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ABSTRACT Encouraged by the considerable cost reduction, small-scale solar power deployment has
become a reality during the last decade. However, grid integration of small-scale photovoltaic (PV) solar
systems still remains unresolved. High penetration of Renewable Energy Sources (RESs) results in technical
challenges for grid operators. To address this, Virtual Power Plants (VPPs) have been defined and developed
to manage distributed energy resources with the aim of facilitating the integration of RESs. This paper
introduces a hybrid irradiance forecasting approach aimed at facilitating the integration of PV systems into
a VPP, especially when a historical irradiance dataset is exiguous or non-existent. This approach is based on
Artificial Neural Networks (ANNs) and a novel similar hour-based selection algorithm, has been tested for a
real PV installation, and has been validated also considering irradiance measurements from an aggregation of
ground-based meteorological stations, which emulate the nodes of a VPP. Under a reduced historical dataset,
the results show that the proposed similar hour-based method produces the best forecasts with regard to
those obtained by the ANN-based approach. This is particularly true for one-month and two-month datasets
minimizing the mean error by 16.32% and 9.07% respectively. Finally, to demonstrate the potential of the
proposed approach, a comparative analysis has been carried out between the hybrid method and the most
used benchmarks in the literature, namely, the persistence method and the method based on similar days.
It has been demonstrated conclusively that the proposed model yields promising results regardless the length
of the historical dataset.

INDEX TERMS Virtual power plants, hybrid irradiance forecasting, solar power integration, similarity
matching.

NOMENCLATURE
ACRONYMS
AI artificial intelligence
ANN artificial neural network
BR Bayesian regularization
DG distributed generation
EMS energy management system
ESS energy storage system
ICT information and communication technologies
k-NN k-nearest neighbors
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LM Levenberg-Marquardt
MLP multilayer perceptron

NWP numerical weather prediction

PV photovoltaic

RES renewable energy source

RNN recurrent artificial neural network

SCG scaled conjugate gradient

SH similar hour-based method

TSA time series analysis

VPP virtual power plant
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NOTATION

BNI beam normal irradiance
[
W/m2

]
CCF cloud cover factor [-]
DHI diffuse horizontal irradiance

[
W/m2

]
GHI global horizontal irradiance

[
W/m2

]
MAE mean absolute error

[
W/m2

]
MAPE mean absolute percentage error [%]
NRMSE normalized root-mean-square error [%]
PICP Prediction Interval Coverage Probability [-]
α elevation angle [rad]
θz zenith angle [rad]
9 azimuth angle [rad]
δ declination angle [rad]
8 latitude angle [rad]
S spatial pixel resolution [km]
H cloud height [km]
(X, Y ) site location [pixel]
(RX , RY ) relative cloud position [pixel]
(PX , PY ) cloud location [pixel]
E extra-terrestrial radiation

[
W/m2

]
T temperature [◦C]
D difference vector [-]
u uncertainty threshold [km]
ω weight [-]
ED Euclidean distance [-]
t prediction hours [h]
z past hours [h]
s similar hours [h]
c candidate hours [h]
N normal distribution [-]
µ mean value [-]
σ standard deviation [-]
Yt measured data

[
W/m2

]
Ŷt forecast value

[
W/m2

]
I. INTRODUCTION
The adoption of photovoltaic (PV) power generation is rising
steeply worldwide [1]. There are several reasons behind its
success: (a) the cost of photovoltaic power has plummeted
since PV modules, storage systems and balance of system
costs have been steadily dropping [2]. This has led to an
increasing competitiveness in comparison to the conventional
non-renewable resources; (b) PV peak power generation coin-
cides with the time of higher load demand; (c) the increasing
concern about climate change has definitely spread through-
out the world and the electricity sector is playing a central
role to fully decarbonize the power system. As a result, gov-
ernments have implemented supportive policies to encourage
investments in renewable sources of energy [3]; (d) the search
for energy independence in most developed countries; and
(e) most importantly the continued progress and improved
accuracy of forecasting strategies of PV generation.

In general, power forecasting for renewable energy sources
(RESs) has posed a considerable challenge during the

last decade. This has particularly been the case for non-
predictable resources such as solar energy where the power
generation constantly fluctuates on account of meteoro-
logical factors such as cloud cover, temperature, wind
speed or humidity level, which are stochastic in nature. This
inherent uncertainty has hindered PV power integration at a
high penetration level [4], [5]. This drawback can be over-
come by including energy storage systems (ESSs) whereby
this intermittent source of energy becomes more dispatch-
able [6]–[8]. However, a more technical and economic solu-
tion has been put forward: the aggregation of several PV
systems into the so-called Virtual Power Plant (VPP) [9]–
[11]. This approach allows prosumers [12], to maximize
revenue opportunities by participating in the energy market
mechanisms and by taking part in the operation of distribution
and transmission networks in terms of the active control
and services VPPs can provide, e.g. voltage regulation and
frequency balancing, among others.

A VPP usually integrates four components [9]: (a) Dis-
tributedGeneration (DG) units based onRESs and small scale
fossil fuel conventional dispatchable generators; (b) ESSs;
(c) responsive or flexible loads; and (d) information and
communication technologies (ICTs) which play an essential
role in the technological core of a VPP: the energy manage-
ment system (EMS). The EMS coordinates the power flows
among the different units in the VPP. Through a bidirectional
communication strategy, which should be based on existing
open standards such as the IEC 61850 [13], the VPP not only
obtains information about the current state of the different
nodes but also sends the commands related to specific tar-
gets, e.g. minimization of the generation costs, maximization
of profit or reduction of greenhouse gases, to name a few.
A crucial part, in the VPP general concept, involves obtaining
accurate and rapid forecasts of the power generated by RESs
with stochastic nature [14]. The purpose of forecasts is three-
fold: firstly, the power predictions allow VPP operators to
meet regulatory requirements increasing the reliability and
efficiency of the of the VPP; secondly, accurate predictions
contribute to grid stability; and finally, more favourable trad-
ing conditions on the electricity markets can be achieved
thereby maximizing revenue.

In the literature, there is a broad range of studies aimed at
obtaining accurate forecasts. In this regard, [15]–[19] present
comprehensive reviews of well-established techniques devel-
oped to forecast PV power generation. According to dif-
ferent factors, forecasting methods can be categorized into
different groups. Regarding the forecasted parameter, two
different approaches have been implemented: direct [20] and
indirect [21]. Through historical datasets of weather con-
ditions and PV power generation, the direct method pre-
dicts the generated power. Indirect forecasting, on the other
hand, firstly predicts the solar irradiance and then, the output
power is calculated by using a performance model of the PV
plant. This approach is based on several methods including
Numerical Weather Prediction (NWP) models, image-based
systems, statistical-based alternatives and hybrid or ensemble
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methods. As for the time horizon, four categories can be
found [22], [23]: very short term forecast also called now-
casting (from 1 min to several minutes), short-term forecast
(from 1 hour to several hours), medium term forecast (from
1 month to 1 year) and long-term forecast (up to several
years). As far as the model approach is concerned, four types
have been widely used: (a) statistical models based on time
series analysis (TSA) which tries to identify patterns between
historical datasets and the output parameters; (b) artificial
intelligence (AI) models mainly based on artificial neural net-
works (ANNs); (c) physical strategies which use solar and PV
models for solar power forecasting; (d) hybrid models which
explore different algorithm combinations with the aim of
improving forecast accuracy and reducing computational bur-
den for online forecasting applications [22]. Another ongoing
challenge in solar power forecasting consists in assessing the
uncertainty of the results. To assist with this, deterministic
forecasting, also called point forecasting, produces a single
value for each timestamp within the time horizon without
considering either the upper and lower bounds or the percent-
age of confidence for each value. Probabilistic forecasting,
on the other hand, provides additional accurate information
about the expected values in terms of the range of plausible
values and the probability associated to each of them [17].
Finally, regarding the spatial horizon, forecasting techniques
can be applied to a single plant or to an ensemble with the
last option being of major interest because it usually provides
greater accuracy.

As mentioned above, the indirect forecasting approach
aims firstly at predicting the solar irradiance, mainly global
horizontal irradiance (GHI), and then by using the physical
model of the PV system, the output power is calculated. This
is the strategy used in this paper for one reason: weather-
related variables and irradiance datasets can be obtained from
ground-based meteorological stations. Likewise, cloudiness
and temperature forecasts are freely available from weather
forecast web services such that of AEMET in Spain [24].
This clearly facilitates stable and accurate forecasts even in
the initial stage of the PV system operation [21]. As opposed
to indirect forecasts, direct approaches require an extensive
historical dataset for the derivation of the power forecast
model, which reduces the possibility of accurate predictions
when a new VPP node is integrated. It would be interesting to
forecast other irradiance-related parameters such as Diffuse
Horizontal Irradiance (DHI) and Beam Normal Irradiance
(BNI). However, there are no datasets for these variables since
the GHI is usually the only parameter measured by meteo-
rological stations. That is the reason why indirect forecast-
ing methods are mainly developed for GHI predictions and
for the other irradiance-related variables are virtually non-
existent, especially for DHI [25] in which issues relating to
sensor calibration and spatial representativeness are difficult
to address [26].

Approaches to irradiance forecasting can range from the
most basic such that of similar day-based method to the most
demanding in terms of computational load such as Recurrent

Artificial Neural Networks (RNNs) which require compu-
tationally demanding training algorithms. The similar day-
based approach provides an appropriate choice for irradiance
forecasting. Similar day-based forecasting involves mining a
dataset with the aim of finding days or even hours which are
similar to the forecast day/hour in terms of certain param-
eters such as cloudiness and temperature [27]. The success
of this alternative relies on the low computational burden it
imposes on the forecast algorithm. On the other hand, ANNs
have been extensively used for daily solar irradiance fore-
casts [28]–[33]. The forecast performance of an ANN relies
on the learning algorithm along with the data available for
the training process, the transfer function, the architecture, the
nonlinear mapping capacity and the choice of input variables.
The main limitation of ANNs stems from the fact that they
required an extensive dataset for training purposes for better
generalization and accuracy. Conversely, similarity matching
works better than ANNs for short datasets, especially when a
time granularity of one hour is considered. This enhancement
is demonstrated conclusively in this work. Therefore, in the
context of a VPP and at the earlier stages of its operationwhen
limited data is available, hybrid strategies, which combine
different methods, can improve the overall forecasting accu-
racy. In general, hybrid techniques have been widely used
in diverse industrial applications [34], [35], delivering good
results.

In this paper, an irradiance short-term forecasting strategy
is presented, with the aim of facilitating the integration of
PV systems in VPPs, especially when the lack of a compre-
hensive dataset hinders the forecasting performance of the
algorithms causing inaccurate results. This strategy is based
on a hybrid approach which combines an ANN and a novel
similar hour-based forecasting algorithm. The outputs of both
forecasting methods are dynamically weighted, according to
the type of the day and some accuracy metrics, to provide
the final forecast. The forecasting approach relies on no-
cost temperature and cloudiness forecast maps generated by
the AEMET via NWP, the irradiance measurements from
a real PV installation located in the Polytechnic School of
Alcala University and different ground-based meteorological
stations emulating the role of VPP nodes.

Themain contributions of this paper are summarized as fol-
lows: (i) the proposed forecasting approach is implemented
in the context of a VPP considering the challenges it poses
and drawing on its strengths; (ii) the input data for the fore-
casting algorithms comes from weather forecasts regularly
published, free of charge, by the AEMET; (iii) the similar
hour-based approach, which produces accurate irradiance
forecasts for a reduced dataset, this usually being the case
when a new node is integrated in the VPP; and (iv) the ensem-
ble of ANNs and the similar hour-based approach which,
through a dynamically weighted function that depends on the
type of day, produces encouraging results.

The paper is organized as follows. Section II intro-
duces a general description of the irradiance forecasting
hybrid approach. In section III the data description and
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FIGURE 1. Block diagram of the forecasting approach, which consists of two parts: (i) a data pre-processing stage and (ii) the hybrid forecasting
approach. The forecasting strategy is based on ANNs and a novel similar hour-based algorithm. The final forecast is obtained by dynamically
weighting the outputs as a function of the type of the day.

pre-processing are presented. Section IV analyses in depth the
algorithms involved in the hybrid approach. The experimental
results are presented in Section V. Finally, some conclusions
are drawn in the final section.

II. IRRADIANCE FORECASTING APPROACH. GENERAL
DESCRIPTION
An important feature of irradiance forecasting models is that,
in general, they rely on extensive historical dataset. However,
when a VPP is to be operated in a cost-efficient manner at its
initial stage or when a node is first integrated in an existing
VPP, the lack of data reduces the accuracy of the day-ahead
estimation of the irradiance and, as a result, the accuracy
of the power forecasts. This leads to uncertainties, which
result in financial penalties imposed by the grid operator.
NWP-based GHI forecasts have proved to be a tool for indi-
rect solar power prediction. Furthermore, when it comes to
VPPs, an aggregation of small-scale PV installations makes
it crucial to implement an EMS, which must include accurate
forecasts such as, for instance, the NWP-based GHI forecasts
for each location or site. However, this carries a cost, which
depends on the number of sites taking part in theVPP. In order
not to incur costs, which would cause a decline in profits, free
access NWP-based cloudiness and temperaturemaps are used
in this paper. This information along with known parameters
such as the sun position, the location of the PV sites and
the extraterrestrial radiation, constitute the inputs of the GHI
forecasting hybrid approach proposed in this paper.

Fig. 1 shows the approach, which is based on ANNs and
a novel similar hour-based algorithm. The outputs of both
techniques are dynamically weighted according to the type
of the day and some accuracy metrics. Thus, uncertainties

in the 24-hour ahead final GHI forecasting, are reduced.
The forecasting method consists of two parts: (i) a data pre-
processing stage; and (ii) the hybrid forecasting approach.

i. The first part has 3 steps: (a) new data acquisition and
transformation to provide the input data of the algo-
rithm; (b) CCF calculation; and (c) data merging within
the historical dataset collected. In step (a), to manage
the ESS of some sites at night, weather forecast maps
are downloaded at 22:00 hours from [24], gathering
information on the day-ahead weather variables such
as area of cloud cover and temperature. To turn the
information from the maps into numerical data a trans-
formation process is required. In step (b) the lack of
an extensive dataset, especially at the earlier stages
of the VPP operation, makes it essential to optimize
the data available in order to provide the forecasting
algorithms with the most relevant and correlated infor-
mation. Hence, the data pre-processing stage becomes
crucial. The 24-hour-ahead cloud cover maps are used
to define a parameter, referred in this paper as Cloud
Cover Factor (CCF), Section III-A, which is also based
on the sun position. The CCF contains information
about the shadows on the PV installation generated
by a particular cloud area. In general, the shadowed
area will be larger than the corresponding cloud area.
Secondly, temperature maps are used to obtain the
temperatures for the 24-hour target forecasting period.
These temperatures can be validated by using both real
measurements taken in the PV installation and those
from the closest ground-based meteorological stations.
Finally, the extra-terrestrial radiation gives information
about the radiation at the top of the Earth’s atmosphere.

VOLUME 8, 2020 204229



G. Moreno et al.: Day-Ahead Irradiance Forecasting Strategy for the Integration of PV Systems in VPPs

In this paper it is assumed that the determining factor
for the loss of radiation is the CCF, disregarding the
influence of other factors such as the air molecules,
the distance the solar radiation has travelled through
the air mass, etc., which are assumed tomodify the GHI
in lesser proportion. This clearly introduces an estima-
tion error the predictable effect of which is somewhat
mitigated by giving more importance to those days
closer to the target day. This is achieved by considering
the temperature, since it is a parameter that depends
on the season of the year. Finally, in step (c), once
the information of the day-ahead weather variables has
been processed, the historical dataset is updated with
this information and the forecasting strategy can then
be implemented.

ii. The second part focuses on the forecasting strategy and
has 4 steps: (a) similar hour-based forecasting method;
(b) artificial neural network forecasting approach; (c)
hybrid forecasting strategy; and (d) weight estimation.
In step (a) the novel method referred to in this paper as
similar hour-based forecasting, Section IV-A, is imple-
mented. It is based on the traditional method of similar
days. The similar hour-based method performs reliably
dealing with the information extracted from a reduced
historical dataset. In step (b) the ANN, Section IV-
B, forecasts from the same dataset. However, ANNs
generalize better when an extensive historical dataset
is available. In step (c) both methods are combined,
thereby providing an accurate forecast irrespective of
the dataset size. This makes the efficient management
of a VPP possible from the very beginning or when a
new VPP node is added.
The combined GHI forecasting output is the weighted
sum of the individual GHI forecasting outputs of the
two methods explained above (d). The weights depend
on the type of the day, i.e. sunny, cloudy and overcast,
and the Mean Absolute Error (MAE). Metrics based on
mean and squared values have been selected to assess
the performance accuracy because they are the most
commonly used indexes in solar radiation techniques
[36]. Error mean values are used for selection purposes,
to minimize the forecasting error of each node compris-
ing the VPP, irrespective of the length of the database
considered, instead of penalizing atypical values. It is
worth mentioning that results did not change exces-
sively with the inclusion of atypical values. The type of
the day is defined bymeans of the CCF, which shows to
what extent a cloud area on the NWP-based cloudiness
maps creates shadows on the PV installation.
The weights are calculated by using (1) where ds, dc,
and do, are mutually exclusive flags which can take
the values of either 0 or 1, representing with a value
of 1, the type of day determined by the CCF, i.e. sunny,
ds = 1, cloudy, dc = 1, or overcast, do = 1, and ωd
is the value of the weights which minimize the MAE
in past hybrid predictions obtained for this type of day.

These weights are updated daily by incorporating the
latest andmost up-to-date information from the dataset,
thereby improving the accuracy of forecasting results.

ωSH = dsωds + dcωdc + doωdo
ωANN = 1− ωSH (1)

III. DATA DESCRIPTION AND PRE-PROCESSING
As mentioned above, the inputs to the algorithm are based on
weather forecasts, provided by the AEMET at different spa-
tial and temporal scales, and the extra-terrestrial radiation, E ,
which is deterministic and can be evaluated by using known
expressions. For instance, Duffie and Beckman’s equation
was considered to determine the extra-terrestrial radiation.
Nevertheless, other expressions available in the literature [37]
are equally accurate.

The weather forecasts are based on the NWP model
HARMONIE-AROME. This model is commonly utilized for
weather forecasts in Spain and other European countries [38].
NWP models include GHI and DNI forecasts, both being
necessary to model irradiance on the inclined surfaces of the
solar panels. However, the cost of purchasing this data is a
deterrent for small-scale PV systems. Other weather forecasts
include cloudiness, temperature, pressure and wind, all of
them in the shape of weather maps. Cloudiness forecasts
contain relevant information regarding irradiance. To turn this
information into numerical values some data pre-processing
must be applied. The term used in this paper for these numer-
ical values is the above-mentioned cloud cover factor (CCF),
in order not to confuse it with other parameters such as cloudi-
ness index, which is modelled in a different way. Studies
which rely on images from satellite or ground level cameras to
find the shadows cast by the clouds already exist [39]–[42].
In this regard, the CCF provides the same information but
without cost.

A. CLOUD COVER FACTOR EVALUATION FROM
CLOUDINESS FORECAST MAPS.
The CCF is dimensionless and represents, in the context of
the weather maps, the amount of cloud cover per pixel in
each cloudiness forecast map, showing a negative correlation
with the GHI, being 0 when the sunlight is not blocked by
clouds and 1 when the sun is totally covered. At a particular
time of day, e.g. 22:00, the 24 NWP-based cloudiness images,
representing the cloudiness forecast for the next 24 hours, are
downloaded from the AEMET web service. Fig. 2 represents
a zoom area of the cloudiness forecast for the Community
of Madrid (centre of the map) at 16:00 on March 1st, 2020.
This image was downloaded on February 29th, 2020. The
colormap on the right represents the percentage of cloudiness.
The spatial resolution in the map is given by the pixel size in
the image, being represented by a square with sides approxi-
mately equal to 2.5km.

Another important parameter for the CCF calculation is
the cloud height. Unfortunately, this parameter cannot be
obtained from Fig. 2 and some data pre-processing must be
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FIGURE 2. NWP-based cloudiness forecast map for the Community of
Madrid (center of the map), from the spanish website, 
AEMET. Values
range from 0% (absence of clouds) to 100% (heavy clouds).

done to identify those clouds that prevent the sun radiation
from reaching the site, i.e. the clouds between the sun and the
site. Therefore, both the cloud location and the sun’s position
are required. Fig. 3 shows the hourly position of the sun at the
spring equinox for a site located in the Northern Hemisphere,
and the most relevant variables used for the CCF evaluation.
For the site-related pixels in the map, the aim is to quantify
the CCF at a particular time of the day. Considering that the
site location is known (X, Y ), those pixels in the map covered
by the clouds (PX , PY ) can be worked out, as a function of
the cloud height (H ), by using the following equations:

PX = X + RX ≈ X +
H
S
sin (ψ)
tan (α)

(2)

PY = Y + RY ≈ Y +
H
S
cos (ψ)
tan (α)

(3)

where RX and RY represent the relative position of the pixel
with respect to the site, S is the spatial resolution in the map
(2.5km), and α and ψ are the elevation and azimuth angles,
respectively.

Since the cloud height cannot be extracted from the cloudi-
ness forecast, (2) and (3) are evaluated with the greatest cloud
height considered (15 km) [43]. By doing so, the cloudiness
values of the pixels on the way from (X, Y) to (PX , PY ) are
evaluated and the average of those values is stored.

However, the CCF can vary widely over time when clouds
are present on the map. To reduce this variation, a smoothing
procedure based on a parameter called uncertainty threshold
(u) is applied. This variable is used to expand the selected
area in every direction, selecting a larger area on the map to
obtain a greater number of pixels that provides a smoother
variation of CCF values and enables the identification of the
type of the day. The value of u is selected through an iterative
process in which the threshold is gradually increased, i.e. the
selected area on the map is expanded. The process terminates
when the CCF variation is smooth and its value is consis-
tent with the GHI measured. The value of u that minimizes
the forecasting error was set to 8 pixels, covering an area
of 20 km.

FIGURE 3. Relevant variables for the CCF assessment with respect to the
sun position and the site location.

IV. HYBRID APPROACH FOR THE HOURLY GHI
FORECASTING
In this section, the similar hour-based and ANN-based meth-
ods comprising the hybrid approach for GHI forecasting are
explained.

A. SIMILAR HOUR-BASED APPROACH
The underlying behaviour behind meteorological events is
difficult to model although it can be assumed that weather
conditions repeat themselves in time. Therefore, searching
for similarities is the key to predicting when certain weather
conditions will repeat in the future.

A similar day-based approach intrinsically considers the
weather conditions of a whole day to forecast the GHI in
a moment of the day. Since the weather conditions do not
follow a marked trend during the day, it seems perfectly
reasonable to use the meteorological variables forecast at
the target hour for similarity matching. Furthermore, if the
candidates for the similarity study also depend on the extra-
terrestrial radiation, which replaces the conventional time
variables for the day and hour, the number of potential hours
to be considered is significantly increased.

In the model proposed in this paper, for similarity match-
ing, a time-window of three hours around the forecast hour
is considered, because the distance travelled by the sunlight
through the atmosphere depends on the position of the sun in
the sky (elevation and azimuth) which, in turn, influences in
the GHI loss variation Therefore, the same hour as that of the
target hour along with the adjacent hours, i.e. the previous
and the following one, are extracted from each day in the
historical dataset since these hours are similar in terms of the
sun’s position in the sky. The Sun position for a particular
hour progressively changes as the days go by, becoming
closer to the Sun position for the adjacent hours. However,
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FIGURE 4. Flowchart of the proposed similar-hour based forecasting
algorithm for a day-ahead prediction.

this strategy requires the removal of the hours with highly
dissimilar values for the extra-terrestrial radiation. To that
end, only the hours with values for the extra-terrestrial radi-
ation, within a range of ±10% from that of the forecast hour
are selected as potential candidates for similar hours. This
strategy is referred to as similar hour-based approach in this
work, and it makes a significant difference with respect to
the day-based version. This is one of the main contributions
of this paper since, to the best of the author’s knowledge, this
is the first time this approach has been used for irradiance
forecasting. This algorithm, in contrast to the similar day-
based methods, uses extra-terrestrial radiation to filter the
most important time instants for the prediction, and delivers
outstanding results in the early stage of the VPP node. Fur-
thermore, the accuracy of this method is improved as new
VPP nodes are aggregated, reducing the global error to a
greater extent compared to other forecasting techniques.

The similar hour-based methodology is depicted in the
flowchart of Fig. 4. Once the candidate hours (c) have been
chosen from the historical dataset (z), the algorithm searches
for similarities with the forecast hour (t) in terms of the
CCF and temperature (T ). Temperatures annually vary from
minimum values in winter to maximum values in summer.
Needless to say, the further back in time the potential candi-
dates for similar hour are located, the less likely it is that the
hours become similar hours.

The Euclidean distance (ED) is used as a measure of
similarity. Firstly, the difference vectors (D) are obtained by
evaluating the differences between themeteorological param-
eters, i.e. the CCF and the temperature (T ), for the forecast
hour (t) and those from the candidate hours (c). As justified

above, the adjacent hours, i.e. (t − 1) and (t + 1), to the
forecast hour (t) for the difference vector (D) calculation are
also considered. As a result, a total of 6 variables are evaluated
for the difference vectors (D), whose contribution to the simi-
larity matching process is not, however, the same. Therefore,
in a second step, a set of weights (ω), representing the relative
importance the similar hour-based algorithm gives to each
difference vector (D), is used. The selection of theweights (ω)
is based on the principle of minimum error for the historical
dataset of past forecasts, which are updated daily. Finally,
the Euclidean weighted distance (ED) is calculated to find the
most similar hours in the past to the forecast hour (t). Since
NWP models have an inherent error that can adversely affect
the forecast accuracy, the irradiance of the three candidates
with the smallest Euclidean distance (ED) are averaged and
taken as the final solution. Before the average can be calcu-
lated, an adjustment in the values of the irradiance of the three
candidates is necessary. This adjustment is proportional to the
difference between the extra-terrestrial radiation (E) for the
chosen hour and that of the forecast hour (t). The algorithm
iteratively repeats the similarity matching as long as the extra-
terrestrial radiation (E) is greater than zero for the forecast
hour (t).

B. ARTIFICIAL NEURAL NETWORK FORECASTING
The second forecast method making up the hybrid approach
consists of an ANN, which produces accurate forecasts from
extensive datasets. This clearly complements the similar
hour-based method, which yields better results for a reduced
dataset for which the ANN performance is only moderate.
In this work, a multilayer perceptron (MLP) has been devel-
oped due to its simplicity and good overall performance. This
type of ANN is the most widely used technique for day-
ahead irradiance forecasting [44], excluding RNN because
the time horizon is too large for a proper forecast using the
observations as input [45] and the length of the dataset is too
short to obtain patterns in a day-ahead forecasting [32].

The neural network has three layers: (i) an input layer has
7 neurons one for each predictor variable, namely, the CCF
and the temperature at the time (t−1), t and (t+1), being t the
forecast time, and the extra-terrestrial radiation; (ii) a hidden
layer with 10 neurons which minimizes the forecast error
by using a logarithmic sigmoidal activation function; and
(iii) and output layer with one neuron with a linear transfer
function which provides hourly GHI forecasting values.

The dataset comprises data from December 4th, 2019 to
May 31st, 2020. To simulate the real scenario of the initial
stage of a VPP, the ANN is trained daily with the historical
dataset collected to the date under consideration. For opera-
tional purposes, the minimum amount of days in the dataset
is established as 7 and the training and validation process
is repeated every day. Consequently, the training dataset is
variable and increases as the VPP operation time increases
and more data is available.

The number of hidden layers is evaluated through cross-
validation using the dataset available. Adding more layers
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TABLE 1. MLP ANN characteristics of the hybrid method forecasting.

does not yield better results, but instead increases compu-
tational time. The Levenberg-Marquardt (LM) algorithm is
used for the ANN learning process, because it ensures greater
accuracy in comparison to other alternatives such as LM,
Bayesian Regularization (BR) and Scaled Conjugate Gradi-
ent (SCG).

A sensitivity analysis of the ANN has also been carried
out, to determine the relationship between the inputs and the
output. As is to be expected, the extra-terrestrial radiation
provides the greatest amount of information. The CCF is
the second most important input, followed by the temperature
(T). Temperature measured at time instants (t+1) and (t-1)
are also relevant on account of the different patterns during
mornings and evenings: depending on the temperature gradi-
ent, the ANN can recognize both periods of time.

To achieve better generalization, a popular technique in the
context of short dataset is implemented, [32], [46]. It consists
in training several independent ANNs for the same target
variable. The average of the outputs of the set of independent
ANNs is taken as the final prediction. Assuming that the error
follows a normal distributionN (µ, σ )∼N (0, 1), the average
of the output values of up to 30 independent ANNs allows the
prediction to be correctly validated. The characteristics of the
ANN are summarized in Table 1.

C. COMBINING THE SIMILAR HOUR-BASED ALGORITHM
WITH ANN-BASED FORECASTING
Once the forecasting methods have been introduced,
the hybrid approach is explained in this section. The hybrid
method consists in evaluating the final prediction as a
weighted value of the individual forecasting outputs as shown
in (4). The weights are determined as a function of the type of
the day (sunny, cloudy and overcast), which depends on the
values of the CCF at the forecast hour. By using the k-nearest

neighbors (k-NN) algorithm, the days are classified taking
into account the CCF and the corresponding set of weights
are associated with the type of day. This simple classification
algorithm allows the weight selection to be carried out auto-
matically and independently for each site, selecting the set of
weights that minimizes the MAE of previous forecasts.

GHI = ωSHGHISH + (1− ωSH )GHIANN (4)

The weights are updated daily for each type of day to
optimize the final forecast. The historical data for the weight
evaluation consists of up to a 2-month slide window with the
most recent data. There are two reasons behind this value for
the window width: (a) ANN performance improves as more
data is available, which means that previous forecast should
be disregarded; (b) it is expected that the strong seasonality
in the weather directly influences the weights.

The novelty of the hybrid approach lies in the development
of a model which has the ability to adapt itself to the amount
of historical data. As previously stated, for a reduced dataset,
the similar hour-basedmethod outperformsANN-based strat-
egy, whereas the converse applies for larger datasets. Com-
bining both methods, therefore, an accurate prediction can be
obtained irrespective of the size of the dataset.

Initially, the similar hour-based forecasting output has a
great influence on the prediction because this method con-
siders extra-terrestrial radiation to filter the most important
time instants for the prediction. When more data is available,
the ANN-based forecasting gains more influence. In this way,
a smooth transition of the weights is achieved.

V. RESULTS
This section presents the results obtained from the implemen-
tation of the similar hour-based and hybrid GHI forecasting
strategies in two different scenarios: firstly, the approach is
applied to an experimental setup (a real PV installation) that
plays the role of a VPP node; and secondly, an aggregation of
different PV installations in the shape of ground-basedmeteo-
rological stations making up a VPP, is considered. The results
from using other techniques, such as the persistence model,
the similar day-based approach and neural networks, are also
included for comparison purposes, proving the effectiveness
of the proposed approaches.

A. EVALUATION OF THE HYBRID FORECASTING
APPROACH FOR A REAL VPP NODE
To validate the proposed algorithm in the context of a single
VPP node scenario, measurements taken from a recently
installed photovoltaic facility located at the Polytechnic
School of the University of Alcalá (Spain) are used. These
measurements, mainly comprising GHI and temperature val-
ues, were recorded during the period between December 4th,
2019 to May 31st, 2020, and constitute the 6-month period
of historical dataset for the algorithm validation. The first
forecast is provided by using only a week of the historical
dataset, which allows GHI predictions to be made from the
earliest stages of the VPP node operation. The 24-hour ahead
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GHI forecasting process is repeated on a daily basis, updating
the data used in the process, with the collected data of that day.
This process is carried out until all the data in the historical
dataset is used. In this way, the performance of the prediction
algorithm is assessed daily starting from the second week of
the PV system operation until the 6-month period is covered.

To analyse the accuracy of the prediction algorithm,
the overall error is calculated using the following perfor-
mance indicators:

MAPE =

1
T

T∑
t=1

∣∣∣Yt − Ŷt ∣∣∣
1
T

T∑
t=1

Yt

100[%] (5)

NRMSE =

√
1
T

T∑
t=1

(Yt − Ŷt )
2

1
T

T∑
t=1

Yt

100[%] (6)

where Yt is the measured data, Ŷt is the forecast value and
T is the length of the time series. MAPE shows the nor-
malized average error between the measurements and the
forecast, while NRMSE represents the normalized square
error. The normalisation parameter used is the average of
the measurements. Normalized indicators are used due to the
fact that they allow a fair comparison of the results obtained
as the validation is developed, since the dependence on the
magnitude is removed. The use of both indicators is justified
on the grounds that NRMSE is more sensitive to outliers than
MAPE, which allows for a more comprehensive comparative
study to be carried out.

In order to validate the benefits of the proposed forecasting
strategy, described in section IV-C, a comparison is made
with other widely used forecasting methods, as well as with
the proposed similar hour-based approach. The following
methods are analysed:

• Persistence model: it is the simplest method which
assumes that the 24-hour ahead GHI forecast is equal
to the GHI measurements taken the previous day [32].

• Similar day-based approach: this method calculates the
difference vectors for the CCF and the temperature
considering the weather forecasting of the day to be
predicted and the previous 14 days within the historical
dataset. The selection of the number of days is not arbi-
trary and aims at minimizing the error. The Euclidean
distance of all the difference vectors is then calculated
for each of the 14 days and the day that minimizes this
distance is chosen as the following day’s GHI prediction
[47], [48].

• Proposed similar hour-based algorithm, which is
described in detail in Section IV-A and separately imple-
mented without hybridization.

• ANN-based forecasting approach, described in
Section IV-B, and individually evaluated.

FIGURE 5. Forecasting errors of the methods under study (persistence,
similar day, similar hour, neural network and hybrid model proposed) for
the Alcala University site in terms of (a) MAPE and (b) NRMSE.

• Proposed Hybrid approach, described in detail in
Section IV-C.

Fig. 5 depicts the forecast errors, using the MAPE and
NRMSE indexes, depending on the days from the historical
dataset employed. In order to improve the graph visualization,
the highest errors made by certain forecasting methods when
implemented for a reduced amount of historical data, are
neglected. The maximum values in the neglected period for
the persistence model, and similar day-based and ANN-based
approaches are for the MAPE = [96.8 66.2 69.7] and for the
NRMSE = [126.2 116.4 85.1].

From the figure it can be seen that the persistence method,
on account of its simplicity, is the one that introduces
the greatest error. The similar day-based forecast signifi-
cantly improves the persistence prediction achieving a similar
degree of accuracy to that of the ANN-based forecast for a
reduced amount of historical data. However, as more data
is available, the performance enhancement of the ANN is
noticeable, especially with respect to that of similar day-
based forecasting. The proposed similar hour-based method
performs much better than the other methods in the case
where little historical data is available. As the amount of
historical data increases, it can be appreciated that its per-
formance keeps improving relative to the similar day-based
approach, and with similar accuracy to that of the ANN-based

204234 VOLUME 8, 2020



G. Moreno et al.: Day-Ahead Irradiance Forecasting Strategy for the Integration of PV Systems in VPPs

FIGURE 6. Weights used in the hybrid method for the ANN as a function
of the number of days in the historical dataset, for the Alcala University
site. It can be seen that the weights progressively give more importance
to the ANN output, following a marked trend.

method. On the other hand, the ANN-based forecasts deliver
better results than the similar hour-based method when a
sufficiently extensive historical dataset is available, this being
the reason that the ANN can generalize better. Finally,
the hybrid method presented in this paper practically out-
performs all the previous ones irrespective of the amount of
data, because it manages to combine the advantages of neural
networks and the similar hour matching.

The proposed hybrid method has been adjusted for dif-
ferent weights depending on the type of day as described
in section 4.3. These weights evolve as the historical record
increases as shown in Fig. 6.

Fig. 6 demonstrates how, as the historical dataset increases,
the neuronal network carries more weight in the final pre-
diction. This is justified by analysing Fig. 5(a), in which
the accuracy of the ANN-based technique compared to that
of the similar hour-based approach, gradually improves as
the amount of historical data increases. This effect is more
significant on cloudy and overcast days, since on clear sky
days the performance of the similar hour-based technique is
slightly better than that of the ANN-based approach. This

evolution is noticeable by analyzing the mean weight of the
three day types in which the initial weight associated to the
ANN output starts from approximatelyωANN= 0.04 reaching
up to approximately ωANN= 0.51 when the total historical
dataset is completed.

Finally, Fig. 7 shows the GHI forecasting output of each
method for three consecutive days between 14th and 16th
March 2020. These days have been deliberately chosen
because they represent the three types of day considered in the
hybrid method. Moreover, in this case, approximately half of
the historical dataset is employed, 102 days. It is observed that
the error produced by all the forecasting methods increases
as the cloudiness grows. This is because cloudy days are
the most complicated to forecast since clouds have a strong
impact on the GHI and it is difficult to predict their exact loca-
tion for a 24-hour horizon. However, it can be seen from the
results, that with the proposed hybrid strategy a considerable
improvement in the forecast accuracy is achieved.

FIGURE 7. GHI forecasting values at the Alcala University site for the
different methods, over three consecutive days, showing different
weather conditions.

B. EVALUATION OF THE HYBRID FORECASTING
APPROACH FOR AN EMULATED VPP
The potential of the proposed forecasting algorithms having
already been demonstrated for a single photovoltaic instal-
lation, i.e. a single VPP node, in this section additional
improvements are described for a set of photovoltaic facili-
ties, grouped under the concept of VPP. As no additional pho-
tovoltaic installations are currently available, 6 ground-based
meteorological stations located in the Community of Madrid
in Spain (see Fig. 8) are used to emulate the new nodes.
This is possible because meteorological stations publish, free
of charge, all the required data utilized in the forecasting
approach. The location of the stations is depicted in Fig. 8.

As in the previous section, theMAPE and NRMSE indexes
are used to quantify the accuracy of the forecast outcomes
for all the methods previously presented. The main difference
is that in this case, once the GHI forecasts are produced for
each station, all the VPP GHI variables are calculated by
adding the corresponding GHI forecasts from each station,
including the PV installation. In this way, the individual GHI
measurements taken at each station, i.e. node of the VPP, are
compared to the total GHI forecast.

Fig. 9 displays the evolution of the GHI forecasting error,
for the ensemble of stations, quantified by the MAPE and
NRMSE indexes. As depicted in Fig. 5, the graphs do not
show the highest errors made by certain methods for the
reason stated above. The maximum values in this omitted
area for the persistence model, and for the similar day-based
and ANN-based approaches are MAPE = [93.263.5 62.8]
and NRMSE = [119.7 110.774.5]. As in the case of a single
installation, it can be seen that the persistencemethod exhibits
the poorest performance followed by the similar day-based
approach. TheANN-basedmethod improves as the amount of
historical data increases. In this case, however, it is not able
to outperform the proposed method based on similar hours,
irrespective the number of the days in the historical dataset.
The novel methods proposed in this paper, i.e. similar hour-
based and hybrid, achieve the highest accuracy regardless of
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FIGURE 8. Location of the different ground-based meteorological
stations in the Community of Madrid used in the study.

the number of days in the dataset, with the exception of the
hybrid method, in which accuracy slightly increases as the
historical dataset builds up.

To analyze the improvement of the proposed forecasting
algorithms within the VPP scheme, the results obtained in
each node are presented in Table 2. It can be appreciated
that all the nodes in the VPP based on the meteorological
stations, have similar performance to the one of the PV
installation shown in Section V-A, in which the method based
on similar hours introduces higher forecast error, in terms of
MAPE and NRMSE, than the method based on ANNs when
there is enough historical data available. However, when
the similar hour-based GHI forecast for the entire VPP is
calculated, the deviations from the GHI actual values, in the
individual predictions for each node, tend to be compen-
sated to a greater extent than when the ANN-based method
is used.

This is because the method based on similar hours gen-
eralizes as a function of the node being considered and,
consequently it can be assumed that the forecast errors follow
different distributions. This makes certain errors partially
compensate with each other when the GHI forecasts of the
ensemble of VPP nodes are added. In contrast to the similar
hour-based algorithm, in the ANN-based model the rela-
tionship between the inputs and the output identifies similar
GHI patterns irrespective of the VPP node and, as a result,
no error compensation takes place. The MAPE reduction
of the similar hour-based strategy comparing the arithmetic
mean of the 7 VPP nodes and the whole VPP is 3.31%, and in
the case of NRMSE is 5.40%. As for the neural networks the

FIGURE 9. Forecasting error of the methods under study (persistence,
similar day, similar hour, neural network and hybrid model proposed) for
the VPP in terms of (a) MAPE and (b) NRMSE.

reduction is 1.58% for theMAPE and 2.53% for the NRMSE.
In the hybrid method, this reduction ranges between the two
previous values as expected, 2.38% for the MAPE and 3.75%
for the NRMSE.

Fig. 10 presents the average weight of all the nodes con-
sidered according to the historical dataset and the type of
day. Although this average weight is not directly applied,
because the set of weights for each VPP node are calculated
individually, it provides an insight about how the weights
for the different nodes evolve. It can be appreciated that this
evolution is very similar to that of a single node shown in the
Fig. 6. The mean weight for the three day types and the 7 VPP
nodes evolves from an initial weight of ωANN = 0.10 to
approximately ωANN = 0.60 when the total historical dataset
is completed.

Finally, Fig. 11 shows the GHI forecasting for the entire
VPP and for each method considering three days of the
historical dataset: from 14th to 16th March 2020. These days
are representative of the three types of day considered in
the hybrid method. As in the case of one VPP node, it can
be seen that the error produced in all the forecasting meth-
ods increases as the cloudiness grows. However, it can be
observed to what extent, better forecasts are obtained with
the proposed methods.
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TABLE 2. Quantification of MAPE and NRMSE after 180 days of historical data.

FIGURE 10. ANN mean weight for the VPP as a function of the day type
and the historical data. It can be seen that weights give progressively
more importance to the forecast provided by the ANN.

FIGURE 11. GHI accumulated forecasting in the VPP for the different
methods and for three consecutive days, showing different weather
conditions.

C. UNCERTAINTY QUANTIFICATION
It is very important to specify a probabilistic range for the
predictions, in order to assess the degree of uncertainty. To
this purpose, in this section, statistical prediction intervals are
considered based on the work carried out in [49].

Firstly, the dataset is split into 10 subsets as a function of
the CCF. Looking at the error distribution of the hybrid-based
forecast in Fig. 12, a Laplacian distribution can be reasonably
assumed for each subset. Secondly, under this assumption,
a prediction interval for each subset is defined, Ipred±ps,

FIGURE 12. Distribution of the error for every subset considered.
To create prediction intervals in the forecasting strategy, a Laplace
distribution is assumed.

TABLE 3. Prediction intervals (ps) for each subset and for the whole
dataset, and their PICP.

in terms of the MAE, and the percentile p of probability
(1−s) is considered, knowing that ps= ±MAE . ln (2s) for a
Laplacian distribution.

In this particular case, the reliability of the prediction inter-
val under a confidence value of 60%(s = 0.2), is evaluated.
The prediction interval, ps, which is determined as a function
of the MAE of each subset, is then calculated. With this
interval, the Prediction Interval Coverage Probability (PICP)
[50], can be worked out. The PICP indicates the percentage
of values that are inside the interval, and it needs to be close
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to the confidence level.

PICP =
1
T

T∑
t=1

εt ,whereεi =

{
1 if xi ∈ [Li,Ui]
0 if xi /∈ [Li,Ui]

(7)

In Table 3, it can be observed that the PICP is close to the
confidence level for every subset. It can also be appreciated
that the prediction interval increases with the presence of
clouds, showing that overcast days are the most difficult days
to forecast.

VI. CONCLUSION
Solar irradiance forecasts are of paramount importance for
the integration of PV systems in a VPP in an effective way.
However accurate irradiance predictions generally rely on
extensive datasets, which are not always available when a
VPP begins operating or when a new VPP is first integrated.
Furthermore, data access usually carries a cost, which is
driven up as the number of VPP increases leading to a decline
in profits. There is not a simple way to overcome these lim-
itations with only one approach which performs efficiently
irrespective of the dataset size. For this reason, this paper
presents a hybrid approach comprising two methods based
on similar hours and ANNs. The outputs of both forecasting
methods are dynamically weighted, according to the type
of the day (sunny, cloudy and overcast) and the MAE. The
proposed forecasting approach uses temperature and cloudi-
ness forecast maps freely generated by the AEMET via NWP
alongwith irradiancemeasurements obtained from both a real
PV installation located in the Polytechnic School of Alcala
University and a group of different ground-basedmeteorolog-
ical stations operating in the Community of Madrid (Spain).
Both, the similar hour-based approach and the hybrid method
have demonstrated better performance than widely employed
forecasting techniques, namely persistence method, and sim-
ilar day-based and ANN-based approaches, when limited
historical data is available. For a 7-node VPP configuration
and for a 6-month period of historical data, a MAPE of
21.64% and a NRMSE of 31.69% for the similar hour-based
technique, and a MAPE of 21.37% and a NRMSE of 30.99%
for the hybrid strategy are obtained.

Under a reduced historical dataset, the results show that
the proposed similar hour-based method produces the best
forecasts relative to those obtained by the ANN-based
approach. For one-month and two-month datasets the mean
error is reduced by 16.32% and 9.07% respectively. Finally,
to demonstrate the potential of the proposed approach, a com-
parative analysis between the hybrid method and the most
commonly used benchmarks in the literature, namely, the per-
sistence method and the method based on similar days, has
been carried out. It has been concluded that the proposed
model yields promising results regardless the length of the
historical dataset.

Future work will address the estimation of the power gen-
erated by the PV facilities within the structure of the VPP.
To this end, the forecasting techniques presented in this paper

will be used, weighting each station according to the rated
power. Finally, as the historical dataset of the installation
increases in length, the computational time of the algorithm
will grow in importance, augmenting the interest in the imple-
mentation of advance optimization techniques for some steps
in the algorithm such as the calculation of the weights.
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