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Abstract
We present in detail an automatic radio-burst detection system, based on the AlexNet con-
volutional neural network, for use with any kind of solar spectrogram. A full methodology
for model training, performance evaluation, and feedback to the model generator has been
developed with special emphasis on i) robustness tests against stochastic and overfitting ef-
fects, ii) specific metrics adapted to the unbalanced nature of the solar-burst scenario, iii)
tunable parameters for probability-threshold optimization, and iv) burst-coincidence cross
match among e-Callisto stations and with external observatories (NOAA-SWPC). The re-
sulting neural network configuration has been designed to accept data from observatories
other than e-Callisto, either ground- or spacecraft-based. Typical False Negative and False
Positive Scores in single-observatory mode are, respectively, in the 10 – 16% and 6 – 8%
ranges, which improve further in cross-match mode. This mode includes new services
(deARCE, Xmatch) allowing the end-user to check at a glance if a solar radio burst has
taken place with a high level of confidence.
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1. Introduction

Solar radio bursts (SRBs) are a valuable tool for fundamental solar physics and space
weather. These transient enhancements of solar radio emission contain relevant informa-
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tion about the physical processes behind them, including magnetic reconnection, electric-
current induction or electron acceleration in the solar corona, storage, explosive release, and
transport of energy and particles across the interplanetary medium toward their final inter-
action with the Earth’s magnetosphere. Statistical studies of observational SRB parameters
and their correlation with solar flares or coronal mass ejections (CME) may establish the
link between physical processes occurring in the solar atmosphere, at various heights in
the corona, and out into the interplanetary medium (Mahender et al., 2020). When studied
on long, yearly scales, they may also shed light on the mysteries of the solar activity cycle.
Moreover, SRBs act as early signatures of interplanetary plasma disturbances such as CMEs
and solar energetic particle (SEP) bursts, which take longer to reach the Earth and may cause
damage to radio communications, satellite data, aircraft and spacecraft navigation, and as-
tronaut health. Thus round-the-clock monitoring of solar radio emission becomes a tool for
space-weather forecasting (Klein, Salas Matamoros, and Zucca, 2018 and references therein,
Hou et al., 2020; Ma et al., 2022).

Moreover, solar studies in the radio domain are advantageous because they can be made
with rather simple instruments – antennas of different types – which can operate under
cloudy skies with a high duty cycle and, being protected by the Earth’s magnetosphere and
atmosphere, can issue real-time space-weather hazard alerts.

e-Callisto (e-callisto.org, Benz et al., 2009), the international network of Compound As-
tronomical Low-frequency Low-cost Instruments for Spectroscopy and Transportable Ob-
servatories, can play a key role in such 24-hour monitoring scheme. Its main strengths are:
24-hour coverage of the Sun provided by nearly one hundred stations deployed worldwide
thanks to their low cost; geo-redundancy, allowing for event cross matching among a number
of stations observing the Sun at any given time; and low-frequency radio coverage to trace
the acceleration of electrons in the solar corona and study the fine-scale structure of different
types of bursts (Zucca et al., 2012; Ndacyayisenga et al., 2021). Its native dynamic range,
45 – 870 MHz, can be extended down to 20 MHz with enough sensitivity to detect important
events, such as reverse-drift and J-type bursts in the 20 – 85 MHz range not covered by other
types of instruments (Klein et al., 2022). Geo-redundancy and worldwide coverage make it
an excellent tool for cross-match studies between ground-based and spacecraft-borne detec-
tors.

At present, burst identification in e-Callisto data is carried out through daily visual in-
spection of thousands of spectrograms (typically 40 per instrument per day, times 70 in-
struments) by an expert on duty, who then produces an event list. Monthly e-Callisto event
reports since 2020 are available on the World Wide Web (e-callisto.org). This tedious task
calls for an automatic system, which is the object of this article.

Deep learning emerges as a suitable tool for such automatization as it can adopt a
computer-vision approach with images – spectrograms in our case – as input signals for
a cascade of convolutional layers capable of finding their best abstract representation in
terms of class-discriminating power.

Deep learning deals with high-level abstraction by using computational architectures that
transform input signals to extract non-explicit features, which may provide the answer to a
complex problem. It can work with signals of all kinds: music, video, text, images, etc. using
algorithms based on deep-belief networks, deep neural networks (multimodal or otherwise),
convolutional neural networks, etc. For more information, see Moujahid (2016), Ongsulee
(2017), and Zhang et al. (2020).

Several works can be found in the literature dealing with automatic radio-burst identifica-
tion in dynamic spectra, using either statistical approaches (Lobzin et al., 2009, 2010; Singh
et al., 2019; Afandi et al., 2020) or different kinds of artificial intelligence (Chen et al., 2016;

http://e-callisto.org
http://e-callisto.org
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Scully et al., 2021; Guo et al., 2022). In this work, dynamic spectrograms representing solar
radio observations are passed as images to a convolutional neural network (CNN) charged
with the task of automatically classifying them as bursts or not-bursts with an efficiency
close to or better than that of a human.

In Section 2, the origin (observatories, instruments), location, format, and characteristics
of our input data are described, and two historical periods are defined depending on whether
expert burst reports based on human inspection exist (2020 – present) or not (2012 – 2019).

In Section 3, we present in detail the three phases of our automatic burst identifica-
tion method: preprocessing of input spectrograms, training of the deep-learning classifier
(model), and application to the target database. We pay special attention to careful genera-
tion of the training database, performance evaluation mechanisms, and proper feedback of
such evaluation to the model before it can be applied to a target database. Emphasis is made
in the definition of new metrics adapted to our practical goal: render the e-Callisto data
more useful by providing the end user, in near-real time, with a list of runs containing all the
relevant bursts with a minimum of false positives. This section ends with a description of
the products supplied by the system: new reports in the case of reportless periods, updated
reports otherwise, and in all cases, cross-match plots of events coincident in several stations.

In Section 4, results are shown for the performance evaluation and post-feedback re-
evaluation of selected models, including both single- and multi-observatory (hybrid) models.
A sample of bursts that had passed unnoticed to the human eye is given as a supplement.

In Section 5, we provide some conclusions and future directions.

2. Data: Solar Radio Spectrograms and Burst Reports

Dynamic spectra, heretofore spectrograms (Figure 1), from e-Callisto stations on the Earth
dayside are continuously uploaded to a central server located at the FachHochschule Nord-
Westschweiz – at the time of writing, a second server is being installed in Casa del Don-
cel, Sigüenza, Spain – and made available on the e-Callisto web site as FITS-format files
(e-Callisto/Data/data.htm). Aside from an ASCII header with general information such as
observatory, instrument, and run time, the file features a 3D binary table with the spectro-
gram itself: the signal intensity in analogue-to-digital-converter units for each given time
and frequency. Canonical data files are matrices of dimension 3600 × 200 with 3600 time
stamps and 200 frequencies. Standard observing runs span 15 minutes with a temporal step
of 0.25 seconds (four “pixels” per second); during this time, the CALLISTO spectrometer
is capable of making a full sweep of 200 different frequencies across the whole dynamic
range. Dynamic ranges of e-Callisto instruments vary within the 20 – 850 MHz interval.

Figure 2 shows the ranking of the best performing e-Callisto observatories (stations) in
2021 in terms of the number of visually detected bursts. For the development of our burst
identification method, the top-four observatories were selected: ASSA (Astronomical Soci-
ety of South Australia), Glasgow (University of Glasgow, UK), Humain (Royal Observatory
of Belgium), and Landschlacht (Switzerland). As many e-Callisto observatories host more
than one instrument, an instrument ID number (focus code) is appended to the observatory
name: ASSA_02, Landschlacht_01 (changed to 62 since 04 October 2021), and Glasgow_59
belong to the same frequency group (20 – 85 MHz), whereas Humain_59 is used for studies
in the 45 – 435 MHz range.

Cross-match tests at European geo-longitudes include data from stations at Birr Cas-
tle (Ireland), Graz (Austria), and Heiterswil (Switzerland). With a view to future extension

https://www.e-callisto.org/Data/data.htm
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Figure 1 e-Callisto spectrogram (signal intensity for each time and frequency) showing a solar radio burst.

Figure 2 (a) Ranking of the best performing e-Callisto stations in 2021 in terms of the number of visually
detected bursts. (b) Burst duration.

of our work to the period without reports (2012 – 2019) for certain tests, we have incor-
porated stations in Africa (Rwanda_59, University of Rwanda) and America (Roswell_58,
New Mexico, USA), which at the time ranked high in burst detection. Frequency ranges and
geographical coordinates for all the stations used, ordered by longitude, are listed in Table 1.

A wealth of solar radio observations has been, and is being, collected by e-Callisto ob-
servatories operating as a worldwide network since 2012. In this article, the 2021 e-Callisto
FITS database is used in the training and application of the burst classifier. For our pur-
poses, two different periods must be considered depending on whether burst reports based
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Table 1 e-Callisto instruments used in this article ordered by geographical longitude: coordinates and se-
lected frequency range.

Instrument Longitude [◦] Latitude [◦] Frequency [MHz]

ASSA_02 (Australia) 139.64 −34.66 25 – 80

Rwanda_59 30.07 −1.95 45 – 81

Unigraz_01 (Austria) 15.49 47.07 47 – 80

Landschlacht_01/62 (Switzerland) 9.24 47.63 18 – 84

Heiterswil_59 (Switzerland) 9.13 47.30 47 – 80

Humain_59 (Belgium) 5.26 50.19 45 – 435

Glasgow_59 (United Kingdom) −4.30 55.90 45 – 80

Birr_01 (Ireland) −7.92 53.09 20 – 87

Roswell_58 (USA) −104.52 33.44 20 – 90

on expert visual inspection are routinely issued, as they may be used as the ground truth for
burst occurrence. Thus we can distinguish between the 2012 – 2019 reportless period and
the 2020 – present documented period. According to its shape and extent in frequency and
time, an SRB is assigned one of five major spectral types (I to V). Throughout this article,
we extensively use the daily burst reports issued by e-Callisto with date, time interval, burst
type, and stations involved in the detection (soleil.i4ds.ch/solarradio/data/BurstLists/2010-
yyyy_Monstein).

In some cases, we also use the daily Solar Event Lists issued by the US National
Oceanic and Atmospheric Administration’s Space Weather Prediction Center (NOAA-
SWPC), which include beginning-maximum-end event times, reporting observatory, a qual-
ity tag, event type, heliographic location, frequency, and additional information. Partic-
ipating observatories include ground-based stations in Australia (Culgoora, Learmonth),
the USA (New Mexico, Hawaii, Puerto Rico, Massachusetts), and Italy (San Vito) and
spacecraft-borne instruments (GOES). Event types include radio bursts and storms as well
as optical or X-ray flares. For more information, visit www.swpc.noaa.gov.

3. deARCE Method

The automatic burst identification method presented here (deARCE, pronounced
/de "a r T e/, deep Automatic Radioburst Compilation Engine) begins with the download
of the input spectrograms from the web server via a Python script, a process which takes
approximately half a minute per observatory per day on an average laptop. A day’s worth
of data from a given e-Callisto instrument is around 10 Mb on average – a bit more on long
Summer days and less on Winter days.

The method is divided into three stages: preprocessing of input spectrograms, training of
a burst/not-burst classifier (model) using a training dataset, and classification of the target
dataset (burst detection).

3.1. Preprocessing

Each input 15-minute FITS spectrogram is chopped into fifteen 1-minute png frames via
a preprocessing stage (Figure 3a), which includes background subtraction and frequency-
range selection. Given that we end up working with png files, we will often refer to spectro-
grams as images and to time or frequency matrix elements as pixels.

http://soleil.i4ds.ch/solarradio/data/BurstLists/2010-yyyy_Monstein
http://soleil.i4ds.ch/solarradio/data/BurstLists/2010-yyyy_Monstein
http://www.swpc.noaa.gov
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Figure 3 (a) Preprocessing of input spectrograms. (b) Steps in the training process: model generation and
evaluation.

Several background subtraction schemes have been tried out, such as subtraction of a
constant value from all pixels (either minimum, mean, or median intensity; also no subtrac-
tion at all) or subtraction of the average spectrum over time, i.e. the mean of 3600 spectra.
After careful evaluation, we have settled on the latter because it eliminates noise sources
that are constant along the run time and show up as horizontal bands of constant frequency
in the spectrograms.

A frequency range of study can be selected to avoid observatory, or even instrument-
dependent, noise-swarmed frequencies (for instance, the bad channel at the top of Figure 1).
Table 1 shows the ranges selected for this work.

To better fit the images to the neural network input size (256 × 256 pixels) and to
minimize resolution losses, the spectrograms are split into one-minute images, heretofore
frames of 3600/15 = 240 pixels in time and 200 pixels in frequency, before being resized to
256 × 256 (Figure 4). Apart from fulfilling the network requirement, this operation renders
burst signals more visible, as they become the main feature of the frame they belong to.
Most bursts have short durations (65% of them last less than two minutes, Figure 2b), thus
fitting well in one or two one-minute frames; longer bursts may span several frames, but for
our purposes, it will suffice to recognize them in any one of the frames.

The output of the preprocessing stage is thus a set of 256×256 png frame files, which are
then transferred to the site where the CNN-based classification system resides. For reference,
we provide representative numbers for the transfer of one day’s worth of data from one
observatory by an ftp-client such as FileZilla or WinSCP: 40 data runs, 15 png frames per
run, 20 kb per frame, i.e. 12 Mb, transferred in 15 seconds.
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Figure 4 Cropping of the e-Callisto spectrogram shown in Figure 1 into 15 one-minute frames. The first and
fifth frames are marked to guide the eye.

Other preprocessing schemes, which may help in the detection, classification, and anal-
ysis of solar radio bursts, are currently under investigation.

3.2. Training of the Deep Learning Classifier

Figure 3b summarizes our training scheme: first, a two-class training database is manually
created with selected examples (tagged images) of what is to be considered as Burst (Yeas
or Positive-class folder) and Not-Burst (Nays or Negative-class folder); this database, suit-
ably broken down in training, validation, and test subsets, is presented to a convolutional
neural network, which learns to classify the frames and generates a classification model;
finally, before applying such a model to the analysis of untagged images (target database),
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we evaluate its performance and incorporate the lessons learned from incorrect predictions
into improved versions of the model in a feedback loop, which is repeated until performance
is considered satisfactory. Needless to say, throughout the article, no training data are ever
used as target data.

This process is currently carried out in a DIGITS environment (NVIDIA Deep Learning
GPU Training System, developer.nvidia.com/digits, version 6.1.1) with Caffe version 0.17.3
as machine learning framework. TensorFlow has also been tried but with poorer results.
DIGITS is a user-friendly web-interface software specialized in training convolutional neu-
ral networks for computer vision problems. It allows the user to create the classes to be
discriminated, optionally use pretrained CNNs, tune the CNN to a given problem, and test
it. It can be installed in a Linux environment or, in its latest versions, in Docker containers.

3.2.1. Training Database Generation

Building an adequate training database is one of the keys to success (see Section 3.2.6 for
emphasis on proper feedback being injected into the training database). As the well-known
“garbage in, garbage out” saying goes, the selection, and eventually certain balance, of the
images in each class folder is decisive.

With this in mind, we initially created single-observatory models, i.e. instrument-
dependent models built from images taken in only one observatory to avoid distortions
introduced by different local backgrounds or instrument-induced noise. The Yeas folder
contains images of reported bursts, and the Nays folder contains frames outside reported
burst intervals. The availability of both types of images is such that the Yea/Nay ratio is of
order 10% (hundreds of Yeas, thousands of Nays), i.e. a clear though not aggressive im-
balance often found in real-world problems. Several works in the literature (He and Garcia,
2009 and references therein) prove the ability of this kind of neural networks to work with
unbalanced classes, but to be on the safe side, the results presented in this article have been
thoroughly tested for overfitting (ruled out, see Figure 5), and a metric specifically adapted
to unbalanced cases [Gmean] is used. Nevertheless, a few data augmentation schemes have
been tried: those based on transformation of existing burst images do not work well in our
nontime-reversible and translational-invariant scenario. Schemes based on magnetohydro-
dynamic models of known burst types are left for the future.

3.2.2. Model Generation

Three different neural networks available in DIGITS (GoogLeNet, LeNet, and AlexNet) were
tested before settling on the latter as the best adapted to our problem and image resolution re-
quirements. Different parameter configurations of AlexNet were tried out, which converged
on the following configuration: 100 training epochs with validation interval of 10 epochs;
NVCaffe as blob format; Stochastic Gradient Descent (SGD) solver type with 0.01 Base
Learning Rate (parameter that determines the step size at each iteration); and a step-down
policy for decay with 33% step size and 0.1 γ -factor (10% learning rate reduction at the
33% and 66% training stages). SGD has proved to perform better than others such as ADAM
when working with AlexNet (Manataki, Vafidis, and Sarris, 2021).

As shown in Figure 5, accuracy and loss values improve rapidly during the first epochs
and then reach a plateau, so it is definitely not necessary to go beyond 100 epochs – in fact,
30 may be enough (Table 3).

Except for specific robustness tests (Section 3.2.3), we use a Training/Validation/Test
percentage breakdown of 75/25/0, i.e. we do not allocate any space for tagged testing as we

http://developer.nvidia.com/digits
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Figure 5 Validation accuracy (orange), validation loss (green), and train loss (blue) for an example model
(Humain). At the validation stage, all our models reach accuracies above 98%, thus ruling out overfitting,
with losses in the 4% to 12% range.

Table 2 Models used in this work. Abbreviations: A=ASSA, L=Landschlacht, H=Humain, G=Glasgow, B=Birr;
HYB=hybrid. Indices 1, 2 (as in G1, G2) refer to subsequent versions of a model when feedback is incorpo-
rated. Training dataset: number of days worth of data [in brackets] used for a given month of the year 2021.
The ratio Y/N of positive(Yeas)/negative(Nays) samples is shown in the last column.

Model Instrument Frequency
[MHz]

Training dataset
month [#days]

Burst
[Yeas]

NotBurst
[Nays]

Y/N
[%]

G1 GLASGOW_59 45 – 81 May [2] 198 1031 16

G2 GLASGOW_59 45 – 81 May [29] 284 2317 11

A1 ASSA_02 25 – 80 May [10], June [1] 75 927 7

A2 ASSA_02 25 – 80 May [31] 308 2782 10

L1 Landschlacht_01 18 – 84 May [2] 318 3672 8

L2 Landschlacht_01 18 – 84 May [30] 334 3865 8

H HUMAIN_59 45 – 435 May [4] 267 1176 19

HYB A+L+G 18 – 84 May [31] 924 8964 9

prefer to do the testing directly on untagged frames. This breakdown has been found to work
well empirically.

The output model, mathematically represented by the best set of adjusted convolutional
weights, is automatically saved as a .caffemodel file (> 200 Mb). The model is now ready
to be executed (Section 3.3). Table 2 shows the characteristics of the models built for this
article, whereas Figure 5 shows an example of accuracy and loss curves. At the validation



   82 Page 10 of 24 J. Bussons Gordo et al.

stage, all models reach accuracies above 98%, thus ruling out severe overfitting effects. The
losses lie in the 4% to 12% range.

Once the single-observatory models were satisfactorily tested, we dared develop a hybrid
model by combining training sets with images from three different observatories: ASSA,
Landschlacht, and Glasgow (HYB: A+L+G in Table 2).

Model output predictions are given in terms of the probability P of the event being a
burst. An event will be classified as Burst if P � Pthr, where the probability threshold Pthr is
by default set to T50 = 50% but can be optimized (Topt, Section 3.2.5).

Model performance can be evaluated using images either from the “Test” subsets or from
“Documented” data, i.e. data for which an expert’s event report exists. Either way, we can
check whether the predictions made by the model are correct or not. In the two following
subsections, both performance evaluations are presented.

3.2.3. Model Performance Evaluation Using “Test” Data

We have used the one-minute frames of our training dataset, already tagged as Real Positives
or Negatives, to measure the robustness of our model (Positive and Negative “predictions”
in machine learning jargon) against changes in the following parameters: distribution of
images among the Training/Validation/Test subsets, random seeds, and number of training
epochs.

A k-fold cross-validation procedure (Anguita et al., 2012) has been conducted for model
selection and error estimation to obtain a reliable and rigorous estimation of the misclas-
sification probability. A value of k = 6 has been used by dividing the training dataset into
6 subsets, which are then shuffled to form combinations each with 4/1/1 Training/Valida-
tion/Test subsets (i.e. 66%, 17%, 17%, respectively), thus resulting in 30 different models.
Performance results are shown in Table 3 in terms of False Negative Rate (FNR, ratio of
False Negatives to Real Positives), False Positive Rate (FPR, ratio of False Positives to Real
Negatives), and their geometric mean:

Gmean = √
(1 − FNR) (1 − FPR) ,

as a measure of the combined goal of minimizing both the false positives and the false
negatives: low false negative rates, ranging from 11% for the least-developed model to 7%
for the most-developed one, are achieved while keeping the false positives at very low rates
(2.5 – 0.9%). For unbalanced datasets like ours, the geometric mean of the recalls (1−FNR)

and (1 − FPR) (often called recall and specificity, respectively) is a more suitable, more
conservative performance indicator than the recalls themselves or even than the balanced
accuracy (arithmetic mean). The resulting Gmean = 93 – 96% indicates that the system has,
in spite of its unbalanced nature, high discriminating power.

The k-fold tests conducted show that stochastic effects derived from shuffling and the
use of random seeds are kept under control, with standard deviations of 2.3 – 5.6% in FNR,
less than 1% in FPR, and 1 – 3% in Gmean. Moreover, the effect of random seeds alone has
been measured, via ten repetitions of the hybrid (A+L+G) model with different seeds, to be
less than 2% in FNR and less than 1% in FPR and Gmean.

Finally, we compare the output of the hybrid model after 30 and 100 validation epochs
using five repetitions in each case (bottom rows in Table 3): by Epoch 30, most of the
learning has already been achieved. The toll paid to go from 95% to 96% in Gmean is to
more than triple the computing time. In terms of energy consumption and savings, this is a
key point to be considered.
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Table 3 Robustness tests: shuffling effects (k-fold) for the least and most developed models (Glasgow and
Hybrid, respectively); effect of random seeding; training epochs choice.

Test Model FNR [%] FPR [%] Gmean [%]

k-fold Glasgow-G1 11.3 ± 5.6 2.5 ± 1.0 93.0 ± 3.1

Hybrid 7.0 ± 2.3 0.9 ± 0.3 96.0 ± 1.2

random seeds Hybrid 7.0 ± 1.4 0.7 ± 0.1 96.1 ± 0.8

100 epochs Hybrid 7 ± 1 1 ± 1 96 ± 1

30 epochs Hybrid 9 ± 2 1 ± 1 95 ± 1

In conclusion, our models are very efficient with tagged one-minute images (Gmean =
93 – 96%) and robust against stochastic effects induced by shuffling of the training, valida-
tion and test datasets, and by the use of random seeds.

3.2.4. Model Performance Evaluation Using “Documented” Data

The metrics chosen for a performance evaluation based on data for which an expert’s event
report exists are defined here:

The ground truth for what is or is not a solar radio burst is based on the event lists issued
by the e-Callisto network, which provide beginning and end times for each detected burst
(burst interval).

For one-minute images with frame times inside reported burst intervals, a positive model
prediction will be considered a True Positive (TP), whereas a negative model prediction will
be considered a False Negative (FN); conversely, for one-minute images with times outside
reported burst intervals, a negative model prediction will be considered a True Negative
(TN), whereas a positive prediction will be counted as a False Positive (FP).

At this point the reader is reminded that in this work the term prediction is used to denote
the CNN classifier output and has no bearing with any forecasting capabilities.

From these basic metrics, computed on a minute-by-minute basis, we can define other
metrics from different perspectives:

From a burst interval perspective, a burst interval is assigned a Burst True Positive (BTP)
when at least one of the one-minute frames inside the interval (±1 minute) is a TP; other-
wise, a Burst False Negative (BFN) is assigned. Demanding that all one-minute frames in
a reported burst interval be positive would be completely unrealistic, especially on long in-
tervals, often defined during visual inspection by loosely grouping together several solar
events.

Regarding 15-minute data runs, all runs involved in a BTP are considered True Positive
Runs [TPrun], whereas a run will be considered a False Positive Run [FPrun] if there are no
bursts in that 15-minute period and at least one of the one-minute frames in the run was
classified as FP.

Now we define the metrics to be used in the evaluation of a model’s performance:
the False Negative Burst Score [FNbs], which accounts for the fraction of reported bursts

not detected by the model,

FNbs = BFN

BTP + BFN
, (1)
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and the False Positive Run Score [FPrs] or fraction of false positive runs,

FPrs = FPrun

R
, (2)

where R is the total number of runs analyzed.
The user is spared browsing a large amount of runs and is, instead, given a reduced

fraction, (FPrun + TPrun)/R, with the first term [FPrs] representing the wrongly selected
part.

If the fraction of bursts missed by the model [FNbs] is low enough and the number of
false alarms has been sufficiently reduced (low FPrs), then the model is ready to be applied
(Burst Detection, Section 3.3); otherwise, the model needs further improvement (Feedback
to Model Generator, Section 3.2.6).

3.2.5. Threshold Optimization

As mentioned in Section 3.2.2, probability threshold values Pthr other than 50% (called T50)
may be used in the Positive/Negative output decision – the higher the threshold, the lower
the total amount of Positives (green TP + FP line in Figure 6). This figure illustrates the
search for the threshold value Topt that optimizes our performance scores using an array of
thresholds T in steps of 2.5%. As optimization parameter, we choose the distance d to the
ideal (FPrs = 0, FNbs = 0) case:

d =
√

FPrs
2 + FNbs

2,

which is shown as a black line. In the ASSA case, for instance, minimum d is found at
Topt = 52.5%, but the whole range 40 ≤ Topt ≤ 57.5 is within 1% of dmin. This is why, in
Table 6, ±1% ranges are added in brackets. In contrast, for the hybrid model applied on Birr
data, the d function grows steadily on both sides of Topt = 57.5%. The separation between
the green (TP + FP) and the blue (FP) lines is a measure of the number of True Positives,
which is higher in the ASSA observatory (left plot), consistent with Figure 2.

However, other optimization schemes or parameters might be envisaged depending on the
user’s goals: some users may prefer to detect only the most intense events with a minimum
of false alarms; others may focus on detecting as many bursts as possible at the expense
of having many FPs. For instance, we might want to make sure that the number of missed
bursts does not exceed 15%: a horizontal dotted line at 15% has been added to the plot to
guide the eye, and the highest threshold fulfilling this requirement, Tfn15, has been appended
to Table 6.

For easy model intercomparison, ROC-like curves (Receiver Operating Characteristics)
in FPrs–FNbs space are shown in Figure 7. For each model, the probability thresholds Pthr

within the 30 – 90% range are applied (red dots from right to left, with circle and asterisk
marks for the 50% and optimal thresholds, respectively). The location and extent of the
optimal range of thresholds is represented by the dots closest to the dashed arc of radius
dmin, e.g. the ten rightmost dots in the case of the single ASSA model, which correspond
to the 40 – 62.5% range around Topt = 52.5%. Examples of significant advantage in using
Topt over the default T50 = 50% are the single Glasgow model or the hybrid model applied
to either ASSA or Birr target data – notice the large distance between red circle and dashed
line.

A summary of threshold optimization results can be found in Table 6 (right half), the
detailed discussion of which is deferred to Section 4.2.
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Figure 6 Threshold optimization examples for a single and a hybrid model: scores of False Negatives [FN],
Positives [sum of true and false: TP + FP], and False Positives [FP] as a function of probability thresh-
old [Pthr]. Topt is the optimal threshold that minimizes the distance [d] to the ideal case with neither false
positives nor false negatives.

Figure 7 ROC-like curves in FPrs–FNbs space. For each model, probability thresholds Pthr within the
30 – 90% range are applied (red dots from right to left, with circle and asterisk marks for the 50% and
optimal thresholds, respectively). A dashed arc of radius dmin is shown.
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Figure 8 Discovery of unreported bursts [observatory, date, UT time]: GLASGOW 22 May 2021 12:45:00
UT (left); Landschlacht 23 May 2021 04:45:00 UT (center); Landschlacht 31 May 2021 11:15:00 UT (right).

3.2.6. Feedback to Model Generator

Feedback to the model generator may be applied by modifying either the CNN parameters
or the training database (Figure 3b).

In the first case, parameters such as the number of training epochs have been optimized;
the use of pretrained networks shortens the model-generation process but does not improve
its efficiency. Another possibility is to try more efficient networks, which become readily
available in this fast-evolving discipline.

In the second case, important lessons may be learned from careful study of common CNN
misses: a close look at the false positives reveals families of pathological cases, which can
be avoided by adding examples of such frames to the Nays folder; revision of false positives
brings us the discovery of a good number of unreported bursts, which had gone unnoticed to
the expert inspector. These could be called False False-Positives, of which Figure 8 shows a
few examples.

A dynamic model generation scheme whereby a continuous flow of both burst and not-
burst examples is added to the training database as new data come in can be implemented.
This will be the subject of future work.

3.3. Burst Detection

Once an optimum classifier has been built, the goal is to apply it to a target database – data
that have never gone through the CNN system before. As any other data, they must first
be downloaded from the e-Callisto web server, preprocessed, and transferred to the CNN
environment (DIGITS). Figure 9 summarizes the steps in the burst detection process.

Running the classification model yields a “prediction table” on a minute-by-minute basis,
i.e. the probabilities P (Y ) and P (N) that each one-minute frame belongs to the positive or
negative class, respectively. As we mentioned earlier, this is the basic table from which other
more elaborate products may be generated.

3.3.1. Performance Re-Evaluation (Documented Period)

In the case of target data that have been previously inspected by an expert, the ground truth
is known, and therefore the classifying model may be re-evaluated. We use, as inputs for
this process, the prediction table, the corresponding e-Callisto event report, and, for added
confidence, the NOAA-SWPC reports.

The output is given in terms of the same metrics used during the original performance
evaluation (Section 3.2.4): false negative burst score (FNbs) and false positive run score



Automatic Burst Detection in Solar Radio Spectrograms Page 15 of 24    82 

Figure 9 Application of the
classification model to the target
database for burst detection.

(FPrs). Again, visual inspection of common misses – both false positives and false nega-
tives – powers the feedback channel for further model improvement and, by the way, uncov-
ers some unreported bursts.

3.3.2. Products for Reportless Periods

If, instead, the target data belong to a reportless period, no ground truth is available for per-
formance evaluation, and the main product is the generation of previously unavailable (new)
reports for the space-weather and scientific community. An example of these new reports,
featuring cross-match among e-Callisto stations and/or with NOAA stations, is shown in
Figure 11.

Cross-match products, regardless of the documented or reportless nature of the period,
will be the subject of Section 4.5.

4. Results and Discussion

Having described in detail the method for automatic burst identification, we now summarize
the most relevant results for the selected models.
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Table 4 Left: confusion matrix
for Glasgow data (11 days,
November 2021). Pg, Ng:
ground-truth Positives and
Negatives; Pn, Nn: neural-net
predictions. Right: derived
scores. R: total number of runs.

Pn Nn Score Value

Pg TP = 20 FN = 5 FNbs 5/25 = 20%

Ng FP = 63 TN = 429 FPrs 63/517 = 12%

sum 83 434 R 517

Table 5 Initial performance evaluation of four models on target data from November 2021, to be compared
with the performance re-evaluation shown in Table 6.

Model Target # days # runs %FNbs %FPrs %(FP + TP)rs

ASSA ASSA 30 1303 30 11 16

Landschlacht Landschlacht 30 1179 38 20 20

Glasgow Glasgow 11 517 20 12 16

Humain Humain 30 1380 30 7 8

4.1. Initial Performance Evaluations

As mentioned in Section 3.2.4, models are evaluated in terms of their ability to detect as
many bursts as possible (low false negative score, FNbs) without incurring in many false
alarms (low FPrs).

We started by building models of the best performing stations. Our first successful model
was trained with data taken during two very active days in May 2021 at the Glasgow obser-
vatory, known to be a very reliable instrument at that time, and tested on eleven days worth
of target data from November 2021. The resulting confusion matrix is shown in Table 4
along with the final scores FNbs = 20% and FPrs = 12%, which were considered satisfac-
tory for a first training round. The total percentage 16% of Positive runs, including True
Positives, means that this model (see characteristics in Table 2) filters out 84% of all runs
and that in the remaining set, we can find 80% of the bursts (FNbs = 20%).

Close inspection of the five missed bursts (false negatives) reveals that two of them are
extremely weak – one is not observed in any other observatory around the world – and
another two belong to long storms that indeed have been detected in adjacent runs, so in fact
only one burst, i.e. 4% of the total sample, is a worrying miss. This has turned out to be the
general trend in most other models.

A comparison of results of this initial performance evaluation for single-observatory
models is given in Table 5. At this stage, the default probability threshold T50 is used.

4.2. Performance Re-Evaluations of Classifiers

We now turn to the results obtained for a full year’s worth of data (2021) after feedback from
inspection of false positives and false negatives has been incorporated to model training.
A very significant reduction of the FN Burst Score is found for all single-observatory models
(top half of Table 6) using the same T50 threshold as in Table 5: a remarkable 58% drop for
ASSA and 30% for Glasgow, the FP Run Score not dropping for the former and falling 46%
for the latter. Overall, the single model for Glasgow shows the best performance (FNbs =
14, FPrs = 6.5, resulting in d = 15.4) able to detect 86% of the reported bursts with false
alarms in just 6.5% of the runs. However, threshold optimization offers room for further
improvement. In this case, it brings the ROC d parameter down to a minimum of d = 14.8
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Table 6 Summary of results for single and hybrid models (Mod) applied on a full year worth of data: 2021
(Target, number of Runs). Scores FNbs and FPrs are given for probability thresholds at 50% (T50) and at
Topt along with the resulting distance d or dmin, respectively. In the seventh column, we show the highest
threshold for which FNbs is kept below 15%.

Mod Target Runs FNbs
(T50)

FPrs
(T50)

d

(T50)
Tfn15 Topt

(±1% range)
dmin
(Topt)

FNbs
(Topt)

FPrs
(Topt)

A ASSA 13,172 12.7 11.2 16.9 62.5 52.5 (40.0 – 57.5) 16.8 12.9 10.8

L Lands. 16,213 13.5 12.6 18.4 65.0 65.0 (62.5 – 72.5) 17.7 14.7 9.9

G Glasg. 13,917 14.0 6.5 15.4 55.0 30.0 (25.0 – 30.0) 14.8 12.3 8.2

H Humain 16,607 13.1 10.6 16.8 67.5 60.0 (57.5 – 60.0) 16.2 13.7 8.7

HYB ASSA 13,172 9.6 9.5 13.5 90.0 67.5 (65.0 – 75.0) 12.8 10.2 7.7

HYB Lands. 16,213 11.4 15.6 19.3 82.5 95.0 (95.0) 17.8 15.9 7.9

HYB Glasg. 13,917 11.8 6.0 13.2 90.0 42.5 (30.0 – 47.5) 12.9 11.2 6.4

HYB Birr 20,868 9.8 6.9 12.0 90.0 57.5 (57.5) 11.4 9.8 5.9

at Topt = 30%: a decrease of 1.7% in false negatives and an increase of 1.7% in false positives
yield a more compensated model (FNbs = 12.3, FPrs = 8.2), which detects nearly 88% of
bursts with false alarms in only 8% of the runs.

Quite unexpectedly, the best results come from the application of the Hybrid model (Ta-
ble 6, bottom half). For starters, the FN Burst Score remains below 15% for all thresholds
up to at least 90% (except 65% for Landschlacht, see the Tfn15 column). For the default T50

threshold, the Hybrid model performs better on all target datasets, and the same is true for
the optimized Topt. Compared to single-observatory results, 21% and 9% reductions of FNbs

are observed in ASSA and Glasgow, accompanied by 29% and 22% reductions in FPrs, re-
spectively. This remarkable improvement includes Birr data, which never took part in the
training process – its results are even better than those obtained for other observatories, thus
proving that a properly built hybrid model can be applied to many different observatories.

4.3. Products Generated for Documented Periods

In Figure 10, we can see an extract of an automatically generated report for an already
documented e-Callisto period using predictions made by the Landschlacht model. The first
two columns show the date and time interval of every detected burst – positive predictions
tend to be very scattered. Besides, cross-validation with both NOAA’s SWPC and e-Callisto
burst reports is provided in the third and fourth columns, respectively: “Yes” is printed if
there is at least a one-minute overlap between the Time column and the SWPC or e-Callisto
report intervals; otherwise, a string of hyphens is printed. This information about coincident
events in several stations belonging to two different observing networks is precious as it
allows the scientific community to focus on the most probably interesting events.

A somewhat unexpected added value to our method is the discovery of unreported bursts
(Section 3.2.6 and Figure 8). As an example, in 2021, 47 of them have been found in the
ASSA database and 49 in Humain (i.e. 14% of the total number of bursts). They have all
been visually double-checked by an expert team, and the corresponding official reports have
been updated. In this article, they are given as a supplementary material:

e-CALLISTO_2021_UnreportedBurstsASSA.txt (47 bursts),

e-CALLISTO_2021_UnreportedBurstsHumain.txt (49 bursts).
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Figure 10 Extract of an automatically generated report for an already documented period (2021). Valuable
information about cross-validation with NOAA-SWPC and other e-Callisto stations has been added.

Besides, the automatic identification output has led to the discovery and correction of
typos in the official reports – the reader must bear in mind how tiring the daily visual in-
spection can be. We have also found cases of doubtful FPs, where the expert team cannot
tell whether they correspond to real bursts or not.

In an ideal deep learning experiment, with perfect ground truth, there would not be any
doubtful FPs or Unreported Bursts, but our real scenario is not perfect. Unlike the evaluation
made on tagged Test data (Section 3.2.3), evaluation of model performance on real data will
always be subject to unavoidable errors in the ground truth definition. This must be taken
into account when comparing results with methods in other scenarios. Our conservative
approach and the findings made during FN and FP revisions (very weak FNs, doubtful FPs,
unreported bursts) suggest that the automatic method presented here performs even better
than what the face-value figures show.

4.4. Products Generated for Reportless Periods

As mentioned in Section 3.3.2, we aim at producing reports for the years 2012 – 2019, for
which data observations from e-Callisto stations are available but reports are not. Figure 11a
is an extract of a report produced using predictions made by the Hybrid model on target
data from five different stations in November 2014 – a reportless period for e-Callisto but
not for NOAA’s SWPC. It is similar to Figure 10, but in this case, burst intervals several
minutes long are noticeably much more common. The reason is that in these reports, a
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Figure 11 (a) Extract of burst report generated for a period without reports (Nov. 2014). (b) Appendix with
list of NOAA-SWPC bursts not detected by the model in any of the observatories used for the report.

coincident event is considered if the time difference is equal to or less than five minutes so
as to account for loose grouping of solar bursts in some e-Callisto reports. Again, cross-
validation information with NOAA’s SWPC burst reports is provided in the third column,
and “Yes” is written using the same criteria – intervals are omitted for aesthetic reasons, but
they could also be included. In the last column, the names of the stations with at least one
positive prediction belonging to the interval are written. Figure 11b is an appendix with the
list of NOAA’s SWPC burst intervals not detected by the model in any of the observatories
used for the report – hence it could be considered a list of false negatives. The list is quite
populous; nonetheless, most of the intervals correspond to times where the stations used –
with the possible exception of Roswell – are in the night side.

4.5. Cross-Match Products: deARCE Xmatch

Cross-match between different observatories is a key tool to discriminate actual bursts from
radio frequency interference (RFI), as RFI should be station-dependent (Prieto et al., 2020),
whereas a solar burst may be observed by several observatories located at similar geograph-
ical longitudes.

For this purpose, we have developed a cross-match system named Xmatch. In Figure 12,
it is applied to the five most active observatories at European longitudes during September
2021. It shows the number of coincidental positive predictions, or alarm level, on a minute
basis (red circles, just one day). Black crosses indicate alarm levels according to reported
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Figure 12 Example of cross-match among five European stations in automatic identification mode (Graz,
Landschlacht, Heiterswil, Glasgow, Birr). Alarm-level definitions: for the e-Callisto report (visual inspection,
black crosses), levels 1 – 5 correspond to having detected the burst respectively in 1, 2 – 3, 4 – 5, 6 – 9, 10 – 25
different stations; for the automatic system (red circles) and NOAA (green triangles), the alarm level is
exactly equal to the number of positive stations.

visual inspection, with levels 1 to 5 corresponding, respectively, to detections in 1, 2 – 3,
4 – 5, 6 – 9, or ≥ 10 stations across the whole e-Callisto network. Green triangles indicate
the number of NOAA stations reporting positive detection. Several “one-hit” events not cor-
related to reported bursts (i.e. red circles at Level 1 without green or black marks) can be
found (around 08:00 or 16:00 UT) representing either unreported bursts or false positives –
not so surprising in this test, where three stations (Graz, Heiterswil, and Birr) have not yet
been included in any CNN training. It is remarkably clear that multihit events (red circles
with dashed lines) correlate almost perfectly with reported bursts – the higher the coinci-
dence number, the higher the confidence level. This service will be of great use to scientists
carrying out cross-match studies between ground-based and satellite-borne detectors of the
type shown by Gómez-Herrero et al. (2021).

For this reason, in October 2022, we have started issuing a daily plot, called Xmatch
(celestina.web.uah.es/Xmatch) where all positive predictions from the previous day in (cur-
rently ten of) the most active observatories are represented and coincidental positives are
easily visible (Figure 13).

Finally, we use the September 2021 test mentioned above (Figure 12, hybrid model) to
quantify the performance of the cross-match tool by demanding coincident positives in a
minimum number of observatories M .

We use the same metrics as in Section 3.2.4, adapted to the multistation scenario. Re-
garding FNbs, a reported burst interval is considered as BTP if at least M observatories are
positive in both prediction and report or if less than M observatories appear in the report but
all of them are positive in the prediction as well; otherwise, it is counted as BFN. Regarding
FPrs, a run is considered an FPrun if it does not belong to any burst interval and there are at
least M positive model predictions in at least one minute of the run; besides, R is defined as
the total number of runs during which M or more observatories are active.

The results are shown in Table 7: demanding coincident positive predictions in at least
M = 2 stations brings the False Positive Score below 4% – either 2.4% or 3.4% depending

http://celestina.web.uah.es/Xmatch
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Figure 13 Example of cross-match plot posted daily at celestina.web.uah.es/Xmatch.

Table 7 Cross-match scores obtained for two different probability thresholds (T50, T25) when a minimum
of M coincident positives is demanded. Model used: Hybrid. Target data: five European stations, September
2021. R: number of runs. Tfn15: highest probability threshold with FNbs < 15%.

M R %FNbs
(T50)

%FPrs
(T50)

%FNbs
(T25)

%FPrs (T25) Tfn15

2 1785 11.9 2.4 8.9 3.4 60.0

3 1603 18.8 0.3 15.8 0.6 5.0

on the trade-off with False Negative Scores of 11.9% or 8.9%, respectively, and we are safely
below FNbs = 15% for any threshold Pthr ≤ 60.

Increasing the minimum-coincidence demand to M = 3 (i.e. more than 60% of the ob-
servatories in this test) produces a virtually False-Positive-free sample (only 5 and 9 false
alarms in 1603 runs, which a posteriori turned out to be Unreported Bursts) at the expense of
raising the FN score above 15% (though still below 20%), which is not surprising for such
a strong demand. FNbs levels similar to those found for the M = 2, Pthr = 50% case may be
reached by setting a suitable combination of more stringent coincidence demand M = 3 and
a more relaxed positive threshold Pthr = 1.55%. Both scores improve: FNbs = 10.9% and
FPrs = 1.7%.

5. Conclusions and Future Directions

In this article, we have presented an automatic radio-burst detection method (deARCE) based
on artificial-intelligence techniques. A set of state-of-the-art deep neural networks have been
assessed to select the one that best suits our problem. Through careful training with a wide
range of observatories and vast amounts of data covering many years of operation of the
e-Callisto array, a high-performance CNN configuration has been reached, which is stable,
robust, and ready for use with past, present, and future data. Its high performance has been

http://celestina.web.uah.es/Xmatch
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validated through internal cross-match among e-Callisto stations hundreds of kilometers
apart and through external cross match with NOAA data.

Comparison with other results in automatic detection of SRBs or in ideal deep learning
scenarios must be made with great care (see the end of Section 4.3). Afandi et al. (2020) use
only 1491 spectrograms, all from a single day and in a perfect-tag scenario (perfect report,
no chance of finding unreported bursts). Lobzin et al. (2010), Singh et al. (2019), and oth-
ers do cover large periods of time but only in one observatory (Gauribidanur, Learmonth,
etc.). In this article, False Negative and False Positive scores similar to those found in sta-
tistical method articles are obtained, but we cover full years worth of data simultaneously
in many different observatories. The development of hybrid models, valid for a number of
data sources, tunable probability threshold optimization and coverage of different frequency
ranges (both the hundreds of MHz and the 20 – 100 MHz regimes are included in our study)
are key advantages of our CNN-based method.

Perhaps our main contribution is a thorough analysis of the specific problem of automatic
burst detection in solar radio spectra. The proposed solution, based on the AlexNet neural
network within the DIGITS environment, is portable, flexible in terms of incorporation of
new observatories or changes in their characteristics and has been designed to accept data
from ground observatories other than e-Callisto and even space-borne observatories.

Future work should include: i) development of more sophisticated spectrogram denois-
ing and preprocessing algorithms; ii) exploration of data augmentation techniques such as
the generation of new images by means of probabilistic variations; iii) dynamic training
system for constant improvement of the training dataset with new incoming data; iv) gen-
eration of hybrid models using ensemble techniques to combine more efficiently images
from observatories with different weights; v) application of a genetic fuzzy algorithm dur-
ing the cross-match stage for automatic compensation of the relative performance of each
observatory.

The resulting products, beyond the automatic generation of daily reports for the
2012 – 2019 reportless gap and for the future, include a cross-match detection and plot-
ting tool (Xmatch) freely available to the scientific community. Their key features are the
simultaneous analysis of several data sources and the definition of a detection threshold. We
believe that our tools will be very useful to the community, as they allow the end scientist
to check at a glance if a solar radio burst has taken place with a high level of confidence.
deARCE aims to be the first radio spectra analysis tool for space weather, which eventually
may include not only burst detection and nowcasting, but also burst type classification and
forecasting.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s11207-023-02171-0.

Acknowledgments We thank the FachHochschule NordWestschweiz for hosting the e-Callisto Data Cen-
ter and our equipment maintenance staff, Abel Moreno (Peralejos de las Truchas) and Patricia Rodrigo
(Sigüenza), for their time and dedication. In memoriam Éric Nuss, resilient physicist and wise friend.

Author contributions J. Bussons Gordo and M. Fernández Ruiz devised the method, performed the analysis
and drafted the manuscript with input from all authors. M. Prieto Mateo contributed to the design and imple-
mentation of the research, the analysis of results and writing of the manuscript. J. Alvarado Díaz, F. Chávez
de la O, J.I. Hidalgo advised on the computational framework, worked out the technical details, and inter-
preted the deep-learning results. Ch. Monstein routinely performed expert visual inspection of the data and
supervised the method and findings of this work.

https://doi.org/10.1007/s11207-023-02171-0
https://doi.org/10.1007/s11207-023-02171-0


Automatic Burst Detection in Solar Radio Spectrograms Page 23 of 24    82 

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
This research work has been funded by the Junta de Comunidades de Castilla–La Mancha and the Eu-

ropean Union through the CELESTINA project (Castillian E-Callisto Leading Experimentation in Solar-
Terrestrial Interaction with Novel Antennas, code SBPLY/19/180501/000237) in collaboration with Parque
Científico y Tecnológico de Castilla–La Mancha and the universities of Alcalá and Murcia.

J. Bussons is supported by Fundación Séneca, Región de Murcia (20949/PI/18). J. Alvarado, F. Chávez,
and J.I. Hidalgo are supported by PID2021-125549OB-I00 Ministerio de Ciencia e Innovación Spain and
Y2018/NMT-4668 (Micro-Stress-MAP-CM) Comunidad de Madrid – FEDER.

Data Availability The datasets analyzed and generated during the current study are available from the corre-
sponding author on reasonable request.

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Afandi, N.Z.M., Sabri, N.H., Umar, R., Monstein, C.: 2020, Burst-finder: burst recognition for E-CALLISTO
spectra. Indian J. Phys. 94, 947. DOI.

Anguita, D., Ghelardoni, L., Ghio, A., Oneto, L., Ridella, S.: 2012, The ‘K’ in K-fold cross validation. In: 20th
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
(ESANN), 441. i6doc.com/en/livre/?GCOI=28001100967420. Accessed on 21 December 2022.

Benz, A.O., Monstein, C., Meyer, H., Manoharan, P.K., Ramesh, R., Altyntsev, A., Lara, A., Paez, J., Cho,
K.-S.: 2009, A World-Wide Net of Solar Radio Spectrometers: e-CALLISTO. Earth Moon Planets 104,
277. DOI.

Chen, Z., Ma, L., Xu, L., Tan, C., Yan, Y.: 2016, Imaging and representation learning of solar radio spectrums
for classification. Multimed. Tools Appl. 75, 2859. DOI.

Gómez-Herrero, R., Pacheco, D., Kollhoff, A., Espinosa Lara, F., Freiherr von Forstner, J.L., Dresing, N.,
Lario, D., Balmaceda, L., Krupar, V., Malandraki, O.E., Aran, A., Bučík, R., Klassen, A., Klein, K.-
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