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Abstract— Localization and mapping in indoor environments,
such as airports and hospitals, are key tasks for almost every
robotic platform. Some researchers suggest the use of RO
(Range Only) sensors based on WiFi (Wireless Fidelity) tech-
nology with SLAM (Simultaneous Localization And Mapping)
techniques. The current state of the art in RO SLAM is
mainly focused on the filtering approach, while the study of
smoothing approach with RO sensors is quite incomplete. This
paper presents a comparison between a filtering algorithm,
the EKF, and a smoothing algorithm, the SAM (Smoothing
And Mapping). Experimental results are obtained, first in
an outdoor environment using two types of RO sensors and
then in an indoor environment with WiFi sensors. The results
demonstrate the feasibility of the smoothing approach with
WiFi sensors in indoors.

I. INTRODUCTION

Wireless networks and specially WiFi have become

widespread during the last years, especially in indoor en-

vironments. This makes WiFi a good choice to develop

SLAM systems in indoors where GPS does not provide good

results. In this work the SLAM systems are developed using

only range measurements. The RO sensors provide the range

measurements and a unique identifier per beacon, which

helps the SLAM avoid data association problem. However,

information about the angle is not obtained. So, with only

one range sample it is impossible to estimate a position. The

beacon could be anywhere within a ring of radius equal to

the range measurement.

Typically, WiFi localization systems use different map

representations of the environment. Most of them [1][2] use

fingerprint maps based on the radiological patterns of the

signal. In contrast, other authors [3] use maps containing

the coordinates of all the beacons. In both cases building the

maps is an expensive task therefore recent studies focus their

efforts on SLAM techniques.

SLAM is considered to be a complex problem because

a robot simultaneously needs a consistent map to localize

itself, and an accurate estimate of its location to acquire

the map. During the last years a number of solutions have

been presented to solve the SLAM problem such as EKF [4],

FastSLAM [5], GraphSLAM [6] and Smoothing approaches

[7]. Although, SLAM is a well-studied problem with other

sensors, the state of the art in RO SLAM is not fully

explored. One of the most relevant works in RO SLAM is

[8] which combines EKF with a Relative Over Parametrized

(ROP) approach to solve the SLAM problem in outdoor

environments. The use of that parametrization derives from
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the polar coordinate system where annuli, crescents and other

ring-like shapes can be easily modeled. Furthermore, the

authors have made public the dataset described in [9]. This

dataset is one of their main contributions because it allows

to test different algorithms with a common framework.

This paper focuses on a comparison of ROP-EKF with

the Smoothing approach (SAM) presented in [7] to improve

the state of the art in RO SLAM. Smoothing approaches for

SLAM add the entire trajectory of the robot and the map in

the estimation problem. While this seems counter-intuitive

at first, because more variables are added to the problem,

the simplification arises from the fact that the smoothing

information matrix is naturally sparse. Therefore, smoothing

approaches provide an exact and efficient solution of the

problem.

Both algorithms are compared in the presented work

by using the database described in [9]. The comparison

demonstrates an improvement error rate of 20∼40% for

SAM with respect to ROP-EKF performance. Furthermore,

an indoor WiFi setup is built to demonstrate the feasibility

of the SAM approach in indoor environments. This setup

consists of a large-scale building under real conditions, which

means unexpected changes in the environment and people

wandering around, and it is also a contribution of this work.

The following sections of this paper are organized as

follows: section II describes the related work in this area;

section III studies the algorithms that are compared in this

work; section IV shows the datasets that have been used

and the experimental results; and finally, in section V some

conclusions and future work are presented.

II. RELATED WORK

Studies in RO SLAM identify two main problems to deal

with. The first one consists in overcoming their lack of angle

information while the second one is referred to the way the

signal propagation is modeled. Both problems are specially

significant in indoor environments, where the environment

can change dynamically and the signal can be affected by

several interferences like multipath effect.

In order to overcome the lack of angle information some

works [10] use a two dimensional probability grid and a

voting system to provide estimates of the beacon loca-

tion. Other solutions [11] propose the use of FastSLAM

to estimate the initial position of the beacon. They also

replace the conventional EKFs for particle filters to avoid

the need of angle measurements. The idea is extended in

[12] maintaining independent Sum of Gaussians (SOGs) for

each beacon.
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Other works are focused on modeling the signal propaga-

tion which is specially complex in the presence of obstacles

such as buildings, walls or people. In [13] Ferris et. al.

use GPLVM (Gaussian Process Latent Variable Model) to

generate a likelihood model for signal strength measure-

ments which, in combination with an appropriate motion

dynamics model can be used to reconstruct a topological

connectivity graph from those measurements performing

efficient localization. However, it requires a large number

of beacons to obtain good results. In [14] the authors show

how wireless signal strength SLAM can be formulated as

a GraphSLAM problem modeling the signal propagation by

means of Gaussian interpolation weights to interpolate WiFi

signal strengths. GraphSLAM is a commonly used technique

in the robotics community for simultaneously estimating a

trajectory and building a map. It shares many benefits of

Gaussian processes, but can be applied to a broader range of

environments, therefore improving the runtime complexity

from O(N3) to O(N2), where N is the dimensionality of

the state space.

III. RO SLAM COMPARISON

This section gives a brief description of the two SLAM

algorithms that are compared in this work. Both algorithms

are implemented following the original implementation by

the authors [8][7]. The first, known as ROP-EKF [8], is

an extension of the standard EKF to formulate the SLAM

problem in polar coordinates. It has some drawbacks due to

its computational complexity. The second, known as SAM

[7], is based on smoothing approaches and factor graph

representation. It successfully applies sparse least-square

error minimization techniques to solve the so-called full

SLAM problem i.e. the problem of estimating the entire

trajectory of the robot with the map.

A. ROP-EKF

Typical EKF SLAM is based on an important character-

istic which establishes that any information that helps to

compute the posterior of the robot is also propagated through

the map. As a result, it improves the localization of other

landmarks in the map. In other words, observing a landmark

improves the robots pose estimate decreasing some of the

uncertainty of landmarks previously seen by the same robot.

This dependence is captured in the Gaussian posterior, more

specifically, in the off-diagonal covariance elements of the

matrix Σt. This effect is one of the main advantages of

EKF SLAM techniques, because this behavior is implicitly

modeled in the EKF itself.

Since most of the uncertainty in earlier landmarks is

related to the robot’s pose, and this uncertainty persists

over time, the location estimates of those landmarks are

correlated. When gaining information on the robot’s pose,

this information spreads to previously observed landmarks.

However, it is well known that EKF becomes practically

intractable when managing the covariance matrix Σt due to

the fact that this matrix is non-sparse. The computational

complexity is O(N2) where N is the number of landmark

and grows quadratically. Moreover, EKF has been shown to

be inconsistent when applied to non-linear problems as it is.

The basic formulation of EKF SLAM assumes that the

location of features in the map is fully observable from a

single position of the robot. The method has been extended

to situations with partial observability like RO sensors [15].

Thus, the ROP-EKF extends the standard EKF to work with

RO sensors by means of a Relative Over Parametrization.

It formulates the problem in polar coordinates where ring-

shapes can be easily modeled and parametrizes the state

relative to an origin. The state vector is defined as (1) shows.
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N
t
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]

corresponds to the

position of the i-th landmark.

As RO sensors present multimodal distributions this ap-

proach uses a multi-hypothesis representation of the EKF

to maintain those distributions. Hence, ROP-EKF is able to

model the situations when the annulus-like prior distribution

is split into separate modes because a second RO measure-

ment is obtained.

B. Smoothing And Mapping (SAM)

Smoothing approaches are presented as efficient alter-

natives to the EKF framework for the SLAM problem.

These methods propose the use of factor graphs [16] and

optimization techniques to smooth the trajectory of the robot

and the map. Thus, these approaches obtain the best possible

trajectory and map for the given measurements.

One of the main characteristics of these approachs is to

address the full SLAM problem so the complete trajectory

of the robot is added into the estimation problem. From the

point of view of the EKF this could seem as a disadvantage

because more variables are added to the estimation problem.

However, smoothing approaches take advantage of the fact

that the smoothing information matrix I is naturally sparse

in contrast to the covariance matrix of the EKF.

Moreover, smoothing deals with non-linear SLAM prob-

lems much better than filtering approaches by controlling

in which region the linearization can be trusted while the

linearization choices cannot be undone in filtering. Hence,

the SLAM is solved as an optimization problem which is

formulated in terms of sparse linear algebra, and becomes a

fast alternative to EKF factorizing into square root form the

matrix I and the measurement Jacobian A. So, this approach

fully exploits the sparseness of both matrices being its

computational complexity linear O(M +N), which depends

on the number of poses M and the number of landmarks N .

Nevertheless, its performance depends on choosing a good

variable reordering when factorizing the matrix.

The SAM approach recovers the maximum a posteriori

(MAP) estimate for the entire tarjectory X , {xi} and the

map L , {lj}, given the measurements Z , {zk} and
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control inputs U , {ui} by solving the non-linear least-

squares problem shown in (2)

M
∑

i=1

‖xi − fi(xi−1, ui)‖
2

Λi
+

K
∑

k=1

‖zk − hk(xik , ljk)‖
2

Σk

(2)

If the process models fi and the measurement equations

hk are non-linear, as they are in this work, and a good

linearization point is not available, non-linear optimization

methods are able to approach a minimum solving a suc-

cession of linear approximations to (2). Typically, Gauss-

Newton iterations or Levenberg-Marquardt methods are used

to solve the optimization problem.

Since SAM approach solves optimization problems, SAM

is able to work with RO sensors without any modification.

SAM only needs to define the RO measurements between

the landmarks and the mobile as “range factors”.

IV. EXPERIMENTAL RESULTS

This section presents an experimental validation of

both algorithms for different types of RO sensors.

First, it shows the results that are obtained using the

public database of the Robotics Institute of Carnegie

Mellon University [9], which can be downloaded from

www.frc.ri.cmu.edu/projects/emergencyresponse/RangeData/.

Second, it shows the results of a real WiFi indoor scenario

that is set up at the University of Alcalá.

A. Carnegie Mellon RO sensors Database Results

The Carnegie Mellon database has several scenarios set

up in an outdoor environment to validate the correct perfor-

mance of both algorithms. Although the outdoor environment

simplifies the problem because no external interferences

appear, it provides a good test-bench to compare both al-

gorithm. The SAM results are compared with respect to the

results obtained by the ROP-EKF in [8] and [17].

The database consists of five different paths using two

types of RO sensors (Pinpoint RF and ultra-wide band

sensors). Table I shows the name of every experiment, the

sensor that was used, the covered distance by the robot, the

number of range samples that were collected and a brief

description of the experiment.

The experiments were designed to test a wide number of

possible situations such as long and short paths, different

heading errors and random trials. Moreover, the use of two

types of sensors allows the authors to test the algorithms with

different noise configurations because RF sensor is noisier

than the UWB (UltraWide Band) one.

Table II presents the results for both algorithms evaluating

the path and map error, which are computed as the Euclidean

distance between the estimated and groudtruth values. The

ROP-EKF row shows the results presented in [8] for Gesling.

The results for the Plaza dataset were published in [17]

which only provides the error for the final 10% of the path.

However, the SAM results that we have obtained provide the

error for the complete path, which are more realistic results.

In terms of path error Table II demonstrates that SAM

performs better than ROP-EKF for the whole dataset. It is

shown that the SAM obtains an improvement error rate of

20∼40% with respect to ROP-EKF performance. Moreover,

both algorithms are able to manage the Gaussian noise of

the sensors. The results are not affected by the amount

of Gaussian noise because the mean path error is similar

in experiments with the same configuration (Gesling1 wrt

Plaza2 and Gesling2 wrt Plaza1). However, the different

path configurations affect directly to the performance of both

algorithms. The paths that highlight the effect of heading

error by turning in the same direction repeatedly get worse

results than the other ones, which is intuitive.

In terms of map error, Table II shows that SAM performs

better than ROP-EKF except when the path is not long

enough to properly find a minimum in the optimization

process.

To summarize, this section demonstrates the feasibility of

the SAM algorithm when working with RO sensors in a con-

trolled outdoor environment without external interferences.

SAM can be considered as a better alternative than ROP-

EKF for RO SLAM due to the fact that it obtains better

results in most of the experiments.

B. Alcalá WiFi Database Results

The Alcalá WiFi database, which is available at

www.robesafe.es/repository/UAHWiFiDataset/, has several

scenarios set up to verify the feasibility of both algorithms

in indoor environments. The experiments were tested at the

University of Alcalá under real conditions which means

people wandering around, small changes in the environment,

small interferences due to portable devices, etc.

WiFi technology has been used in these experiments

because most of the buildings provide this network. Since it

is pre-installed there is no need to modify the environment

and the use of WiFi frequency (2.4 GHz) is free. However,

this technology is noisier than the previous ones because

WiFi is affected by every object that contains water and

the multipath effect. Hence, it can suffer variations in the

power strength up to 10 dBm which means an error in

the distance measurement up to 25 meters in some of

the cases. Moreover, the non Gaussian noise presented in

this technology makes it difficult to model these variations.

Therefore, these conditions increase the difficulty of the

experiments and it is a real challenge for both algorithms.

Figure 1 shows the environments that have been used in

this dataset. Figure 1(a) shows the third floor of the building

which has a size of 120x120 meters. This environment

consists of four large corridors forming a square in which

a landmark is placed in every corner. Figure 1(b) shows

the west area of the second floor, the size of this area is

60x60 meters. There are four small corridors which are 18

meters long and a main corridor of 35 meters that finishes

in a hall. The hall is an semi-empty space only occupied by

two elevators. Although there is a large number of Access

Points (up to 150) in the environments, which are used as

landmarks, the experiments only take into account the most

important ones for simplicity. The landmarks are considered

to be important based on their spacial distribution. The
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TABLE I

CARNEGIE MELLON DATASET DESCRIPTION

Name Sensor Distance (m) # range samples Description

Gesling1 RF 3700 2,565 Effect of heading error by turning in the same direction repeatedly.

Gesling2 RF 1360 1,416 Minimizes the effect of heading error by balancing the heading turns.

Gesling3 RF 6700 10,068 Long random trial.

Plaza1 UWB 1900 3,529 Minimizes the effect of heading error by balancing the heading turns.

Plaza2 UWB 6700 1,816 Effect of heading error by turning in the same direction repeatedly.

TABLE II

CARNEGIE MELLON RO SENSORS DATABASE RESULTS

Method Gesling1 Gesling2 Gesling3 Plaza1 Plaza2

Path Map Path Map Path Map Path Map Path Map

ROP EKF 0.97m 0.57m 0.78m 0.53m 0.83m 0.62m 0.65m1 0.48m 1 0.87m 1 0.48m 1

SAM 0.59m 0.56m 0.47m 1.14m 0.66m 0.47m 0.51m 0.77m 0.61m 0.45m

data was collected with a Seekur Jr. of MobileRobot which

provided the odometry measurements and an on board laptop

to obtain the RO measurements.

Since the experiments were placed in indoor environments,

a reliable groundtruth was not available. Hence, a visual

inspection was chosen to evaluate the results. Figures 1(a)

and 1(b) show the true trajectory of the robot (blue line) and

where the landmarks were placed (blue stars).

Table III presents a brief description of the experiments.

Two experiments have been designed in order to study

the same cases that in the Carnegie Mellon ones. A new

experiment also has been added to study the effect of high

noise in the odometry measurements. Table III also shows

that the covered distance by the robot is long enough to study

that conditions in indoor environments. Alcala1 is performed

at Environment1 (Figure 1(a)) while Alcala 2 and Alcala3

are performed at Environment2 (Figure 1(b)).

Figure 2 shows the results for Alcala1 dataset. The odome-

try path is shown in green, the estimated path is shown in red

and the estimated landmarks are shown as black stars. This

experiment studies the effect of heading error by turning in

the same direction repeatedly. The ROP-EKF (Figure 2(a))

is not able to recover the square shape that the groundtruth

draws and it fails to estimate the landmarks. The SAM

(Figure 2(b)) recovers the square shape although it is affected

by a rotation. The landmarks are well placed with respect to

the estimated trajectory.

Figure 3 shows the results for Alcala2 dataset. The exper-

iment minimizes the effect of heading error by balancing the

heading turns. Both algorithms obtain similar results when

the robot does not turn always in the same direction and the

odometry is accurate enough.

Figure 4 shows the results for Alcala3 dataset. This

experiment shows the effect of high noise in the odometry

measurements. This is the worst possible scenario because

none of the measurements (odometry and RO) are reliable

enough. The ROP-EKF is not able to converge to any

solution and the results are not valuable. The SAM is still

1These errors only take into account the final 10% of the path

able to estimate the trajectory of the robot and the map

obtaining similar results to Alcala2 ones. This behavior is a

consequence of the use of optimization techniques because

they controls in which region the linearization is trusted. So,

SAM can be considered as a more robust solution for this

kind of environments.

Finally, it is important to remark that the performance of

SAM with respect to ROP-EKF is much better in the Alcalá

database than in the Carnegie Mellon one. This is due to the

fact that in outdoor environments the noise of RO sensors

are easily modeled while in indoor environments WiFi is

affected by several variations. Hence, ROP-EKF finds it more

difficult to obtain a good estimation in indoor environments.

In addition, the performance of the SLAM algorithms can

be compare with traditional WiFi localization methods such

as the one presented in [18]. Where it is compare than both

techniques obtain similar results.

V. CONCLUSIONS

In this work two different SLAM approaches have been

compared, the ROP-EKF and the SAM, to solve the RO

SLAM problem. The theoretical advantages of SAM with

respect to EKF have been presented. Moreover, experimental

results with real data demonstrate the effectiveness of SAM

approach in outdoors. An improvement error rate of 20∼40%

with respect to ROP-EKF has been obtained. Furthermore,

both algorithms have been tested in a real indoor environment

with WiFi sensors. The feasibility of RO SLAM techniques

in that environment has been demonstrated showing a re-

markable improvement of the SAM approach with respect

to the ROP-EKF one. In the near future we will use an

incremental variant of SAM, known as iSAM, to solve the

online SLAM problem.

ACKNOWLEDGMENT

This work has been funded by TIN2011-29824-C02-01

and TIN2011-29824-C02-02 (ABSYNTHE Project) from the

”Ministerio de Economı́a y Competitividad”.

4609



*

*

*

*

(a) Environment1

**

*

*

*

(b) Environment2

Fig. 1. Alcalá Environments

TABLE III

ALCALA DATASET DESCRIPTION

Name Sensor Distance (m) # range samples Description

Alcala1 WiFi 533 490 Effect of heading error by turning in the same direction repeatedly.
Alcala2 WiFi 821 568 Minimizes the effect of heading error by balancing the heading turns.
Alcala3 WiFi 937 785 Effect of high noise in the odometry measurements.

GT

Odom

ROP-EKF

Landmarks*

(a) Alcala1. ROP-EKF

GT

Odom

SAM

Landmarks*

(b) Alcala1. SAM

Fig. 2. Alcala1 results
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