-
niques for routing in SDN. We try to cover most of the ML
techniques and classify them into three primary categories.
Themain objective is to provide a comprehensive overview of
ML techniques in SDN for routing optimization, emphasizing
on contributions and learned lessons for future research.
The main contribution of this survey is that it strictly

focuses on ML techniques applied for routing in SDN. While
other surveys have a more generalist approach (focusing
either on SDN or ML, different networking applications, and
providing an overall idea), our survey aims to delve into
specific routing applications and why ML has become such
an important actor thanks to SDN (i.e., centralizing the logic
and facilitating the integration of ML, otherwise unfeasible
in traditional routing approaches, mostly distributed).
In summary, this survey encompasses the following contri-

butions:
• It provides an in-depth overview of SDN, routing, and
ML techniques, performed by a group of researchers
coming from different fields and expertise in different
areas, which enriches the analysis.

• It presents a qualitative analysis of ML techniques to
help new researchers in the field where to start from,
as a guideline, based on the context of the scenario to
be analyzed and the desired applications.

• It classifies the most recent works in relation with the
survey according to three main categories of ML. Most
works were published during the last three years.

• It analyzes and compares all works, including the tech-
niques leveraged, their specific objective (considering
all of them are focused on routing), their implementation
and evaluation, pros and cons. This analysis is concluded
by a summary of learned lessons and research trends.

• It provides a comprehensive section including future
research directions, which, from our point of view, rep-
resents the most interesting part of the survey, as much
work still needs to be done in the field to be relevant in
a long-term manner.

B. METHODOLOGY OF THE SURVEY
The search of the state of the art was mainly performed using
the Google Scholar site, which comprehensively indexes
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works (articles, patents, etc.) from different journals and
sites, and even from archive repositories. During our search,
they main keywords used were: routing, SDN and ML (these
two latter both using acronyms and the full name), which
are the three core terms in relation with the survey, but we
also looked for AI, optimization, traffic engineering, load
balancing,NFV, learning, supervised, unsupervised and rein-
forcement (which are directly related with the classification
of ML techniques, explained within the following sections),
among others. Additionally, we also used survey, overview
and tutorial to examine the closest related works, and to
evaluate the contributions of our survey.
The search yielded thousands of results, most of them

published within the last five years, from which we filtered
the ones directly related with our analysis. The growth of pub-
lications was particularly relevant within the last two years
with an exponential increase for the reinforcement learning-
based approaches. For this reason, we applied filters based
on number of citations to analyze the most cited ones first,
and we focused on articles written in English (which was
the most common language) and published in prestigious
journals (preferably indexed in JCR).
Finally, we also scrutinized the references of articles

already selected for the survey to look for additional relevant
works.

FIGURE 2. Summarized structure of the survey.

C. STRUCTURE OF THE SURVEY
The roadmap of this manuscript is depicted in Fig. 2. The
article starts with a extensive analysis of the related work
in Section II and core definitions of SDN in Section III.
Afterwards, a general description of ML techniques, together
with a qualitative comparison, is presented in Section IV,
which is divided into three categories i.e. Supervised Learn-
ing (SL), Unsupervised Learning (UL), and Reinforcement
Learning (RL) (which includes Deep Reinforcement Learn-
ing (DRL)). Section V is devoted to the application of these
ML techniques together with SDN for routing optimization.
This section is finalized by a quick overview that presents
learned lessons, current trends and the best published works
so far, according to our analysis. Section VI discusses spe-
cific future research directions and open issues of routing

TABLE 1. Acronym list.

optimizations in SDN, followed by the overall conclusions in
Section VII. Finally, Table 1 alphabetically lists the acronyms
used throughout the paper.

II. RELATED WORK
To provide a context of the contributions of this survey,
the first step is to review some surveys related with the meth-
ods and techniques of ML applied to routing SDN, which are
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TABLE 2. Comparison summary of the related work -: Not covered; X: Partially covered; XX: Fully covered.

summarized in Table 2. This summary presents the authors,
the focus of the survey, as well as the coverage of the three
areas that characterize our survey: SDN, routing and ML.

In particular, an empty cell means that area is not covered,
while one or two ticks indicate the topic is partially and
fully covered, respectively. Additionally, pros (highlights)
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and cons (missing aspects in relation with the contributions of
our survey) are also included as two separate columns. It is
important to note that the selection of works was based on
relevance to our survey (at least two of the three ideas covered
in our survey should be included) and/or number of citations.
Otherwise, if not filtered, there are hundreds of surveys some-
how related to ours (either because of SDN, routing or ML),
like surveys about SDN controller placement [18] or ML
applied to network security [19].
The first two surveys in the list are strictly focused on the

SDN paradigm. Although they only focus on one aspect of the
three covered in the survey, they are worth mentioning due to
its high amount of citations (>1000). Nunes et al. [20] present
the state-of-art in programmable networks, with a particular
focus on SDN. These networks are depicted from the oldest
to the newest development ideas, followed by the architec-
ture of SDN and the standard of OpenFlow. Diverse alterna-
tives are also discussed for the implementation and testing
of SDN-based services and protocols. Finally, they provide
information about current and future SDN-based applica-
tion trends, as well as multiple research directions of SDN.
Hu et al. [21] survey the implementation of SDN/OpenFlow,
including basic concepts, language abstraction, applications,
virtualization, controller, security, Quality of Service (QoS),
as well as integration with optical and wireless networks.
They also compare the merits and demerits of different
network implementation schemes. This survey is particu-
larly helpful to understand the progress of SDN/OpenFlow
designs.
Afterwards, we would like to highlight two surveys

that still mainly focus on SDN, but including some sec-
tions to analyze the specificities of routing in this field.
Kreutz et al. [22] is one of the most referenced surveys
in the SDN field. It discusses the definition of SDN, its
core concepts and differences compared to traditional net-
works. The architecture of SDN is presented in a bottom-up
approach. The authors performed a comprehensively analysis
of its architecture, APIs, network programming and network
layers. They also focused on the major problems of cross
layering and their solutions. Keeping in view the security,
performance, scalability and resilience, the design of con-
trollers and switches are addressed in this study as well.
Mendiola et al. [23] extensively survey approaches for traffic
engineering in SDN, indirectly mentioning their application
in routing in SDN.
Additionally, with a bigger emphasis on routing and

smaller on SDN, Karakus et al. [24] provide a comprehensive
survey and summary of taxonomy and characterization of
SDN control plane scalability. Two main areas are discussed:
network topologies and mechanism to tackle scalability.
In the former, they describe the relationship of the topology
with scalability, considering the impact of a centralized/
distributed controller and, transversally, hybrid and hierar-
chical designs. In the later, they studied mechanisms to
optimize controller scalability, such as control plane routing
and parallelism based optimization. It finalizes summarizing

challenges and open problems for scalable SDN control
planes. On the other hand, just focusing on ML and routing,
without emphasis on SDN, Chen et al. [25] provide a very
good overview on the application of Artificial Neural Net-
works (ANNs) on wireless networks applications.
The first survey works to address the three features exam-

ined in this survey (SDN, routing and ML) are more recent
(from the last three years). Binsahaq et al. [26] focus on auto-
nomic provisioning and management of QoS in SDN. As part
of that analysis, it encompasses some works related with
ML and routing, and the authors specifically have a section
devoted to ML for QoS management. Etengu et al. [27]
extensively analyze AI-assisted networks for green routing
and load balancing, focused on a pragmatical approach,
that is, hybrid SDN, usually leverage for smooth migration
from legacy systems. At the end of the survey, the authors
provide a set of challenges and future research direc-
tions, and they define a specific framework to tackle them.
Qian et al. [28] concisely survey a set of applications
in communication networks where reinforcement learning
is applied, including network caching or task offloading.
It includes very briefly the relationship with SDN and routing
applications. Mammeri et al. [29] comprehensively analyze
reinforcement learning approaches for routing, not only for
SDN-based networks, but for all types of networks, which
provides a very good overview of the evolution of this spe-
cific ML technique and its application in communication
networks. Jamshidi et al. [30] explain applications based
on ML methods and techniques by dividing them into six
categories of networking, namely: traffic prediction, network
security, cloud services, application identification, domain
name system, and QoS. In all these categories, they determine
theMLmethods and input datasets. It summarizes the various
challenges and major findings of these input data and ML
methods. Zhang et al. [31] presents diverse applications of
ML in routing and resource allocation in optical networks,
without any specific focus on SDN-enabled networks.
Four works are close to the objectives of our survey.

Boutaba et al. [32] survey ML research opportunities and
evolution in the field of networking. They provide a brief
introduction to ML techniques, engineering techniques,
approaches and methods for data gathering in network traffic,
followed by an overview of ML techniques in routing, traffic
classification, QoS/QoE, anomaly detection, fault manage-
ment, and intrusion detection. Additionally, they focus on the
importance of secure learning support, online learning and the
architectural design of systems so that ML can be used easily.
Their survey covers above 500 studies. Xie et al. [33] present
a comprehensive detail of the ML techniques, architecture
and working of SDN. Different types of ML algorithms are
explained and described in SDN in terms of optimization,
QoE/QoS, security, resource management, and traffic clas-
sification. Future research and challenges are also discussed.
Zhao et al. [34] surveys the diverse networking applications
that benefit from the combination of SDN and ML, including
a section about routing optimization, though not in depth.
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FIGURE 3. Architectural planes of SDN, functions and relationships.

Quach et al. [35] is the closest to our work so far, but it
just focuses on approaches based on reinforcement learning.
In any case, it is a concise survey about that type of routing
in SDN and provides a quick overview about objectives and
associated algorithms.
Finally, Farhady et al. [36], Scott-Hayward et al. [37],

Al-Heety et al. [38], Hatagundi et al. [39], Chica et al. [40]
reviewed different SDN related technologies, the details of
SDN planes, benefits, challenges, security, and attacks in
SDN but their scope is further from the analysis of this survey,
as they do not discuss the applications or use of ML in SDN.
Currently, to the best of our knowledge, no one specifically

surveyed theML techniques for routing optimization in SDN.
To fill this gap, in this paper, we provide a detailed study of
ML types and their usage in SDN routing. We envision that
our discussion and exploration will provide readers with an
overall understanding of ML techniques for routing in SDN
and foster more subsequent studies on this issue.

III. SOFTWARE-DEFINED NETWORKING (SDN)
Over the last decade, a new wave of innovation has emerged
in the networking field thanks to the SDN paradigm [22].
In its origins, it consisted mainly of a protocol, Open-
Flow [41], which separated the data and control planes, allow-
ing the flourishing of new network protocols and designs.
However, it rapidly evolved into a new architectural approach
in which the so-called dummy switches (data plane) were
managed by a logically centralized entity, the SDN controller

(control plane), through the OpenFlow protocol. Although
the concept of uncoupling these two planes was not new in
the field. SDN unlocked the hardware market, very opaque
until that moment, bringing the opportunity for new manu-
facturers and researchers to cooperate, even in hybrid envi-
ronments [42]. Currently, the Open Networking Foundation
(ONF) is in charge on the main standardization efforts in the
field of SDN.
By definition, SDN hides the complexity of the net-

work design. Its architecture (previously depicted in Fig. 1)
provides dynamic, cost-effective, manageable and adaptable
network control. An alternative definition of the SDN archi-
tecture is illustrated in Fig. 3, in which SDN consists of four
planes [43].
At the bottom of the architecture, the Data Plane is

also known as the forwarding plane, user plane or carrier
plane [44]. It consists of the set of network devices (virtual
or physical) that transmits the user traffic. The Data Plane
handles arriving frames according to the logic of the Control
Plane. Some of the actions to be applied include forwarding
the frame, modifying it or discarding it.
The Control Plane is the network brain, responsible of

decisions such as routing or traffic signaling [44]. Though
originally designed completely separated from the Data
Plane, some part of the Control Plane might be delegated
to network devices under some circumstances, following
a hybrid approach [42]. The communication of these two
planes is performed through the Southbound Interface (SBI),
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originally following the OpenFlow protocol, but currently
involves other alternatives such as P4Runtime [45].
Above it, the Application Plane is connected through

the Northbound Interface (NBI), usually asynchronously
(e.g., REST API), to define the overall behavior of the net-
work desired by the network administrator. Some authors
merge Application and Control planes, some other do not.
The criterion to separate them is that usually the Control
Plane consists of core networking functions, common for
all types of applications (for instance, topology discovery,
shortest-path computation, etc.), while the Application Plane
are individual applications that leverage the Control Plane
to be executed. The so-called SDN controllers are software
platforms that include both Control and Application planes.
Finally, the role of the Management Plane, transversal to

the three previous planes, is to provide a mean to manage the
network for additional aspects such as configuration, mon-
itoring, billing, etc. Some common protocols include clas-
sic ones like: HTTP (Hyper Text Transfer Protocol), SNMP
(Simple Network Management Protocol), XML (Extensible
Markup Language), RMON (Remote Network Monitoring),
and SSH (Secure Shall). This plane is clearly the most
heterogeneous of the architecture and encompasses diverse
challenges [46]. In some specifications, particularly the latest
ones, the Management Plane is seen as part of the Control
Plane, as a management-control continuum.
In summary, the main benefit of the SDN paradigm is

that it brings new possibilities for logically centralized net-
work control. For instance, it allows users to access vir-
tual and physical elements from a single location, because
of its virtualized control planes and forwarding planes.
SDN also allows administrators to monitor everything cen-
trally, which enhances global view management compared
to traditional networks. Some major telecom organizations
(e.g., Google [47], VMware [48], Microsoft [49], or Face-
book [50]) have already adopted the SDN architecture for
their data centers. At the same time, some popular net-
work vendors and related companies (namely Cisco [51],
Huawei [52], NEC [53], Verison [54], HP [55], and
AT&T [56]) are also firmly committed to the application
of the SDN architecture by designing and producing SDN-
related components. As a consequence, centralized tech-
niques like ML are increasing in SDN, reinforced by its
architecture, including applications such as resource man-
agement, QoS prediction, traffic engineering, security and
routing optimization.

A. ROUTING APPLICATIONS AND CHALLENGES IN SDN
Optimized routing could be considered one of the core objec-
tives in computer networks. In particular, this objective is
directly related to network traffic engineering, as this field
is founded on one particular idea: to accomplish that traffic
is routed according to the exact traffic demands [23]. There-
fore, we could claim that traffic engineering is one type of
the multiple optimizations of routing, as routing could also
be optimized based on other parameters (and not only on

traffic demands). Additionally, these traffic demands are vari-
able depending onwhether we consider data or control traffic.
In this regard, the logically centralized view of the SDN con-
troller facilitates many aspects in comparison to traditional
routing. For instance, topology graphs can be easily extracted
from the network and shortest-path algorithms, like Dijkstra,
can be efficiently –and dynamically– computed to obtain the
best paths. This had led to the direct application of computer
science algorithms to computer networks [57], without the
need of translating them into distributed protocols, like the
generation of disjoint paths for traffic engineering purposes,
which is now easier than ever [58]. Consequently, thanks to
SDN, routing can be easily parameterized based on types
of optimal routing (shortest path, constrained shortest path,
etc.), cost functions or resources, for example. This facilitates
and easy adaptation and deployment based on the specific
scenario [57], as there is not a clear winning type of routing
applicable to all networks.
It is also important to highlight that the data and control

plane decoupling of SDN implies the incorporation of a new
communication channel in the southbound of the architecture,
typically implemented with OpenFlow. This channel can be
implemented either in an out-of-band or in an in-band mode.
In the former, the communication between both planes is
direct (though it requires more resources for deployment),
while in the former it is not. That is, in-band SDN also
requires the application of traffic engineering for optimized
routing.
Another example is the opportunity to implement newer

functionality, particularly the one related with cloud comput-
ing, like ML. In this regard, SDN simplifies the development
of ML techniques to support network routing thanks to its
centralized monitoring capabilities.
Nevertheless, although SDN is an ideal answer for Infor-

mation and Communication Technology (ICT) deployments,
cloud suppliers and undertakings, SDN faces a few chal-
lenges [59] that affect its performance and usage. The set of
SDN challenges comprises:

• Controller location: SDN implies an additional commu-
nication channel between the data and control plane,
which might not be completely transparent, particularly
in large networks, in which out-of-band communication
might be unfeasible. Therefore, the specific location of
the controller should be carefully planned.

• Scalability: Directly related with the previous aspect,
as SDN is logically centralized, network managers
should consider to what extent should all control be
delegated to the controller, to avoid bottlenecks and
scalability issues. However, this decision is not trivial
for all use cases.

• Performance optimization: Performance optimization is
a challenge in all network types per se, but in SDN the
way to achieve it changes from a distributed approach to
a centralized one.

• Security: As SDN is logically centralized, it might be
easily threatened.
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• Interoperability: Particularly relevant in large networks,
heterogeneity and interoperability among different types
of SDN technologies is still a challenge.

• Reliability: Similarly to traditional networks, reliability
is also a challenge. However, in SDN is even worse,
as the control channel communication represents a new
potential failure point that should be reliable and, hence,
protected.

One of the consequences is that SDN controllers must be
astutely arranged to forestall manual blunders. For example,
in a conventional system when one or many system gadgets
fall flat, management information errors might be locally kept
and do not affect the overall behavior of the network.Whereas
in SDN, a solitary controller is accountable for all the sys-
tems, and if there is any inaccuracy in it, the entire system
might fall. To address this issue, research should be focused
on coordination of distributed SDN controllers with security
guarantees. Currently, from all existing SDN controllers [60],
we would like to highlight two of them: Ryu [61], because
of simplicity and easy prototyping, and ONOS [62], as it is
supported by the ONF and implements the driving SDN use
cases devised by industry.
In summary, the centralized architecture of SDN provides

a faster overview of the network status and substantially
smoother programmability and updates, but it still requires a
control overhead that needs to be carefully managed and that
is established now in a north-south (hierarchical) style rather
than east-west (flat) manner, typical of distributed legacy
systems.

B. ML IN SDN ENVIRONMENTS
Although ML (as well as AI, generally speaking) has been
applied in networking for two decades now, its adoption in
practical deployments is still in early stages [63]. Thanks to
the softwarization of networks, the application of AI and ML
in networking is nowadays potentially easier to implement,
thus, opening a wide range of new functionalities. In fact,
some authors have recently addressed the term Knowledge-
DefinedNetworking (KDN) [64], which include the so-called
Knowledge Plane [6], directly related with the inclusion and
integration of Artificial Intelligence in SDN environments.
In particular, data-driven networks [65] are one type of

computer networks, fostered by both SDN and NFV, which
could easily adapt to traffic demands (once again for traf-
fic engineering purposes) or network changes, for exam-
ple. Although some authors agree that there is still work
to be done (in particular regarding models and architec-
tural aspects [65]), it seems we have now reach the right
momentum to even accomplish the concept of self-driven net-
works [66]. For example, a self-driven network benchmark-
ing framework was recently proposed by Zerwas et al. [67]
and they prove how it can be applied to a well-know SDN
software switch, viz. Open vSwitch (OVS).
Finally, we would like to put some additional empha-

sis in the case of the future 6G networks, as many
authors already agree that ML is a key enabler [68], [69].

Some applications included in their roadmap are, for instance,
object localization, Unmanned Aerial Vehicle (UAV) com-
munication, surveillance, security and privacy preserva-
tion [69]. All of them envisioned as part of fog/edge
computing architectures [70].
However, although the SDN architecture allows a very

straightforward application of intelligent algorithms, there is
still a need to analyze which suits best each type of network
and data, as the requirements greatly vary among different
network scenarios. Furthermore, open networking datasets
are still a scarce resource for the research community, and
these are key components to design ML-based frameworks.

IV. MACHINE LEARNING TECHNIQUES
MLwas first introduced by Arthur Samuel in 1959.ML is the
branch of AI that enables the systems to learn automatically
from experience and to improve themselves without being
explicitly programmed [71]. It guides systems for making
good predictions based on data. ML systems can make deci-
sions and identify different patterns. ML models get the new
data independently and make decisions, computations and
results by learning from previous state of computation. It pro-
vides solution in many problems, such as pattern recogni-
tion [72], character recognition [73], speech recognition [74],
vision, or robotics.
ML is a very vast field whose methods have been classi-

fied attending to multiple categories. A general classification
groups ML techniques according to the kind of learning
involved, distinguishing the supervised, unsupervised and
reinforcement learning (with a particular focus on deep rein-
forcement learning), as depicted in Fig. 4. On the other hand,
the irruption of ANN, particularly the Deep Neuronal Net-
work (DNN) (also Deep Learning in the literature), meant a
substantial improvement of the error rates for the different
ML tasks, to the point of classifying the methods between
the classical and the neural-network-based methods, or even
more specifically DNN-based methods. The present sur-
vey follows both classifications in parallel. This is because
the provided classification is non-exclusive and that, conse-
quently, methods of one category can be used with other types
of learning. However, we have grouped the methods in the
mentioned learning categories considering the most frequent
learning technique, paying special attention to the area of
routing optimization in SDN. Alternative criteria for classify-
ingMLmethods exist, such as arranging the methods accord-
ing to the kind of training algorithm used (distinguishing
between closed-form vs. iterative algorithm), or categorizing
them attending to the final task in classification or regression
methods.
There exists an additional orthogonal learning paradigm

called federated learningwhich consists of a set of distributed
learners which can be individually trained following one of
the other mentioned learning paradigms and coordinately
elaborate classifications or predictions. This special paradigm
reminds us of the ensemble methods (random forest, boosting
and bootstrap), but device distributed, which means both
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FIGURE 4. Classification of ML techniques.

data and learning are individually used to create learners,
even in different network nodes, whose predictions are then
combined. Unfortunately, the authors did not find works that
use this kind of learning for routing optimization in SDN,
hence it was excluded of the classification. However, this
approach is recently irrupting in near fields, such as mobile
and wireless networks [75], [76].

A. SUPERVISED LEARNING (SL)
SL is a learning paradigm based on discovering the unknown
function f : X ! Y that relates the input and output spaces,
X and Y respectively, from input-output pairs (xi, yi) 2 X⇥Y .
This process is called training and requires a labelled dataset
D = {(xi, yi) | (xi, yi) 2 X⇥Y } for the accomplishment of the
task. Literally, supervised training algorithms infer the map f
from the provided training dataD, typicallyminimizing a loss
function L which penalizes the committed error. Learning
algorithms seek f in specific function spaces f 2 F , most
of them are parametrized, and consequently, the learning task
becomes into an optimization problem:

f ⇤ = argmin
f 2F

L (f (x), y)) (1)

Different parametric function spaces F with different
learning algorithms correspond to the existent variety of
supervised methods. The following methods are commonly
considered as supervised methods, although some of them
can be trained in an unsupervised way, or using a rein-
forcement learning strategy, and consequently, belonging to
several categories:

1) ARTIFICIAL NEURAL NETWORK (ANN)
Artificial Neural Networks (ANNs) [77] consist on a set of
connected units known as artificial neurons which emulate
the biological neuronal networks of the animal brains. Due to
their ability to model complex non-linear relations and their
capacity to massively address data, they revolutionized the
MLfield. ANN-based effective applications include: adaptive
control, laser applications, medical areas, process logging,

and energy areas. The Perceptrons and Multilayer Percep-
trons (MLP) were the first architectures of ANNs. Also, ANN
models relations described by dynamic systems, such as the
Recurrent Neuronal Network (RNN) [78].
Deep Neural Network (DNN) [79] is a subcategory of

the previous one, which bind together a huge amount of
recent networks architectures which have in common the
high number of interconnected layers. Deep Learning starts
with the Convolutional Neural Network (CNN), a DNN
with a sequence of convolutional layers configured in cas-
cade. They are capable of extracting intrinsic local fea-
tures, the called deep features, proving to surpass the result
of its predecessor in both classification and regression
task. Nowadays, the research efforts are focused on the
improvement of the DNNs, as the amount of publications
in this field proves. Autoencoders [80], Residual Networks
(RESNET) [81] or VGG [82] are CNNs included in this
category. DNNs also include networks for temporal sequence,
such as, the improved RNN [78], which evolved to the novel
Long-Short Term-Memory (LSTM) [83] and Gate Recur-
rent Unit (GRU) [84]; and the Random Neural Networks
(RndNN) [85], which represent a set of cells that are con-
nected in a network that transmits spiking signals. Some of
these DNNs can also be trained using reinforcement learning
algorithms.

2) MARKOV DECISION PROCESS
Markov decision process [86] is a kind of stochastic process
in discrete time. They obey theMarkov property which estab-
lishes that the probability to pass to a specific state in the next
time exclusively depends on the current state. They try to find
a good action policy for the decision maker which is affected
by noise environment.

3) LINEAR REGRESSION
Linear Regression [87] is one of the simplest and more effec-
tive ML methods. The linear regression assumes that a lin-
ear dependence exists between the dependent variable y and
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the explanatory variables (the independent variables). The
simplest estimation algorithm retrieves the coefficients using
mean-square-error. Robustness against outlayers were intro-
duced driving to the LASSO, Ridge or ElasticNet regressors.

4) LOGISTIC REGRESSION
Logistic Regression [88] is used for classification problems.
It is based on the idea of probability and it uses predictive
analysis algorithms. The Logistic Regression uses an increas-
ing cost function. This cost capacity can be characterized as
the sigmoid function (logistic function) rather than a linear
function. Logistic regression confines the cost function in the
range between 0 and 1. Both Linear and Logistic Regres-
sion are included in the called Generalized Linear Model
(GLM), a wide model which unify various other statistical
models.

5) RANDOM FOREST
Random Forests [89] are supervised learning methods which
assemble the result of a large number of decision trees of
multiple sizes to estimate a unique value in regression or to
yield a class in classification.

6) EVOLUTIONARY ALGORITHMS
Genetic Algorithms (GA) are probability search algorithms
inspired by the genetic mechanism of Darwinian natural
selection and biological evolution. GAs provides the solu-
tion to deep problems by the reproduction process and code
techniques. In many domains, GAs have been used with
considerable efficacy.

B. UNSUPERVISED LEARNING (UL)
UL seeks patterns among unlabelled datasets. Contrary to
SL, human supervision disappears due to lack of pre-labelled
input-output pairs. Unsupervised methods self infer relations
among the variables according to features such as orthogo-
nality, correlations, statistical separability, etc. The cluster-
ing or grouping methods together with the one based on
principal components analysis are the most common unsu-
pervised methods, but not exclusively. Recently, we count
on unsupervised DNN-based methods such as the Generative
Adversarial Networks (GAN) [90].

1) K-MEANS
K-means [91] is aML algorithm, specifically, a vector quanti-
zation technique that seeks to group a number of observations
{xi}ni=1 in K clusters. This method minimizes the cluster
variance. Each observation is associated to the cluster with
the nearest distance to the cluster centroid.

2) HIERARCHICAL CLUSTERING
Hierarchical Clustering [92] groups near observations in clus-
ters and establishes links between optimizing cluster dis-
similarity. As a result, the method returns a partial ordered
dendogramwhich provides the data clusters with a hierarchy.

3) SELF-ORGANIZING MAPS (SOM)
Self-Organizing Maps (SOM) [93] are ANN trained to
retrieve a low-rank discrete representation of the input space,
the calledmap, given the unlabeled training data. The method
looks for the intrinsic topological properties of the input
space.

4) GAUSSIAN MIXTURE MODELS (GMM)
Gaussian mixture models (GMM) [94] assume that observa-
tions are generated by a mixture of a finite number of Gaus-
sian variables. It is a probabilistic model which generalizes
k-means modelling the uncertainty of cluster assignments by
introducing the covariance to the problem.

C. REINFORCEMENT LEARNING (RL)
RL is another machine learning paradigm conceived to teach
an agent to make local decisions and take actions in order
to minimize a cumulative penalty or maximize a cumulative
reward [95], [96], as illustrated in Fig. 5. Contrary to the SL
and UL paradigms, the temporal variable is decisive, and the
error metric is time distributed. In particular, in comparison
with the supervised approach, RL does not count on labeled
datasets. Feedback is obtained from the environment over the
agent acts. Typically, Markov Decision Support (MDS) sys-
tems comprise the RL framework, where dynamical program-
ming algorithms are used to maximize the reward. Recently,
DNN-based frameworks were introduced and significantly
improved this learning paradigm [97]–[99].

FIGURE 5. Reinforcement learning.

1) Q-LEARNING
Q-learning [100] is a model-free RL method to teach the
agent an action policy according to the state and the observa-
tions from the environment. As a model-free RL, the method
does not use the transition probability. The method operates
under an MDS framework finding an optimal policy using
an expectation–maximization algorithm of the cumulative
reward computed over all the successive steps, starting from
the current state. Nowadays, it constitutes a baseline for the
existing RL methods.

2) DOUBLE Q-LEARNING
Double Q-learning [101] is an improvement of Q-learning
which overcomes the problem of overestimation of the action
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FIGURE 6. Deep reinforcement learning.

values in noise environments, which results in a learning
deceleration.

3) STATE-ACTION-REWARD-STATE-ACTION (SARSA)
SARSA [102] is another RLmethod overMDS. The acronym
shows that the updating function of the Q-value depends on
five aspects, namely: the current state of the agent, the action
the agent chooses, the reward the agent receives for choosing
this action, the state that the agent enters after taking that
action, and the next action the agent chooses in its new state.

4) DEEP REINFORCEMENT LEARNING (DRL)
DRL [103] is a subtype or subclass of RL that combines
ANNs with RL models to enable SDN agents to learn the
most efficient path and to achieve their goal. DRL incorpo-
rates ANNs to the agents in the RL framework. Traditional
RL methods cannot solve high-dimensional decision making
problems due to the high complexity of their states. ANNs
bring better function approximation to the agent for making
a decision, surpassing the mentioned disadvantage, which
now can learn accurate policies ⇡ (a|s) in a supervised way.
It enables us to take the important decisions at wide range
and solve them. Traditional DRL controllers [104] use fixed
pre-processing steps, which are unable to adapt their pro-
cessing state in response towards the learning signal. DRL is
applied to many applications like robotics, healthcare centers,
finance, smart grids andmanymore. The structure of DRL are
shown in Fig. 6.
While DRL could be seen as part of RL and not as a

differentiated type, we have specifically distinguished it from
RL because, particularly during the last two years, there is a
growing hype in its application in SDN environments and, for
that reason, we believe it deserves its own analysis section.
Due to its interesting for the community, we point out a
special DLL method, the Deep Q-learning an evolution of
Q-learning with ANNs.

5) DEEP Q-LEARNING
Deep Q-learning [97] substitutes the MDS framework with
DNN and solves the problem of multiple states and mas-
sive data. The traditional Q-table, which keeps track of the

states, actions, and their expected rewards, is now substituted
by an ANN to predict both action and Q-value only from
the state. Usually, its methods are based on RNNs, LSTMS
and GRU, due its intrinsic evolutionary character, besides
CNNs [98], [105].

D. SELECTING THE BEST ML METHOD
After introducing the different techniques, classified into
three core types, we would like to provide a quick –and
qualitative– overview of which technique or method seems
to be more suitable for routing in SDN. There is no straight-
forward answer for this matter, and we could state that the
best solution is strongly conditioned by several factors:
1) Dataset type: Scenarios where a labeled dataset is

available allow the use of supervised ML meth-
ods, which are usually more accurate than its non-
supervised counterpart. Learning from datasets permits
to infer input-outputs relations that can be considered
for routing. However, it is very important to have obser-
vations that cover the whole variability of situations.
In this regard, we want to remark that, as we will
examine within the following section, the majority of
the works for routing in SDN use simulated datasets
for training the ML algorithms. Only a few approaches
directly work with real datasets, which better capture
the real input-output relation than the synthetic ones.
As the access to this kind of information is more
difficult and the field does not count on standardized
databases that allow testing the different proposals,
unsupervised methods are frequently applied to find
patterns in unlabeled datasets. On the other hand, RL
is specific for dynamical optimization problems, such
as, the routing optimization problem in SDN. RLmeth-
ods have the ability of learning from the environment
and adapting to the change of environment conditions.
The agent must be trained maximizing a reward func-
tion from the environment instead of using a labeled
database.

2) Dataset size: The size and nature of the database
strongly constrains the type of ML method we can
use for estimating routing parameters. Large databases
are suitable for ML techniques that involve a huge
number of parameters such as ANNs or DNNs. Large
databases also avoid the overfitting problem and allow
to infer new input-output relations difficult to find in
small datasets with a few observations. Nevertheless,
the use of large databases requires long training time
and expensive equipment, such as, graphic cards. The
computation time for inferring the parameters tends
to be higher than using small databases. Additionally,
small datasets are more available and easier to man-
age for training any ML method than the large ones.
However, they may not permit to infer complex input-
output patterns.

3) Problem type:Many routing optimization approaches
in SDN divide the routing task into sub-problems that
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can be individually solved by ML methods, such as,
‘‘maximum throughput & minimum cost’’, ‘‘minimum
congestion probability’’ or ‘‘bandwidth prediction’’
problems. From a ML point of view, we distinguished
two different types of problems: classification and
regression. In classification, we want to identify which
category, from a finite set of different classes, an obser-
vation belongs to; while in a regression problem,
we want to estimate real vectors that belongs to con-
tinuum intervals. ML methods are different depending
on the type of problem to solve.

Considering all these factors, large datasets are appropri-
ate for ANN-based and DNN-based approaches, which can
extract interesting parameters from data. The difficulty of
finding large datasets can be softened by a first training with
synthetic database [106]–[108] and, afterwards, using a last
fine-tuning step with a small real dataset. ANN-based meth-
ods suffer from overfitting if they are trained with medium-
size or small dataset. With medium-size dataset, we can try
support vector machines and the ensemble methods, includ-
ing random forest. Specifically, random forest has proven
to be faster than other ensemble methods since it is a tree-
based ensemble. With small datasets, the best option is to use
linear regressors, such as, ridge, lasso or elastic-net regres-
sors, which are simpler but faster than the previous methods
and, in most cases, effective enough [109], [110]. With no
given dataset, unsupervised clustering methods are required.
The most sophisticated unsupervised methods are the hierar-
chical clustering and the self-organizing maps, which even
work with large unlabeled dataset. The more traditional
method K-means is also used with medium-size databases
[111], [112]. Similar to supervised learning, deep rein-
forcement learning should be applied in those scenar-
ios where multiple iterations with the environment are
permitted, specially the LSTMs and RNNs [113]–[115].
Neural networks need to be extensively trained. Otherwise,
reinforcement learning methods based on MDS such as
Q-learning or SARSA can be used [116], [117].

V. MACHINE LEARNING TECHNIQUES FOR
ROUTING OPTIMIZATION IN SDN
As already presented, ML [118] can play a core role in opti-
mizing routes in SDN, by saving time, money and ensuring
the fast delivery of data within the required time. While tra-
ditional routing techniques [119]–[121] suffer from complex
dynamics in networking, and face some problems such as
performance declines and low convergence, ML is particu-
larly appropriate for the SDN architecture, as it is capable of
easily centralizing the information gathered in the network.
Accordingly, ML together with SDN compose a thriving
approach in the game of route optimization.
Although the overall procedure in ML is based on contin-

uously retrieving data, training it, learning from it, predicting
the new values and choosing the most efficient route, ML
strategies might be utilized depending on the specific strategy
and system requirements. In this survey, we comprehensively

examine the state of the art of ML techniques that are imple-
mentable and applicable in SDN. To this purpose, we clas-
sify the ML techniques for routing optimization in SDN
following the taxonomy of Section IV in three categories:
Supervised Learning (SL),Unsupervised Learning (UL), and
Reinforcement Learning (RL). The latter contains an addi-
tional subsection dedicated to Deep Reinforcement Learning
(DRL), and its table is separated as well from the one of
classical RL. The large amount of DRL methods in routing
optimization of SDN justifies their exposition separately from
the reinforcement learning methods, which strictly include
them considering the theoretic taxonomy.
Afterwards, the works analyzed are ordered following the

different techniques leveraged for the conceptual implemen-
tation. All of these ideas are summarized in Tables 3 and 4
for SL, 5 for UL, 6 for RL, and 7 and 8 for DRL, in which
we classify the different ML works based on the following
parameters: types of techniques, objectives, implementation
and evaluation, and advantages and disadvantages. Addition-
ally, this chapter is finalized by providing an overview of
learned lessons and current research trends.
The order of appearance of the different works is chrono-

logical, but also based on theML techniques used and relating
proposals by shared sets of authors. In particular, we started
from the oldest work in the different types of ML, and then
continued with similar works (using the same ML technique)
from oldest to newest, so that all proposals were somehow
intertwined and following a logical timeline. We believed this
approach could facilitate the description and understanding of
the evolution of the different proposals, as strictly following a
chronological order could cause the reader miss the relation-
ship between approaches, as well as their pros and cons.
Finally, we would like to highlight that the present survey

focuses on the different ML techniques found in routing
optimization in SDN. Observe that most of the optimiza-
tion techniques appear in the literature to complement the
ML methods and subordinate to them. That is the case of
Sabeeh et al. [122], who propose a hybrid intelligent system,
named Hybrid Intelligent Approach (HIA), which is used to
optimize the performance of SDN. In most of the cases, opti-
mization techniques are used for training the ML methods,
reducing the number of features, or finding some important
hyperparameters.

A. SUPERVISED LEARNING
Dynamic routing is a technique that forwards data using
different routes based on given conditions or communica-
tion circuits. NeuRoute [106] is a framework of dynamic
routing for SDN that leverages ML and solves the Maxi-
mum Throughput Minimum Cost Dynamic Routing Prob-
lem, achieving the same result as other dynamic routing
algorithms, but requiring less execution time. NeuRoute is
a dynamic framework that is controller-agnostic, which uses
a neural network for learning traffic characteristics. Based
on a real-time predict traffic matrix, forwarding rules are
generated to optimize network throughput. To ensure a certain
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TABLE 3. Comparison of supervised learning techniques for routing (1/2).
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TABLE 4. Comparison of supervised learning techniques for routing (2/2).

value of QoS, the common practice is to allocate more net-
work resources than strictly required, based on peak traffic
load estimation. In a case when peak loads are predictable,
this practice of QoS is quite simple but in the long term,
it is not justified economically. The basic motivation of Neu-
Route is that, in dynamic routing, due to high computational
complexity, the use of traditional algorithm solutions is not
practical. Two of its main core blocks are based on DNN:
the traffic matrix predictor and the traffic routing unit. The
traffic matrix predictor is a LSTM which accurately predicts
the next step. The traffic routing unit is designed with a FFN
which learns how to match the traffic demands to the routing
paths.
Chen-Xiao et al. [107] introduce a load balance resolution

system with the benefit of a global network view for SDN.
It increases the performance of data broadcasting in SDN.
The principle is to outperformed legacy routers, which store
routing tables that only contain destination network and next-
hop information, hence missing a global routing view. The
authors propose a mechanism in which the SDN controller
discovers all paths between source node and destination node,
and implements a load balancer application to efficiently
distribute the traffic. The load balancer server maintains the
load in each path [107] based on real-time metrics. More
specifically, the load balancer immediately calculates all
load conditions of multiple paths that are received from the
SDN controller. After receiving the chosen path for transmis-
sion, the SDN allocates the flow tables for OpenFlow [136]
switches to achieve a certain data-flow transmission. To this
purpose, the authors propose an ANN composed by one
single hidden layer (with a maximum of 11 neurons), which

receives four load features as inputs, namely: bandwidth uti-
lization ratio, packet loss rate, transmission latency, and trans-
mission hop. The ANN infers the integrated load. The authors
evaluate this architecture using Mininet and the Floodlight
controller [137], and results suggest better performance and
a decrease in network latency of 19.3%.
Wu et al. [123] present AIER, an ANN to predict the

minimum congestion probability among all path configu-
ration. The network is trained to predict the congestion
given the loads for all data flows and all the available path
configuration.
Sabeeh et al. [122] propose a hybrid intelligent system,

named Hybrid Intelligent Approach (HIA), which is used to
optimize the performance of SDN. HIA, whose architecture
can be seen in Fig. 7, is a combination of multiple ML meth-
ods and techniques working together or parallel. The per-
formance optimization of SDN is performed using a hybrid
intelligent approach. The ML techniques, namely ANNs and
Adaptive Network Fuzzy Inference System (ANFIS) [138],
are used for mapping and modeling. Additionally, GA [139]
and Particle Swarm Optimization (PSO) [140] are optimiza-
tion techniques that give maximum performance of SDN by
using the ANN model. In this paper, the authors performed
the simulation of SDN by using Mininet and the POX con-
troller, for collecting input and output datasets.
NeuTM, also proposed by Azzouni et al. [124], uses

LSTM-RNNs [141] for traffic matrix forecasting. It applies
a sliding window technique for obtaining the input-output
pairs to feed the Neural Networks. The LSTM is a strong
self-learning algorithm with the ability to detect complex
non-linear patterns, widely used for time-series predictions.
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FIGURE 7. Architecture of the proposed model by Sabeeh et al. [122].

The results show that LSTM performs better than traditional
RNNs and obtains high prediction accuracy in a very short
training time.
Benamrane et al. [125] focus on SDN in avionic networks,

where the complexity of security of communication, manage-
ment, handover between radios, andQoS requirements are the
major challenges. The interest of SDN in avionics is the abil-
ity to program the aircraft and the ground network devices in
a unified and centralized way through software applications.
The authors provides an adaptive bandwidth manager based
on real-time traffic which runs on top of the SDN controller
and ensures the QoS policy fulfillment for the aircraft critical
and non-critical services. This bandwidth manager optionally
includes a time series forecasting module based on ARIMAs
and LSTMs capable to predict future bandwidth variations.
RouteNet, proposed by Rusek et al. [126], [127], is a new

type of Graph Neural Network (GNN) specifically conceived
for modeling computer networks. It is inspired by the Mes-
sage Passing Neural Network (MPNN) previously proposed
in the field of quantum chemistry. RouteNet is capable of
capturing the complex relationships between between topol-
ogy, routing and input traffic to produce accurate estima-
tions of the per-source/destination pair mean delay and jitter.
It is trained with synthetic data generated by a custom-built
packet-level simulator with queues using OMNeT++. The
delay and jitter are related to the bandwidth capacity of each
corresponding egress links. Using RouteNet as a SDN con-
troller, the authors show the ability to optimize multiple Key
Performance Indicator (KPI) and to guarantee the service-
level agreements (SLAs) of a particular set of flows.
TheMachine Learning Routing Computation (MLRC)

module, implemented by Troia et al. [109] considers it is
a big challenge to provide accurate and efficient quality
communications to end-users due to the amount of data
transported by current telecommunications networks. In this
regard, the authors leveraged the ONOS controller [142] to
build a machine learning model, called MLRC, to train and
configure the optimization in charge of finding the different
paths in the SDN network. MLRC implements a logistic

regression classifier due to its simplicity and explainability.
According to their results, the SDN network is able to recom-
puted its routing configuration and execute it in a very limited
lapse of time for any incoming shift in the traffic matrix.
However, the authors anticipated their results are limited and
real datasets could facilitate more advance models for opti-
mized routing in real networks with industrial applications.
Wang et al. [110] present a module based on machine

learning and implemented in SDN to enhanceQoE. It chooses
the best path, monitors, and controls and predicts the perfor-
mance of the network. The researcher uses quality of experi-
ence (QoE) [143] to evaluate the performance and condition
of the application. An optimal QoE is difficult to achieve for
real-time applications, so a set of Key Performance Indica-
tors (KPIs) [144] was defined. Moreover, their SDN module
works both with information acquired from both the SBI and
the NBI, as the SBI collects the network matrices and the NBI
collects KPIs.
Sun et al. [128] combine a variety of ML algorithms to

propose a data flow classification method called MACCA2-
RF&RF, which identifies the data flow category (with almost
perfect accuracy) and obtains the QoS requirements. The
authors comprehensively evaluate their proposal with real
datasets and an SDN implementation based on Floodlight
and Mininet, which is quite close to real scenarios. However,
some parts of their design still need improvement, such as the
amount of table entries installed, which should be reduced to
be scalable.
Choudhury et al. [129] introduce ML to control more effi-

ciently SDN-enabled IP/Optical Networks [145] with SDN.
The Open ROADM (Reconfigurable Optical Add-Drop Mul-
tiplexer) [146] concept together with the SDN controller tools
permit the ISPs tomore efficiently and homogeneously obtain
network performance data to set up the best wavelength
paths that meet the requirements of optical networks. For
this purpose, ML is used to predict the best performance of
wavelengths in multiple vendors. In their architecture, SDN
controls all-optical routers, all-optical nodes, edge routers,
and optical nodes, hence providing a global view. In the end,
the authors defined two applications in ML that are managing
IP and optical networks. The first application provides the
facility of long-term perditionwith global optimization, while
the second produces short-term traffic prediction that helps
out in reducing the customer traffic on the network.
EL-Garoui et al. [130] leverage SDN and ML for efficient

routing in smart cities, where most applications are based on
Internet-of-Things (IoT). They develop a framework based
on the Naive Bayes algorithm and create a dataset based on
the Montreal city open data website and the SUMO urban
mobility simulator. After comparison with other protocols,
like OSLR, obtaining better results in terms of delay and
packet delivery ratio.
Hardegen et al. [108] present PFR, which is a flow routing

paradigm that aims to efficiently distribute traffic (nearly
evenly) over links/paths to avoid high load/congestion.
Conditions for flows can be improved by minimizing
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observed latency/maximizing required throughput. The
authors briefly provide a summary of the ML techniques
employed. They continuously train a DNN on incoming data
while treating the prediction of flow characteristics as amulti-
class classification problem. As forecasting is carried out as
flows start, only features known ahead of time are usable.
Besides a continuous model update, an interface to request
a prediction for flow 5-tuples is offered. Finally, a key aspect
of this approach is that the authors implement their solution
using P4 programmable switches, instead of following the
classic centralized SDN model.
Awad et al. [131] focus on a rather theoretical analysis

of enhanced multipath routing using DNNs. Although they
leverage the TOTEM open source traffic engineering tool-
box [147] (supported by experts in the field of computer
networks) and their evaluation is pretty comprehensive, they
do not provide any insights on actual SDN implementations,
which limits the scope of their proposal.
Akbar et al. [132] design one of the few works analyzed

that focuses on real computer network scenarios leveraging
AI and SDN. In particular, they present a proposal based on
genetic algorithms to achieve adaptative and reliable com-
munication in IoT-fog environments, which could be consid-
ered one of the main objectives of the future 6G networks
[148], [149]. The authors implement an SDN-based frame-
work to evaluate their proposal and leverage real datasets.
However, the evaluated topology is only one fixed custom
topology.
Owusu et al. [133] propose diverse implementations ofML

models to classify traffic in SDN-IoT networks for traffic
engineering. The authors compared three different classi-
fiers: RandomForest Classifier, Decision Trees Classifier and
K-Nearest Neighbors Classifier. Also they evaluate two fea-
ture selection methods: Sequential Feature Selection (SFS)
and Shapley additive explanations (SHAP). According to
their analysis, the best accuracy rate, 0.83, is obtained by the
random forest classifier with SFS.
RoPE, proposed by Sacco et al. [134], is an architec-

ture that adapts the routing strategy of the underlying edge
network based on future prediction bandwidth. RoPE is a
conglomerate of supervised time-series models and machine
learning methods train to predict the bandwidth in such a way
the controller can check whether the desired application fits
the network load. It automatically chooses the algorithm to
apply, in order to guarantee the best possible performance.
Choosing the right forecasting method for a given use case is
a function of many factors such as the historical data available
and exogenous variables (e.g., weather, concerts). Data for
training is collected via the Mininet emulator. As a result,
the SDN controller tracks the past link loads and takes a new
route if the current path is predicted to be congested.
Finally, Todorov et al. [135] present an architectural design

to implement four types of ML techniques to improve load
balancing and segment routing in SDN. However, the article
does not provide any additional insights on implementation
nor provides any type of evaluation.

B. UNSUPERVISED LEARNING
Budhraja et al. [111] state that usual SDN routing approaches
do not usually follow privacy and compliance requirements
of data transmission. This is particularly magnified consid-
ering the fact that SDN routes are usually static or defined
specifically for each communication flow, which is prone to
suffer from diverse security attacks like, for instance, Denial
of Service (DoS). If such a kind of routing is performed in
a controlled environment (HIPAA), we can lose important
information in case of an attack. In this paper, the author
focus on the privacy of sensitive data transmission and the
restricted challenges of compliance in SDN environments.
Since a big number of packets transmitted via the same data
path is considered as a risk, route randomization is per-
formed by monitoring the forwarding path and its transmitted
packets. The required results are obtained by using i) ML
and analytics for the computation of risk in SDN network;
ii) distributed routing based on swarm algorithm; iii) min-
imizing the route randomization and risks for achieving
the requirement of compliance and privacy. The proposed
scheme works on history, as it collects previous packets for
the purpose of training and then data packets are efficiently
routed. For risk identification, the K-means clustering algo-
rithm is used. It identifies k-centroid objects for finding the
risk ratio, and it is processed offline. The risk is analyzed
and then for routing data packets the online method is used
to make a real-time decision. Ant colony optimization is
used for making real-time decisions with low complexity
level.
Kumar et al. [112] explore the applicability of ML algo-

rithms for selecting the least congested route for routing traf-
fic in SDN. The proposed method of route selection provides
a list of possible routes based on the network statistics dynam-
ically provided by the SDN controller. The authors propose
two ML methods: a K-means clustering algorithm and the
Vector Space Model with cosine similarity. The proposed
methods are tested in Mininet using the Ryu controller and
they made a comparison with Dijkstra’s routing algorithm.
The experiments shows that the best Round Trip Time (RTT)
measurement of the traffic flows is achieved by the imple-
mented K-means closely followed by Vector Space model,
surpassing the times obtaining by Dijkstra.

C. REINFORCEMENT LEARNING
Lin et al. [116] emphasize the urgent need to define a reli-
able QoS routing mechanism for large-scale SDN-based net-
works. To solve this issue, they propose QoS-aware adaptive
routing in multi-layer SDN. The architecture of hierarchi-
cal distributed control planes is introduced by combining
the work of Kandoo [154] and Xbar [155]. Levels of this
distributed control plane are Super Domain (master), switch
subnets and slave controllers. Thanks to a RL, the authors
achieve a reliable SDN infrastructure and minimum signal
delay, later on expanded with time efficiency, and QoS aware
of packet forwarding. This QoS-adaptive routing outperforms
conventional Q-learning.
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TABLE 5. Comparison of unsupervised learning techniques for routing.

TABLE 6. Comparison of reinforcement learning techniques for routing.

Rischke et al. [150] consider addressing diverse and vary-
ing traffic loads implies the utilization of complex model,
hence they focus on achieving amodel-free RL scheme. Their
proposal, QR-SDN, creates multiple paths between source
and destination, which achieves substantially lower flow
latencies. However, they devise additional research efforts are
needed to conceive a scalable approach as the network size
increases.
Casas-Velasco et al. [151] introduce a routing approach

entitled Reinforcement Learning and Software-Defined Net-
working for Intelligent Routing (RSIR), which is founded
on the need of adding a Knowledge Plane, as mentioned in
Section III.B, to the network, which is fed by data gathered by
the Management Plane. In particular, they define a proactive
RL-based routing algorithm based on link-state metrics and

implement it in a prototype with real traffic matrices. RSIR
is compared against the classic Dijkstra’s algorithm, which is
leverage by most routing protocols. Results show that RSIR
obtains more shortest paths and is able to better balance the
load, hence reducing the overall latencies. As future work,
they envision the evolution of their approach to DRL.
Fang et al. [117] consider that Dijkstra-based routing algo-

rithms might have problems, particularly when data streams
are combined by selecting the same forwarding path, which
greatly reduces the use of network connections and leads to
network congestion. As SDN is not constrained to any partic-
ular routing algorithm, the authors consider the application
of RL, with a Q-learning-based routing algorithm, specifi-
cally for comparison against the RIP protocol. Additionally,
by combining RL and NNs, which means the Q-table in
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Q-learning is replaced by a NN, the authors present a Deep
Q-learning-based routing algorithm as well. Both algorithms
are simulated and exhibit good performance results.
Sendra et al. [152] presents a solution to enhance network

performance based on QoS and security concerns. The solu-
tion is implemented in a distributedmanner onlywithMininet
and no controller, to facilitate testing a proof-of-concept.
Their solution involve the application of reinforcement learn-
ing over the traditional OSPF routing protocol, using Quagga,
which permits modifying the routing algorithms. It is tested
and compared against the conventional OSPF routing proto-
col and results show that it enhances OSPF, obtaining more
stable routes, with lower loss rates and better jitter and delay.
Valadarsky et al. [153] focus on data-driven routing

and present some preliminary results in the context of
intra-domain traffic engineering. They perform an analysis
applying both supervised and reinforcement learning in a
complementary way (reinforcement learning takes past val-
ues from the traffic demands and trains the values, while
it assumes the future values or traffic demands with the
help of supervised learning). However, no specific effort is
performed to integrate this idea in SDN scenarios, although
the authors leave it as future work.

FIGURE 8. Francois et al. [113], [156] present the CRE architecture that
enhances the processing efficiency by gathering the network states
according to the QoS requirements.

1) DEEP REINFORCEMENT LEARNING
Francois et al. [156] propose a new routing application called
Cognitive Routing Engine (CRE) that enhances the efficiency
of the processing and gathering of network states, and pro-
vides the best routing path that according to QoS require-
ments. The authors particularly consider the cloud provider
use case, which typically needs dynamic re-routing for the
different tenants, and focus on the design of the CRE module
as an SDN application, as depicted in Fig. 8, in which the
CRE application sits at the same level of the link discovery
service. CRE is based on RNNs and tested in a Mininet sce-
nario, but not exhaustively compared with other approaches.

Francois et al. [113] updated their previous work by a practi-
cal scenario based on specific data center locations, plus the
use of the Floodlight SDN controller.
Sun et al. [114], [157] combine the Recurrent Neural Net-

work (not to be confused with RNN) with Deep Deterministic
Policy Gradient (DDPG) [181] to model TIDE, which proves
to reduce network delay, as compared to standard shortest
path routing schemes, like OSPF. In TIDE, the network
model is represented as traffic data sequences in the router.
The evaluated is performed via a realistic scenario based on
Pica8 switches (well-known commercial SDN-capable hard-
ware switches) and the POX SDN controller. In this exper-
iment, 1000 training steps are present in each RNN-DDPG,
and for performance measurement the average transmission
delay is added in the total. After some time, it is observed
that RNN-DDPG performs better as compared to shortest
path. Although the results are promising, the authors foresee
scalability issues in bigger scenarios. For this reason, a new
work by Sun et al. [158], [159], entitled SINET, is presented
afterwards specifically focused on scalability, in which partial
control is applied together with DRL. SINET is evaluated
via the OMNeT++ packet-based simulator, showing very
good preliminary results. Finally, Sun et al. [160] present
an updated solution for enhanced and scalable traffic engi-
neering (similarly to their previous work), entitled ScaleDRL,
in which they leverage the idea from the pinning control
theory to select a subset of links in the network (set as critical
links) and provide decisions based on them, hence fostering
scalability. Their implementation is performed just with the
OMNeT++ simulator, which might seem limited.
Stampa et al. [161] focus on the KDN concept to design

a DLR agent to minimize network delay. The RL agent uses
three signals that are state, action and reward, to provide a
near optimal solution. The RL agent is an off-policy, actor-
critic, deterministic policy gradient algorithm that exchanges
these three signals for interacting with the network.
Yu et al. [162] propose the DDPG Routing Optimization

Mechanism (DROM). DROM is based on neural networks,
not Q-tables, which saves time and storage, and works in
continuous time with effective black-box optimization. The
evaluation is focused on delay and throughput, in comparison
with the well-known OSPF protocol, and the authors addi-
tionally measured convergence time, obtaining good simula-
tion results. Maheswari et al. [163] andXu et al. [164] present
a very similar work to DROM, following the same approach.
Yao et al. [165] exploit a hybrid ML paradigm that

combines a distributed intelligence, based on units called
‘‘AI routers’’, with a centralized intelligence, called the ‘‘net-
work mind’’, to provide different network services. Using
this paradigm, the authors deploy centralized AI control
for connection-oriented tunneling-based routing protocols,
such as, multiprotocol label switching and segment routing,
to guarantee a high QoS. Besides, for hop-by-hop IP rout-
ing, the authors shift the intelligent control responsibility
to each AI router to ease the overhead imposed by cen-
tralized control and use the network mind to improve the
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TABLE 7. Comparison of deep reinforcement learning techniques for routing (1/2).
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TABLE 8. Comparison of deep reinforcement learning techniques for routing (2/2).

global convergence. The work provides a DRL-based algo-
rithm for an effective routing policy generation. The authors
apply a DDPG approach for policy generation [182].
A DDPG agent has two main components: a determin-
istic policy network, the called actor, which attempts to
improve the current policy; and a Q-network, the called critic,
which evaluates the quality of the current policy. An itera-
tive alternation between both actors reach the optimum pol-
icy. The authors simulate their proposal with OMNeT++.
Experiments prove that with increasing load intensity, the
AI-based routing achieves better performance than shortest
path routing.
Zhang et al. [166] apply deep neuronal networks for

content-awareness and exploit DRL for traffic engineering
decisions. They provide a parallel online learning mechanism
to use DRL that has trial-and-error nature. They improve
network performance in terms of total network throughput,
bandwidth utilization, and load balance.

Nahar et al. [167] apply SDN-enabled spectral clustering-
based routing together with DDPG to define SeScR. The
special thing about this proposal is that the objective are
not packet-based networks, but Vehicular Ad-Hoc Networks
(VANETs) instead. For evaluation, they used OMNeT++
together with SUMO, a popular traffic simulator.
Tu et al. [115] highlight the existing challenge for opti-

mized routing in space-ground integration networks, particu-
larly when changes occur in the topology and link status. For
that purpose, they define the ML-SSGIN framework, which
uses the DDPG algorithm and a neural network that integrates
LSTM and Dense layers. They compared their proposal with
OSPF, obtaining better results in terms of throughput and
delay.
Quang et al. [168] also leverage the concept of KDN to

apply the ML principles in SDN environments. In order to
improve the performance of QoS-aware routing, the author
exploit a DRL agent with Convolutionary Neural Networks
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in the KDN context to improve latency and packet loss rate.
The results obtained show that even in complex networks,
the proposed approach can significantly improve the perfor-
mance of the routing configurations. By proposing a DDPG
algorithm, the authors address the continuous control needs.
The OMNeT++ discrete event simulator (v5.4.1) was used
to obtain the latency and packet loss rate.
Swain et al. [169] propose the Convolutional Deep Rein-

forcement Learning (CoDRL) model, consisting of a DDPG
agent coupled with a Convolution layer. The authors simulate
the environment with OMNeT++ and show that CoDRL
clearly outperforms OSPF in terms of delay and packet loss.
Lu et al. [170] design an enhanced version of DDGP

entitled DDPG-EREP, and they evaluate it with an emulated
network (composed by the Ryu SDN controller andMininet),
instead of using a simulator (as the previousworks). However,
their evaluation is limited to a single execution of a fixed
topology and additional tests should be performed to prove
the benefits of their approach.
Liu et al. [171], [172] particularly emphasize on the need

for optimized routing in data center networks. Their approach
focus on the specific needs of these types of networks and
how resource allocation and routing affects the overall per-
formance of software-defined data center networks. For this
purpose, the employ Q-network (DQN) and DDPG to build
their model, DRL-R. After an extensive evaluation performed
via simulation in OMNeT++, their results outperform those
of traditional OSPF and TIDE (another DRL-based routing
model previously mentioned).
Fu et al. [173] propose a routing strategy based on deep

Q-learning (DQL) specifically designed for data center net-
works. In particular, the authors consider that mice and ele-
phant flows (usual types of flows in data center networks)
have different requirements: both need low packet loss, but
reduced delay is more important in mice flows, while high
throughput is more relevant for elephant flows. Their pro-
posal outperforms ECMP [174], the classic routing algorithm
for data center networks, and SRL+FlowFit [175], which is
an improved routing algorithm in comparison to ECMP and
focuses on balancing the network load in folded-Clos data
center topologies.
Jalil et al. [176] present Deep Q-Routing (DQR), which

uses dueling deep Q-network with prioritised experience
replay to compute a path for any source-destination pair
request in the presence ofmultipleQoSmetrics, such as delay,
bandwidth or loss. They compare their approach with other
existing learning methods for greedy online routing, showing
better results in terms of loss and path cost, while keeping the
best bandwidth most of the times and a reasonable delay.
Chen et al. [177] comprehensively analyze the need for

optimized routing in SDN and present RL-Routing. After
an extensive evaluation based on a real SDN controller and
networks, RL-Routing proves to offer better results than other
routing algorithms like OSPF and Least Loaded (LL).
Etengu et al. [27] propose a DNN-based approach in a

hybrid SDN/OSPF network deployment. The SDN controller

performs energy-efficient routing and enhanced performance
with QoS guarantees. It is composed by both the SDN-
enabled supervised ML module and the DRL module. The
hybrid SDN-enabled supervised ML is formed by an LSTM
to perform traffic flow prediction using time-series datasets,
which extracts short-term network data traffic variabilities
and periodicities to ensure traffic flow prediction and energy-
efficient routingwith guaranteedQoS performance. TheDRL
module performs learning from the existing historical data
and iteratively from the interfacing with the defined network
setting.
Jha et al. [178] focus on multipath routing in Data Center

Networks (DCNs) and, for that reason, they directly try to
compete against Equal-Cost Multi-Path (ECMP), which is
one of the most popular protocols in those scenarios. In their
design, they use DRL to compute the links weight and,
afterwards, they apply Dijkstra’s algorithm (as other tradi-
tional approaches). Although their evaluation is performed
via an SDN-based environment, it does not consider typ-
ical traffic patterns from DCNs (such as elephant/mouse
traffic), the tests are not comprehensive, and in-depth details
from their implementation are missing for reproducible
research.
Srivastava et al. [179] present a bio-inspired RBM algo-

rithm to optimize load balancing. However, their analysis
and evaluation seems limited, as they do not consider the
measurement of standard metrics, the network topology is a
fixed mesh (which is not common in practical networks) and
they do not provide any additional thoughts on the actual SDN
deployment.
Babayigit et al. [180] focus on DCNs and evaluate and

compare a DRL technique with others like ANN, SVM and
logistic regression. The results show that their approach is
very efficient for load balancing, outperforming all the rest
in diverse evaluated parameters. However, the authors do not
provide specific details of the technique implemented, which
makes it hard to reproduce.

D. LEARNED LESSONS AND RESEARCH TREND OVERVIEW
After examining the works that apply ML together with SDN
for optimal routing, several conclusions arise at first sight:

• Since the publication of the KDN concept four years
ago, there is a huge tendency to apply ML and AI in
SDN environments (particularly towards 6G) and, in the
case of routing, DRL is particularly relevant in the last
two years, as most published works fall in this type of
ML technique.

• Most works compared their proposal with shortest path
algorithms in terms of latency and/or throughput, and
either use OMNeT++ for simulation, which might not
be realistic enough, or leverage the Ryu SDN controller,
which is very easy and good for prototyping, but it does
not follow the requirements of the industry (e.g. bad
performance, as it is written in Python).

• Selected topologies and datasets are often very specific
and differ among authors. Only a few works use several
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types of topologies and datasets to guarantee compre-
hensive and homogeneous evaluations.

• Few efforts have been made to create synergies or even
compare the different ML works in relation with routing
in SDN. Most evaluations performed just compare their
approaches with classic routing protocols and no com-
peting proposals (probably because implementations are
usually not publicly available), which hinders the attain-
ment of actual conclusions.

• Most proposals lack design and/or implementation
details, which makes it a hard task to reproduce
results or produce comprehensive comparisons. For
example, DDN-based proposals do not detail their archi-
tectures and the parameters used in their networks.

Apart from these four main learned lessons, there are
some other trends observed in our analysis. For example,
most designs propose a centralized architecture, following
the idea of classic SDN, while distributed or hybrid SDN
approaches are set aside. In the case of evaluation, most pro-
posals agree on the use of topologies like GÉANT, NSFNET
and BRITE-generated, which are consistent with practical
implementations, although almost all are wired networks.
These topologies are usually deployed withMininet via Open
vSwitches (we assume, as most works omit this specific –
yet important– detail). As for datasets and traffic pattern
generation, there is a huge heterogeneity of approaches: some
leverage existing datasets, some others directly generate their
own traffic based –or not– in current literature analysis, while
many directly omit to provide details about this technical
aspect.
Finally, the majority of works agree that future research

efforts should be made regarding three aspects, namely:
(1) scalability enhancement, (2) evaluation with more types
of (real) datasets and (3) automatic fine-tuning of the system
(which needs some manual configuration in the very first
stages).
As a conclusion, following the definitions, descrip-

tions, and evaluation of the different proposals presented,
we believe the most complete and/or promising approaches
are the following:

• Sacco et al. [134], as they realize a comprehensive anal-
ysis with a testbed close to practical scenarios, including
real traces, and application and comparison of different
techniques.

• Hardegen et al. [108], because they leverage P4 pro-
grammable witches, which might have the best perfor-
mance over other implementations.

• Casas-Velasco et al. [151], since they present a very
complete implementation and evaluation and leverage
the KDN concept.

• Fu et al. [173], because they particularly focus on a type
of scenario (data center networks) and carefully design
their approach around it.

• Chen et al. [177], as their implementation and evaluation
is very complete, and close to real scenarios.

Therefore, we recommend to follow the work from these
research teams in case of interest in the field. Additionally,
just out of curiosity, all of these five research items were
published in 2020, which shows the very recent trend in the
field.

VI. FUTURE RESEARCH DIRECTIONS
ML and AI have already influenced almost every field of
human life [183]. Although ML algorithms are mostly lever-
aged for robotics, image and signal processing, they are play-
ing and undeniable role in network control and management
as well [184]. In particular, ML has been applied to routing
problems in computer networks as early as in 1994 [185] and
rapidly evolving everyday [186].
Recently, SDN has emerged in the field to provide a

wider range of possibilities in the field of routing optimiza-
tion with ML, as seen in previous sections. Nevertheless,
this field still demands immense research efforts towards
full-fledged ML-based networking environments, which we
discuss in detail in the following sections. Though these
challenges could be considered a burden, we believe they
indeed illustrate an opportunity towards real and practical
next-generation networks. For this reason, for each of the five
sections, we will summarize the envisioned future research
directions, together with the overall goal, in case these could
hopefully serve as inspiration for the research community.

A. WHAT IS OPTIMAL ROUTING?
Though it might seem trivial, this is the first question that
should arise when trying to design optimized routing algo-
rithms based on ML for SDN environments. Networking
scenarios are vast and heterogeneous and, for sure, not limited
to be assessed by latency and throughput. Hence, when asked
about the definition of optimal routing, the initial answer
should be it depends.
For instance, first of all, in physical terms, networks could

be divided into two main types: wired and wireless, and they
have different routing protocols to start with. As an example,
latency and throughput could be valid parameters to measure
routing quality in wired environments, but some wireless sce-
narios, like Low-power and Lossy Networks (LLNs) [187],
might require low power consumption or high-robustness
instead. Additionally, network topologies also vary depend-
ing on the specific use case. Optimized routing in data center
networks might drastically differ from what it is expected
in large service-provider networks, which could even follow
business-based directives. Finally, networks are dynamic and
change (not only because of updates, but also because of
failures) and this should be taken into account as a factor
as well.
All of these ideas are just a few considering the physical

media aspect, but many more could be evoked considering
other aspects, like types of communication (unicast, multi-
cast, broadcast), or applications. This is particularly relevant
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for 5G networks and beyond [188] for example, in which new
types of requirements and applications are still flourishing.
Nevertheless, after our analysis of the state of the art,

we found out that most research works simply consider a
very limited subset of networks: wired, unicast, and consid-
ering latency and throughput as main drivers. Only a few
mention specifically the application to data center or wireless
scenarios. For that reason, we devise the following research
directions:

• Efforts should be made to apply ML in routing in wire-
less scenarios and, particularly, constrained scenarios.

• Broadcast and multicast optimal routing would be very
valuable to assess.

• Traffic patterns, topologies and network changes should
be considered in future analysis.

• Additional metrics should be evaluated as part of
optimal routing, such as: node energy consumption,
resilience or business-based metrics.

Overall goal: A ML-based routing algorithm for SDN
should be customizable based on a diverse set of parameters
(latency, throughput, CPU usage, energy-efficiency), media
(wired and wired), types of communication (unicast, mul-
ticast, broadcast), applications (traffic patterns) and topolo-
gies (DCNs, IoT, etc.). Additionally, apart from typical
performance evaluations, proposals should also encompass
long-term and multidisciplinary objectives, such as sus-
tainability, hence tackling challenges envisioned by the
Sustainable Development Goals (SDGs). If not feasible,
the authors should at least justify the use case scenario and
the evaluation method, to be consistent.

B. SECURITY AS A CROSS-CUTTING FEATURE
Possibly related with the previous aspect, security is an
orthogonal aspect in networking [189], which affects all types
of scenarios and should also be evaluated as part of any type of
optimal routing. As many works already exist that apply ML
and SDN for network intrusion detection, we would like to
particularly focus on two aspects: data acquisition and routing
policy population. In particular, we envision the following
research directions:

• ML-based proposals should consider the possibility that
data acquisition could be hampered ormodified to obtain
faulty results, hence either a secure mechanism should
be defined or a ML-based method to filter these attacks
should be part of the overall designed ML method.

• Similarly to data acquisition, installation of routing
entries could be affected as well by security attacks and
this should be alleviated or, at least, proven to be safer
than traditional and/or distributed approaches.

Overall goal: Security should be assessed as a cross-
cutting parameter when evaluating the application of ML in
SDN environments. The definition of an overall secure ML
framework for SDN would be extremely valuable for the
whole research community.

C. ARCHITECTURAL APPROACHES AND DATA MODELING
Though the classic definition of SDNpresents a logically cen-
tralized architecture, it is not the only architectural approach
to follow when applying ML-based approaches and, more
importantly, it could even be not the most beneficial either.
Researchers aiming at the application of AI and ML in SDN
and, more generally, in programmable networks, should con-
sider alternative architectural approaches like hybrid SDN
(either vertically or horizontally [42]) or in-band SDN com-
munication [190], as they could enhance and optimize the
behavior of their proposals, including the monitoring side
and data acquisition, or the potential security breaches
that might be more severe in strictly centralized environ-
ments. To achieve this initiative, researchers could still lever-
age Mininet, but using BOFUSS switches [191] instead of
(by-default) Open vSwitches, as the former can be eas-
ily modified. Alternatively, technologies like P4 [192] and
XDP [193] have already demonstrated enhanced network
programmability capabilities [149].
Additionally, alternative architectures could also provide

deeper knowledge-based environments related with data
modeling. So far, most data is directly obtained from the
network, like CPU usage, packets received and sent, etc.
Nevertheless, instead of this type of raw data,ML could profit
from the use of advanced and high-level architectures like
ontology-based [194] or even described by data bases [195],
in which data is collected, merged and could provide an
enhanced vision of the network. While it is true that these
SDN architectures are more immature, some thoughts about
potential applications with ML could be worth it.
Accordingly, the related research directions are the

following:
• Proposals of ML-based SDN frameworks should con-
sider the possibility of following non-centralized archi-
tectures, hence analyzing its benefits in comparison
with centralized architectures. The simplest approach
would be redesigning one existing framework into a non-
centralized scheme.

• Although more incipient, it would be nice to assess to
what extent ML can benefit from using high-level data
models.

Overall goal: To evaluate the advantages (security, scala-
bility, etc.), and even disadvantages, of using non-centralized
SDN architectures in ML-based frameworks.

D. IN THE NEED OF OPEN DATASETS AND
IMPLEMENTATIONS
The need of open datasets and implementations is probably
the most important of the five types of research directions.
Although solutions based on ML for networking are growing
more rapidly everyday, these frameworks not only rely on
the specific developed code, but they also need input data
to train and/or test their models. Such data is scarce and
barely shared [196]. Most times, this is because the collection
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of network data involves individual privacy issues [166].
Although this could initially have a high cost (for the first
researchers following this idea), it would benefit the whole
community tremendously in the long term, because it would
permit other to reproduce, compare and enhance the existing
solutions, hence increasing their impact. Recent initiatives
are appearing in this regard, like the Softwarized Network
Data Zoo (SNDZoo) [197], which intends to start an open
ecosystem for dataset collections in the networking domain,
based on a specific methodology to achieve homogeneous
collection and publication.
Alternatively, open implementations is another, and prob-

ably easier, method to foster the merging efforts in the
field. Whilst most surveyed works have used open platforms
to implement their ideas (like the Ryu controller or the
OMNeT++ simulator), most of them omit publishing them
in public repositories like GitHub, which is a simple and very
effective way to promote the merging of efforts from different
proposals and research groups.
In conclusion, we envision the next research directions:
• To build upon existing open data ecosystems like
SNDZoo and define the requisites to make it grow faster.

• To evaluate what is the most beneficial method for
implementation replication, i.e., what open platforms
and tools should be prioritized for later publication and
reutilization.

• To develop some type of framework or community to
compete based on specific AI & ML challenges based
on homogeneous datasets and topologies, which would
foster evolution and replication of results.

Overall goal: To foster open datasets and implementations
to achieve more valuable results and ideas for the research
community. At least, all frameworks should have a public link
to their implementations.

E. INTO THE FOG
As previously mentioned, the current evolution of networks
is every day more focused on the edge of networks, where
IoT devices –and users– reside. This clear trend [17], [68]
is moving step by step the intelligence of the network far
from the core, towards what is called edge computing, fog
computing and, even, mist computing [198]. When checking
these names anybody can clearly visualize that the future of
the ML approaches should be based on federated approaches,
as the ones referenced before [75], [76]. However, these
paradigms are still incipient and many challenges still need
to be tackled. An example of these challenges are LLNs
(previously mentioned), in which nodes are constrained in
memory and battery and, therefore, routing is –per se– a chal-
lenge for them. This type of networks would benefit from this
architectural approach as stand-alone devices cannot cope
with the whole computational requirements of a centralized
ML approach.
In particular, we envision the next research directions:
• To determine the minimum computational requirements
of network nodes to act as federated ML nodes.

• To define a negotiation and/or communication frame-
work to allow efficient, secure and scalable communi-
cation among nodes.

• To align the previous two points with specific SDN
and NFV architectural concepts and technologies
(e.g. leverage SDN in-band communication for feder-
ated ML approaches).

Overall goal: While this survey focuses on ML for its
application to networking, some research efforts should
be directed to networking for ML too, as they are both
complementary.

F. TOWARDS INDUSTRY-BASED PRACTICAL SCENARIOS
Finally, we would like to mention an objective directly related
with the previous ones: working on implementations close to
industry-based practical scenarios. Now that most network
innovation in companies is based on open source software,
we, as part of the research community, should profit from it
and leverage the same platforms and tools for a more effec-
tive adoption by industry. Alternatively, merging efforts with
other big projects like Pronto [199], [200] would be clearly
beneficial. Additionally, considering the application of ML
in routing is usually foreseen as a step towards automatized
network management, we should continuously monitor to
what extent is ML trusted by network operators. Moving
from a traditional (almost manual) management to another
based on ML might imply severe changes and even unex-
pected outcomes. Therefore, the benefits of applying ML in
these environments should be proven and clear or, otherwise,
the potential impact might be too low.
In summary, some research directions could be the

following:
• To implement scenarios based on the ONOS controller,
which is the one most supported by the ONF and
industry. Alternatively, OpenDaylight could also be a
good choice.

• To create a communication channel with industry to
check their needs and propose initiatives, which could
also be feasible via the ONF (they provide the mecha-
nisms to do so).

Overall goal: Implementation and evaluations should be
as close to real scenarios as possible for effective adoption
by industry. To this purpose, using platforms leveraged for
commercial solutions (like ONOS) and communicating with
standardization bodies (ONF) is pivotal.

VII. CONCLUSION
In this paper we surveyed the use of ML in SDN for routing
optimization, classified into three types (SL, UL and RL),
which are first introduced and defined, together with some of
the associated techniques. According to our analysis, during
the last three years, the works using ML for routing optimiza-
tion in SDN have rapidly flourished, and particularly those
leveragingDRL.Nevertheless, most researchworks are based
on simple prototypes and for very specific network scenarios
(wired, centralized SDN, and compared to distributed routing
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algorithms based on latency and throughput) and are hard to
reproduce and compare. Thus, their evaluations are not com-
pletely meaningful and conclusive. We believe a sustained
effort is needed to create an open ecosystem in which the
different works support each other, instead of being proposed
independently. Otherwise, most research efforts might never
be implemented in practice. To this purpose, we finalize the
surveywith six sections including specific research directions
for this field.
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