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A MINIMAL MODEL COUPLING COMMUNICABLE AND

NON-COMMUNICABLE DISEASES

M. Marvá1,* , E. Venturino2 and M.C. Vera1

Abstract. This work presents a model combining the simplest communicable and non-communicable
disease models. The latter is, by far, the leading cause of sickness and death in the World, and introduces
basal heterogeneity in populations where communicable diseases evolve. The model can be interpreted
as a risk-structured model, another way of accounting for population heterogeneity. Our results show
that considering the non-communicable disease (in the end, a dynamic heterogeneous population)
allows the communicable disease to become endemic even if the basic reproduction number is less than
1. This feature is known as subcritical bifurcation. Furthermore, ignoring the non-communicable disease
dynamics results in overestimating the basic reproduction number and, thus, giving wrong information
about the actual number of infected individuals. We calculate sensitivity indices and derive interesting
epidemic-control information.
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1. Introduction

It is a fact that non-communicable diseases (NCDs), that include cardiovascular disease, cancer, chronic
respiratory disease, or diabetes, are the main cause of sickness and death worldwide [37]. Just in 2000 NCDs
were responsible for 35 million deaths (about 60% of all deaths around the world). These figures raised to
41 million death in 2020 (i.e. about 71% of deaths worldwide) [37]. NCDs are the result of a combination of
non-reversible genetic and physiological factors, but also of environmental and behavioral factors that may be
reverted. The use of, or exposure to tobacco, alcohol abuse, unhealthy diets, or physical inactivity [12] are among
these revertible factors, as well as air pollution and environmental contamination [29]. NDCs are very common
and, therefore, play a key role in the epidemiology of communicable or infectious diseases (CD) [9], [38], that
have its own broad interest [6]. These synergistic interactions of a disease with pre-existing social, structural,
political, or health conditions are known as syndemics [32]. Whenever some communities suffer from a higher
impact of a disease than others, syndemics scientists explain that many factors work together in a synergistic
way, and populations with the highest morbidity and mortality are those that experience the greatest impact
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of these interactions. For instance, the interplay between coinfection and pregnancy in Sub-Saharan Africa [33]
or, more recently COVID19 [27].

A shared feature of both NCDs and the above mentioned pre-existing conditions is that induce an structure
into the population which, in the end, define different risk-classes in front of CDs. These risk classes do not
need to be static (we care of reversible NCDs), and its synergistic interaction with epidemic dynamics needs to
be understood as a whole, allowing policy makers and managers implement effective, optimal actions [27].

The reproduction number, R0, is a key quantity in the dynamics of a communicable disease. R0 stands for
the average number of secondary infections produced by an infected individual in a population made just of
susceptible individuals [3]. It is well known that R0 > 1 enables communicable diseases to become endemic.
However R0 < 1 does not always lead to the eradication of the communicable disease. This somewhat counter-
intuitive fact is known as subcritical bifurcation [14] (also often less properly named backward bifurcation [17]).
Mechanisms leading to subcritical bifurcations in epidemiological models are proposed in [15], while general
necessary and sufficient conditions for an epidemiological model to display a subcritical bifurcation are obtained
in [7]. This phenomenon has important consequences from the viewpoint of epidemics control, since reducing
R0 below 1 may not be sufficient to avoid the disease endemic scenario [34]. An instance of this unfortunate
behavior is shown in the case of TB in India, [36].

This work is aimed to analyze the interplay between NCDs and CDs. For this purpose, in Section 2 we
set up a minimal model using one of the simplest transmission laws [3] for CDs and the minimal number of
epidemiological stages. The structure of the model presented herein can be seen as a simplified variant of risk-
structured SIS models [22], [15], [23]. In doing so, we isolate the net effect of the NCD/risk-structure on the
behavior of the CD. Thus, we disentangle the role of dynamic heterogeneity (a structured population such that
individuals can move from class to class) in the screened population from other processes (see the discussion in
Sect. 4). In Section 3, we analyze the model and derive sufficient and necessary conditions enabling a subcritical
bifurcation. We discuss the results and its implications on the control of the CD in Section 4. Section 5 gathers
the main conclusions of the manuscript.

2. Model formulation

We focus on the interplay CD-NCD under minimal settings avoiding further processes as, for instance,
demography. This approach yields a laboratory model that can be further expanded to face more general,
realistic settings. The model is built upon ordinary differential equations.

We assume that individuals affected by the NCD are somehow weaker to face the CD. At time t the population
is partitioned into susceptible individuals S(t), i.e. those that are affected neither by the CD nor the NCD,
weakened individuals W (t), i.e. those that suffer from the NCD but are not infected by the transmissible disease,
and individuals infected by the CD, I(t), regardless of whether they are weakened or not.

In the absence of infected individuals, the NCD dynamics is nothing but a two-compartment linear modelS
′ = −aS + bW,

W ′ = aS − bW,
(2.1)

the simplest closed two-compartment model, meaning that nothing enters from or leaves to the outside. The
transition rates are constant; mode sophisticated transitions are possible [30], [28], but we disregard this approach
here to keep the model formulation minimal as mentioned. For instance addiction to substances (tobacco,
alcohol,. . . ) can be modelled at the first attempt by this linear model, also social class mobility [30], or the
dynamics of being pregnant/not pregnant as underlaying risk factor [33].

As for the CD, we consider roughly a SIS model [22] that affects a population of susceptible individuals
that is heterogenous and dynamic. SIS models are appropriate for sexually transmitted diseases and bacterial
infections such that infected individuals become infective within a sort amount of time and do not gain immunity
to the disease once the infection is overcame [34]. Thus, we do not consider further epidemiological stages as
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Figure 1. Flow diagram associated to system (2.2).

asymptomatic or recovered individuals. In the other extreme recovered individuals may acquire immunity to
the disease and be removed from the model as, for instance, in [20].

Next, we define the rates at which individuals move from one compartment to each other, see Figure 1. We
assume that susceptible individuals become weakened at a constant rate a and get out of the weakened class
also at a constant rate b. The dynamics of the transmissible disease is somehow similar to (but not exactly) the
classical SIS model [3] with density-dependent transmission. Susceptible and weakened individuals are assumed
to behave differently concerning the CD so that the transmission rates βSI and βW I differ from each other. We
assume that infected individuals recover and become immune at rate γ. Note that we do not know whether an
infected individual suffers or not from the NCD. Thus, we do not care about recovered individuals (that leave
the model). We further consider that susceptible (in front of the CD) individuals are introduced at rates γSI and
γW I in the corresponding compartment S and W , so that the population size is kept constant. The construction
and further analysis can be done mutatis mutandi by considering frequency-dependent transmission (see [3] for
a discussion on density-dependent vs frequency-dependent transmission).

The ordinary differential equations system produced by the above-stated hypotheses consists of two coupled
submodels: one describing the communicable disease and another one that describes the non-communicable
disease. The combined model reads as follows

S′ = −aS + bW − βSSI + γSI,

W ′ = aS − bW − βWWI + γW I,

I ′ = βSSI + βWWI − γI,

(2.2)

where γS + γW = γ. Note that the total population size N(t) := S(t) +W (t) + I(t) = N remains constant, as
N ′(t) = 0.

For sake of completeness, let us revisit these two well known (sub)models: the SIS model and the model for
non-communicable diseases.

The CD SIS submodel. If susceptible individuals are all of the class, system (2.2) simplifies intoS
′ = −βSSI + γSI,

I ′ = βSSI − γSI,
(2.3)

where S(t) + I(t) = N remains constant over time. It is nothing but the classical SIS model with density-
dependent transmission [3]. A straightforward analysis reveals that system (2.3) possesses two equilibrium
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points: the trivial equilibrium (S∗, I∗) = (N, 0) (no infected individuals) and a the endemic-disease equilibrium

(S∗, I∗) =

(
γS
βS
, N − γS

βS

)
(2.4)

The well known basic reproduction number

R0,S =
βS
γS
N (2.5)

determines whether the disease-free equilibrium (R0,S < 1) or the endemic-disease equilibrium (R0,S > 1) is
globally asymptotically stable (GAS) for system (2.3).

The NCD compartment submodel. In the absence of the infectious disease (I(t) = 0), system (2.2)
reduces to system (2.1) where S(t) + W (t) = N remains constant over time. We will discuss in Section 4
further extensions of this submodel. We assume N > 0 (there are individuals) so that there exists a non trivial
equilibrium point

(S∗,W ∗) =

(
b

a+ b
N,

a

a+ b
N

)
(2.6)

where b/(a + b) and a/(a + b) are the fraction of susceptible and weakened individuals within the entire pop-
ulation N . It is straightforward that the nontrivial equilibrium (2.6) is a global attractor. This feature can be
interpreted as the non-communicable disease being structural to the population.

3. Results

In this section, we analyze the long term behavior of the solutions of system (2.2), that is, the so-called
equilibrium points and their stability.

A first step consists of showing that the model is well behaved, that is,

Proposition 3.1. The solutions of system (2.2) are bounded from above and the non negative cone is forward
invariant.

Proof. All the solutions of system (2.2) are bounded since the total population size is kept constant because
S′(t) + W ′(t) + I ′(t) = 0. Thus, any solution of system (2.2) evolves in the plane S(t0) + W (t0) + I(t0) = N
(valid for all t ≥ t0) where N stands for the total population size.

The invariance of the non negative cone

R̄3
+ :=

{
(S,W, I) ∈ R3; S ≥ 0, W ≥ 0, I ≥ 0

}
is equivalent to prove that any solution with initial values on the boundary can not become negative as the
time growths. For instance, assume that W (t0) = 0 and S(t0), I(t0) 6= 0. It follows that W (t0)′ = aS(t0) +
γW I(t0) ≥ 0, so that W (t) can not become negative. The same holds assuming S(t0) = 0 but W (t0), I(t0) 6= 0.
Assume now that I(t0) = 0 and S(t0),W (t0) 6= 0. Then I ′(t0) = 0 regardless of the value of S(t0) and W (t0).
There are no infected individuals and there will be none. The solution of the system evolves constrained by
S(t0) +W (t0) = N = cte, that is to say that system (2.2) is reduced to system (2.1) and its solution converge
to (2.6).

As we have already said, the non-communicable disease is supposed to be inherent to that population. The
first result consists of determining conditions so that an outbreak of the communicable disease lead to an
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endemic disease scenario. In other words, we seek conditions enabling the semitrivial equilibrium point

E∗0 = (S∗0 ,W
∗
0 , I
∗
0 ) =

(
b

a+ b
N,

a

a+ b
N, 0

)
(3.1)

to be asymptotically stable (communicable-disease-free state) or unstable (endemic communicable disease sce-
nario). Note that semitrivial equilibrium point E∗0 consists of the components of the nontrivial equilibrium (2.6)
of system (2.1) along with 0 infected individuals in the third entry.

Proposition 3.2. Consider system (2.2), the disease free equilibrium E∗0 given by (3.1) and the reproductive
number R0 defined by

R0 =
bβS + aβW

(a+ b)(γS + γW )
N. (3.2)

Then E∗0 is locally asymptotically stable (LocAS) if R0 < 1 and unstable if R0 > 1.

Proof. It follows from a standard analysis of the sign of the eigenvalues of the Jacobian matrix of the flow of
system (2.2). This result follows the same using the next generation method [35].

Thus the CD free equilibrium (3.1) is unstable if R0 > 1, which leads to a CD endemic scenario. On the other
hand, R0 < 1 implies that the CD free equilibrium (3.1) is locally asymptotically stable, meaning that any CD
outbreak will fade out (at least if the number of infected individuals is small enough). These results provide us
with valuable but incomplete information. Namely:

1. What are the conditions leading the CD free scenario to be globally asymptotically stable? i.e., what are
the conditions ensuring that CD free scenario will be achieved regardless of the strength of a potential
outbreak?

2. What role does the NCD play in the dynamics of communicable disease?

In other words, we are interested in the structure of the set of the positive equilibrium points of system (2.2)
and its stability. The positive equilibrium points are the component-wise positive solutions to system


0 = −aS + bW − βSSI + γSI,

0 = aS − bW − βWWI + γW I,

0 = βSSI + βWWI − γI,

(3.3)

where γ = γS + γW . Weakened individuals behave differently from susceptible individuals in front of the CD,
being plausible βW ≥ βS and γW ≤ γS with at least one of the inequalities being strict. We assume βW > βS
through the manuscript while no assumption is made on γS and γW since these coefficients are not proper
recovery rates.

Let us assume that I(t0) 6= 0 since otherwise system (3.3) reduces to system (2.1). Thus, the third equation
can be simplified and solved, say, in W :

W =
γS + γW − βSS

βW
. (3.4)
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Note that S′(t) +W ′(t) + I ′(t) = 0 so that one equation, say, the first one in (3.3) can be neglected. Using that
the total population S +W + I = N yields

S =
βW

βW − βS

(
N − γS + γW

βW
− I
)
. (3.5)

Finally, we get from the second equation in (3.3) that the number of infected individuals at equilibrium is the
solution of the quadratic polynomial equation

Ψ(I) = α2I
2 + α1I + α0 = 0 (3.6)

where

α2 = − βSβW
βW − βS

< 0,

α1 = −βS(b+ γW ) + βW (a+ γS)− βSβWN
βW − βS

,

α0 = − (γS + γW )(a+ b)− (bβS + aβW )N

βW − βS
,

(3.7)

and, indeed, I(t) is the solution of the differential equation

I ′ = Ψ(I) = α2I
2 + α1I + α0. (3.8)

The following Proposition 3.3 describes the posible outcomes of system (2.2) by analyzing equation (3.8).

Proposition 3.3. Consider system (2.2) along with the basic reproduction number R0 as defined in (3.2) and

∆ =

(
a+ γS
βS

+
b+ γW
βW

)
1

N
(3.9)

Then:

1. Condition α2
1 − 4α0α2 < 0 implies that the trivial solution E∗0 = (S∗,W ∗, 0) as defined in (3.1) is GAS.

2. Assume α2
1 − 4α0α2 = 0. Then:

(a) If, in addition, ∆ ≥ 1, it follows that E∗0 is GAS.
(b) Otherwise, ∆ < 1 implies that E∗0 is LocAS and

I∗ =
−α1

2α2
(3.10)

is a semi-stable equilibrium point from the right, meaning that I(t0) > I∗ implies I(t) → I∗ while
I(t0) < I∗ implies I(t)→ 0, as E∗0 is LocAS.

3. Assume α2
1 − 4α0α2 > 0. Then,

(a) R0 > 1 implies that E∗0 is unstable and there exists a GAS endemic disease equilibrium E∗+ =
(S∗+,W

∗
+, I

∗
+), where I∗+ > 0.

(b) R0 < 1 and ∆ ≥ 1 entail the disease free equilibrium E∗0 to be GAS.
(c) R0 < 1 and ∆ < 1 imply the existence of two endemic disease equilibrium E∗± such that E∗0 < E∗− < E∗+,

being E∗0 and E∗+ LocAS while E∗− is unstable.



A MINIMAL MODEL COUPLING COMMUNICABLE AND NON-COMMUNICABLE DISEASES 7

Proof. Note that βW > βS , since weakened individuals are weaker in front of the CD. It is immediate to calculate
the number of infected individuals I∗ (if any) at equilibrium by solving equation (3.6), so that

I∗± =
−α1 ±

√
α2

1 − 4α0α2

2α2
(3.11)

then, S∗ and W ∗, the number of susceptible and weakened individuals at equilibrium can be calculated from
I∗ using (3.5) and (3.4).

For statement 1, note that condition α2
1 − 4α0α2 < 0 yields no infected individuals at equilibrium, so that

I(t) → 0 as t → ∞. Therefore, system (2.2) asymptotically approaches system (2.1). Note that substituting
I∗ = 0 in (3.4) and (3.5) does not leads to E∗0 as defined in (2.6) because (3.40) and (3.5) have been derived
assuming I∗ 6= 0.

Thus, we assume from now on that α2
1 − 4α0α2 ≥ 0. Direct calculations yield

α0 = 0⇔ R0 = 1, α0 < 0⇔ R0 < 1, α0 > 0⇔ R0 > 1

along with

α1 = 0⇔ ∆ = 1, α1 < 0⇔ ∆ > 1, α1 > 0⇔ ∆ < 1,

where ∆ is given by (3.9).
We focus now in statement 2. It is clear then that α2

1 − 4α0α2 = 0 implies that I∗ as defined in (3.10) is the
unique solution to equation (3.6). In addition, ∆ ≥ 1 implies I∗ ≤ 0 and arguing as before yields 2(a). On the
contrary, ∆ < 1 implies I∗ > 0. Then, Ψ(I) < 0 ∀I 6= I∗ and Ψ(I∗) = 0 so that 2(b) holds to be true.

As for statement 3 we assume now α2
1− 4α0α2 > 0. Note that R0 > 1 is equivalent to α0 > 0. Besides, α2 < 0

so that it follows from (3.11) that I∗− < 0 and I∗+ > 0. Basic qualitative theory for scalar autonomous differential
equations yield that I∗+ is GAS, since Ψ(0) = α0 > 0, Ψ(I) > 0 ∀I ∈ (0, I∗), and Ψ(I) < 0 ∀I > I∗ which proves
3(a). Statements 3(b) and 3(c) hold from similar reasoning.

Remark 3.4. Proposition (3.3) does not cover all the possible combinations of the values of R0 and ∆, that
we include next. We claim that I∗ = 0 is GAS if either

1. ∆ = 1 and R0 = 1,
2. ∆ = 1 and R0 < 1,
3. or ∆ < 1 and R0 > 1.

The proof follows from direct calculations with expression (3.11).

Therefore, it is not difficult to classify all the possible qualitatively different outcomes in terms of sign of
α0 and α1 (given that α2 < 0) or, equivalently, depending on whether R0 and ∆ are smaller or larger that the
threshold value 1. Figure 2 sketches the qualitatively different cases.

Panels in Figure 2 display I ′ = Ψ(I); that is to say, the intercept with the horizontal axis is the amount of
infected individuals at equilibrium (since I ′ = 0). Note that the sign of I ′(t) determines whether the number
of infected individuals I(t) increases (I ′ > 0) or decreases (I ′ < 0), which yields the stability of the equilibrium
points.

Essentially, three scenarios are possible: the global CD free scenario (left and central panels in the first row of
Fig. 2), the global endemic CD scenario (right panel in the first row and left and central panels at the second row
of Fig. 2), and a third intermediate one that predicts either endemic disease or disease free scenarios depending
on the initial amount of infected individuals (right panel of the second row of Fig. 2). These features are better
shown with a bifurcation diagram, being R0 the bifurcation parameter, see Figure 3. In this context, ∆ is the
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Figure 2. Each panel displays the parabola defined by equation (3.6) in the I-I ′ plane for
different combinations of R0 and ∆. Solid dots are the feasible equilibrium points that are
asymptotically stable (black) and unstable (gray).

Figure 3. Bifurcation diagrams plotting the total number of infected individuals at equilibrium
for different values of R0. The left panel displays a subcritical bifurcation and the right panel a
supercritical bifurcation. In gray unstable equilibrium points and in black LocAS equilibrium
points. Parameter values (guessed): left panel βW = 1; βS = 0.2; γS = 11.8; γW = 16.6, a ∈
[0.01, 8], b = 3.6; right panel βW = 1.1; βS = 0.1; γS = 11.8; γW = 16.6, a ∈ [0.01, 8], b = 1.

so-called direction of bifurcation, so that ∆ < 1 leads to a subcritical (or backward) bifurcation (left panel in
Fig. 3) and ∆ > 1 yields a supercritical (or forward) bifurcation (right panel in Fig. 3).

For R0 < 1 the solution I∗ = 0 is locally asymptotically stable, i.e. the presence of a small number of
infected individuals is not enough to trigger an epidemic disease state, and the infected population will fade
away regardless of the value of ∆. However, due to management decisions or natural causes, the values of the
parameters involved in the expression of R0 may change and increase R0 so that it crosses the threshold value
R0 = 1. In such a case, the solution I∗ = 0 is destabilized, which means that the communicable disease becomes
endemic even if there is a little initial amount of infected individuals.

The quantity ∆ plays a key role when I∗ = 0 is stable (R0 < 1): namely if ∆ > 1 then I∗ = 0 is globally
asymptotically stable, which means that any epidemic outbreak will fade away regardless of the initial number
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Figure 4. Solutions to system (2.2) with parameter values βW = 1; βS = 0.2; γS = 12.5;
γW = 16.6, N = 100, a = 0.3, and b = 3.6. Initial values (S0,W0, I0) = (78, 19, 3) (left) and
(S0,W0, I0) = (71, 19, 10) (right). The parameter values are such that R0 = 0.9 and ∆ = 0.64,
so that a subcritical bifurcation occurs as in the left panel of Figure 3. Thus, the initial number
of infected individuals determines whether the infectious disease becomes endemic (right panel)
or not (left panel).

of infected individuals. On the contrary, ∆ < 1 implies that there exists R∗0 < 1 such that for each R∗0 < R0 < 1
there exist a threshold number of infected individuals given by I∗− (see Eq. (3.11)) such that beyond it the
disease becomes endemic and stabilize at I∗+ (see Eq. (3.11)). For ∆ < 1 and R0 < R∗0 the disease disapperars
as I∗ = 0 becomes globally asymptotically stable.

The stability of all the other equilibrium points in Figure 2 follows reasoning as before.

4. Discussion

We next discuss our finding on system (2.2). Its apparent simplicity allows, instead, to emerge relevant fea-
tures. First of all, we account for the possibility of subcritical bifurcation under minimal settings, see Section 4.1.
We also analyze the consequences of not considering explicitly the NCD in Section 4.2. Then, in Section 4.3, we
focus on the effect of control strategies (via modifying the coefficients of the system). In particular, we calculate
the sensitivity indices, we derive bounds for these indices, we focus on the effect of modifying several coefficients
at once, and we reveal possible unexpected consequences when trying to handle disease outbreaks.

4.1. Subcritical bifurcation

Regardless of the approach (CD vs NCD or CD risk structure) system (2.2) may undergo a subcritical
bifurcation, which is against the R0-dogma [31] that states that R0 > 1 leads to disease endemicity while
R0 < 1 induces disease eradication. Usual causes of subcritical bifurcation are the use of imperfect vaccine [5],
[16], structured immunity [31] or exogenous re-infection in TB disease [11]. In [34] subcritical bifurcation was also
reported for a simple SIS model; this model is simplest that ours in the sense of having only two compartments,
but it is more sophisticated since the transmission rate nonlinear, which makes a huge difference.

In [15] several other biological or epidemiological mechanisms are proposed such as vaccine-induced immu-
nity waning at a slower rate than natural immunity, disease-induced mortality in vector-borne diseases, and
differential susceptibility in risk-structured models (related to the latter, see [22] and [23]).

Subcritical bifurcations can be found also in co-infection by an opportunistic disease model [26], where two
communicable diseases were considered (one of them with saturating treatment rate [24]).

A salient feature of the model proposed and analyzed here lies in its ability to undergo a subcritical bifurcation
while not incorporating any of the above-mentioned mechanisms. Thus, we show that subcritical bifurcations in
epidemiology are not such a rare occurrence. On the contrary, plain heterogeneity in the CD susceptible class
is enough to make a subcritical bifurcation possible.
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Thus, system (2.2) shows that subcritical bifurcations may occur in epidemic models simply by considering
the dynamics associated with a heterogeneous population, which can be seen as a common factor in the above-
mentioned models.

4.2. What if the non-communicable disease is not explicitly considered?

Thus, let us assume that there is no weakened individuals compartment so that the CD follows the simplest
model (2.3). Even if we do not consider an explicit compartment, the NCD is present in the population, and the
coefficients of system (2.3) must reflect in some way this fact. It is reasonable assuming that the NCD-induced
population heterogeneity will be captured by any reasonable sampling procedure performed to estimate the
coefficients of the model by weighting the corresponding transmission (βS and βW ) and recovery (γS and γW )
coefficients. This hypothesis is equivalent to assuming that the dynamics associated with the NCD has already
achieved an equilibrium, which is the usual assumption when dealing with time-scale systems [1] (also known
as quasi-steady-state approximation [13]) that has been used in co-infection by an opportunistic disease models
[25], [26], where both diseases are transmissible. Thus a fraction b/(a + b) of the total population is free of
the NCD and the remaining fraction a/(a+ b) is not. Then, to obtain a fair comparison, transmission and the
recovery rates are set to

βS
b

a+ b
+ βW

a

a+ b
, γS

b

a+ b
+ γW

a

a+ b
, (4.1)

respectively, which yield the corresponding basic reproductive number:

R̂0 =
bβS + aβW
bγS + aγW

N, (Ŝ∗, Î∗) = N

(
1

R̂0

, N − 1

R̂0

)
(4.2)

Direct calculations yield

R̂0

R0
= 1 +

aγS + bγW
bγS + aγW

. (4.3)

That is, the ratio (4.3) is always larger than 1, implying that explicit consideration of the NCD dynamics in
the model does matter. Neglecting its effect leads to overestimating the basic reproductive number and, thus,
i) thinking of an endemic disease scenario that may be not real and ii) overestimating the number of infected
individuals at equilibrium.

Figure 5 displays the bifurcation diagram of the total amount of infected individuals at equilibrium I∗ (in

black, bottom line) and Î∗ (in blue, upper line) versus R̂0 and R0, that both appear in the horizontal axis.

4.3. Sensitivity analysis, sensitivity indices and epidemic control

Finally, we accomplish a sensitivity analysis of the outcome of the model to the parameters of the model.
In Section 3 we have shown that the long term behavior of the model can fully be described in terms of R0

and ∆. We first examine the expressions of R0 and ∆. Next, we calculate the corresponding sensitivity indices
[8]. Then we have drawn concussion useful for control purposes.
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Figure 5. Left panel: bifurcation diagram of the number of infected individuals at equilibrium
of the classical SIS model (2.3, in blue, top curve) with transmission rate β = bβS/(a + b) +
aβW /(a+ b) and recovery rate γ = bγS/(a+ b) +aγW /(a+ b) and system (2.2) in black, bottom

curve. The bifurcation parameter is R̂0 and R0, respectively, for N = 12, b = 35.4, βS = 1, βW =
9.1, γS = 8.4, γW = 15.3 and a ∈ [0.1, 10] (guessed parameter values). Note that expression (4.3)

and the parameters values explain the aparent gap in Î∗. Central panel, the ratio Î∗/I∗. Right

panel: the ratio R̂0/R0.

Grouping terms in the expression of ∆ (see Eq. (3.9)) yields

∆ =

(
γS
βS

+
γW
βW

)
1

N
+

(
a

βS
+

b

βW

)
1

N

=
1

R0,S
+

1

R0,W︸ ︷︷ ︸
Block 1

+

(
a

βS
+

b

βW

)
1

N︸ ︷︷ ︸
Block 2

(4.4)

Interestingly, the first block includes the basic reproduction numbers corresponding to either no weakened
class (all individuals are susceptible) or no susceptible class (all individuals are weakened, i.e., the analogous
case with other values for γ and β). In contrast, the second block includes the ratio of the rates at which
individuals leave the susceptible class (a/βS) or the weakened class (b/βW ). Two conclusions can be drawn
from (4.4): on the one hand, ∆ depends linearly on a and b (see the top right panel of Fig. 6). Therefore, ∆
changes linearly with these parameters. On the other hand, ∆ depends non-linearly on the corresponding basic
reproduction numbers or, ultimately, on the transmission rates (see the bottom right panel of Fig. 6).

Concerning R0, it depends linearly on βS and βW (see expression (3.2) and the bottom left panel of Fig. 6).
On the contrary, R0 depends non-linearly on a and b, although the effect is quasi-linear (see expression (3.2)
and the top left panel of Fig. 6).

4.3.1. Sensitivity indices

In avoiding the communicable disease becoming endemic (or promoting endemicity) we must control the
values of R0 and ∆ (see Fig. 3). It is useful to know the relative importance of the parameters involved in
the expressions of R0 and ∆, so we can choose which of them must be changed when developing intervention
strategies.
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Figure 6. Left (right, respt.) column, R0 (∆, respt.) as function of coefficients a, b (top) and
βW , βS (bottom). All the panels display also the threshold plane R0 = 1 (left column) and
∆ = 1 (right column).

The normalized forward sensitivity index of a variable, u, that depends differentiably on a parameter p is
defined in [8] as:

γup :=
∂u

∂p
× p

u
=

∂u
∂p
u
p

(4.5)

For the convenience of the reader we sketch the derivation of the sensitivity index (4.5) in Appendix A. Its
interpretation is as follows. When increasing (or decreasing) p0 by ε (meaning increasing p0 to p0 + εp0 =
(1 + ε)p0) u increases (or decreases) by ε γup

∣∣
p=p0

times u(p0). Let us underline that this interpretation is local

and approximated in the same sense the Taylor’s expansion is so (see Appendix A).
We have used (4.5) to derive the analytical expression for the sensitivity index of R0 and ∆, defined by

(8) and (13) respectively, to each of the six parameters considered in our model. We show the corresponding
expressions in Table 1.

Assume now that u depends on parameters p1, · · · , pn. Without lost of generality, we assume that all the
parameters vary simultaneously by ε. A direct application of the generalized Taylor’s expansion yields that the
corresponding sensitivity index is

n∑
i=1

γupi (4.6)

That is to say that the sensitivity indices are additive, but (or and) the sign of each sensitivity index matters.
Note that when the sum of the different indices is 1 (or -1) the variation caused in the variable u is the same
variation introduced in the parameters times the corresponding sensitivity index.
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Table 1. Sensitivity indices of R0 (8) and ∆ (13) to recovery and transmission rates of the
NCD and the transmissible disease considered in our model.

R0 ∆

a ab
a+b

βw−βs

bβs+aβw

aβw

(a+γs)βw+(b+γw)βs

b ab
a+b

βs−βw

bβs+aβw

bβs

(a+γs)βw+(b+γw)βs

βs
bβs

bβs+aβw
− (a+γs)βw

(a+γs)βw+(b+γw)βs

βw
aβw

bβs+aβw
− (b+γw)βs

(a+γs)βw+(b+γw)βs

γs − γs
γs+γw

γsβw

(a+γs)βw+(b+γw)βs

γw − γw
γs+γw

γwβs

(a+γs)βw+(b+γw)βs

Table 2. Infimum and supremum values of sensitivity index of R0 and ∆. The cells are empty
when no meaningful bounds can be provided.

Sensitivity indices of R0 Sensitivity indices of ∆

Infimum value Supremum value Infimum value Supremum Value

a – – 0 1
b – – 0 1
βs 0 1 –1 0
βw 0 1 –1 0
γs –1 0 0 1
γs –1 0 0 1

Most of the expressions of these sensitivity indices are complex so it is not possible to set an order from most
sensitive to least sensitive without evaluating them at some baseline parameter values. However, some general
conclusions can be drawn.

When real data is available the above analysis is made of precise figures, we invite the interested reader the
work [2], were a complete sensibility analysis is carried out for a SIARD model on COVID19.

4.3.2. Implications for managing disease outbreaks

Epidemiologists look at R0 at the beginning of epidemic outbreaks [4], [22] (but see also [10] for a less
theoretical approach). R0 depends on the parameters of the model and a key question is that of ascertaining
which coefficients modify to get the larger change in R0 with minimum effort.

We next derive information from the expression of the sensitivity indices useful for disease managers (see
Tab. 1). All the mathematical relations follow straightforward from the expressions gathered in Table 1. We
assume that a, b, βs, βw, γs, γw > 0.

Bounds for the sensitivity indices. On the one hand, most of the expressions for the sensitivity indices
are fractions in which the numerator is one of the summands of the denominator. As all the parameters are
positive quantities, the absolute value of these indices is less than one. More specifically, Table 2 shows infimum
and supremum values of sensitivity indices of R0 and ∆.

As shown in Table 2, the supremum value of the sensitivity indices is 1. So, it is not possible to change R0

(or ∆) by an amount bigger than the change ε introduced in the parameter times R0 (or ∆).The interpretation
of the infimum value −1 is the same, but in that case, the modification introduced in the parameters and the
change in R0 (or ∆) have the opposite direction. In addition, note that we are considering a Taylor expansion
to first order, so no big changes can be targeted.
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Table 3. Expressions of sums of indices when different combinations of parameters are
simultaneously modified producing minimal, none or maximal response on R0 and ∆.

R0 ∆

γR0

βs
+ γR0

βw
= 1 γ∆

βs
+ γ∆

βw
= −1

γR0
γs + γR0

γw = −1 –

γR0
γs + γR0

γw + γR0
a + γR0

b = −1 γ∆
γs + γ∆

γw + γ∆
a + γ∆

b = 1

γR0
a + γR0

b = 0 –

γR0

βs
+ γR0

βw
+ γR0

γs + γR0
γw + γR0

a + γR0

b = 0 γ∆
βs

+ γ∆
βw

+ γ∆
γs + γ∆

γw + γ∆
a + γ∆

b = 0

Comparing communicable disease management strategies. Tables 1 and 2 allow us to compute how
much modifying a single coefficient of the model makes R0 or ∆ vary. However, it is possible to act on more than
one coefficient of the model at once. Table 3 gathers combinations of parameters to be modified simultaneously
and equally that produce minimal, none, or maximal responses on R0 and ∆.

We next examine how the expressions gathered in Table 3 can be used to decide on epidemics management
strategies.

A key question from the point of view of managing a CD that of deciding to act either on a target population
(for instance, weakened individuals) or equally on all the susceptible individuals regardless of their status. More
specifically, the question is: What will produce a larger change in R0, an effect ε1 applied only on (say) βw,
or a weaker effect ε2 < ε1 applied on both βs and βw? This question is equivalent to compare γR0

βw
ε1R0 to

(γR0

βw
+ γR0

βs
)ε2R0. Note that

γR0

βs
+ γR0

βw
= 1. (4.7)

Direct calculations yield that

γR0

βw
ε1R0 < (γR0

βw
+ γR0

βs
)ε2R0 ⇔ ε1

ε2
<

1

γR0

βw

(4.8)

provided (4.7). Note that ε must be negative in order to reduce transmission.
Analogous questions can be addressed related to those expressions summing up to −1 or 0.
Are unexpected management effects possible? We already know that the endemic states bifurcate from

the disease-free scenario as R0 crosses the threshold value 1. The bifurcation can be either subcritical (R0 < 1
and ∆ < 1) or supercritical (R0 ≥ 1 and ∆ ≥ 1). The bifurcation direction would make a huge difference, as in
the subcritical case R0 < 1 does not lead necessarily to a disease-free scenario. Changing any parameter of the
model will make vary simultaneously R0 and ∆ which would result in an unexpected outcome.

For instance, let us assume that the conditions are such that R0 > 1 and ∆ > 1, that is, the system is in the
endemic disease scenario. Assume also that efforts are put into modifying the value of some coefficients to push
R0 below 1. Then, as a result, can ∆ also go below 1, undergoing a subcritical bifurcation? It would happen
if reducing R0 (by any means) would entail a simultaneous reduction in ∆. A necessary condition is that the
corresponding sensitivity indices have the same sing. It is apparent that it is not possible if the efforts are put
in modifying coefficients βs, βw, γs or γw (see Tab. 1).

However, it is also apparent that the sign of the sensitivity indices of R0 and ∆ with respect to a (respectively
b) is the same provided βw > βs (respectively, if βw < βs). Indeed direct calculations show that R0 > 1 and
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∆ > 1 for N = 70, a = 0.27, b = 15, βS = 3.02, βW = 7.2, γS = 20, γW = 6.9 but R0 < 1 and ∆ < 1 keeping
all the previous parameter values but a = 0.17.

5. Conclusions

The minimal model presented herein shows that R0 subcritical (backward) bifurcation can be much more
usual than expected by the literature. The underlying mechanism can be though of dynamic heterogeneity in
the non infected compartment, which NCDs is a particular case. That is to say, not only the epidemiological
state (susceptible – infected) of a given individual may change on time, also its propensity to be infected may
evolve on time along its life-cycle.

This feature strongly supports the idea that acting on target sub-populations can be key when manag-
ing/controlling epidemics. One may act on the transmission rate affecting that class, or either on removing
individuals from one risk-class to the other one.

We hope the results presented herein would promote further research. On the one hand, we hope experimental
scientists find this research interesting and would test the model at their laboratory. On the other hand, more
complex extensions of system (2.2) should be of interest, as considering asymptomatic, recovered, immune,
vaccinated,. . . , compartments. Also, it is of great interest approaching the problem here addressed with other
modelling tools as difference equations [21] or fractional differential equations [18] or [19].
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Appendix A.

A first approach to the idea of the sensitivity of u to p is using the derivative of u with respect to p. However,
doing so does not allow to fairly compare the sensitivity of u to two different parameters if those parameters are
expressed in different units. Defining the sensitivity index as in (4.5) fixes this problem (see the most right hand
side expression). Furthermore, consider that u depends on the parameters p1, · · · , pn. We may assume without
loss of generality that p2, · · · , pn are held constant, that is equivalent to assume that u depends only on p = p1.
The Taylor’s expansion approximation of u(p) to the first order at p = p0, is given by:

u(p) ≈ u(p0) +
∂u(p)

∂p

∣∣∣∣
p0

(p− p0) (A.1)

When varying the parameter p by an amount of ε = (p− p0)/p0, that is to say, from p0 to p0 + εp0 (A.1) becomes

u(p0 + εp0)− u(p0) ≈ ∂u(p)

∂p

∣∣∣∣
p0

εp0. (A.2)
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Taking into account the definition of the sensitivity index (4.5), multiplying and dividing the right hand side of
(A.2) by u(p0) yields:

u(p0 + εp0)− u(p0) ≈ γup
∣∣
p0
εu(p0) (A.3)
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