
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017 1

A Machine Learning-based Methodology for
in-Process Fluid Characterisation with Photonic

Sensors
Rodrigo Marino, Student Member, IEEE, Sergio Quintero, Andres Otero, Member, IEEE, Jose M.

Lanza-Gutierrez, and Miguel Holgado

Abstract— This paper proposes a novel methodology for run-time
fluid characterization through the application of machine learning
techniques. It aims to integrate sophisticated multi-dimensional
photonic sensors inside the chemical processes, following the
Industry 4.0 paradigm. Currently, this analysis is done offline
in laboratory environments, which increases the decision-making
times. As an alternative, the proposed method tunes the spectral-
based machine learning solutions to the requirements of each case
enabling the integration of compound detection systems at the
computing edge. It includes a novel feature selection strategy that
combines filters and wrappers, namely Wavelength-based Hybrid
Feature Selection, to select the relevant information of the spectrum
(i.e., the relevant wavelengths). This technique allows providing different trade-offs involving the spectrum dimensionality,
complexity, and detection quality. In terms of execution time, the provided solutions outperform the state-of-the-art up to
61.78 times using less than 99% of the wavelengths while maintaining the same detection accuracy. Also, these solutions
were tested in a real-world edge platform, decreasing up to 68.57 times the energy consumption for an ethanol detection
use case.

Index Terms— Chemical Monitoring, Edge Computing, Feature Selection, Machine Learning, Optical Sensors.

I. INTRODUCTION

PROCESS monitoring plays a significant role in Indus-
try 4.0 since it allows fault detection, prevents harmful

accidents, and minimizes quality losses in the final products
[1]. In these smart factories, the production stage adapts
continuously according to the information provided by the
processing monitoring. For some physicochemical parameters,
such as temperature or pressure, conventional gauges usually
offer a direct mathematical model between the traced process
variables and the physical phenomena measured by the trans-
ducer. However, the development of sophisticated acquisition
systems has increased data dimensionality and complexity,
making it difficult to provide a mathematical model relating it
to the manufacturing process variables. Artificial Intelligence
(AI) techniques based on Machine Learning (ML) have gained
importance to process multi-dimensional measurements in
this scenario [2]. However, ML-based processing solutions
have high computational demands, which forces moving data
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processing to centralized in-factory or even remote computing
clouds. This fact goes against the decentralization objective
in Industry 4.0 paradigm, which stands for keeping data
processing techniques near the sensors since the response time
and costs are reduced when the decision-making tasks of the
operations are close to the production lines [3].

In the particular case of the chemical industry, product
quality is evaluated typically in specialized laboratories, usu-
ally placed far from the operation field. Thus, manufacturers
usually require to send the laboratory multiple samples of
the products and byproducts generated during the fabrication
process to analyze their chemical composition. Performing the
analytics in the laboratory includes some shortcomings, such
as the process is error-prone due to high human intervention,
time-consuming, and expensive due to the usage of specialized
instrumentation and highly trained personnel [4], [5]. This
analysis process feeds directly into the decision-making tasks
affecting its performance. Therefore, moving the instrumenta-
tion from the laboratory to the operation field is a fundamental
challenge in the chemical industry.

In this regard, optical sensors based on micro and nanos-
tructures could be the technology required to move the in-
strumentation to the operation field thanks to their reduced
size, excellent sensitivity, adequate resolution, short response
time, and excellent usability [6]. In contraposition to standard
optical sensors based on classical spectroscopy techniques,
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those based on micro and nanostructures decreases the cost
of the equipment in exchange for poorer sensing capabilities,
making sensor factory distribution a viable option. Note that
whereas conventional optical transducers pursue a general
chemical analysis, transducers based on nanostructures can be
specialized to detect specific compounds for each particular
stage of the process [7]. However, optical transducer improve-
ments alone are not enough to enable distributed run-time
process monitoring of fluid media, as will be discussed below.

In the literature, there is a wide variety of optical sen-
sors based on micro and nanostructures. For instance, ring
resonators [8], surface plasmon resonators [9], and Mach-
Zehnder, Young, and Fabry-Perot interferometers [6]. In the
particular case of Fabry-Perot interferometers, there is one
especially appropriate for in-field implementation thanks to
its easy alignment and high endurance. These transducers,
dubbed as Resonant NanoPillars (RNPs) arrays, produce a
sensing signal composed of the spectral response at a certain
wavelength range, usually in the visible field [10]. Therefore,
output data is a high dimensional vector, which hards to
extract relevant information to the autonomous decision taken
in the application. Thus, it is necessary to count on spe-
cific near-sensor processing algorithms to translate the multi-
dimensional measurements into useful information. In this
regard, this paper proposes using near-sensor ML techniques
to extract patterns from the gathered RNPs spectral responses
and correlate them with the desired property, particularly the
amount of a specific compound in a fluid media. Embedded
ML techniques for optical transducers within an edge device
reduce the system latency and enable early fault detection
strategies [10]. Moreover, the distribution of these advanced
sensing systems alongside the factory would increase the
productivity and the robustness of the whole process.

Thus, a framework termed the Wavelength-based Hybrid
Feature Selection (WHFS) method is proposed in this paper
as a feature selection technique for optical transducer wave-
lengths. It aims at identifying the more relevant wavelengths
from the spectral response produced by the RNPs. By rele-
vance, the authors mean how each wavelength, also known as
a feature using ML terminology, correlates with the property
to be predicted. The method ensures that the wavelengths
selected are distributed alongside the spectral response and
that they are not concentrated in a particular bandwidth region,
guaranteeing the diversity of the obtained information. Also,
ordered features are removed increasingly to ensure that the
minimum level of performance quality is maintained [11]. The
proposal is fully scalable. Different sets of wavelengths and
trained ML models are provided at design time, so the designer
might choose the solution that fits application needs better,
depending on the expected quality and the available processing
resources.

As the use case in this work, the percentage identification
of ethanol existing in a fluid matrix was selected. The spectral
response during the experimentation was registered using the
RNPs optical transducers. This specific optical technology us-
age does not compromise the proposed method generality be-
cause no particular assumption was taken about the industrial
process and the optical transducer. Compared to the state-of-

the-art [10], the solutions provided in this paper achieve equal
performance metrics, even improving them in particular cases.
However, the solutions proposed in this paper outperform the
state-of-the-art in terms of the number of wavelengths used,
needing less than 99 % of the available wavelengths to obtain
the same performance metrics values, resulting in less energy
cost for the capturing process. Furthermore, the feasibility of
ethanol detection during run-time according to the proposal is
proved by implementing the selected solutions in a low-power
edge computer.

Therefore, this paper presents the following contributions. i)
A novel proposal for compound detection based on ML tech-
niques using nano-structure optical transducers is presented. ii)
A wavelength-based ML solution framework for wavelengths
selection according to the application requirements is pro-
posed. iii) The achieved solutions obtained by the framework
are implemented in a low-power edge device, that is, the
trained ML models for the selected particular wavelengths.

The rest of this paper is organized as follows. In Section II,
state-of-the-art of photonic transducers and ML photonic data
are reviewed. In Section III, the proposed method is detailed.
In Section IV, the dataset and the evaluation procedure are
depicted, whereas in Section V the results of the evaluation
are presented. In Section VI concluding remarks and future
perspectives are highlighted.

II. STATE-OF-THE-ART

This section first reviews significant examples showing the
use of photonic transducers to analyze fluid media. Second, a
survey of the recent studies in edge-compatible ML techniques
for compound detection using photonic sensors is provided.

A. Photonic Transducers for Chemical Analysis
Photonic sensors offer the resolution, response-time, and

usability required for in-field chemical analysis of fluid sam-
ples [4], [12]. Besides, they are immune to electromagnetic
noise, simplifying its installation and usability in certain
environments. In this sensing technology, the properties of the
chemical sample modify the sensor response when stimulated
with specific types of light. Thereby, these transducers can
be interrogated in different wavebands to extract specific
properties, including Mid-InfraRed (MIR) [4], Near-InfraRed
(NIR) [13], visible [14], or UltraViolet (UV) [12].

Commercial optical sensing equipment, as reported in [4],
[12] and [15], is oriented to be installed in specialized lab-
oratories, where they are employed with different types of
samples and analyses. This flexibility implies a high cost and
complexity of the system, meaning that this equipment can
not be integrated into real-world process monitoring systems.

These practical limitations preventing the in-field use of
photonic sensors can be overcome by miniaturizing the trans-
ducers using micro-and nano-technology, with benefits in cost,
response time, size, and high usability. However, they still have
limitations in resolution and sensing capacity when compared
to conventional spectroscopy techniques. A novel photonic
transducer technology based on nanostructures, the RNPs
transducers, is emerging in this context. RNPs are composed
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of several, usually hundreds, nanometric pillars, in which each
of them acts as a single optical resonator in where the light
is coupled. The reduced size of each nanopillar and their
proximity produce an evanescence electric field outside the
RNPs. Thus, the RNPs make a unique optical interference
pattern, that is, the sensor footprint, at a particular wavelength
range, which depends on the refractive index of the media the
RPNs are immersed in. Note that, since the sensing principle of
this sensor is based on the evanescence field, the sensing signal
is less sensitive to temperature changes than sensors based on
optical gratings. However, temperature changes can affect the
chemical sample properties. Thus it is highly recommended to
perform all the experiments at stable temperature conditions.
The combination of a high light confinement effect and a
highly-defined shape of the optical response offered by RNPs
are behind their high sensing capacity, being reported their
use in different applications in the chemical and biochemical
fields [7], [16]–[21].

The novel methodology proposed in this paper is applied to
the experimental results obtained in the previous work [10],
where all the experimental data was gathered at the laboratory,
in which temperature was controlled with an accuracy of
˘1 degree. In that paper, the RNP sensing technology was
used to analyze the ethanol concentration in different fluid
matrices, i.e., deionized water and white wine. The employed
RNPs transducer presented nanopillars with a diameter and
height of 250 and 2000 nm, respectively. The nanopillars array
had a squared distribution with a pitch of 500 nm. When
analyzed with a white light source and spectrometer, the RNPs
produced a high-resolution interference pattern in the visible
band, generating a high data dimensionality footprint, which
was considered to design and train an ML system to detect the
ethanol concentration. Differently, in this work, the authors
propose a novel methodology. It consists in analyzing the
changes in the RNPs footprint by measuring the intensity of
the RNPs spectra in specific wavelengths. This approach is
based on an ML solution, maintaining the same performance
in the detection as using the whole spectra.

B. Machine Learning for Photonic Sensors Data
Analytics

The output data produced by optical transducers interro-
gated by broadband light source and spectrometers, including
the RNPs-based sensors selected in this work, is directly their
spectral response in the waveband of interest, e.g., visible or
NIR bands [22]. This continuous response produced by the
transducers is then sampled in several wavelengths that de-
termine the resolution of the acquisition system. The sampled
optical response is finally available, from which a model relat-
ing it with the desired property can be created. Traditionally,
this model is generated by trained personnel based on previous
expert knowledge, identifying the implicit physical phenomena
between the measurement and the property. An example of
this process was reported in [19] to model the percentage of
sodium chloride in a water matrix. Nonetheless, the higher
is the acquisition resolution, the higher is data dimensionality,
making it more difficult to understand the relationship between
the input variables and the produced response.

This increased complexity in dimensionality makes then
convenient to apply data-driven ML techniques to create
multivariate models [23]. In this regard, ML permits extracting
a pattern from data, then correlating the intensity values to
the desired property. Nevertheless, processing ML techniques
might require a high computational and energy cost, which
are not desirable in an edge layer. Therefore, strategies, such
as dimensionality reduction, might be explored. To this end,
there are two main dimensionality reduction strategies in
ML: Feature Extraction (FE) and Feature Selection (FS) [24],
[25]. FE compresses the input data, transforming a high-
dimensional data space into a low-dimensional space [26].
However, this strategy requires the acquisition of the complete
signal (the waveband) to later apply the transformation. FS
chooses a relevant subset of features (wavelengths) from the
problem input space (the waveband), which can result in
reducing the number of wavelengths acquired [27]. This latter
dimensionality reduction approach fits with the focus of this
paper.

There are three main FS strategies: filter, wrapper, and
hybrid methods [25]. Filter strategies select features by sta-
tistical procedures, such as measuring the correlation between
variables and the property, then removing redundant or irrele-
vant features. The purpose is to reduce the noise produced
by these redundant or irrelevant features, which negatively
affect the prediction quality. The authors may cite some
works considering filter approaches [28]–[30]. In [28], they
applied the t-test statistical method to identify liver fibrosis.
In [29], they estimated the redundancy of the variables (i.e.,
wavelengths) and removed those which surpassed a previously
fixed threshold for protein detection. Filter techniques include
a relevant limitation related to the selection obtained, that
is, this strategy is independent of the ML model in the
system. This fact might entail that some irrelevant features are
maintained, which could decrease the prediction performance.
On the contrary, both wrapper and hybrid strategies tailor FS
to application needs by considering the ML algorithms to be
included in the final system and use case data.

Wrapper strategies evaluate combinations of features iter-
atively, searching for the combination whose performance is
better according to the use case. The search finishes when a
combination meets the stop condition, which is a threshold
related to a specific ML performance metric, such as accuracy
[31]–[34]. Opposite to filter strategies, wrapper ones evaluate
a given combination considering the ML model in the system,
usually relying on classification/regression supervised learn-
ing. Note that classification consists of predicting a discrete
variable and regression involves predicting a continuous vari-
able. The authors may cite some works considering wrapper
approaches, determining if they removed or added features
during the selection iterative process. In [31] the authors
applied a backward elimination algorithm that started with the
initial set of features and in each iteration removed a subset. In
[33] the method began with no feature, adding a new feature
in each iteration, namely forward selection. The advantage of
forwarding selection is that the resultant set of solutions has
lower dimensionality than backward elimination.

Wrapper strategies also include shortcomings, such as that
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the iterative strategy hinders the convergence of the method in
high-dimensional problems, such as when processing optical
responses in a high dimensionality spectrum. As a solution,
some authors proposed splitting the spectrum into regions,
which can be discarded regarding their influence on the use
case. For instance, in [32], the authors proposed that a domain
expert decided the dimension and the number of the regions.
Therefore, the spectrum division depended on the previous use
case knowledge of the designer. Similarly, in [31], the authors
proposed an algorithm that automatically divided and selected
the regions. This algorithm alleviated the computational cost.
However, the spectrum division based its procedure on com-
binatory as it is a pure wrapper instead of attending to the
relationship between the region and the application use case.
Hence, there was no guarantee that discarded regions did not
have relevance, which would decrease the ML performance.

Finally, hybrid approaches combine filter and wrapper meth-
ods to select features. The authors in [30] created a hybrid
approach that starts with an iterative filter process for redun-
dancy removal, based on the Pearson correlation, deleting the
redundant features. The filter stage also required establishing
a threshold defined by a domain expert. Afterward, it applied
a wrapper strategy based on particle swarm optimization for
choosing the best combination of features for its use case.

Focusing on works considering FS techniques in the specific
optical domain, classification-based ML models were used to
aid FS techniques for choosing features. The authors in [32]
built an FS approach based on convolutional neural network
classifiers for fluid characterization, such as beer identification.
In [31], the authors developed an FS based on Support Vector
Machine (SVM) classifiers to identify steel aging. The authors
in [29] applied the Partial Least-Square Regression (PLSR) for
protein determination in milk powder. In [33], they considered
artificial neural networks to identify antioxidants in certain
oils. In the regression domain, the authors in [34] applied
a transformation of classifiers to regression techniques (in
particular, SVM regression) to estimate the rice root density.
This type of approach usually has a classifier structure, but its
output stage aims to convert the prediction into a regression.

As far as the authors know, the state-of-the-art regarding
ethanol detection by photonic transducers based on nanostruc-
tures consists of using Principal Component Analysis (PCA)
for FE [35]. Before the ML inference, PCA compresses the
input space with 3468 wavelengths into a few variables,
also known as Principal Components (PCs), using the Gram-
Schmidt orthogonalization. This approach has a lack related
to the high dimensionality of the input space. This fact might
prevent its implementation in low-power resource-aware edge
platforms. Differently, this paper aims to provide a framework
based on FS techniques for ethanol detection with photonic
sensors based on nanostructures, trying to reduce the wave-
lengths required for the input space, whereas state-of-the-art
results are achieved. The proposed method follows a hybrid
FS for regression models to meet this requirement. Although
the focus is on the RNPs transducer, this method can be
generalizable to any photonic transducer as it works directly
with the transducer output, i.e., the intensity of consecutive
wavelengths in a particular waveband. In a previous work, the

authors of this paper proposed a hybrid FS approach for a fault
detection use case in the Industry 4.0 domain [35]. Beyond
the completely different use case, this previous work differs
from the one provided in this paper as follows. The proposal
incorporates an automated region split method for identifying
the relevant spectral regions for the application, addressing
the wrapper shortcoming discussed before. It also integrates
a filter strategy to reduce the redundancy of the features
selected by the wrapper. Moreover, a relevant aspect of this
proposal is that instead of returning a unique solution to the
problem, the framework returns a set of trade-off solutions for
ML performance and the number of wavelengths. This focus
will help system designers to develop photonics-based edge-
oriented ML systems according to the application needs, such
as maximizing the ML performance or reducing the acquisition
system cost by minimizing the number of wavelengths.

III. PROPOSED METHOD

This section starts by describing the methodology overview
for the application of the WHFS method. Next, a detailed
explanation of the WHFS method and the wavelength removal
filter procedure is presented. Finally, a discussion about WHFS
parameterization is included.

A. Methodology Overview
The proposed ML-based methodology for processing the

response of photonic sensors encompasses both training and
inference stages, as shown in the flowchart in Fig. 1. Training
generates a set of ML models, relating the raw data of sensors
with the wanted physical property. This stage requires high
computational resources and is performed offline, in a worksta-
tion, before the field deployment. The multidimensional nature
of the photonic sensor response makes it interesting to select
a subset of optical wavelengths during the training instead of
using all the sensor wavelengths. Thus, only those which are
relevant will feed the ML model. This fact could result in
better performance and lesser sensor costs. In the ML context,
each wavelength is treated as a feature, and then both terms are
used indistinctly along with the discussion. One of the trained
models is used to estimate the expected properties from future
raw sensor measurements in the inference. This latter stage is
executed online in the edge node near the sensors, implying
that computational complexity should be reduced as much as
possible.

The training stage is performed considering the WHFS
algorithm. WHFS is a hybrid method, including both filter
and wrapper stages. The filter stage evaluates the relevance
of the wavelengths. Moreover, as the WHFS method works
in the spectral domain, an analysis of spectral dependencies
is also integrated into the filter stage to remove redundant
wavelengths. During the wrapper stage, it is needed to train
the ML model several times during the selection process.
The model is trained using supervised learning techniques,
meaning that a labeled dataset is required. Each instance of
the training dataset must include the wavelengths (i.e., the
intensity values produced by the sensor in each waveband) and
the label (i.e., the theoretical quantity value of the compound



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2021) 5

Fig. 1: Methodology flowchart.

to be analyzed). The execution of the WHFS provides a space
of solutions, being a solution defined in this context as the
trained ML model and its subset of selected wavelengths. In
this regard, this space shows a trade-off between the compound
detection quality and the number of chosen wavelengths in
each solution (i.e., the complexity of the model). The designer
might consider this trade-off to select the solution that suits
better to the application requirements.

The inference stage focuses on online liquid property
prediction. To this end, an ML model is selected among
the previously generated, then implementing in an embedded
system to be deployed in the field.

The solutions generated by this methodology are based on
data whose origin is a specific source, i.e., a transducer in this
use case. That means that the models developed are specialized
to work with this specific photonic transducer, which is the
origin of the data. This fact is due to the differences observed
in the transducer performance regarding the manufacturing
process. Although the differences in performance are minimal,
they could still affect the parameterization of the models ob-
tained. Thus, the recommendation is to apply the methodology
for each transducer to be used in the system.

B. Wavelength-based Hybrid Feature Selection
As shown in Algorithm 1, the WHFS computation com-

prises two stages: the filter stage (lines 1-2) and the wrapper
stage (lines 3-22), both described below. The algorithm re-
quires a matrix X P Rmˆn with m instances for n wavelengths
and a vector V P Rmˆ1 with m regression values (labels),
one per instance. Let models be the vector with the t regres-
sion ML models to evaluate during the algorithm execution,
models P Rtˆ1. Let p P R1 be the maximum number of
wavelengths that a model might have. As will be discussed
below, p can also be defined as the number of solutions that
will be explored for each ML model in models. Let h P R1

be the number of wavelengths evaluated during the selection.
Note that models, p, and h parameters configure the WHFS
execution. The tuning of these parameters is described in
Section III-D. The rλ P R1 and sRes P R1 parameters are
associated with the distance between wavelengths to establish
regions within the waveband. A further description of these
two parameters is found in the splitting process discussion in
Section III-C.

1) Filter stage: It performs an initial removal of the wave-
lengths according to their intensity value. The filter stage
first applies the Fisher-score algorithm, which is a filter

feature selection technique based on the relevance of each
wavelength in the use case data (X and V ). The relevance
is obtained by analyzing the features and labels of the dataset,
studying similarities and divergences [36]. In this regard,
this technique permits the removal of irrelevant wavelengths
according to the use case perspective, alleviating the search in
the wrapper stage. Fisher-score was applied in a wide variety
of applications. For instance, in [37], the authors applied this
technique to a biomedical application, minimizing the number
of features required for the detection of sleep apnea using
ML algorithms. In [38], the technique was applied in the
industry domain, obtaining the features that monitored the
condition of the bearings in wind turbines. However, this initial
filtering action might not ensure the decrease of redundancy.
This fact is because wavelengths with close positions in the
spectrum share information related to the physical process,
and then they might have the same relevance. As relevance
highly influences the wrapper stage, close wavelengths can
mask other wavelengths with relevant use case information.
To address this problem, the filter stage splits the waveband
into various regions based on the rλ parameter. This splitting
process results in removing those wavelengths which do not
give relevant information to the system based on the region
information. This removal method is explained in Section III-
C. The filter stage ends gathering a subset of wavelengths,
Wv P Rn1

ˆ1 (line 1). This Wv vector is the ranked set of
n1 features represented by their IDs in X , with n1 P 1, . . . , n.
Next, a copy of Wv is saved in Wvold to restore in the wrapper
stage the information obtained during the filter (line 2), as will
be discussed below.

2) Wrapper stage: It performs an exploration of the solution
space for each model using a modified Sequential Forward
Selection (SFS) method. In the literature, SFS was applied in
a wide variety of applications. For instance, it was used in the
biochemical industry to choose the minimum set of features
to identify antioxidants proteins [39]. It was also used in
hyperspectral cameras to select the most suitable wavebands to
monitor rice seeds [40]. Regarding the combination of Fisher-
score and SFS in WHFS, it was shown as advantageous in
previous work for a problem related to the Industry 4.0 field
[35]. Focusing on the proposal in this paper, the purpose of
the modified SFS considered is to find an optimal minimum
subset of wavelengths without distorting data [40], where each
feature selected maximizes the prediction performance of the
ML algorithm. As a result, the solution provided by this
technique utilizes the minimum number of wavelengths, which
results in reducing the energy and execution time of the models
generated. This wrapper stage requires four parameters:

‚ The ranked ID vector (Wv) generated in the filter stage.
‚ The set of regression models (models) to evaluate.
‚ The maximum number of wavelengths (p) that a model

might have.
‚ The maximum number of wavelengths evaluated (h) from

the Wv vector in each z-th iteration, with z P 1 . . . p.

In this stage, the algorithm will seek p solutions for each
ML model (lines 3-22). The solution space for the y-th model,
with y P 1, . . . , lengthpmodelsq, follows an SFS approach
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(lines 5 -18). Thus, the first solution of the model will have
one wavelength, the second one, two wavelengths, and the p-
th one, p wavelengths. This fact is the reason for the double
meaning of the p parameter. Besides, during the construction
of a solution, only one wavelength is searched to speed up
the process, reusing the wavelengths found in the previous
solution. That is, the z-th solution uses the wavelengths of the
pz ´ 1q-th, with z P 2, . . . , p). As expected, when z equals 1,
the algorithm does not reuse any wavelength. To implement
this functionality, it is required to save the wavelengths found
in each z iteration, namely Dz , to apply then a union operation
(line 16). Note that it is also required to define an empty vector
D0 to maintain the union operation coherence when z equals
1 (line 4).

Once a model is chosen, the algorithm starts searching the
p solutions (line 5). Before beginning the wavelength search,
the algorithm initializes the performance metric threshold (qth,
line 6), which saves the minimum ML performance that a
solution should provide. The ML performance metric should
be selected by the system designer among those available in
the literature. Next, it looks for the wavelength that adapts
better to the model and the use case (lines 7 - 14). To this
end, in each iteration, it selects the j-th wavelength from Wv
to evaluate its performance from the ML metrics perspective.
As stated before, this value, Wvj , points out a position
inside the original dataset, X . Thus, the algorithm creates
an iteration dataset, X 1, which combines the dataset of the
previous solution, Dz´1, and the instances of the particular
Wvj wavelength, XtWvju (line 8). Then, the model is trained
and evaluated while adding the Wvj wavelength, obtaining its
performance metric values (line 9). The model performance
metric is compared to the threshold qth (lines 10 -13). If the
Wvj wavelength outperforms the previously selected one, qth
is updated (line 11), and this wavelength is marked (line 12).
Once the h wavelengths for this solution are evaluated, the
marked wavelength is added to the Ws vector (line 15) that
stores the selected wavelengths. Besides, the instances of the
marked wavelength are added to the model dataset (Dz , line
16). This wavelength is removed from the Wv vector to avoid
redundancy so that it is not repeated in the (z`1) iteration (line
17). Before running the exploration of the py`1q solution, the
Wv vector is restored with its original value Wold (line 21),
which was already saved in line 2. When the execution ends,
WHFS returns two arrays of arrays, Wy and Sy (lines 20 - 21).
The first includes the individual wavelengths selected for the
z solutions generated for the y models. The second includes
all the wavelengths that compose the z solutions generated for
the y models.

C. Wavelength Removal Filter Stage
In a high-resolution spectrum, there are regions (subsets

of consecutive wavelengths of the spectrum) that concen-
trate more relevance from a filter point of view. A wrapper
stage that treats each wavelength independently will prioritize
those wavelengths with higher relevance, which might drive
to gather redundant wavelengths. To tackle this problem, it
is required to incorporate in the analysis the region rele-
vance. In this regard, the proposed wavelength-based filter

Algorithm 1 Wavelength-based Hybrid Feature Selection.

Require: X,V,models, p, h, rλ, sRes
Ensure: Sy,Wy

1: Wv Ð RegWaveRemovalpX,V, rλ, sResq
2: Wvold ÐWv
3: for y “ 1; y ď lengthpmodelsq; y `` do
4: D0 Ð Ø
5: for z “ 1; z ď p; z `` do
6: qth Ð 0
7: for j “ 1; j ď minph, sizepWvqq ; j `` do
8: X 1 Ð Dz´1 YXpWvjq
9: qmetric Ð evaluateModelpX 1, V q

10: if qmetric ą qth then
11: qth Ð qmetric

12: mark ÐWvj
13: end if
14: end for
15: Wsz Ð mark
16: Dz Ð Dz´1 YXpmarkq
17: Wv ÐWv ´mark
18: end for
19: Sy Ð tD1, . . . , Dzu

20: Wy Ð tWs1, . . . ,Wszu
21: Wv ÐWvold
22: end for

method identifies potential regions to search wavelengths
based on relevance metrics, such as Fisher-score and the
spectral wavelength dependencies. This method also attends
to the redundancy in each region. Since the spectral domain is
continuous, closer wavelengths share more information, which
implies more redundancy between them. Therefore, when the
wavelength-based filter selects a particular wavelength from a
region, it also removes an interval of wavelengths adjacent to
the chosen one from that region. The rλ parameter establishes
the set of adjacent wavelengths to be deleted. Let rλ P R1

be defined as the range of the spectral region used during
the wavelength removal method, whose value is the size in
nm of that region. The value assignment for this parameter
is described in Section III-D. As shown in Algorithm 2, the
wavelength-based filter works as follows:
‚ Step 1 (line 1): the fisher-score technique calculates the

relevance of each wavelength (i.e., the fisher coefficient)
from the dataset, X . Thus, the fisher-score vector of the
waveband, FScore P Rnx1, contains the relevance value
of each wavelength in X , as given by

FScore “ rFScore1, FScore2, . . . , FScorens
T , (1)

where FScorej P FScore is the fisher-score relevance
value for the j-th wavelength in the waveband, with
j P 1, . . . , n. Note that the position that each wavelength
occupies in this vector is the same they occupy within
the waveband.

‚ Step 2 (lines 5-15): it comprises a technique to divide
the spectrum into regions according to the relevance of
the wavelengths. Fig. 2 shows an example dividing the
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spectrum into five regions, where each one is charac-
terized by its wavelength number and relevance, both
factors influencing the selection. It is required to provide
a quantitative definition for the regions to perform this
division. A region is defined whenever the relevance of
the spectral response (Fisher-score values of consecutive
wavelengths) surpasses a given threshold. Thereby, first,
the algorithm has to establish a threshold (line 5), which
is chosen as the mean value of the whole set of Fisher-
score values, mFScore P R1, also represented in Fig. 2.
Then, an iterative process for region split is performed
in lines 6-15. Thus, each wavelength of the spectrum is
analyzed consecutively, checking if its relevance value
surpasses the spectrum mean fisher-score value upwards
(line 7) or downwards (line 9). The starting and stopping
points of the region are defined in the first and second
conditions, respectively. Thus, the number of regions,
nReg P R1, is established dynamically as the algorithm
discovers a new region, Reg P RnRegx2. The highest
relevant value of each region is stored in maxFSReg P
RnRegx1 (line 11).

‚ Step 3 (lines 16-18): all the spectral values outside the
selected regions (!pRegq) are marked (line 16) and then
removed from the FScore vector (line 17). Then, the
regions are sorted in descending order attending to their
maxFSReg value (line 18).

‚ Step 4 (line 19): the rλ parameter cannot be applied
directly to the wavelength removal method because a
spectral region is also defined by the spectral resolution
(sRes), i.e., the distance in nm between two consecutive
wavelengths. This resolution is typically determined by
the acquisition system. Hence, rλu stores the number of
wavelengths of the interval defined by rλ (line 19).

‚ Step 5 (lines 20-34): the wavelength removal is an itera-
tive process in which the regions are processed according
to their relevance, which is defined in Reg. In each
iteration, the wavelength with the highest relevance in
the corresponding region is selected. The position of
the selected wavelength in X is saved as posλ (line
23). Once the relevant wavelength from the region is
obtained, an interval (intλ) inside the region is defined by
rλu centered in posλ (line 24). This interval gathers the
most relevant wavelength within the adjacent ones, which
have similar information. Hence, to avoid redundancy, the
entire interval is marked (line 25) and then removed from
the FScore vector (line 26). Next, to prevent wavelength
masking from regions with high fisher-score values, the
process is forced to search for a wavelength into another
region (lines 27 - 30). Thus, as the regions are sorted by
their relevance in descending order, the process chooses
a region with a relevance value lower than the previous
one (line 27). However, when it reaches the least relevant
region, it resets the count, going to the most relevant
region (line 29). The process is completed when there
is no wavelength in the FScore to be processed, i.e.,
sumFScore equals zero. As a result, the wavelength
vector, Wv P Rn1x1, with n1 P 1, . . . , n, is generated and
contains the dataset positions of the subset of selected

Algorithm 2 Wavelength-based filter.

Require: X,V, rλ, sRes
Ensure: Wvi, i P 1, . . . , n1

1: FScoreÐ fisherScorepX,V q
2: natt Ð lengthpXp1, :qq
3: nReg Ð 0
4: valprev Ð ´1
5: mFScoreÐ meanpFScoreq
6: for z “ 0; z ď n; z `` do
7: if FScorepzq ě meanFScore && valprev ă

mFScore then
8: RegpnReg, 1q Ð z
9: else if FScorepzq ă meanFScore && valprev ě

mFScore then
10: RegpnReg, 2q Ð z
11: maxFSRegpnRegq Ð maxpFScore, intRegq
12: nReg Ð nReg ` 1
13: end if
14: valprev Ð FScorepzq
15: end for
16: FScoremark Ð FScorep!pRegqq
17: FScoreÐ FScore´ FScoremark

18: Reg Ð SortpReg,maxFSRegq
19: rλuÐ rλ{sRes
20: nReg Ð 0
21: iÐ 0
22: while sumFScore! “ 0 do
23: posλÐ maxpFScore,RegpnRegqq
24: intλÐ posλ´ prλu{2q : posλ` prλu{2q
25: FScoremark Ð FScorepintλq
26: FScoreÐ FScore´ FScoremark

27: nReg Ð nReg ` 1
28: if nReg ą lengthpRegp1, :qq then
29: nReg Ð 0
30: end if
31: sumFScoreÐ sumpFScoreq
32: Wvi Ð posλ
33: iÐ i` 1
34: end while

wavelengths (line 31) as given by

Wv “ rWv1,Wv2, . . . ,Wvis
T , (2)

where Wvj P Wv is the j-th most relevant selected
wavelength, with j P 1, . . . , i.

D. Wavelength-based Hybrid Fisher Wrapper
Parameterization

As discussed before, the models parameter comprises the
set of ML models evaluated during the WHFS execution. The
system designer should make a previous selection of the ML
models that might suit the application use case.

The rλ parameter defines the size (nm) of the spectral
region that will be removed in each iteration. Furthermore, this
region determines the minimum distance between wavelengths
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Fig. 2: Fisher-score relevance coefficient for each wavelength
and its mean value.

provided in a solution. Therefore, using both criteria, the de-
signer might establish its value according to the application’s
needs.

The p parameter establishes the maximum number of so-
lutions generated for a particular ML model. As the wrapper
stage in WHFS follows an accumulative strategy during the
search, the p parameter impacts the number of wavelengths
obtained. Hence, the first solution will have one wavelength;
the second, two wavelengths, and so on, until reaching the p-
th solution that will have p wavelengths. This fact influences
the ML inference quality, the WHFS execution time, and
the system acquisition cost. The designer must evaluate the
application requirements to set a proper p value according to
this trade-off.

The search process done in the wrapper stage in WHFS
is shaped by the h parameter. This parameter has a more
substantial impact on the inference quality and the WHFS
execution time than p because it directly affects the search
process. On the one hand, the WHFS algorithm with h “ 1
would only choose the most relevant wavelength for each
iteration. The same performance would be achieved by running
a pure wavelength removal method. On the other hand, the
WHFS algorithm with h “ n1 (see n1 definition in step 5 of
Section III-C) would run a pure SFS algorithm that might
improve the model performance metrics but increasing the
WHFS execution time. This time is mainly affected by the
total number of trained combinations, C P R1, during the
execution, which is given by

C “
p
ÿ

j“1

ˆ

n1 ´ pj ´ 1q

1

˙

, (3)

where the j-th element of the sum contains the number of
combinations for the j-th iteration. It is worth noting that
C depends on the maximum number of iterations, p. This
parameter directly affects the execution of the wrapper stage.
Therefore, in high-dimensional applications, such as the use
case selected in this paper, the wrapper stage might not
converge when a model requires high training time. As a

solution, the authors propose a general methodology, which
might be used to set the h value to establish a maximum
number of

`

h
1

˘

combinations per iteration.
The general methodology proposed uses a pure wavelength-

based filter algorithm for all the available wavelengths, where
WHFS is configured with h “ 1 and p “ n1. Then, this
mode chooses

`

1
1

˘

combinations for n1 iterations. As a result,
the algorithm will provide n1 solutions, which are analyzed
by a threshold defined from an objective function value and
the number of the solution wavelengths. From those solutions
that surpass the threshold, the one with the lowest number of
wavelengths will be selected, being h defined as this number
of wavelengths. The objective value might be established as a
value defined by the user that the most restrictive performance
metric might achieve. The user can redefine this value, based
on the experience, changing the objective function or its value.
In Section V, the process of selecting the objective function
and the value to obtain a proper h value will be detailed for
the selected use case.

IV. EXPERIMENTAL SETUP

This section first describes the ethanol detection database
used for the evaluation of the proposed method. Furthermore,
the regression metrics used to evaluate the proposed method-
ology are stated.

A. Dataset

The proposed framework is evaluated using the database
generated in [10]. This database includes two datasets where
the ethanol concentration is measured: the water-ethanol and
wine-ethanol experiments. A single dataset consists of samples
gathered with a spectrometer that registers the optical response
of the RNPs in the visible waveband. Each experiment in-
cludes approximately 250-minutes spectrometer data, acquired
at a sampling frequency of 1 Hz. The spectrometer has a
resolution of 0.1nm (sRes “ 0.1), getting 3648 wavelengths
per sample.

In both experiments, pure ethanol (Sigma-Aldrich ą99%)
was added every 10 minutes by 1%vol. to the base fluid. The
goal of this 10-min measurement is to stabilize the mixture,
reducing the outliers produced by the inertia of the process.
Also, during the dataset creation, we identify and remove the
transients from ethanol addition. The ethanol percentage is the
dataset label annotated during the experimentation. For each
experiment, a range exists for the property to be predicted.
The water-ethanol experiment started at 1%vol. of ethanol and
ended at 25%vol.; thus, it had 25 regression labels. In turn,
the wine-ethanol experiment started at 11%vol. of ethanol and
ended at 27%vol.; thus, it had 16 regression labels.

B. Machine Learning Performance Metrics

This section depicts the metrics used for the analysis of the
ML system. These metrics are calculated during the training
and testing stages of each model (line 9, Algorithm 1). The
evaluation focus on establishing the ML performance in terms
of predictability from a regression perspective:
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‚ The coefficient of determination (R2) analyses how a
group of m observations is correlated to the model, i.e.,
the correlation between the label values and the model
predictions. This metric is calculated as

R2 “ 1´

řm
i“1 pVi ´ V̂iq

2

řm
i“1 pVi ´ V q

2
, (4)

where, for the i-th observation, Vi is the label value, V̂i
is the prediction of the ML system, and V is the mean
of the prediction values. The range of R2 is r0, 1s. An
R2 value near 0 indicates no correlation between the data
and the model, and an R2 value near 1 indicates a strong
correlation.

‚ Mean Absolute Error (MAE) is an estimator that focuses
on the differences between the prediction and the label
values. It is defined as the average of the absolute value
of the errors (differences) and is calculated as

MAE “
1

m

m
ÿ

i“1

|Vi ´ V̂i|. (5)

The range of the MAE is r0,8q, where the closer to 0,
the better will be the model.

‚ Root-Square Mean Error (RMSE) is an estimator that also
focuses on the differences between the prediction and
the label values. Still, it highlights the influence of large
errors. It is calculated as the square root of the quadratic
mean of the errors, as given by:

RMSE “

g

f

f

e

1

m

m
ÿ

i“1

pVi ´ V̂iq2. (6)

Similarly to MAE, the range of the RMSE is r0,8q. As
the outliers and large errors have a higher impact on the
RMSE metric than the one provided by MAE, the near to
0 the RMSE is, the lesser outliers and large errors have
the model.

The evaluation of the models follows the k-fold cross-
validation strategy to avoid overfitting. The k parameter de-
termines the number of portions the dataset is split and the
number of iterations the model is tested. The dataset is split
randomly into k subsets of the same number of instances,
approximately. Then, pk ´ 1q subsets are used for training,
and the remaining subset is used for testing. This process
is repeated k times, testing with a different subset in each
iteration. The performance metrics of the model are the
average of the performance metrics obtained in each cross-
validation iteration. In this use case, k was set equal to 10 to
obtain robust performance metrics [41], [42].

C. Target Platform
The edge node selected for the implementation is the

cookie platform, a modular platform created at the Universidad
Politécnica de Madrid [43]. It has a 4-layer hardware structure:
power supply, sensing/actuation, processing, and communica-
tions. Each layer is a hardware board with a standard vertical
connector that acts as the bridge between layers. Remarkably,
the processing layer is based on an ultra-low-power, 32-bit

medium performance ARM Cortex M4, featured with 256 MB
external RAM.

Simplicity studio tool is considered to embed the solution
into the platform. This tool integrates an energy profiler, which
permits measuring the energy consumed by the solution. This
fact allows studying the energy consumption of the system
while running. Furthermore, this target uses C/C++ language
for the applications. In particular, only the chosen solutions to
be tested in the platform are programmed in this language to
reduce development time.

V. RESULTS AND DISCUSSION

In this section, the proposed methodology is applied to
water-ethanol and wine-ethanol experiments. First, the WHFS
parameters are tuned to the use case. Then the WHFS method
is applied to generate the space of solutions. One solution for
each experiment is then selected following a set of use case
requirements. Finally, the chosen solutions are implemented
in an edge computing node, showing the feasibility of the
proposed methodology for real-time fluid characterization with
photonic sensors.

A. WHFS Parameterisation for Ethanol Detection
In this subsection, the WHFS is parameterized for the

ethanol detection use case following the methodology pro-
posed in Section III-D. This parameterization is applied sepa-
rately for water and wine experiments.

First, the models parameter is set. The authors choose the
following regression ML models: linear, interactions linear,
robust linear, and stepwise linear. This selection is based on
the proposal in [10]. Note that the Linear SVM regression
model was discarded because the results shown in [10] were
outperformed with simple models.

Second, the p parameter indicates the maximum number
of solutions the WHFS method will provide and establishes
the maximum number of wavelengths explored, as they are
intrinsically related. In the ethanol detection use case, the
objective is to provide a system with the minimum number
of wavelengths to reduce the amount of information the
acquisition system must gather in each sample because it
affects the computational requirements imposed on the edge
nodes. In this regard, a low p value is chosen, p “ 10, which
is an experimental threshold established below the 1 % of the
initial dataset (3648 wavelengths). This p value is empirical,
so it could be increased if the solutions obtained would not
achieve an expected performance for the use case.

Third, the rλ parameter reduces the information redundancy
in each solution obtained. When one wavelength is picked,
it removes the consecutive wavelengths. However, as seen in
Fig. 2, it is possible to find areas with nearby local maxima
by applying a Fisher-score relevance analysis, and then, the
removal should be carefully performed. Note that a local
maximum indicates that this wavelength might be a possible
selected wavelength by the WHFS method due to its relevance.
Experimentally, it was observed that the minimum distance
between local maxima was 3nm. Thus to avoid removing
relevant wavelengths but reducing redundancy, rλ{2, which
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TABLE I: h parameterization for each experiment and ML
model by considering p “ 10 (uds), rλ “ 5 nm, and RMSE
(%eth) as objective function (its objective values are defined
as thresholds).

h value of each ML regression model

Experiment Objective value linear lnteractions Robust Stepwise

Water-ethanol 0.33 10 4 10 4
Wine-ethanol 0.25 5 4 5 4

represents the distance between the chosen wavelength and the
last wavelength of one side, is fixed to 2.5nm. Consequently,
rλ is fixed to 5nm, relating to the distance to both sides of
the wavelength selected.

Fourth, the combination of a particular experiment and ML
model has a specific value of h. This value is automatically
obtained by applying the methodology exposed in Section III-
D, requiring an objective function and a threshold. The RMSE
was selected as the objective function because it is the most
restrictive metric for our use case. Note that the goal is to
achieve a state-of-the-art prediction quality (i.e., state-of-the-
art RMSE) using few wavelengths. The threshold is defined by
getting at least an RMSE value equal to 75% of the state-of-
the-art RMSE. Note that improving RMSE means bringing this
metric close to 0. In this regard, the goal value is calculated
as given by

GV “ SV ` 75% ˚ SV, (7)

where GV is the RMSE goal value, and SV is the state-of-the-
art RMSE value. In the water-ethanol experiment, state-of-the-
art RMSE is equal to 0.19 %eth [10]. Note that the notation
%eth means the percentage of ethanol in the fluid matrix.
Thus the goal value is 0.33 %eth in this first experiment.
In the wine-ethanol use case, state-of-the-art RMSE is equal
to 0.14 %eth [10]. Therefore the goal value is 0.25 %eth in
the second experiment. According to these goal values, the h
parameterization resulted in the h values shown for each ML
model and experiment in Table I.

B. WHFS Execution for Ethanol Detection
Table II presents the space of solutions generated for the

water-ethanol experiment by executing the WHFS strategy
with the parameterization discussed in Section V-A. As es-
tablished in Section III-B, it is worth noting that WHFS
follows an accumulative approach, where the wavelengths of
a particular solution are added to the next solution. There-
fore, the i-th solution includes the current chosen wavelength
(Freq(nm) field in the i-th row) and the wavelengths selected
in the previous solutions in the same column, i.e., from 1 to
i ´ 1. For instance, in the linear model, the second solution
is composed of its selected wavelength (552.32 nm) and the
wavelength of the first solution (569.43 nm). This table also
shows the performance metrics (RMSE, R2, and MAE), the
number of wavelengths considered, which corresponds to the
Solution field, and the training time required to create that
solution (Training time(s) field). Analyzing this table, all the
R2 values are close to 1.00, meaning that all the models
are suited to the water-ethanol experiment [44]. Also, in all
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Fig. 3: Solution space exploration for the water-ethanol ex-
periment, with p “ 10.

solutions, MAE results are better than RMSE, which is less
than 0.4 %eth. That means that, in this use case, the model is
slightly affected by the outliers. In this regard, the exploration
focuses on the RMSE metric as is the most restrictive one.
Regarding the training time, it shows the complexity in terms
of computational cost. Thus, the higher the training time, the
higher the computational cost. This timing metric was obtained
using an Intel i7-7700 processor with 16 GB of RAM, running
in Matlab 2020b, with the Statistics and Machine Learning
toolbox, over Windows 10 operating system. Note that the
stepwise linear model increases two times the training time
compared to interactions linear.

The evolution of the RMSE metric of each model for the
water-ethanol experiment is shown in Fig. 3. It tries to be an
aid to determine which solution is better. As designers, the
authors opted for establishing two conditions in this regard.
First, the solution will have a lower or equal value than
the state-of-the-art, 0.19%eth in the water-ethanol experiment.
Second, the model and solution with the least number of
wavelengths will be selected to be implemented in an edge
node. This latter criterion is due to the focus on minimizing
the edge computing cost. Therefore, the third solution based
on the interactions linear model was selected. This solution
appears shaded in Table II.

In turn, the space of solutions for the wine-ethanol ex-
periment is shown in Table III. Similar to the water-ethanol
experiment, all the models and their solutions fit the data with
R2 ě 0.95. The solutions are also slightly affected by the
outliers, being RMSE the most restrictive metric. Besides,
Fig. 4 exposes the RMSE value of each model solution for
the experiment. The same conditions were followed to choose
the solutions to be implemented in the edge, as in the water-
ethanol experiment. In the wine experiment, the state-of-the-art
RMSE value is 0.14%eth. In this regard, the second solution of
the linear model is chosen. This solution has the same RMSE
value as the interactions linear and stepwise linear models.
However, the interactions linear complexity is lesser than the
stepwise linear model. The selected solution appears shaded
in Table III.
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TABLE II: Solution space for the water-ethanol experiment.

Linear Interactions Linear

Solution Freq(nm) RMSE (%eth) R2 MAE (%eth) Training time (s) Freq (nm) RMSE (%eth) R2 MAE (%eth) Training time (s)

1 569.43 0.79 0.99 0.60 1.45 575.02 1.06 0.98 0.71 0.84
2 552.32 0.29 1.00 0.22 3.18 630.96 0.23 1.00 0.18 1.76
3 558.02 0.26 1.00 0.19 4.91 558.02 0.13 1.00 0.10 2.78
4 637.54 0.17 1.00 0.14 6.70 509.55 0.09 1.00 0.07 3.95
5 472.14 0.15 1.00 0.12 8.77 552.32 0.07 1.00 0.05 5.30
6 580.62 0.12 1.00 0.10 10.82 637.54 0.05 1.00 0.04 6.85
7 546.73 0.10 1.00 0.08 12.63 472.14 0.05 1.00 0.03 8.64
8 477.74 0.10 1.00 0.08 14.48 517.77 0.04 1.00 0.03 10.7
9 563.84 0.07 1.00 0.05 16.39 546.73 0.04 1.00 0.03 13.1
10 575.02 0.07 1.00 0.05 18.39 580.62 0.03 1.00 0.02 15.8

Robust Linear Stepwise Linear

Solution Freq(nm) RMSE (%eth) R2 MAE (%eth) Training time (s) Freq (nm) RMSE (%eth) R2 MAE (%eth) Training time (s)

1 630.96 1.43 1.00 1.15 2.76 575.02 1.06 0.98 0.71 1.09
2 558.02 0.89 1.00 0.73 5.57 630.96 0.23 1.00 0.18 2.42
3 575.02 0.34 1.00 0.25 8.75 558.02 0.13 1.00 0.10 6.78
4 472.14 0.32 1.00 0.23 12.5 509.55 0.09 1.00 0.08 19.70
5 552.32 0.24 1.00 0.16 16.1 552.32 0.07 1.00 0.06 50.31
6 509.55 0.29 1.00 0.17 20.0 637.54 0.06 1.00 0.05 114.36
7 528.85 0.16 1.00 0.14 23.5 472.14 0.05 1.00 0.04 231.43
8 477.74 0.14 1.00 0.12 26.5 477.74 0.05 1.00 0.04 419.27
9 621.09 0.13 1.00 0.11 29.8 580.62 0.04 1.00 0.04 739.57
10 569.43 0.13 1.00 0.11 33.7 569.43 0.04 1.00 0.03 1133.87

TABLE III: Solution space for the wine-ethanol experiment.

Linear Interactions Linear

Solution Freq(nm) RMSE (%eth) R2 MAE (%eth) Training time (s) Freq (nm) RMSE (%eth) R2 MAE (%eth) Training time (s)

1 582.70 0.48 0.99 0.37 0.70 582.70 0.48 0.99 0.37 0.80
2 632.39 0.12 1.00 0.09 1.48 632.39 0.12 1.00 0.09 1.69
3 477.08 0.11 1.00 0.09 2.35 561.86 0.10 1.00 0.08 2.77
4 520.40 0.10 1.00 0.08 3.12 550.13 0.06 1.00 0.05 3.89
5 550.13 0.08 1.00 0.07 4.04 637.98 0.05 1.00 0.04 5.10
6 572.39 0.07 1.00 0.05 5.01 572.39 0.03 1.00 0.03 6.56
7 637.98 0.05 1.00 0.04 5.98 520.40 0.03 1.00 0.03 8.31
8 555.72 0.04 1.00 0.03 6.88 555.72 0.03 1.00 0.02 10.2
9 532.36 0.04 1.00 0.03 7.75 512.29 0.02 1.00 0.02 12.3
10 561.86 0.04 1.00 0.03 8.67 532.36 0.02 1.00 0.02 14.6

Robust Linear Stepwise Linear

Solution Freq(nm) RMSE (%eth) R2 MAE (%eth) Training time (s) Freq (nm) RMSE (%eth) R2 MAE (%eth) Training time (s)

1 582.70 0.48 1.00 0.37 1.40 582.70 0.48 0.99 0.37 1.91
2 561.86 0.17 1.00 0.14 3.02 632.39 0.12 1.00 0.09 4.19
3 632.39 0.12 1.00 0.08 4.99 561.86 0.10 1.00 0.08 10.94
4 512.29 0.11 1.00 0.08 7.08 550.13 0.07 1.00 0.05 28.40
5 572.39 0.08 1.00 0.06 9.55 520.40 0.06 1.00 0.05 63.72
6 637.98 0.06 1.00 0.04 11.7 572.39 0.05 1.00 0.03 124.91
7 477.08 0.06 1.00 0.04 14.1 637.98 0.04 1.00 0.03 217.58
8 550.13 0.05 1.00 0.04 16.5 555.72 0.04 1.00 0.03 328.99
9 520.40 0.05 1.00 0.04 19.1 477.08 0.04 1.00 0.03 532.86
10 482.67 0.05 1.00 0.04 21.9 482.67 0.03 1.00 0.03 790.99

The suitability of the WHFS method compared to pure
filter and wrapper methods is also analyzed in this section
to justify the hybridization. Thus, the methodology is applied
using a pure filter based on Fisher-score and a pure wrapper
based on SFS for both experiments. As one of the drawbacks
of pure wrapper methods is their convergence, a maximum
convergence time of a week for each solution (tcmax =10080
min) is established, running the algorithm on the same desktop
machine considered for the rest of the experiments. Under
these circumstances, no solution has been obtained using
this method as it surpasses in each case the timeout. On
the contrary, applying a pure Fisher-score method, all the
p solutions were obtained. In the water-ethanol, only the
interactions linear model reaches the performance of the state-
the-art with a minimum number of wavelengths equal to 7.
Nonetheless, the 7-wavelengths interaction linear model has an

RMSE value of 0.18 %eth; therefore, it does not outperform
our proposal performance in RMSE value nor the number of
wavelengths. In the wine-ethanol experiment, the best RMSE
value was 0.14 %eth using 10-wavelengths interactions linear
model, achieving the state-of-the-art performance, but not
improving the proposal provided by the WHFS algorithm.
Besides, in both experiments, the use of a pure Fisher-score
method resulted in solutions with high redundancy, where the
maximum distance between wavelengths was approximately 1
nm. Therefore, the WHFS generates a more suitable solution in
terms of ML performance and redundancy for the application.

The methodology followed in this section permits a scalabil-
ity analysis showing the impact of the number of wavelengths
and the ML model for identifying the compound percentage
in a fluid media. For both experiments, the goal was selecting
the solutions providing at least a given RMSE, whereas the
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Fig. 4: Solution space exploration for the wine-ethanol exper-
iment, with p “ 10.

number of wavelengths is minimized. Nevertheless, these
conditions can be modified to achieve the requirements of
other use cases. Hence, this framework is generalizable to
different applications.

Finally, the two selected solutions are represented in Figs.
5a and 5b for the water-ethanol and wine-ethanol experiments,
respectively. In both figures, a spectrum acquired during the
experimentation is shown. Note that a spectrum consists of
the RNPs reflectivity measurements for the 3648 wavelengths.
Moreover, the wavelengths selected by the framework pro-
posed are marked using black squares. These figures permit to
have a quality perspective of the dimensionality reduction and
the position of the wavelengths selected. Thus, comparing the
wavelengths selected for both experiments, two wavelengths
come from the same regions, one close to 580nm and the other
close to 630nm, showing a correlation between both media.

C. Evaluating WHFS solutions at the Edge

After applying the WHFS design exploration method, the
selected solutions surpassed the state-of-the-art results in terms
of performance metrics, as reported in the previous section.
Besides, the methodology enables choosing those solutions
that focus on alleviating the ML system computational load,
e.g., solutions with fewer wavelengths. This subsection ana-
lyzes the performance of the state-of-the-art and the proposed
solutions during inference for each experiment in a resource-
constraint IoT node. The solutions selected in the previous
section appear summarized in Table IV. The state-of-the-art
implementations selected for comparative purposes are based
on the solutions described in [10] for the same dataset. These
state-of-the-art implementations consider the whole spectrum
(the 3648 wavelengths) reduced by PCA to several PCs, which
are used to infer the property using a regression model. Among
the different configurations provided in this previous work, the
authors selected two solutions for comparative purposes, one
for each experiment, according to the following criteria: i)
the solution might surpass the state-of-the-art metrics in terms
of ML performance and ii) only the solution with the lowest

number of wavelengths and the lightest ML regression model
must be chosen. Note that any of the ML models evaluated
could be used because there are configurations in which they
outperform the state-of-the-art paper. However, it will incur in
increasing the number of wavelengths required (see Tables II
and III).

Table IV also presents the inference execution time and
energy consumption measured in the cookie platform for each
solution tested. Comparing the proposed solutions for both ex-
periments, the differences between execution time and energy
consumption are 6 ms and 0.3 mJ, respectively. Analyzing
the water-ethanol experiment while using the same regression
model for the proposed and the state-of-the-art solutions, the
execution time and energy consumption are decreased up to
43.59 times the processing time and 43.90 times the energy
consumption. As both solutions consider the same ML model
fed by the same number of variables (three variables in this
experiment), the differences observed lie on that the state-of-
the-art solution uses the PCA technique, which compresses
the whole set of wavelengths into three variables. The PCA
algorithm used in the compression consumes 97.77% of energy
from the entire set of calculations necessary to make the
prediction. The number of wavelengths is reduced by 1216
times, also lowering the energy consumption in the acquisition
system. Focusing on the wine-ethanol experiment while using
the same regression model for the proposed and the state-of-
the-art solutions, the execution time and energy consumption
are decreased to 67.18 and 68.57 times, respectively. As in the
previous experiment, the PCA technique consumes 98.56% of
energy to make the prediction. The number of wavelengths
is decreased to 1824. As a result, it can be stated that the
proposed solutions outperform the state-of-the-art ones in
terms of resources, execution time, and energy consumption
while maintaining the same prediction performance. Compar-
ing both proposed solutions (2-wavelengths linear model and
3-wavelengths interactions linear model), it can be observed
that the energy consumption raises in 0.04 mJ. In the water-
ethanol experiment, the 2-wavelengths linear model proposal
decreases the ethanol detection performance, up to 0.29 %eth
of RMSE, not surpassing the state-of-the-art. On the contrary,
in the wine-ethanol experiment, the performance is improved,
obtaining an RMSE of 0.10 %eth, however, the improvement
is not higher enough (0.02 %eth) to assume an increment of
energy consumption. Therefore, the system to be implemented
remains invariant.

VI. CONCLUSION

This work proposes a novel spectral methodology for
miniaturizing ML systems for fluid characterization based on
photonic sensors, particularly RNPs transducers. It presents
an alternative to traditional techniques, which demand high
computational costs and resources. This methodology com-
prises the use of a hybrid FS procedure-oriented to the wave-
length domain, providing a method for wavelength selection
in photonic transducers. The WHFS method aims at reducing
the number of wavelengths that an ML model needs while
maintaining a high prediction quality. Its configuration permits
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Fig. 5: Resulting wavelengths selected for both experiments.

TABLE IV: Comparison between the proposed and state-of-the-art solution for each experiment.

Experiment ML Model Wavelengths (uds) Wavelengths (nm) PCs (uds) RMSE (%eth) R2 MAE (%eth) Time (ms) Energy (mJ) Reference

Water-ethanol Interactions 3 575.02, 630.96, 558.02 - 0.13 1.00 0.10 17 0.11 This paper
Water-ethanol Interactions 3648 (All) - 2 0.19 1.00 0.14 741 4.83 [10]

Wine-ethanol Linear 2 582.70, 632.39 - 0.12 1.00 0.09 11 0.07 This paper
Wine-ethanol Linear 3648 (All) - 2 0.14 1.00 0.11 739 4.80 [10]

the adaptation of the technique to the use case requirements
by modifying the restrictions for the wavelength selection. As
a result, the authors verified that i) the solutions proposed by
the methodology can achieve state-of-the-art prediction quality
results, and ii) they fit better in a resource-aware platform for
the edge layer due to its energy consumption, inference exe-
cution time, and resource utilization. The proposed solutions
outperform the state-of-the-art up to 67.18 times the inference
execution time and 68.57 times the energy consumption. From
the sensor design point of view, the proposal can also help
to simplify the sensor readout equipment for specific applica-
tions. For instance, in the considered case of study, the analysis
performed suggests that the light source and spectrometer can
be replaced by several lasers and photodetectors, which can
be cheaper and more precise in determining the intensity of
the sensor signal in the selected ranges.

Future work is oriented to apply these solutions in different
edge nodes from the hardware perspective, such as FPGA-
based nodes, whose parallelization capabilities might allow
integration prognosis inside this IoT layer. From a chemical
industry standpoint, the next objective is to analyze the perfor-
mance of this methodology in different media and applications,
such as the determination of other chemical compounds of
interest in the industry in liquid or gas states. Also, in the
smart agriculture domain, this WHFS method might be applied
to choose the relevant wavebands among those produced by a
hyperspectral camera to reduce the computational needs.
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the Universidad Politécnica de Madrid, in 2016.
He is currently pursuing a Ph.D. degree with the
Group of Optics, Photonics, and Biophotonics,
Center for Biomedical Technology (CTB-UPM),
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